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Null strings in Schwarzschild spacetime
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The null string equations of motion and constraints in Schwarzschild spacetime are given. The solutions are
those of the null geodesics of general relativity appended by a null string constraint in which the “constants of
motion” depend on the world-sheet spatial coordinate. Because of the extended nature of a string, the physical
interpretation of the solutions is completely different from the point particle case. In particular, a null string is
generally not propagating in a plane through the origin, although each of its individual points is. Some special
solutions are obtained and their physical interpretation is given. Especially, the solution for a null string with
a constant radial coordinatemoving vertically from the south pole to the north pole around the photon sphere
is presented. A general discussion of classical null or tensile strings as compared to massless or massive
particles is given. For instance, tensile circular solutions with a constant radial coondidateot exist at all.

The results are discussed in relation to the previous literature on the s{Bj@656-282197)03010-5

PACS numbdrs): 11.25.Mj, 04.70.Bw

[. INTRODUCTION tion in the Schwarzschild spacetime in more detail, and
thereby also to shed light on the solutions obtained by Kar
It is well known that the classical evolution of strings [12]. We present the general equations of motion for strings
even in the simplest curved backgrounds, such as thi# the Schwarzschild spacetime and give the general solu-
Schwarzschild spacetime, is described by a complicated sydons in quadratures in the case of null strings in Sec. II. In
tem of second-order nonlinear coupled partial differentialSec. lll we solve the equations of motion completely in
equations. In the Schwarzschild spacetime the system is aglosed form for circular null strings and we discuss their
tually nonintegrable and it subjects chaotic behayidr so physical interpretation. In Sec. IV we present a very interest-
one may just try to find the exact evolution for some specialnd exact solution which describes a string moving vertically
configurationg2—7] or perform some numerical calculations Up and down around the photon sphere. In Sec. V we briefly
[1,3,8. This means that there is no hope for making the fulldiscuss the relation between the tensile and the null strings in
classification of the possible classical trajectories of stringgh€ context of our solutions. Finally in Sec. VI, we summa-
in the Schwarzschild spacetime similar to the one for thdize our results and give some concluding remarks.
point particles; see, for instance, the standard textbook by
Chandrasekhd]. Il. STRINGS IN THE SCHWARZSCHILD SPACETIME

In the case of the null stringsensionless stringsas first In anv curved spacetime the spacetime coordinates de-
introduced by Schild10] and later developed, among others, . . y cur Pe 1€ e sp
scribing a string configuration, in general, depend on both of

by Karlhede and Lindstra [11], this situation is simplified the strina coordinates ando. o we may use the notation
since the null strings, similarly to the massless point par- 9 7 y

ticles, essentially sweep out the light cone, and their equa- XO=t(r,0), X'=r(70)
tions of motion are essentially just geodesic equations of o s
general relativity appended by an additional constraint. Gen- X2=0(7,0), X3=o¢(r0). 2.1)

eral relativistic first integrals for point particles are known

for most of the symmetric spacetimes, and we can apply Let us consider the tensile stri{§inite tension and the

them to null strings with almost no hesitation. Then, dependnull string (zero tensioh equations of motion in a compact

ing on the assumed shape of a null string, in principle, onéormula:

can solve the null string equations of motion in many cases. )

Such calculations have been performed recently, though not XM+ ng)'(V)'(Pz)\(x”#+rgpx’Vx’P)_ (2.2

completely, by Kaf12] for Minkowski, Rindler, Schwarzs-

child, and Robertson-Walker spacetimes following an earlieThe constraints read as

idea originally suggested by Roshchupkin and Zheltukhin o

[13] for Robertson-Walker spacetimes. 9 XEX"= =g, X" #X"7, (2.3
The task of this paper is to discuss the null string evolu-

9, XMX""=0. (2.9
*Electronic address: mpdabfz@uoo.univ.szczecin.pl Here (---) =dldr and (---)'=dldo. For A\ =1 we have
"Electronic address: alarsen@phys.ualberta.ca the tensile strings whila =0 applies for the null strings. In
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Refs.[14-17], expansion schemes were considered, essen- ) 1 2M\ -,
tially using\ as a continuous expansion parameter; here w&(r)=—E"(o)+ 1—7) [L°(o)+K(0o)], (2.14
simply use\ as a discrete parameter discriminating between

tensile and null strings. _ and the constraint2.3) has been taken into account. As we
From the above we can see that for the null strings W& ap, easily see (o) refers directly to the coordinate while

have the null geodesic equations supplemented by the o) refers directly to the coordinai® One can also define
straint (2.4), which ensures that each point of the string,e generalized impact parameter[8%

propagates in the direction perpendicular to the string. In the

Schwarzschild spacetime we have, from E22), L2(0)+K(o)
.. M/r2 .. E(o)
t—At"+2————(tr—At'r’)=0, (2.5 _ _
1-2M/r It should be noticed that if there was not the “constant of

motion” K(o), the only solution of Eq(2.12 with L#0
would be given byg=const 7/2. As is very well known in
the case of point particles, one can of coursekatO with-
out loss of generality. However, because of the fact that the

2M) . string is an extended object this is not the case here, and the
—fSinzﬁ( 1- T)((PZ—MP'Z) explicit dependence on the string coordinatemust be

given. In particular, the null string doe®t in general move
2M\ ., " on a plane through the origin, although each individual point
1=~ ](6°=x6")=0, (2.6 of the string actually does.
The constraint2.4) now takes the form

2

N M/r 2y 12 M
PN oM A

2M) .
1—7)(t2—}\t/2)

2 .. coy . .

PN TN g (Do M 0D =0, E(o)t — a1 —L(0)¢' —1200'siP0=0,  (2.16
(2.7) 1-2M/r

. 2 _ with r and @ given by Eqs(2.12) and(2.13. Equation(2.16)

O=NG"+ —(r f—N\r’9")—singcosh( ¢~ \¢'?)=0. means that we have a constraint on the functions

2.9 E(o), L(0), andK (o).
Finally, we notice that the invariant string sid¢be length

In the case of the null strings\(0), Egs.(2.5) and (2.7) ~ ©Of the string S(7) for the null string is given by
easily integrate. The only difference from that of the general o
relativistic point particle case is that now the “constants of S(7)= S(r,0)da, (.17
motion” must depend on the string coordinatei.e., 0

: E(o) where
=T 29
S(7,0)=Vg,,X""X""
. L(o) 1 1\°1
— _| T sr2 o
7 I %Sirte (2.10 —[ (1 vt L ZM)
. . . 1/2
gcr)r;\]tlrgng Eq.(2.8) with Egs.(2.9) and (2.10 we obtain, ><r’2+r20’2+rzsinze¢’2} (218
L o cosy
risirf 66+ 2r3rS|r1200—L2((r)w:0, (2.11) IIl. CIRCULAR NULL STRINGS
As a first example of exact solutions, we consider the
which integrates in a standard way circular ansatz for a null string in the Schwarzschild space-

time:
r4sirf06?=—L2(o)cod6+K(o)sirts, (2.1
(o) () (212 t=t(r), r=r(7), 60=60(7), o¢=o0. (3.1
and the non-negative functiok (o) generalizes Carter’s
“fourth constant” of motion (see, for instancd,18]). The
standard potential equation for the radial coordinate is then

Inserting Eq.(3.1) into Egs.(2.9—-(2.13 we have

obtained by integrating Eq2.6) in the case\=0: t= G (3.2
1-2M/r’
r2+V(r)=0, 2.1
(") @13 L2 2 K(o) 1 ZI\/I) 3.3
where =B~z r)’ 33
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492 _ [9,18)). It is possible because in the assumed an&afy, all
r*e-=K(o), (3.9 > ) . X
the spacetime coordinates are just functions of one of the two
and we have also used the constrdihtl6) which gives the String coordinates, and we can derive the equation which
condition forL to be equal to zero. It is also clear from Egs. relates the coordinatesand ¢ from Egs.(3.2) and(3.3 in a
(3.2—(3.4) that E andK must beconstantsindependent of similar way as one usually does for the mas;less particles
o) in this case. This is not the case in general, of course. [9], although now, instead ap we haved, and instead of

The simplest solutions come if we plt=0, i.e., L we have\/E: ie.,
6=const, (3.5 du\? 1 1\2 1(M? 1
B do) ~M{U*sm/\Y"3m] Tm2DZ 27
r—ro+2Min— ==*(t—ty), (3.6 1
fo~2M = oMU+ (3.1

2
and they describe the “cone strings” which start with finite x

size and then sweep out the conesconst. These strings where u=1/r and D is defined by Eq.2.15. From this
play a similar role as the radial null geodesics in generakquation we can immediately derive the trajectories of the
relatiVity. Notice that the extended nature of the String meangyy|| Strings Simi|ar|y as ”[9] In our discussion we just use

that configurations corresponding to different values of thedirectly the Eq/(3.3) looking for the turning pointsi(=0) of
constant polar anglé are physically different: fow= /2, it, satisfying

the string is in a plane through the origin while for any other
value of @ it is not. In fact, for 6=/2, the string winds K (r/2M)?
around the black hole in the equatorial plane while for IMZEZ ™ 1= (r/2M) T
# /2, it is on a parallel plane moving perpendicular to the
equatorial plane. In contrast, a point particle is always in aEquation(S.lZ) has two solutions outside the horizon pro-
plane through the origin. This illustrates the fact that al'vid
though the null string equations are similar to the massless
geodesic equations, in particular whé&hand K are con- K D2
stants, the physical interpretation of the solutions is com- W:W>27’ (3.13
pletely different.

For the sake of comparison we mention that in
Minkowski spacetime 1 =0) the logarithmic term vanishes

(3.12

one solution in case of equality and otherwise no solutions.
Consider first the case wheke<27M?E? (D<3/3M) and

giving simply a circular string incoming from spatial infinity(say)
6= const, (3.7 6=0r=. The plane of the string is always parallel to the
equatorial plane and the string approaches the south pole of
r—ro=*(t—to). (3.8  the black hole, and since there is no turning point in this

case, the string will eventually fall into the black hole. If
The “cone strings” also appear in the anti—de Sitter spacek >27M2E? (D>3+/3M), the string again approaches the

time since there south pole of the black hole, but in this case it will scatter off
and escape towards infinity again. Notice that in both cases
¢=const, (3.9  the string can make a number of turns, moving vertically
1 from the south pole to the north pole and back again and so
F—ro=*—tarH(t—to), (3.10 on, around the black holgluring which it actually collapses

(rsing=0) several timek but always with its plane parallel
to the equatorial plane, before its fate is determined. Simi-
with H=const= y—A/3, whereA is the cosmological con- |arly one can consider strings starting very closéhot out-
stant. Such “cone strings” can also easily be constructed irjdg the horizon with increasing(7). If K<27MZ2E?, the
other static spherically symmetric spacetimes, but we shaltring escapes to infinity while K>27M2E2, it will hit the
not go into further details here. barrier and fall back into the black hole. In the next section

Coming back to Eqsi3.2)—(3.4) for arbitraryK, we first e will consider a limiting case of this kind of dynamics.
notice that Eq(3.3) is exactly equivalent to the equation for

photons moving in the equatorial plane with nonvanishing
angular momentuml(+# 0,0= w/2=K=0). This, of course,
just reflects the fact that point particles always move in a In the special case when the impact parameter
plane through the origin. However, since a stripgen anull  D=3./3M, Eq. (3.11) [with the circular ansat3.1) valid]
string) is an extended object, the physical interpretation offactorizes and the simplest solution for the constant radial
the solutions to Eq(3.3) is completely different from that of coordinater =1/u=3M comes immediately. If =3M, then
point particle solutions. In particular, none of the string so-we conclude from Eqg3.11) and(3.2) that

lutions we will obtain here are propagating in a plane

through the origin. But the qualitative and quantitative pic- t(r)=3Er, D?=27M?2. 4.0
ture for the string solutions can still be extracted from the

well-known results for point particlegsee, for instance, Then, one is able to integrate E@.4) to give

IV. NULL STRINGS ON THE PHOTON SPHERE
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) Er ; 42 dz E ZZ2+4z+1)? (419
== + 6y, ) —== , .
J3M 0 dr JV3M (z—1)*
and #y=const. Finally, we conclude that a circular string wherez=expd and §,= const. The exact solutions of these
solution is described explicitly by equations are given in terms of elliptic functions and we will
not discuss them further on since their physical meaning is
t=3E7, r=const=3M, clear from the qualitative considerations given above and at

the end of Sec. Ill. One can easily see from Egs6)—(4.8
o—+ Er iy _ 43 that in the Ilimit 6—ow, r=3M,t=3E7, and
RNV $= 43 dordr=+ E/\3M. Similarly in Egs. (4.9-(4.11) for
6—x, r=3M, t=3E7, and do/d7==E/\3M, thus in
which means that the string may move vertically from theboth cases we obtain the limiting cage3) as we should.
south pole to the north pole and back again and so on around
the photon sphere &3M). Notice that the factor B in Eq. V. TENSILE CIRCULAR STRINGS
(4.1 can be scaled away. The invariant string gi26.7) of IN THE SCHWARZSCHILD BACKGROUND

the string solution(4.3) is simpl ) ) ) , )
g 4.3 Py In this section we briefly consider the case of tensile

strings and start with the circular ansatz of Sec. Il given by

E
S=6wMsin i\/—3_;/l+ 0o |- (4.9 Eq. (3.1). The equations of motiof2.5—(2.8) are given by
. E
This string solution with constant radial coordinate 3M t——5——-=0, (5.9
. ) . 1-2M/r
is, besides the solution
2
t=7, r=cons&2M, 60=const, ¢=0c, (4.5 P M/r 'rz+M 1_2_M t2+rsire 1_2_M
1-2M/r r? r r

considered by Kaf12], the only string solution with con-

stantr. Notice that the solutiom=2M is stationary while —r( 1_2_M) 9?=0 (5.2

the solutionr =3M is highly dynamical. It must be stressed, ' '
however, that the solution=3M is unstable. The situation

is similar to the case of a photon on a circular orbit at . or.

r=3M [9,18] and it means that there exist two asymptotic 0+ 26+ singcosy=0, (5.3
solutions in addition to the one given by E@.3), one of

which describes an incoming string approaching the photoand the constraint2.4) is automatically fulfilled, while the
sphere from infinity (=), then spiraling around it infi- constraint(2.3) gives

nitely many times, and the other one, an outgoing string

starting from somewhere close ¢but outsid¢ the horizon E2_r2 )

approaching the photon sphere by also spiraling around it (]__Z—M/r)—rzﬂz—fzSW@:O- (5.9
infinitely many times. The exact expressions for such trajec-

tories have been already given [8]. For the string ap-  These equations can be easily integrated in the equatorial
proaching the photon sphere from infinithe orbit of “the  hjane and the solutions have been discussed in 34§ so

first kind” as called in[9]) we have, from Eqs(3.2-(3.4,  \ye shall not repeat them here. The first special solutions of
Egs.(5.1)—(5.3) outside the equatorial plane one might look

l — i + itanr? 1( 6+ 6o) |, (4.6)  forare the ones with constant radial coordinate const(cf.
r 6M  2M 2 the discussion of the null strings in the previous segtion
dt E However, as one can easily check by simple substitution

— ' (4.7) r=0in Egs.(5.1)—(5.3) and then differentiation of Eq5.2)
dr  4/3—tant[1/2(6+ 6,)] with respect tor, this results in contradiction with E5.3).
This means that tensile strings with a constant value of the

de N E ’ 1 2 radial coordinater do not exist at all. This is a very big
dr —m —1+3tan 5( 0+60) ||, (48 difference from the point particles since for massive particles
there are circular orbits which are stable for6M and un-
and, for the outgoing string approaching the photon spherétable forr <6M. It seems that it is impossible to keep such
(the orbit of “the second kind), a symmetric and stationary configuration because of the self-
interaction of the tensile strings.
1 1 27 A second first integralbesides Eq(5.4)] of the system
P 3_M+ m (4.9 (5.2)—(5.3), which would guarantee its full integrability, is

not known. In fact, numerical investigations strongly suggest
dt E that no suc_:h inte_gra_l exists, i.e., the system _is chaotic. The
- = ' (4.10  humerical investigations showed that essentially three pos-
dr 1/3—tar\2[2arctam\/2)] sible evolution schemes are possible for the axisymmetric
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tensile string in the Schwarzschild spacetifde3]: (1) the  have something to do with massive particles. The general
string simply passes the horizon and falls onto the blackjuestion is then, whether the null strings actually have any-
hole; (2) the string passes by the black hole, but part of itsthing to do with the tensile strings. Referring to that, there
translational energy is transformed into oscillatory energyhave been suggestions receriid—17 that the tensile string
(3) the string is “trapped” jumping chaotically around the equations of motion may be expanded perturbatively in in-
black hole for a certain amount of time before it either falls Verse string tension parametef (or a parameter related to it
into the black hole or escapes towards infinity. Notice tha®y rescaling having the null string equations of motion as
this is qualitatively the same kind of dynamics that we foundthe® zeroth-order approximation. However, although the
for the null strings using exact analytical methods of Secs. IIfquations of the null strings are mathematically much sim-
and IV. This suggests that by fine-tuning of the initial con-PI€r than the equations of the tensile strings, one can ques-
ditions, it should actually be possible to hatensil string tion (cf. the above discussipmvhether it is physically mean-

solutions jumping around the black hole foreveomewhat "9ful o consider a null sting as a zeroth-order
.approximation of a tensile string. It seems also that there is

similar to the null string on the photon sphere as discussed IDome disagreement in the literatu4—17] about how to

Sec. IV, but with the radial coordinate not exactly constant yafine such an expansion scheme correctly. Other physical

spects of tensionless strings, such like their classical inter-

whether such solutions would be stable under small perturyctions have also been discussed rece(stye[19] and ref-
bations, and their existence might demanfthite fine-tuning  grences therejn

of the initial conditions. We finally notice that in the case of the other hand, it is certainly meaningful and interest-
electrically charged strings, such solutions actually do exis]tng to consider null strings by themselvéassuming that
[1]; their stability being guaranteed by a Coulomb barrier forg,cy gpjects actually existThe dynamics of null strings in a
small radius and a tension barrier for large radius. For thered spacetime is however very simply obtained if the dy-
ordinary uncharged tensile strings, such solutions have ng{ymics of point particles is known. As discussed in this pa-
yet been found, either by analytical or by numerical methodsper, it is essentially a question of interpreting the well-known

point particle results in the framework of an extended object.

Referring to our calculations one can distinguish two differ-

VI. SUMMARY ent physical situations. These are when the const(aidt is

After our analysis of the evolution of strings in the above ©" IS not automatically fulfilled by the ansatz. If it is auto-
matically fulfilled the evolution of the string is almost trivial,

cases we now come to the following discussion which com-

pares the behavior of classical null strings and tensile string the sense that each point of the string follows a null geo-

to the behavior of massless and massive point particles i e_s|c(a trajectory ofa massles.s particleithout any corre-

curved spacetimes ations with the rest of the string. Then, the string motion
A classical massive point particle in a curved spacetimd€duces to the motion of a collection of massless point par-

experiences only the interaction with the gravitational fielg ticles m_oving qyiteindependen_tlyOn the_ other hand, if the
gonstraint(2.4) is not automatically fulfilled by the ansatz

en there are some nontrivial correlations between the dif-
erent points of the string, the nature of which are purely
‘stringy.” It appears that the “stringy” nature is absent in

line of the particle smoothly since photon subjects the sam
rule and they also interact with the gravitational field only.,
Thus from the point of view of world lines only, the limit of ) , . .
zero mass is relatively mild. For strings the situation is some2nY @xially symmetric spacetime for the circular ansatz, thus

what more complicated. What distinguishes the strings fro 0 look for more compllcat_ed dynamics one ShO.UId consider

the point particles in such situations is that the strings no?!ther some less symmetric background spacetimes or some

only interact with the gravitational field, but also seIf—interactd'ﬁ‘:‘.“:‘r.‘t string shapes. . :

due to the tension. This makes an important physical differ- Similar problems as discussed here might appear for the

ence with what we have for the point particles in the sensém!I p-bran(_as In cgrved_spacetlmézo] which generalizes

that now taking the limit of zero tension is quideamatic It  Stfings to higher-dimensional objects.

is because in this limit the self-interaction of strings totally

vanishes, while the interaction with the gravitational field

changes smoothlgas for point particles The authors wish to thank Don Page and Alex Zheltukhin

It is thus obvious that the null particledike photon$  for useful discussions. M.P.D. was supported by the Polish
Research CommitteéKBN) Grant No. 2 PO3B 196 10.
A.L.L. was supported by NSER@CNational Sciences and
We thank D. Page for interesting discussions on this point.  Engineering Research Council of Canada
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