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The null string equations of motion and constraints in Schwarzschild spacetime are given. The solutions are
those of the null geodesics of general relativity appended by a null string constraint in which the ‘‘constants of
motion’’ depend on the world-sheet spatial coordinate. Because of the extended nature of a string, the physical
interpretation of the solutions is completely different from the point particle case. In particular, a null string is
generally not propagating in a plane through the origin, although each of its individual points is. Some special
solutions are obtained and their physical interpretation is given. Especially, the solution for a null string with
a constant radial coordinater moving vertically from the south pole to the north pole around the photon sphere
is presented. A general discussion of classical null or tensile strings as compared to massless or massive
particles is given. For instance, tensile circular solutions with a constant radial coordinater do not exist at all.
The results are discussed in relation to the previous literature on the subject.@S0556-2821~97!03010-5#

PACS number~s!: 11.25.Mj, 04.70.Bw

I. INTRODUCTION

It is well known that the classical evolution of strings
even in the simplest curved backgrounds, such as the
Schwarzschild spacetime, is described by a complicated sys-
tem of second-order nonlinear coupled partial differential
equations. In the Schwarzschild spacetime the system is ac-
tually nonintegrable and it subjects chaotic behavior@1#, so
one may just try to find the exact evolution for some special
configurations@2–7# or perform some numerical calculations
@1,3,8#. This means that there is no hope for making the full
classification of the possible classical trajectories of strings
in the Schwarzschild spacetime similar to the one for the
point particles; see, for instance, the standard textbook by
Chandrasekhar@9#.

In the case of the null strings~tensionless strings!, as first
introduced by Schild@10# and later developed, among others,
by Karlhede and Lindstro¨m @11#, this situation is simplified
since the null strings, similarly to the massless point par-
ticles, essentially sweep out the light cone, and their equa-
tions of motion are essentially just geodesic equations of
general relativity appended by an additional constraint. Gen-
eral relativistic first integrals for point particles are known
for most of the symmetric spacetimes, and we can apply
them to null strings with almost no hesitation. Then, depend-
ing on the assumed shape of a null string, in principle, one
can solve the null string equations of motion in many cases.
Such calculations have been performed recently, though not
completely, by Kar@12# for Minkowski, Rindler, Schwarzs-
child, and Robertson-Walker spacetimes following an earlier
idea originally suggested by Roshchupkin and Zheltukhin
@13# for Robertson-Walker spacetimes.

The task of this paper is to discuss the null string evolu-

tion in the Schwarzschild spacetime in more detail, and
thereby also to shed light on the solutions obtained by Kar
@12#. We present the general equations of motion for strings
in the Schwarzschild spacetime and give the general solu-
tions in quadratures in the case of null strings in Sec. II. In
Sec. III we solve the equations of motion completely in
closed form for circular null strings and we discuss their
physical interpretation. In Sec. IV we present a very interest-
ing exact solution which describes a string moving vertically
up and down around the photon sphere. In Sec. V we briefly
discuss the relation between the tensile and the null strings in
the context of our solutions. Finally in Sec. VI, we summa-
rize our results and give some concluding remarks.

II. STRINGS IN THE SCHWARZSCHILD SPACETIME

In any curved spacetime the spacetime coordinates de-
scribing a string configuration, in general, depend on both of
the string coordinatest ands, so we may use the notation

X05t~t,s!, X15r ~t,s!,

X25u~t,s!, X35w~t,s!. ~2.1!

Let us consider the tensile string~finite tension! and the
null string ~zero tension! equations of motion in a compact
formula:

Ẍm1Gnr
m ẊnẊr5l~X9m1Gnr

m X8nX8r!. ~2.2!

The constraints read as

gmnẊ
mẊn52lgmnX8mX8n, ~2.3!

gmnẊ
mX8n50. ~2.4!

Here (•••)•[]/]t and (•••)8[]/]s. For l51 we have
the tensile strings whilel50 applies for the null strings. In
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Refs. @14–17#, expansion schemes were considered, essen-
tially usingl as a continuous expansion parameter; here we
simply usel as a discrete parameter discriminating between
tensile and null strings.

From the above we can see that for the null strings we
have the null geodesic equations supplemented by the con-
straint ~2.4!, which ensures that each point of the string
propagates in the direction perpendicular to the string. In the
Schwarzschild spacetime we have, from Eq.~2.2!,

ẗ2lt912
M /r 2

122M /r
~ ṫ ṙ2lt8r 8!50, ~2.5!

r̈2lr 92
M /r 2

122M /r
~ ṙ 22lr 82!1

M

r 2S 12
2M

r D ~ ṫ22lt82!

2rsin2uS 12
2M

r D ~ ẇ22lw82!

2r S 12
2M

r D ~ u̇22lu82!50, ~2.6!

ẅ2lw91
2

r
~ ṙ ẇ2lr 8w8!12

cosu

sinu
~u̇ẇ2lu8w8!50,

~2.7!

ü2lu91
2

r
~ ṙ u̇2lr 8u8!2sinucosu~ẇ22lw82!50.

~2.8!

In the case of the null strings (l50), Eqs.~2.5! and ~2.7!
easily integrate. The only difference from that of the general
relativistic point particle case is that now the ‘‘constants of
motion’’ must depend on the string coordinates: i.e.,

ṫ5
E~s!

122M /r
, ~2.9!

ẇ5
L~s!

r 2sin2u
. ~2.10!

Combining Eq.~2.8! with Eqs. ~2.9! and ~2.10! we obtain,
for l50,

r 4sin2uü12r 3ṙsin2uu̇2L2~s!
cosu

sinu
50, ~2.11!

which integrates in a standard way

r 4sin2uu̇252L2~s!cos2u1K~s!sin2u, ~2.12!

and the non-negative functionK(s) generalizes Carter’s
‘‘fourth constant’’ of motion ~see, for instance,@18#!. The
standard potential equation for the radial coordinate is then
obtained by integrating Eq.~2.6! in the casel50:

ṙ 21V~r !50, ~2.13!

where

V~r !52E2~s!1
1

r 2S 12
2M

r D @L2~s!1K~s!#, ~2.14!

and the constraint~2.3! has been taken into account. As we
can easily seeL(s) refers directly to the coordinatew while
K(s) refers directly to the coordinateu. One can also define
the generalized impact parameter as@9#

D~s![
AL2~s!1K~s!

E~s!
. ~2.15!

It should be noticed that if there was not the ‘‘constant of
motion’’ K(s), the only solution of Eq.~2.12! with LÞ0
would be given byu5const5p/2. As is very well known in
the case of point particles, one can of course putK50 with-
out loss of generality. However, because of the fact that the
string is an extended object this is not the case here, and the
explicit dependence on the string coordinates must be
given. In particular, the null string doesnot in general move
on a plane through the origin, although each individual point
of the string actually does.

The constraint~2.4! now takes the form

E~s!t82
ṙ

122M /r
r 82L~s!w82r 2u̇u8sin2u50, ~2.16!

with ṙ andu̇ given by Eqs.~2.12! and~2.13!. Equation~2.16!
means that we have a constraint on the functions
E(s), L(s), andK(s).

Finally, we notice that the invariant string size~the length
of the string! S(t) for the null string is given by

S~t!5E
0

2p

S~t,s!ds, ~2.17!

where

S~t,s!5AgmnX8nX8n

5F2S 12
1

2M D t821S 12
1

2M D 21

3r 821r 2u821r 2sin2uw82G1/2. ~2.18!

III. CIRCULAR NULL STRINGS

As a first example of exact solutions, we consider the
circular ansatz for a null string in the Schwarzschild space-
time:

t5t~t!, r5r ~t!, u5u~t!, w5s. ~3.1!

Inserting Eq.~3.1! into Eqs.~2.9!–~2.13! we have

ṫ5
E~s!

122M /r
, ~3.2!

ṙ 25E2~s!2
K~s!

r 2 S 12
2M

r D , ~3.3!
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r 4u̇25K~s!, ~3.4!

and we have also used the constraint~2.16! which gives the
condition forL to be equal to zero. It is also clear from Eqs.
~3.2!–~3.4! thatE andK must beconstants~independent of
s) in this case. This is not the case in general, of course.

The simplest solutions come if we putK50, i.e.,

u5const, ~3.5!

r2r 012M ln
r22M

r 022M
56~ t2t0!, ~3.6!

and they describe the ‘‘cone strings’’ which start with finite
size and then sweep out the conesu5const. These strings
play a similar role as the radial null geodesics in general
relativity. Notice that the extended nature of the string means
that configurations corresponding to different values of the
constant polar angleu are physically different: foru5p/2,
the string is in a plane through the origin while for any other
value of u it is not. In fact, for u5p/2, the string winds
around the black hole in the equatorial plane while foru
Þp/2, it is on a parallel plane moving perpendicular to the
equatorial plane. In contrast, a point particle is always in a
plane through the origin. This illustrates the fact that al-
though the null string equations are similar to the massless
geodesic equations, in particular whenE and K are con-
stants, the physical interpretation of the solutions is com-
pletely different.

For the sake of comparison we mention that in
Minkowski spacetime (M50) the logarithmic term vanishes
giving simply

u5const, ~3.7!

r2r 056~ t2t0!. ~3.8!

The ‘‘cone strings’’ also appear in the anti–de Sitter space-
time since there

u5const, ~3.9!

r2r 056
1

H
tanH~ t2t0!, ~3.10!

with H5const5A2L/3, whereL is the cosmological con-
stant. Such ‘‘cone strings’’ can also easily be constructed in
other static spherically symmetric spacetimes, but we shall
not go into further details here.

Coming back to Eqs.~3.2!–~3.4! for arbitraryK, we first
notice that Eq.~3.3! is exactly equivalent to the equation for
photons moving in the equatorial plane with nonvanishing
angular momentum (LÞ0,u5p/2⇒K50). This, of course,
just reflects the fact that point particles always move in a
plane through the origin. However, since a string~even a null
string! is an extended object, the physical interpretation of
the solutions to Eq.~3.3! is completely different from that of
point particle solutions. In particular, none of the string so-
lutions we will obtain here are propagating in a plane
through the origin. But the qualitative and quantitative pic-
ture for the string solutions can still be extracted from the
well-known results for point particles~see, for instance,

@9,18#!. It is possible because in the assumed ansatz~3.1!, all
the spacetime coordinates are just functions of one of the two
string coordinates, and we can derive the equation which
relates the coordinatesr andu from Eqs.~3.2! and~3.3! in a
similar way as one usually does for the massless particles
@9#, although now, instead ofw we haveu, and instead of
L we haveAK: i.e.,

S dudu D 252M S u1
1

6M D S u2
1

3M D 21 1

M2SM2

D2 2
1

27D
52Mu32u21

1

D2 , ~3.11!

where u51/r and D is defined by Eq.~2.15!. From this
equation we can immediately derive the trajectories of the
null strings similarly as in@9#. In our discussion we just use
directly the Eq.~3.3! looking for the turning points (ṙ50) of
it, satisfying

K

4M2E2 5
~r /2M !2

12~r /2M !21 . ~3.12!

Equation~3.12! has two solutions outside the horizon pro-
vided

K

M2E2 5
D2

M2.27, ~3.13!

one solution in case of equality and otherwise no solutions.
Consider first the case whereK,27M2E2 (D,3A3M ) and
a circular string incoming from spatial infinity~say!
u50,r5`. The plane of the string is always parallel to the
equatorial plane and the string approaches the south pole of
the black hole, and since there is no turning point in this
case, the string will eventually fall into the black hole. If
K.27M2E2 (D.3A3M ), the string again approaches the
south pole of the black hole, but in this case it will scatter off
and escape towards infinity again. Notice that in both cases
the string can make a number of turns, moving vertically
from the south pole to the north pole and back again and so
on, around the black hole@during which it actually collapses
(rsinu50) several times#, but always with its plane parallel
to the equatorial plane, before its fate is determined. Simi-
larly one can consider strings starting very close to~but out-
side! the horizon with increasingr (t). If K,27M2E2, the
string escapes to infinity while ifK.27M2E2, it will hit the
barrier and fall back into the black hole. In the next section
we will consider a limiting case of this kind of dynamics.

IV. NULL STRINGS ON THE PHOTON SPHERE

In the special case when the impact parameter
D53A3M , Eq. ~3.11! @with the circular ansatz~3.1! valid#
factorizes and the simplest solution for the constant radial
coordinater51/u53M comes immediately. Ifr53M , then
we conclude from Eqs.~3.11! and ~3.2! that

t~t!53Et, D2527M2. ~4.1!

Then, one is able to integrate Eq.~3.4! to give
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u56
Et

A3M
1u0 , ~4.2!

and u05const. Finally, we conclude that a circular string
solution is described explicitly by

t53Et, r5const53M ,

u56
Et

A3M
1u0 , w5s, ~4.3!

which means that the string may move vertically from the
south pole to the north pole and back again and so on around
the photon sphere (r53M ). Notice that the factor 3E in Eq.
~4.1! can be scaled away. The invariant string size~2.17! of
the string solution~4.3! is simply

S56pMsinS 6
Et

A3M
1u0D . ~4.4!

This string solution with constant radial coordinater53M
is, besides the solution

t5t, r5const52M , u5const, w5s, ~4.5!

considered by Kar@12#, the only string solution with con-
stant r . Notice that the solutionr52M is stationary while
the solutionr53M is highly dynamical. It must be stressed,
however, that the solutionr53M is unstable. The situation
is similar to the case of a photon on a circular orbit at
r53M @9,18# and it means that there exist two asymptotic
solutions in addition to the one given by Eq.~4.3!, one of
which describes an incoming string approaching the photon
sphere from infinity (r5`), then spiraling around it infi-
nitely many times, and the other one, an outgoing string
starting from somewhere close to~but outside! the horizon
approaching the photon sphere by also spiraling around it
infinitely many times. The exact expressions for such trajec-
tories have been already given in@9#. For the string ap-
proaching the photon sphere from infinity~the orbit of ‘‘the
first kind’’ as called in@9#! we have, from Eqs.~3.2!–~3.4!,

1

r
52

1

6M
1

1

2M
tanh2S 12 ~u1u0! D , ~4.6!

dt

dt
5

E

4/32tanh2@1/2~u1u0!#
, ~4.7!

du

dt
56

E

4A3M
F2113tanh2S 12 ~u1u0! D G2, ~4.8!

and, for the outgoing string approaching the photon sphere
~the orbit of ‘‘the second kind’’!,

1

r
5

1

3M
1

2z

M ~z21!2
, ~4.9!

dt

dt
5

E

1/32tan2@2arctan~Az!#
, ~4.10!

dz

dt
56

E

A3M
z@z214z11#2

~z21!4
, ~4.11!

wherez5expu andu05 const. The exact solutions of these
equations are given in terms of elliptic functions and we will
not discuss them further on since their physical meaning is
clear from the qualitative considerations given above and at
the end of Sec. III. One can easily see from Eqs.~4.6!–~4.8!
that in the limit u→`, r53M , t53Et, and
du/dt56E/A3M . Similarly in Eqs. ~4.9!–~4.11! for
u→`, r53M , t53Et, and du/dt56E/A3M , thus in
both cases we obtain the limiting case~4.3! as we should.

V. TENSILE CIRCULAR STRINGS
IN THE SCHWARZSCHILD BACKGROUND

In this section we briefly consider the case of tensile
strings and start with the circular ansatz of Sec. III given by
Eq. ~3.1!. The equations of motion~2.5!–~2.8! are given by

ṫ2
E

122M /r
50, ~5.1!

r̈2
M /r 2

122M /r
ṙ 21

M

r 2S 12
2M

r D ṫ21rsin2uS 12
2M

r D
2r S 12

2M

r D u̇250, ~5.2!

ü12
ṙ

r
u̇1sinucosu50, ~5.3!

and the constraint~2.4! is automatically fulfilled, while the
constraint~2.3! gives

E22 ṙ 2

~122M /r !
2r 2u̇22r 2sin2u50. ~5.4!

These equations can be easily integrated in the equatorial
plane and the solutions have been discussed in Refs.@3–5# so
we shall not repeat them here. The first special solutions of
Eqs.~5.1!–~5.3! outside the equatorial plane one might look
for are the ones with constant radial coordinater5 const~cf.
the discussion of the null strings in the previous section!.
However, as one can easily check by simple substitution
ṙ50 in Eqs.~5.1!–~5.3! and then differentiation of Eq.~5.2!
with respect tot, this results in contradiction with Eq.~5.3!.
This means that tensile strings with a constant value of the
radial coordinater do not exist at all. This is a very big
difference from the point particles since for massive particles
there are circular orbits which are stable forr.6M and un-
stable forr,6M . It seems that it is impossible to keep such
a symmetric and stationary configuration because of the self-
interaction of the tensile strings.

A second first integral@besides Eq.~5.4!# of the system
~5.1!–~5.3!, which would guarantee its full integrability, is
not known. In fact, numerical investigations strongly suggest
that no such integral exists, i.e., the system is chaotic. The
numerical investigations showed that essentially three pos-
sible evolution schemes are possible for the axisymmetric
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tensile string in the Schwarzschild spacetime@1,3#: ~1! the
string simply passes the horizon and falls onto the black
hole; ~2! the string passes by the black hole, but part of its
translational energy is transformed into oscillatory energy;
~3! the string is ‘‘trapped’’ jumping chaotically around the
black hole for a certain amount of time before it either falls
into the black hole or escapes towards infinity. Notice that
this is qualitatively the same kind of dynamics that we found
for the null strings using exact analytical methods of Secs. III
and IV. This suggests that by fine-tuning of the initial con-
ditions, it should actually be possible to have~tensile! string
solutions jumping around the black hole forever,1 somewhat
similar to the null string on the photon sphere as discussed in
Sec. IV, but with the radial coordinate not exactly constant.
In the present case of tensile strings it is however not known
whether such solutions would be stable under small pertur-
bations, and their existence might demandinfinitefine-tuning
of the initial conditions. We finally notice that in the case of
electrically charged strings, such solutions actually do exist
@1#; their stability being guaranteed by a Coulomb barrier for
small radius and a tension barrier for large radius. For the
ordinary uncharged tensile strings, such solutions have not
yet been found, either by analytical or by numerical methods.

VI. SUMMARY

After our analysis of the evolution of strings in the above
cases we now come to the following discussion which com-
pares the behavior of classical null strings and tensile strings
to the behavior of massless and massive point particles in
curved spacetimes.

A classical massive point particle in a curved spacetime
experiences only the interaction with the gravitational field.
It means that taking the limit of zero mass changes the world
line of the particle smoothly since photon subjects the same
rule and they also interact with the gravitational field only.
Thus from the point of view of world lines only, the limit of
zero mass is relatively mild. For strings the situation is some-
what more complicated. What distinguishes the strings from
the point particles in such situations is that the strings not
only interact with the gravitational field, but also self-interact
due to the tension. This makes an important physical differ-
ence with what we have for the point particles in the sense
that now taking the limit of zero tension is quitedramatic. It
is because in this limit the self-interaction of strings totally
vanishes, while the interaction with the gravitational field
changes smoothly~as for point particles!.

It is thus obvious that the null particles~like photons!

have something to do with massive particles. The general
question is then, whether the null strings actually have any-
thing to do with the tensile strings. Referring to that, there
have been suggestions recently@14–17# that the tensile string
equations of motion may be expanded perturbatively in in-
verse string tension parametera8 ~or a parameter related to it
by rescaling! having the null string equations of motion as
the zeroth-order approximation. However, although the
equations of the null strings are mathematically much sim-
pler than the equations of the tensile strings, one can ques-
tion ~cf. the above discussion! whether it is physically mean-
ingful to consider a null string as a zeroth-order
approximation of a tensile string. It seems also that there is
some disagreement in the literature@14–17# about how to
define such an expansion scheme correctly. Other physical
aspects of tensionless strings, such like their classical inter-
actions, have also been discussed recently~see@19# and ref-
erences therein!.

On the other hand, it is certainly meaningful and interest-
ing to consider null strings by themselves~assuming that
such objects actually exist!. The dynamics of null strings in a
curved spacetime is however very simply obtained if the dy-
namics of point particles is known. As discussed in this pa-
per, it is essentially a question of interpreting the well-known
point particle results in the framework of an extended object.
Referring to our calculations one can distinguish two differ-
ent physical situations. These are when the constraint~2.4! is
or is not automatically fulfilled by the ansatz. If it is auto-
matically fulfilled the evolution of the string is almost trivial,
in the sense that each point of the string follows a null geo-
desic~a trajectory of a massless particle! without any corre-
lations with the rest of the string. Then, the string motion
reduces to the motion of a collection of massless point par-
ticles moving quiteindependently. On the other hand, if the
constraint~2.4! is not automatically fulfilled by the ansatz
then there are some nontrivial correlations between the dif-
ferent points of the string, the nature of which are purely
‘‘stringy.’’ It appears that the ‘‘stringy’’ nature is absent in
any axially symmetric spacetime for the circular ansatz, thus
to look for more complicated dynamics one should consider
either some less symmetric background spacetimes or some
different string shapes.

Similar problems as discussed here might appear for the
null p-branes in curved spacetimes@20# which generalizes
strings to higher-dimensional objects.
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