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We study string propagation in an exact, stringy, four-dimensional dyonic black hole background. The exact
solutions in terms of elliptic functions describing string configurations in theJ50 limit are obtained by solving
the string equations of motion and constraints. By using the covariant formalism, we also investigate the
propagation of physical perturbations along the string in the given curved background.
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I. INTRODUCTION

The study of string dynamics in curved space-time started
in @1# has become an interesting area of research in recent
times. The classical string equations of motion and the con-
straints in curved space-time become highly nonlinear,
coupled partial differential equations and hence it is often
difficult to find exact and complete solutions of these equa-
tions. However, exact solutions to these equations of motion
and constraints have been obtained in some specific curved
space-times, such as, cosmic string backgrounds@2#, black
hole space-times@3,4#, de Sitter space-times@5#, gravita-
tional wave backgrounds@6#, the cosmological background
@7#, and the wormhole background@8#. The string equations
of motion and constraints are exactly integrable in
D-dimensional de Sitter space-times@5#. The novel feature
of strings in the de Sitter space-time is the appearance of
multistring solutions@9#, where there is only one single
world sheet, but infinitely many different and independent
strings. Also, by using certain appropriateAnsätze, such as a
circular stringAnsatz@10# or a stationary stringAnsatz@11#,
one can obtain a general family of exact solutions. In station-
ary, axially symmetric space-times, the circular stringAnsatz
corresponds to decoupling of the dependence ofxm on the
world sheet parameters and consequently reduces the equa-
tions of motion and the constraints to simpler coupled ordi-
nary differential equations. On the other hand, the stationary
stringAnsatzdecouples the dependence ofxm on the world
sheet coordinatet and again the string equations of motion
and constraints reduce to separated first-order ordinary dif-
ferential equations, which are easier to handle. It has also
been noticed that consideration of stationary strings in static
or time-independent backgrounds simplifies the problem a
lot, where the stationary string configuration in static back-
grounds can be described by geodesic equations in a certain
three-dimensional ‘‘unphysical’’ space@3#. After knowing
the extremal string configuration, one can also consider small
perturbations around the stationary strings. Larsen and
Frolov @12# have developed a covariant formalism for small
perturbations propagating along a string in curved space-time

~see also@13#! and have subsequently analyzed stationary
strings in quasi-Newtonian, Rindler, black hole, and de-Sitter
space-times. The second variation of the Polyakov action
essentially gives the equations describing the propagation of
perturbations along a stationary string in a static background.
By doing the analysis in the properly chosen three-
dimensional ‘‘unphysical’’ space-time, one obtains simple
wave equations such as the Po¨schl-Teller equation in quan-
tum mechanics for strings in the Rindler and de-Sitter space-
times. For the Schwarzschild black hole background, the
wave equation has been explicitly analyzed by using the
weak-field expansion and a scattering formalism has also
been set-up@14#.

In this paper, we analyze the equilibrium string configu-
ration in the background of the exact, four-dimensional dy-
onic black hole of Lowe and Strominger@15#, which has
been obtained by tensoring the two-dimensional electrically
charged black holes @these are related to the
(211)-dimensional rotating black hole of Banados, Teitel-
boim, and Zanelli@16# by Kaluza-Klein reduction# with two-
dimensional SU(2)/Z(m) coset models. We make use of the
stationary stringAnsatzand in theJ50 limit, the solutions
of the string equations of motion are obtained in terms of
elliptic functions. However, we do not find any multistring
solutions in the above case. We also investigate the nature of
perturbations as well as their propagation around the string
configuration.

II. STATIONARY STRING ANSATZ AND
FOUR-DIMENSIONAL DYONIC BLACK

HOLE BACKGROUND

The family of exact, four-dimensional dyonic black holes
in string theory@15# are constructed as a tensor product of
electrically charged two-dimensional black holes with the
angular magnetic monopole conformal field theory~CFT!
obtained by quotienting a SU~2! Wess-Zumino-Witten
~WZW! model by the discrete subgroupZ(m) @17#, where
m is an integer. The level of the corresponding WZW model
is denoted askSU. The two-dimensional, electrically charged
black hole part is obtained by a Kaluza-Klein reduction@18#
of the string analogue of the (211)-dimensional, rotating
black hole solution@16#. This tensor product leads to a solu-
tion describing the throat limit of a four-dimensional black
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hole with electric and magnetic charge. The corresponding
metric is given by@15#

ds252S 2M1
r 2

l 2
1

J2

4r 2Ddt21S 2M1
r 2

l 2
1

J2

4r 2D
21

dr2

1
1

4
kSUdu21

1

4
kSUsin

2udf2, ~1!

where kSU is the level of the SU~2! WZW model as dis-
cussed before,M is the mass of the black hole,J is the
angular momentum, and the cosmological constant is propor-
tional to l 2.

Next, we analyze the string configuration in the back-
ground of the above four-dimensional dyonic blackhole by
using the stationary stringAnsatz. We consider strings in the
equatorial plane for whichu5(p/2). The stationary string
Ansatzis given by

t5t, r5r ~s!, f5f~s!. ~2!

The string equations of motion and the constraints are given
by

ẍm2x9m1Grs
m ~ ẋrẋs2x8rx8s!50, ~3!

gmnẋ
mx8n5gmn~ ẋmẋn1x8mx8n!50, ~4!

where dots and primes denote derivatives with respect tot
ands, respectively, andm, n run overt, r , u, andf. Since
we consider strings in the equatorial plane, we only have to
determine the functionsr (s) andf~s! by solving the string
equations of motion and the constraints. The metric of a
static space-time can, in general, be written as

gmn5S 2F 0

0 Hi j /F
D , ~5!

where] tF50; ] tHi j50 andi , j51,2,3.Hi j is the metric of
the three-dimensional unphysical space. For the stationary
string Ansatz, the equations of motion for the Nambu-Goto
action reduce to

x9 i1G̃jk
i x8 j x8k50, ~6!

whereG̃jk
i is the Christoffel symbol for the metricHi j . Equa-

tion ~6! is nothing but the geodesic equation in the three-
dimensional unphysical space, with the line element

ds̃25Hi j dx
idxj , ~7!

and

Hi j x8
ix8 j51 . ~8!

For the four-dimensional dyonic black hole background,

F52M1
r 2

l 2
1

J2

4r 2
,

~9!

Hi j5diag~1,D,D sin2u!,

where

D5
1

4
kSUS 2M1

r 2

l 2
1

J2

4r 2D . ~10!

The nonzero components of the Christoffel symbolG̃jk
i for

the metric in the ‘‘unphysical’’ space are given by

G̃ff
r 52

kSU
4 S rl 22 J2

4r 3D sin2u
5G̃uu

r sin2u,

G̃ru
u 5G̃rf

f

5
1

F S rl 22 J2

4r 3D ,
G̃ff

u 52cosu sinu,

G̃fu
f 5cotu.

~11!

The nonvanishing components of the Riemann tensor are

R̃rfrf5sin2uR̃ruru

5sin2u
kSU
4F SMl 2 1

3J2M

4r 4
2

3J2

2r 2l 2
2

J4

8r 6D ,
~12!

R̃ufuf5
kSU
4

sin2uFF2
kSU
4 S rl 22 J2

4r 3D
2G .

For strings in the equatorial plane (u5p/2), the geodesic
equations are given by

f912G̃rf
f r 8f850, ~13!

r 91G̃ff
r f8250. ~14!

The constraint equation~8! is given by

r 82~s!1Df82~s!51. ~15!

The string configuration is known by solving Eqs.~13!, ~14!,
and ~15!. Integrating thef equation~13!, one obtains

f8~s!5
b

D
. ~16!

Integrating Eq.~14! using Eq.~16!, one obtains

r 8~s!56A12
b2

D
, ~17!

whereb is an integration constant. These are the two first-
order differential equations, whose solutions will give the
string configuration. Ther equation of motion can also be
written as

r 821V~r !50, ~18!

where,V(r ) is the effective potential given by
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V~r !52S 12
b2

D D . ~19!

Qualitatively the possible string configurations can also be
known by studying the zeros of the potential. The solution of
Eqs.~16! and~17! are obtained in terms of elliptic functions.
The world sheet coordinates can be replaced in terms of
conformal string parametersc , so thatdsc5ds/F. Hence
we obtain

r 8~sc!56
4D

kSU
A12

b2

D
, ~20!

f8~sc!5
4b

kSU
, ~21!

where, 4D/kSU52M1r 2/ l 21J2/4r 2. These two equations
are difficult to solve for nonzeroJ. Hence, we restrict our-
selves to the case whenJ50 and also takeM51. In this
case, the solution forr 2(sc) is obtained in terms of elliptic
functions,

r 2~sc!5 l 4`~sc1z0 ;g2 ,g3!1
2l 2

3 S 11
2b2

kSU
D , ~22!

where`(z) is the Weierstrass elliptic̀ function @19# with
the variantsg2 andg3 taking the value

g25
4

l 6 S l 23 1
4b2l 2

3kSU
1
16

3

b4l 2

kSU
2 D ,

~23!

g352
4

3l 8 S 2l 29 1
4

3

b2l 2

kSU
2
16

3

b4l 2

kSU
2 2

128

9

b6l 2

kSU
3 D .

Here z0 is an integration constant. The discriminantD is
given by

D5
16b2

l 12
~11b!2, ~24!

whereb54b2/kSU. SinceD.0, all the rootse1 , e2 , e3 are
real. The roots are given by

e15
1

3l 2
~112b!,

e25
1

3l 2
~12b!, ~25!

e352
2

3l 2 S 11
b

2 D ,
wheree1.e2.e3 . We can also express the solution~22! in
terms of Jacobi’s elliptic function, which is given by

r 2~sc!5 l 2m2ns2Fml ~sc1z0!,kG , ~26!

where,m2511b andk is the elliptic modulus. This solution
can be compared with strings in the background of a (2

11)-dimensional black hole anti-de-Sitter space-time~for J
50 andM51! given by @10#

r 2~s!5 l 4`~s2s0 ;g2 ,g3!1
2

3
l 2 ~27!

with variants

g25
4

l 6 S l 23 1L2D ,
~28!

g352
4

3l 8 S 2l 29 1L2D ,
whereL is an integration constant. Thef8(sc) equation~21!
is simple and the solution is given by

f~sc!5S 4bkSUDsc1const. ~29!

which means thatsc is periodic with periodpkSU/2b. In this
case, there is no multistring solution possible, whereas for
strings in the background of a (211)-dimensional black
hole anti-de-Sitter space-time, one does obtain multistring
solutions.

III. STRAIGHT STRING AND CIRCULAR
STRING CONFIGURATION

Here we obtain a simple string configuration by choosing
the parameterb50. In this limit, for the case ofJ50 M
51, the two ordinary differential equations reduce to

r 82~sc!5S r 2l 221D 2,
~30!

f8~sc!50.

Now the solution for the radial coordinate is obtained in
terms of the hyperbolic function given by

r 2~sc!5 l 2tanh2S sc

l D ~31!

and

f~sc!5const. ~32!

This is nothing but a straight string configuration.
The circular string configuration is given byr5const,f

as a periodic function ofs andu5p/2. Let us consider the
case when 4b2/kSU51. In this case, the solutions of Eqs.
~20! and ~21! reduce to

r 2~sc!5 l 2,2l 2,
~33!

f~sc!5
sc

b
,

Though they satisfy the two first-order differential equations,
the analysis of the zeros of the effective potential shows that
they will not lead to a circular string configuration. The ef-
fective potential is given by
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V„r ~sc!…52S r 2l 221D S r 2l 2212
4b2

kSU
D . ~34!

This implies that the potential vanishes atr5 l and at r
5r 05 l @114b2/kSU#

1/2. For 4b2/kSU51, r takes the value
r5r 05& l . But they do not lead to a circular string configu-
ration as they do not satisfy the condition (]V/]r )ur5 l ,& l
50, which is necessary for the original second-order string
equations of motion~3! and the constraints~4! @or equiva-
lently Eqs.~13!, ~14!, and~15!# to be satisfied. On the other
hand, a circular string configuration is possible for nonzero
J. Consider a circular stringAnsatz

t5t, r5C1 , f5
s

C2
, u5

p

2
. ~35!

With thisAnsatz, Eq. ~13! is trivially satisfied. Equation~14!
determinesr as

r5C15AJl

2
. ~36!

Then Eq.~15! determines the constantC2 as

C25
1

2
AkSUS Jl 2M D . ~37!

Hence,r5AJl/2 andf52s/AkSU(J/ l2M ), u5p/2, t5t
is an acceptable circular string solution providedJ.Ml .
However, for the horizons to exist, we need the condition
D50 and this implies that the solutions forr 2 are given by

r 25
1

2
@Ml 26 lAM2l 22J2#.

As one can see from the above expression there is no real
root if J.Ml . So this limit essentially gives us a geometry
with no horizon. In fact, for stationary black hole solutions,
which are not spherically symmetric, there cannot be any
circular string configuration. This can be seen in the follow-
ing way. Consider the general nonspherically symmetric
metric of the form

ds252a~r !dt21
dr2

a~r !
1B~du21sin2udf2!, ~38!

where B is a constant. For the dyonic black hole metric
a(r )5@2M1r 2/ l 21J2/4r 2# andB5 1

4kSU. Let us consider
the circular stringAnsatzas discussed before. Now Eq.~13!
is trivially satisfied. From Eq.~14!, we obtain the condition
a8(r )50 ~this will determiner for specific solutions!. Now,
from the constraint equation~15!, one obtains C2

5ABa(r ). The existence of horizon implies the condition
a(r )50, which means that the constraint equation is no
longer satisfied. Hence, there cannot be any circular string
configuration if the geometry in the above case has a hori-
zon. The possibility of a circular string is also ruled out in
the case of the Schwarzschild black hole@11#. However, one
obtains closed string configurations for the wormhole geom-
etry @8# and de-Sitter space-time@12#.

IV. THE PROPAGATION OF PERTURBATION
ALONG THE STRING

The stability properties of the above obtained solutions
can be investigated by studying the propagation of small
perturbations along the strings in curved space-time. The
propagation of small waves on a membrane and cosmic
strings have been considered before@20#. The equations of
motion for small perturbations along the strings in arbitrary
curved space-time can be obtained by the second variation of
the Polyakov action. The first variation of the action gives
the equations of motion for the strings in curved space-time
itself. The variations of equations of motion and constraints
for strings also gives the propagation of perturbations for the
corresponding string configurations. A covariant formalism
for the analysis of perturbation has been developed by
Larsen and Frolov@12# and in Ref.@13#.

Let xm be a solution of Eqs.~3! and ~4!. Introducing two
vectorsnR

m (R52,3) normal to the string world sheet, the
perturbation can be decomposed as

dxm5dxRnR
m1dxAx,A

m , ~39!

whereA50, 1 denote the string world sheet coordinatest
ands, respectively, and the comma denotes partial differen-
tiation. The normal vectors satisfy the conditions

gmnnR
mnS

n5dRS; gmnx,A
m nR

n 50. ~40!

Since the second term in the variation equation~39!
leaves the action invariant due to reparametrization invari-
ance, we will consider the first term in Eq.~39!, i.e., dxm

5dxRnR
m . The effective action for the physical perturbation

is obtained in terms of the second fundamental form and the
normal fundamental form@12#. In the stationary stringAn-
satz, wheret5x05t andxi5xi(s), we have

x,0
m5~1,0,0,0!; x,1

m5~0,x8 i !. ~41!

Therefore, the components of the normal vectors can be writ-
ten asnR

m5(0,nR
i ).

(x8 i ,n2
i ,n3

i ) form an orthogonal system in the three-
dimensional ‘‘unphysical’’ space with the metricHi j . By
definingnR

i /AF5ñR
i we have the obvious relations

Hi j ñR
i ñS

j 5dRS,
~42!

Hi j x8
i ñR

j 50.

The equations of motion for the physical perturbations are
given by

~]sc

2 2]sc

2 !dxR5URSdxS , ~43!

whereURS is the matrix potential given by

URS5VdRS1F21VRS. ~44!

and,

V5
3

4F2 S dFdsc
D 22 1

2F

d2F

dsc
2 , ~45!
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VRS5x8 i~sc!x8
j~sc!R̃i jkl nR

kns
l , ~46!

where R̃i jkl is the Riemann tensor for the metricHi j and
dsc5ds/F. The first term in Eq.~44! is connected with the
time delay effect in a static gravitational field. The second
nondiagonal term is connected with the curvature of the
three-dimensional unphysical space. We need to calculate
the matrix potential to determine the time-dependent propa-
gation of the perturbation. The normal vectors perpendicular
and parallel to the strings are chosen as

n'
i 5

2

AkSU
~0,1,0!,

~47!

ni
i5

2

AkSU
S 2b,0,~r 2/ l 221!21

dr

dsc
D .

Using Eqs.~44!, ~45!, and~46! we obtain

V5P2
b2

D FP1S rl 22 J2

4r 3D
2G ,

V''52PS r 2l 221D1
4b2

kSU
FP1S rl 22 J2

4r 3D
2

2
1

D S r 2l 221D 2G ,
Vii52PS r 2l 221D , ~48!

where

P5SMl 2 1
3J2M

4r 4
2

3J2

2r 2l 2
2

J4

8r 6D . ~49!

The components of the matrix potential are given by

U''52
16b2

kSU
2 ,

U ii52
b2

D FP1S rl 22 J2

4r 3D
2G , ~50!

U'i50,

where D5(kSU/4)@2M1r 2/ l 21J2/4r 2#. Now the equa-
tions of motion for the time-dependent perturbations in per-
pendicular and parallel directions are respectively given by

~]sc

2 2] r
2!dx'1

16b2

kSU
2 dx'50 ~51!

and

~]sc

2 2]t
2!dxi1

4b2

kSU@r
2/ l 22M1J2/4r 2#

3FP1S rl 22 J2

4r 3D
2Gdxi50. ~52!

For the straight string configurationb50. So the pertur-
bation equations become identical and they reduce to plane
wave equations:

~]sc

2 2] r
2!dx',i50. ~53!

By a Fourier expansion ofdx',i , we get

dx',i~t,sc!5E e2 ivtDv~sc!dv. ~54!

The solutions of Eq.~53! are given by

dx',i~t,sc!5E dv~Av
',ie2 iv~t2sc!1Bv

',ie2 iv~t1sc!!.

~55!

Now for the circular string configuration~which is pos-
sible when the geometry does not have a horizon because of
the conditionJ.Ml !, we have 4b2/kSU51. The perturba-
tion equations in this limit are given by

~]s
22]t

2!dx'1
1

b2
dx'50 ~56!

and

~]s
22]t

2!dxi2
4

l 2
dxi50. ~57!

With the Fourier expansion ofdx',i @Eq. ~54!#, the above
two equations reduce to

d2

dsc
2 Dv1Fv21

1

b2GDv50 ~58!

and

d2

dsc
2 Dv1Fv22

4

l 2GDv50. ~59!

For the circular string configurationf(sc)5sc /b, where
sc is periodic with period 2pb. Since the potentials for both
the perturbations are constant, we can write down the solu-
tions as

dx'5E dv@A'e
2~ i /b!~rAn2216nsc!# ~60!

and

dxi5E dv@Aie2~ i /b!~rAn214b2/ l26nsc!#, ~61!

where,n is an integer. We note that here there is no unstable
mode in the solution fordxi , whereas, unstable modes can
arise in the solution ofdx' whenn50.

V. CONCLUSION

In this paper, we have used the stationary stringAnsatzto
study the exact solutions of string equations of motion and
constraints in the background of an exact, stringy four-
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dimensional dyonic black hole obtained by tensoring the
two-dimensional electrically charged black hole with
SU(2)/Z(m) coset models. Since solving the equations for
nonzeroJ becomes quite complicated, we restrict ourselves
to the J50 andM51 limits of the above background to
solve the geodesic equations in the three-dimensional ‘‘un-
physical’’ space with a metricHi j . The straight string con-
figuration is obtained in terms of Weierstrass elliptic func-
tions. We have also analyzed the possibility of having
circular string configuration. Unlike the case of the
(211)-dimensional black hole anti–de Sitter background of
Banados, Teitelboim, and Zanelli, there cannot be any circu-
lar string configuration in the above four-dimensional back-
ground if the geometry has to include a horizon. No multi-
string solution is found in this case. We have also studied the
propagation of physical perturbations along the stationary
string in the given curved space-time by using a covariant
formalism. The equations of motion for the time-dependent

perturbations are in the form of wave equations with a com-
plicated matrix potential term. For the straight string con-
figuration ~i.e., when the parameterb goes to zero!, the ma-
trix potential becomes zero and the equations of motion for
perturbations in both the perpendicular and parallel direc-
tions reduce to simple plane wave equations. The above
method can also be applied to stringy cosmological back-
grounds to obtain various string configurations and a system-
atic analysis of the propagation of perturbation along the
string configuration will be an interesting problem. To con-
clude, this exercise is mainly an attempt to have a general
understanding of the string dynamics in curved space-times.
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