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String propagation in an exact four-dimensional black hole background

Swapna Mahapat?a
Department of Physics, Utkal University, Bhubaneswar-751004, India
(Received 9 October 1996

We study string propagation in an exact, stringy, four-dimensional dyonic black hole background. The exact
solutions in terms of elliptic functions describing string configurations inJth@ limit are obtained by solving
the string equations of motion and constraints. By using the covariant formalism, we also investigate the
propagation of physical perturbations along the string in the given curved background.
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[. INTRODUCTION (see also[13]) and have subsequently analyzed stationary
strings in quasi-Newtonian, Rindler, black hole, and de-Sitter
The study of string dynamics in curved space-time startedpace-times. The second variation of the Polyakov action
in [1] has become an interesting area of research in recemssentially gives the equations describing the propagation of
times. The classical string equations of motion and the conperturbations along a stationary string in a static background.
straints in curved space-time become highly nonlinearBy doing the analysis in the properly chosen three-
coupled partial differential equations and hence it is ofterdimensional “unphysical” space-time, one obtains simple
difficult to find exact and complete solutions of these equawave equations such as theésehl-Teller equation in quan-
tions. However, exact solutions to these equations of motiofum mechanics for strings in the Rindler and de-Sitter space-
and constraints have been obtained in some specific curvafines. For the Schwarzschild black hole background, the
space-times, such as, cosmic string backgrod@disblack  wave equation has been explicitly analyzed by using the
hole space-time$3,4], de Sitter space-timef5], gravita-  weak-field expansion and a scattering formalism has also
tional wave backgroundg6], the cosmological background peen set-up14].
[7], and the wormhole backgrouri@]. The string equations |n this paper, we analyze the equilibrium string configu-
of motion and constraints are exactly integrable inration in the background of the exact, four-dimensional dy-
D-dimensional de Sitter space-timgs]. The novel feature gnic black hole of Lowe and Stromingéi5], which has
of strings in the de Sitter space-time is the appearance afeen obtained by tensoring the two-dimensional electrically
multistring solutions[9], where there is only one single charged black holes [these are related to the
world sheet, but infinitely many different and independent(2+ 1)-dimensional rotating black hole of Banados, Teitel-
strings. Also, by using certain approprigesdze such as a  boim, and Zanell[16] by Kaluza-Klein reductiohwith two-
circular stringAnsatz[10] or a stationary string\nsatz[11],  dimensional S{2)/Z(m) coset models. We make use of the
one can obtain a general family of exact solutions. In stationstationary stringAnsatzand in theJ=0 limit, the solutions
ary, axially symmetric space-times, the circular stihitsatz  of the string equations of motion are obtained in terms of
corresponds to decoupling of the dependenceobn the  elliptic functions. However, we do not find any multistring
world sheet parameter and consequently reduces the equa-solutions in the above case. We also investigate the nature of

tions of motion and the constraints to simpler coupled ordiperturbations as well as their propagation around the string
nary differential equations. On the other hand, the stationargonfiguration.

string Ansatzdecouples the dependencexdf on the world
sheet coordinate and again the string equations of motion

and cpnstraintg reduce' to separatgd first-order ordinary dif- Il STATIONARY STRING ANSATZ AND
ferential equations, which are easier to handle. It has also FOUR-DIMENSIONAL DYONIC BLACK
been noticed that consideration of stationary strings in static HOLE BACKGROUND

or time-independent backgrounds simplifies the problem a
lot, where the stationary string configuration in static back- The family of exact, four-dimensional dyonic black holes
grounds can be described by geodesic equations in a certaim string theory[15] are constructed as a tensor product of
three-dimensional “unphysical” spackS]. After knowing  electrically charged two-dimensional black holes with the
the extremal string configuration, one can also consider smaéingular magnetic monopole conformal field thegGFT)
perturbations around the stationary strings. Larsen andbtained by quotienting a SB) Wess-Zumino-Witten
Frolov [12] have developed a covariant formalism for small (WZW) model by the discrete subgrouf{m) [17], where
perturbations propagating along a string in curved space-timm is an integer. The level of the corresponding WZW model
is denoted akg,. The two-dimensional, electrically charged
black hole part is obtained by a Kaluza-Klein reductjas]
*Present address: Humboldt-Universitat zu Berlin, Institit fu of the string analogue of the (21)-dimensional, rotating
Physik, Invalidenstrasse 110, D-10115 Berlin, Germany. Electronidblack hole solutiof16]. This tensor product leads to a solu-
address: swapna@qft2.physik.hu-berlin.de tion describing the throat limit of a four-dimensional black
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hole with electric and magnetic charge. The corresponding 1 r2  J2
metric is given by[15] A= 1 ksu( M+ iz + ik (10
r2 J2 2 J2 -1 -
ds’= —( -M+ 7zt dt?+| —M+ 1zt a2 dr? The nonzero components of the Christoffel symbll for
r r the metric in the “unphysical” space are given by
1 1
+2 ksud 6%+ 2 ksusin?6d ¢?, (1) ~  key[r 2
06~ " 4 |27 3350
wherekgy is the level of the S(®) WZW model as dis- _T cire
cussed beforeM is the mass of the black hold, is the ~ 1 oeSIMTO,
angular momentum, and the cosmological constant is propor- = =4
tional to 2. Iig=17,
Next, we analyze the string configuration in the back- 1(r J2
ground of the above four-dimensional dyonic blackhole by =— (_2_ _3) (13)
using the stationary stringnsatz We consider strings in the FAIZ 4r
equatorial plane for whicl¥=(#/2). The stationary string = _
Ansatzis given by I'y4=—cod sing,
t=7, r=r(o), ¢=d¢(0). 2 T'%,=coto.
'tIJ'Se string equations of motion and the constraints are giveq,he nonvanishing components of the Riemann tensor are
'>'(/.L_XH;L_’_F;)L(T(X[))-(U‘_XIPX/(T):O, (3) Rr¢r¢:Sir120Rr9r0
s iy taory —'nZHkSU M+3J2|\/| 332 34
g/.LVX X _g,uv(x X7+ XX )_Ov (4) =Sl AF |2 4r4 2r2|2 8I‘6 '

12
where dots and primes denote derivatives with respeet to 12

2\2
and o, respectively, angk, v run overt, r, 6, and ¢. Since = _ksu . _ Ksu (T _ J
we consider strings in the equatorial plane, we only have to 4 4 \1° A4r
determine the functions(o) and ¢(o) by solving the string
equations of motion and the constraints. The metric of a For strings in the equatorial plané< 7/2), the geodesic

static space-time can, in general, be written as equations are given by
—F 0 " T¢ 1 r_
= (5) ¢ +2Fr¢r d) 01 (13)
9=\ 0 HyE) _
"+ ,¢'?=0. (14)

wheredF=0; ¢;H;;=0 andi,j=1,2,3.H;; is the metric of

the three-dimensional unphysical space. For the stationary The constraint equatio(8) is given by

string Ansatz the equations of motion for the Nambu-Goto

action reduce to r'2(o)+A¢'%(o)=1. (15)

X"+ T x'1x"*=0, (6)  The string configuration is known by solving E¢$3), (14),
_ and(15). Integrating the equation(13), one obtains
wherel’}k is the Christoffel symbol for the metrid;; . Equa-
tion (6) is nothing but the geodesic equation in the three-

dimensional unphysical space, with the line element ¢'(0)=3- (16)
ds*=H;;dx'dx, (") Integrating Eq(14) using Eq.(16), one obtains
and b?
. . ! ==* A
Hijx''x"1=1. (8) M@=ENIT T (7

For the four-dimensional dyonic black hole background, whereb is an integration constant. These are the two first-
) ) order differential equations, whose solutions will give the
_ r J string configuration. The equation of motion can also be
F=—M+ -+ —, .
I ar written as

©)
H;;=diag 1A,A sir6), r'?+V(r)=0, (18)

where where,V(r) is the effective potential given by



b2
V(r)=—(1—K). (19)

Qualitatively the possible string configurations can also be
known by studying the zeros of the potential. The solution of
Eqgs.(16) and(17) are obtained in terms of elliptic functions.
The world sheet coordinate can be replaced in terms of

conformal string parameter., so thatdo.,=do/F. Hence
we obtain

4A b?
r,(UC):ik_SU l—X, (20
4b
¢'(Uc)=g, (21)

where, A/kg,=—M+r?/12+3%/4r?, These two equations

are difficult to solve for nonzerd. Hence, we restrict our-
selves to the case wheh=0 and also takeM =1. In this
case, the solution for?(o) is obtained in terms of elliptic
functions,

2 4 21?
r<(oc)=I @(Uc+20;92,93)+?

2b?
1+ —1, (22
kSU

where g (z) is the Weierstrass elliptip function [19] with
the variantsy, andg; taking the value

4 (I2+4b2I2+16b4I2)
9=w |3ty T3z |
1613 3k 3 k
v su (23)
4 2I2+4b2I2 16 b%2 128h%2
9= 738 |9 3ksy 3 K&, 9 K,/

Here z; is an integration constant. The discriminahtis
given by

1652

AZTT(lJrB)Z, (24

whereB=4b?/kg,. SinceA>0, all the rootse,, e,, e; are
real. The roots are given by

1
e1=57 (1+25),

1
&=312 (1-5), (25
B
€3=— 3—|2 1+ E ,

wheree; >e,>e;. We can also express the soluti(#®?) in
terms of Jacobi’s elliptic function, which is given by

r2(oe)=1?u’ns? , (26)

M
I_ (O-C+ZO)1k

where,u?=1+ B andk is the elliptic modulus. This solution
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+1)-dimensional black hole anti-de-Sitter space-tiffog J
=0 andM=1) given by[10]

2 4 2 2
r<(o)=I p(cr—cro;gz,gg)+§l (27
with variants
412
9= |3+l
(28)
4 212
%= ~3E |9 L)

wherelL is an integration constant. Th (o) equation(21)
is simple and the solution is given by

o.+const. (29

4b
d(oc)= (k_SU

which means thatr, is periodic with periodrks/2b. In this
case, there is no multistring solution possible, whereas for
strings in the background of a (21)-dimensional black
hole anti-de-Sitter space-time, one does obtain multistring
solutions.

Ill. STRAIGHT STRING AND CIRCULAR
STRING CONFIGURATION

Here we obtain a simple string configuration by choosing
the parameteb=0. In this limit, for the case o=0 M
=1, the two ordinary differential equations reduce to

5 r2 2
r' (O'C)Z |—2—1 !
(30
¢I(Uc):0-

Now the solution for the radial coordinate is obtained in
terms of the hyperbolic function given by

%

¢(o)=const.

r2(o.)=I%ant? (31)

and
(32

This is nothing but a straight string configuration.

The circular string configuration is given b= const, ¢
as a periodic function ofr and #= 7/2. Let us consider the
case when B%/kg,=1. In this case, the solutions of Egs.
(20) and(21) reduce to

2 _12 92
r<(o¢) =142, 33

O¢
¢(Uc) = F’

Though they satisfy the two first-order differential equations,
the analysis of the zeros of the effective potential shows that
they will not lead to a circular string configuration. The ef-

can be compared with strings in the background of a (Zective potential is given by
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2

r2 4b? IV. THE PROPAGATION OF PERTURBATION
V<r<oc)>=—(|7—1 ( )

iz 1- k_SU . (34 ALONG THE STRING

The stability properties of the above obtained solutions
This implies that the potential vanishes @&l and atr  can be investigated by studying the propagation of small
=ro=I[1+4b’/kg ]"?. For 40’/ksy=1, r takes the value perturbations along the strings in curved space-time. The
r=ro=v2l. But they do not lead to a circular string configu- propagation of small waves on a membrane and cosmic
ration as they do not satisfy the conditioAM/dr)|,—,»  strings have been considered beff26]. The equations of
=0, which is necessary for the original second-order stringnotion for small perturbations along the strings in arbitrary
equations of motior(3) and the constrainté4) [or equiva-  curved space-time can be obtained by the second variation of
lently Egs.(13), (14), and(15] to be satisfied. On the other the Polyakov action. The first variation of the action gives
hand, a circular string configuration is possible for nonzerahe equations of motion for the strings in curved space-time
J. Consider a circular stringnsatz itself. The variations of equations of motion and constraints
for strings also gives the propagation of perturbations for the

o - . ! ! 4 . )
t=7, 1=Cy, ¢= =, 9= (35) corresponding string configurations. A covariant formalism
2

2" for the analysis of perturbation has been developed by
Larsen and Froloy12] and in Ref.[13].
With this Ansatz Eq. (13) is trivially satisfied. Equatioii14) Let x* be a solution of Eqs(3) and (4). Introducing two
determines as vectorsn (R=2,3) normal to the string world sheet, the
I perturbation can be decomposed as
J
r=Ci= \@ (36 Sxt= xR+ SXPXk, (39
Then Eq.(15) determines the constaflt, as where A=0, 1 denote the string world sheet coordinates
and o, respectively, and the comma denotes partial differen-
1 J tiation. The normal vectors satisfy the conditions
CZZE ksu< |__ M ) . (37) ) )
9,,NRNE= Ors; 9, XANR=0. (40)
Hence,r = JJI/2 and ¢=20/Vks(J/1 =M), 6=m/2, t=1 Since the second term in the variation equati@)
is an acceptable circular string solution providédMI.  |eaves the action invariant due to reparametrization invari-
However, for the horizons to exist, we need the conditionance, we will consider the first term in ER9), i.e., Sx“
A=0 and this implies that the solutions fof are given by  — sxRn#  The effective action for the physical perturbation
1 is obtained in terms of the second fundamental form and the
r2=2[MI2+1M22=J2]. normal fundamgzntal fornp12]. In the stationary stringAn-
2 satz wheret=x"=r andx'=x!(¢), we have
As one can see from the above expression there is no real x%=(1,0,0,0; xﬁz(o,x’i). 41

root if J>MI. So this limit essentially gives us a geometry

with no horizon. In fact, for stationary black hole solutions, Therefore, the components of the normal vectors can be writ-
which are not spherically symmetric, there cannot be anyen asnf&=(0,ng).

circular string configuration. This can be seen in the follow-  (x’!,n,,n}) form an orthogonal system in the three-
ing way. Consider the general nonspherically symmetricdimensional “unphysical” space with the metrid;;. By

metric of the form definingn/\JF =T we have the obvious relations
2 drz 2 . 2 Hﬁl ﬁj :5RS
ds?=—a(r)dt*+ a(r) "B +sirgd¢?), (39 IURTS RS (42)
Hin,i’ﬁ{Q:O.

where B is a constant. For the dyonic black hole metric
a(r)=[—M+r?/12+J%/4r?] andB= 1kg,. Let us consider The equations of motion for the physical perturbations are
the circular stringAnsatzas discussed before. Now E{G.3) given by

is trivially satisfied. From Eq(14), we obtain the condition 5 5

a’(r)=0 (this will determiner for specific solutions Now, (05, J5 ) OXr=URs0Xs, (43
from the constraint equation(15), one obtains C,

= Ba(r). The existence of horizon implies the condition WhereUggis the matrix potential given by

a(r)=0, which means that the constraint equation is no 1

longer satisfied. Hence, there cannot be any circular string Urs=VdrstF "Vgs. (44)
configuration if the geometry in the above case has a hori-
zon. The possibility of a circular string is also ruled out in and,
the case of the Schwarzschild black hidé]. However, one

i - - : 3 [dF\? 1 d?%F
obtains closed string configurations for the wormhole geom- V=——sy - —, (45)
etry [8] and de-Sitter space-tinjd2]. 4F< \do./ 2F dog



Vrs=X' (o)X (a¢)Rija NENL, (46)

whereﬁijm is the Riemann tensor for the metrit¢; and
do.=do/F. The first term in Eq(44) is connected with the

time delay effect in a static gravitational field. The second

nondiagonal term is connected with the curvature of th
three-dimensional unphysical space. We need to calculal

the matrix potential to determine the time-dependent propa-
gation of the perturbation. The normal vectors perpendicular

and parallel to the strings are chosen as

2
ny = (0,1,0,
vk
> (47)
. 2 dr
n'=—_(—b,0,(r2/I2—1)‘1 )
kSU dO.C
Using Eqs.(44), (45), and(46) we obtain
b2 rooJ%)\?
V=P R P*(rfm) :
v - Przl 4b2P roJ%)\?2 1r212
A UL o) R VLT B N
r2
V|:_P<|_2_1)' (48
where
oM 3’mM 3y ) 49
7 2 A ) (49

The components of the matrix potential are given by

1602
ST
b? rooJ?)\?
U““=_K P+ |—2_ F) :|, (50)
U,=0,

where A= (ksy/4)[—M+r?/12+J%/4r?]. Now the equa-

STRING PROPAGATION IN AN EXACT FOUR. ..

6407

For the straight string configuratidm=0. So the pertur-
bation equations become identical and they reduce to plane
wave equations:

(92 —7)d%, 1 =0. (53
y a Fourier expansion ofx, ;, we get
5XJ_’||(T,O'C):J e "D, (o.)dw. (54)

The solutions of Eq(53) are given by

5XL,H(TIO-C): j dw(Ai.),He—iw(T—oc)_F BJQ.),He—iw(T+0'C))_
(55
Now for the circular string configuratiotwhich is pos-
sible when the geometry does not have a horizon because of

the conditionJ>MI), we have #%/kg,=1. The perturba-
tion equations in this limit are given by

2_ 2 1
(2= %) 0%, + 1 6x, =0 (56)
and
2 2 4
(05— 7) 0% — iz 6%, =0. (57)

With the Fourier expansion afx,  [Eq. (54)], the above
two equations reduce to

d2
. D,+ wz+F D,=0 (58
Cc
and
d? , 4
W D,t|w 2 D,=0. (59
Cc

For the circular string configuratio#h(o.) = o /b, where
o is periodic with period Zrb. Since the potentials for both
the perturbations are constant, we can write down the solu-
tions as

tions of motion for the time-dependent perturbations in perand

pendicular and parallel directions are respectively given by

2

2 2 1
(95 —d7)OX + —5— 6x, =0 (51)
¢ Ksu
and
92 — 9%) Oxy+ ab?
(o= T2 X 2= M+ 377407
r JZ 2
X| P+ |—2— ﬁ) }5X|:O. (52)

&(L — f dw[Aief(i/b)(rVnzfltnoc)] (60)
8%, = f dw[A”e—(i/b)(r\/n2+4b2/|2inac)]’ (61)

where,n is an integer. We note that here there is no unstable
mode in the solution fo®x,, whereas, unstable modes can
arise in the solution obx, whenn=0.

V. CONCLUSION

In this paper, we have used the stationary stAmgatzto
study the exact solutions of string equations of motion and
constraints in the background of an exact, stringy four-
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dimensional dyonic black hole obtained by tensoring theperturbations are in the form of wave equations with a com-
two-dimensional electrically charged black hole with plicated matrix potential term. For the straight string con-
SU(2)/Z(m) coset models. Since solving the equations forfiguration (i.e., when the parametér goes to zerp the ma-
nonzeroJ becomes quite complicated, we restrict ourselvedrix potential becomes zero and the equations of motion for
to the J=0 andM=1 limits of the above background to perturbations in both the perpendicular and parallel direc-
solve the geodesic equations in the three-dimensional “untions reduce to simple plane wave equations. The above
physical” space with a metriél;; . The straight string con- method can also be applied to stringy cosmological back-
figuration is obtained in terms of Weierstrass elliptic func-grounds to obtain various string configurations and a system-
tions. We have also analyzed the possibility of havingatic analysis of the propagation of perturbation along the
circular string configuration. Unlike the case of the string configuration will be an interesting problem. To con-
(2+1)-dimensional black hole anti—de Sitter background ofclude, this exercise is mainly an attempt to have a general
Banados, Teitelboim, and Zanelli, there cannot be any circudnderstanding of the string dynamics in curved space-times.
lar string configuration in the above four-dimensional back-

ground if the geometry has to include a horizon. No multi- ACKNOWLEDGMENTS
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