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In this paper we study the structure of the Hilbert space for the recent noncommutative geometry models of
gauge theories. We point out the presence of unphysical degrees of freedom similar to the ones appearing in
lattice gauge theoriefermion doubling. We investigate the possibility of projecting out these states at the
various levels in the construction, but we find that the results of these attempts are either physically unaccept-
able or geometrically unappealing0556-282(97)02310-2

PACS numbsgs): 11.15.Tk. 02.40-k

I. INTRODUCTION algebra of smooth complex valued function on Eeiclid-

ean four-dimensional space-time manifoldM, and

Noncommutative geometiil] provides a powerful alge- Ar=M3z®H®C, with M3 andH the algebra of X3 com-
braic scheme to handle a large variety of geometrical frameplex matrices and of quaternions, respectively. The result

works. Its application to gauge theories, and in particular t@@eneralizes the Yang-Mills Euclidean action (F4)F ,, .

the standard modeISM) of strong and electroweak forces Most remarkably, in this framework, the scalar Higgs field
[1-4], is a unique original way to fully geometrize the inter- appears as the connection in the interfrdincommutativie
action of elementary particles. More recently, attempts havéPace while its action, including the usuaéiyl hocquartic

been made towards a unification with gravity as Wale]. pote_ntial, naturally appears as _the square of the curvature in
In noncommutative geometry the role that is cIassicaIIythe mte_rnal space. _Th|s model is quite constrained and, with

: et}:;e choice of the Hilbert space composed by the known fer-
by 2 -algebra, which n theommuatvecase s st the TS 20, Sees I 0 S0 uichS e of e
algebra of continuous complex valued functions, but in gen—[8] ' 9 pe, 9

eral can be a generic non-Abeliaralgebra. This algebra is Quite recently Chamseddine and Conri€€) [6] have
then represented as bounded operators on a Hilbert space MRo proposed a different definition of the bosonic action,

which a generalized Dirac operatralso acts, providing all - paqeq on the so-callespectral action principlewhich from
information usually carried by a metric structjdg. the generalized Dirac operator only, now including also the

A very appealing aspect of the Connes-L@L) version  gravitational spin connections, produces the SM action
of the SM and of his subsequent versions and improvementgoumed to Einstein plus Weyl gravity.
(for a review seg7]) is that the Hilbert space on which the  |n both approaches the Hilbert space of fermidfhiseems
algebra and the generalized Dirac operators act is the spagg play a crucial role. On the one side it is necessary in order
of physical fermions. In the model the fermionic action cor-to represent the algebra, which gives the topology of space,
responds to a generalization of tfieteraction Dirac action  though this last feature can be recovered independently of
#(d+ A) ¢y while the bosonic one is obtained by taking the whether an explicit representation is assigned or not. On the
trace of the squared curvature two-form which is constructeather side’H is definitely necessary for the introduction of
out of the algebreC”(M,(C)® A, whereC*(M,C) is the  theD operator, which encodes, as mentioned, all information

on the metric.
The structure chosen f@t is the one of a tensor product

*Electronic address: Lizzi@na.infn.it of a continuous infinite dimensional factor, the space
Electronic address: Mangano@na.infn.it L2(Sy) of square integrable Dirac spinor ovier, which is
*Electronic address: Miele@na.infn.it related to space-time, times a finite dimensional space, which
$Electronic address: Sparano@na.infn.it describes the physical particle degrees of freedapiuding
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helicity. In this paper we point out that, for a chiral gauge states in the action. Thizd hocrestriction of the action just

theory built up in both the CL and CC approaches, thisat the very end of the powerful noncommutative construction
choice forH, though imposed by the initial ansatz for the is quite unsatisfactory and probably, a different, less trivial
algebra, gives rise to two problems. One due to an overchoice for the structure of the fermion Hilbert space is re-

fi f the phvsical ff the oth uired, possibly on the lines of alsupersymmetric generaliza-
counting of the physical degrees of freedom, the other, mor;? n [10] or some even more radical changed],

serious, is connected to the presence of unphysical degrees quhe paper is organized as follows. In Sec. Il we review

freedom'. These problems are basically dug to the fa_ct th%e CL construction and the concept of spectral triple. We

thg helicity _degree; .Of ffeedo'fﬂ are contained both in thedlso discuss the problem of redundant fermionic degrees of

spinor, and in the finite dimensional space. _ freedom and, in particular, of mirror fermions. In Sec. Ill we
As we will see the states responsible for the overcountingjyst dgiscuss a simple model based on a spontaneously broken

are a consequence of tk_ﬂepllcatlon of degrees of freedom_ SU(2).®SU(2); gauge symmetry, showing how the pos-

in the finite part of the Hilbert space. In all gauge models, insjple projections work. The case of the standard model is

fact, in which more than one factor of the group acts on somghen considered. Section IV is devoted to a similar study in

fermion multiplet, in order to correctly represent the algebrathe CC model for the simple SU(2% SU(2)r unbroken

it is necessary to include for all fermions the correspondingase. Finally, in Sec. V we give our conclusions and outlook.

charge-conjugated states. Once the action is obtained, a

simpleidentificationprocedure, which is to say, a quotient of Il. SPECTRAL TRIPLE, THE CONSTRUCTION
the initial Hilbert space, is sufficient to remove this un- OF GAUGE THEORIES AND FERMION
wanted duplication of particle's. HILBERT SPACE

_ On the other side, the unphysical degrees of freedom 100k g pagic ingredient of the noncommutative geometry
like mirror fermions, namely states Whlch couple to the chi-cnstruction is the so-calledpectral triple denoted by

ral factors of the gauge group but which have, however A,H,D), whereA is an involutivex -algebra faithfully rep-
wrong chiral quantum numbers. For the case of the miljim esented by bounded operators on the Hilbert sgacand
SM, for example, we will see how right-handed Dirac p s a self-adjoint operator with compact resolvéggneral-
spinors would be coupled in general to the (3} gauge ized Dirac operator The spectral triple becomeseal spec-
bosons. The presence of these unphysical fermions seemal triple if an antilinear isometry) of H, obeying suitable
more closely related to the choice féf in the form of a  relations, is introduced3]. Note thatJ can be seen as a
tensor product. What is implicitly done in the literature is to generalizedCPT operator.

throw away at the very end the unwanted terms from the In this framework a gauge theory, with group of invari-
action. One wonders therefore if there is a more geometricadnceG, is fully geometrized and it is on the same footing as
way of getting rid of the unphysical fermions. Actually they gravity. The former, in fact, emerges as the gauge theory of
can be eliminated by projectiononto a proper subspace of the inner automorphisms of the algebra

‘H. This projection, however, may lead to different results if _ oo .

performed at different stages of the noncommutative geomet- A=CT ML) Ag, @D

ric construction of a gauge theory, since the correspondingvhere Ar is the smallestx-algebra containings as the
projector operators do not commute with all the intermediategroup of its unitary elements. Analogously, the latter can be
steps of such a construction. For example, since they projeseen as the gauge theory of diffeomorphismavigf which
onto definite chirality states inh?(Sy), they do not commute are nothing but the outer automorphismsf

with the Dirac operator, which contains Diragcmatrices, as As f{:lr as the Hilbert spac@{ is concerned a suitable
well as with the connection one-forms. choice is to take
As we will see in the following, using the projection at the H=L2(Sy) @ Hq , 2.2

level of the algebra leads to a trivial result. It is also possible
to perform the projection, for the bosonic part, at the level ofwhereL2(S,,) is the space of square integrable spinors de-
the curvature two-form. In this way the action is obtained byfined onM, andH is a finite dimensional linear space cor-
tracing the squared curvature over the physical Hilbert subresponding to all discrete degrees of freedom, like chirality,
space only. As far as the fermionic action is concerned, thiflavor, charge, etc. Finally, the generalized Dirac operator is
procedure gives the same result obtained in the literature.
Instead, in the bosonic sector, in addition to the usual kinetic D=/®I+ y5® Dk, 2.3
term, topological terms of the forra,,,,F“"F* will gen-
erally appear. However, the combination of the two terms i
the curvature is such that only the self-dual or anti-self-dual¢ ;- e triples, one which is the continuo(space-timg
components of the field survive. This means that half of th art (C*(M, () ins ),4) and another for the internal part
gauge physical degrees of freedom has been projected out ;‘F He DI;) ' M7
well. P )
It seems therefore that the only consistent procedure
obtain the action of the SM and, more generally, of an
chiral gauge theory, is to just neglect the unwanted mirror

with D¢ denoting the selfadjoint fermion mass matrix. In this
ay, the real spectral triples4,H,D) is the tensor product

i Given a generalized Dirac operatdr, the gauge connec-
yﬂon is written as

A=§i: ﬁi[D,ai]EZ Bida, (2.9

U1t is worth noticing at this point that such a problem is absent inwherea; and 8; are elements ofl such thatA is Hermitian,
the so called “old version” of the modeglL,9]. and the differentiad is defined byda=[D,«]. From the
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connectionA, one defines the curvatugas

o=dA+A?, (2.5
and thus the bosonic action is obtained as
Sp=Tr 6. (2.6)

Note that the trace includes the integration oMer For the
fermionic action one has instead

Sr=(,(D+A+IA) ). 2.7

6359

(UL, (€, () i ]
(d%), (sS)., (b%), (€, (L0, (),

(2.1

wherea=1,2,3 is the color index. This exhausts all of the 90
physical fermionic degrees of freedom. However, wién

is tensored with_%(Sy,), the number of degrees of freedom
becomes redundant. In particular, an elentent H can be
decomposed as

hg=h_+hg+h{+hg, (2.17

It is worth noticing that exterior algebra emerges from thewhere the four vectors on RHS of E(.17) belong to the
Clifford algebra as its antisymmetric part, and thus it is cru-corresponding Hilbert spacés_, Hg, H; , andHg, respec-
cial that the Hilbert space contains as its continuous part thevely. Furthermore, for eacke M a generic spinog can be

space of Dirac spinor&?(Sy). In fact, the use of Weyl
spinors on a four-dimensional space-tifile would lead to
an incorrect result, since the algebra generated by the Pauli

decomposed as

P(X)= i+ Yt Yt Y . (2.18

matrices plus identity is only four-dimensional, and thus is _ _
not sufficient to faithfully represent the corresponding 16-Thus, by tensoring E(2.18 with Eq. (2.17) we have 16
dimensional exterior algebra. In particular, all the two formspossible combinations, namely four times the needed ones.

would be junk forms and thug would be trivial.

In order to analyze the physical meaning of these combina-

The choice(2.2) for the Hilbert space has problems in the tions it is useful to divide the tensor produg® he in three
case of theories, like the standard model, where fermionBarts:

with different chirality transform independently under the
gauge group. In the new formulation of the SM in the man-

(pL@h + Yr@hp+ Y@ hg+ Yf @ L), (2.19

ner of Connes and Lott the discrete part of the Hilbert space

He results:
HF:HL@HR@H%@HC , (28)
where
H = (CPeCNe (e (C*eCNa (), (2.9
Hr=((CaC)oNe (e (CaCNe (), (2.10
andHf’R are the corresponding spaces for antiparticles,
He=(CCetNe(})e(C?eNe (), (2.1
HE=((CaeC)eCNe(3)e (CaCNa ). (2.12
In this framework a natural basis is given by
el (5ol ) () 20 )
da LI Sa L1 ba L1 e L1 M L! T L7
(2.13
(Uprs (Cor, (L)
An " (s, (B)e, (O e (e (214
PR R e e R
d(CX Rl SZ R! b(c] Rl ec Rl /—LC Rl TC R!
(2.15

(L ®hg+ @i+ yg@h +y{®hg), (2.20

(Lt YR)® (hg+hi) + (grt yp) @ (h +hg). (2.2])

The fermions in this last expression behave as the mirror
fermions present in lattice chiral gauge theories. In fact, if we
consider, for example, the tergq ® hg of Eq. (2.2)) it cor-
responds to a left-handed parti¢bes specified by, ) which
behaves under the gauge group as a right-handed(ame
specified byhg). On the contrary, the other two combina-
tions(2.19 and(2.20 have the right properties, though each
of them independently is sufficient to describe all the physi-
cal particles. As it will be clear in the next section, this last
redundancy is usually eliminated by identifying the degrees
of freedom of Eq.(2.19 with the ones of Eq(2.20. Con-
cerning the unphysical part, it has to be projected out.

Let us denote withP the projector on the physical sub-
space corresponding to the combinatid@sl9 and (2.20.
Note that this projector cannot be used from the very begin-
ning. The above subspace, in fact, would be no more a tensor
product involving the space of Dirac spinors, but rather Weyl
spinors, and this would lead, as stated above, to a trivial
result. Furthermore, sind®@ does not commute with the gen-
eralized Dirac operator and consequently with the gauge con-
nection, the form of the action would depend on the particu-
lar step of the construction in which it has been used.

In literature, this problem seems to be ignored. What
is implicitly done is to compute the trace af on the
whole Hilbert space to get the bosonic action, while the fer-
mionic part is obtained with thad hoc prescription of re-
taining in the scalar produd.7) only the physical state

Note that thed operator so defined is not nilpotent and hence acontribution.
quotient is necessary in order to obtain the correct differential alge- This operation can be formally viewed as follows. First
bras[1,9]. The forms quotiented out are the so-called junk forms. we note that the scalar produ@.7) can be seen as a trace,
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S=Try){(D+A+IAI) Y, (2.22 Having assigned the spectral triple4(7,D) the model is
completely defined once @@aithful) representation of the al-
and we define the mag: H® Q' — B(H): gebra onH is specified, which we choose as follows:
(g, A)=0(A) +[P)((D+A+IA Y|, (2.23 a. O
Or)= , 3.2
whereQ! is the space of one-form connections. The action is p(aL.aR) 0 ar @2

then the functional 'E@alhys®Ql, i.e., only the physical fer-
mions are retained, while the trace is still performed on theVhere g, r are quaternions represented as 2 matrices.

whole spacé. This procedure is extremeld hoc Notice that in the general case one should also consider, as
A possibility would then be to compute the traces on theelcements of the Hllbert.space, the charge con!ugated states
physical Hilbert space. The action is then & g, related to the g via the real structurd. This is only

necessary when more than one factor of the chosen algebra is
_ 2 acting on each multiplet of the Hilbert space. This is actually
S=TrPO*+TrPY)(D+A+IAIPY|. (224 the case of the strong and electroweak standard model, since,
Note that the only difference with respect to the usual actiorfO" €xample, left-handed quark doublets transform both un-
is in the presence dP even for the bosonic term. Remark- der the algebrall, andM;(C), whose unimodular elements
ably, this difference for chiral theories, as we will see in thecorrespond to the groups SU(2and SU(3} . In our simple
next section, will cause the disappearance of some gaugeample this is redundant, since a simple representation of

physical degrees of freedom as well. the algebra can be achieved and no bivector potentials are
required. We will come back to the more general structure

IIl. PHYSICAL HILBERT SPACE later, when we will consider the case of the standard model.

AND THE TOPOLOGICAL TERMS For the moment we are only interested in showing how pro-
IN CHIRAL GAUGE MODELS jecting out the unphysical degrees of freedom corresponds to

the natural appearance of topological terms in the classical
In order to illustrate the general discussion of the previousaction.
section we consider first a simple model with gauge group The gauge connection, computed according to ),
SU(2), ® SU(2); and then the standard model, limiting our- takes the form
selves to the one-quark family case to keep notations to a

minimum. A A AL (b o)
LAR @)= t_ 4t '
A. SU(2), ®SU(2) g model ¥s5(d'— o) Ar

In this case the algebra can be chosen agvhere we have definel g=3A| po'/2=3;q| 'rdq; g and
A=C”(M,C)® Ar where C*(M,C) is the algebra of ¢— ¢o=2q;'(Mag—q, M), whereo' are the Pauli matri-
smooth complex valued function dv and A-=H, &Hg, ces, with the conditiorAl"z=—A{'z. Note that, under a
with H the algebra of quaternions. The Hilbert space is thaunimodular elementi of the algebraA(A_ ,Ag,¢) trans-
tensor productH = L?(Sy)® He and is the space of spinor forms as
fields of the model. In particular we tak&r=H, & Hg
=(2@(? corresponding to two doublet§ and &g under, A(AL A, ¢)—U[D,u]+uA(A_,Ag,d)U*, (3.9
respectively, the action dfl, andHg. Finally for the gen-

eralized Dirac operatod (2.3), D¢ is chosen as the mass and therefore, using the representation for the algebra, it fol-
matrix ' lows thatA_ r transform, as usual, as the adjoint representa-

tion of the corresponding SB) factor, and the Higgs field
0 M ¢ as a doublet under both SU(2and SU(2)%. The corre-
DF=( ) (3.1) sponding curvature two-forn#, once the junk forms have
MY o0 been subtracted out, reads

(3.3

1
> VuF L7 +(8"¢— dido) — 75D ¢
6= 1 , (3.5
7s(D @) > VuFR'+ (60— od)

3Concerning the Euclidean Dirag matrices we choose the Hermitian representaﬁibw Y. - Moreover by definitiony*"=[ y*,y"]/2.
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where F{'; are the usual gauge field tensors and As we have already noticed in the previous section, the
D ¢=(b+A)d—pAg is the covariant derivative of action obtained contains mnirror fermion problem, since
the Higgs field¢. Finally the bosonic action is calculated both right-handed and left-handed spinogsof L*(Sy)

as Tmw?, where the trace is understood over timernal ~ couple to the chiral gauge bosons.

gauge degrees of freedom and the external ones, related NOte that, as already mentioned, the structure of the fer-

to the manifold M, which produces the integration Mionic terms of EqQ(3.7), which comes from Eq(3.6), fol-
[d*x.The fermionic action is the scalar product lows from the signature of the metric &. More precisely,

; - the explicit expression of the fermionic bilinears in £8.7)
(D+A(AL AR, . Actually this last contribution can . ! )
gg 5:ast eEs I:alreF:a\dd;/))rrlféntioned yin the form of a trace of af terms of chiral components gf depends on the signature.
operato’r as well: ' he latter has other profound consequences, such as the re-

ality property of the spinor spaces. These aspects have not
been investigated. However, the mirror fermion problem,
(4, (D+A(AL AR, D)) since it only relies on the fact that any spinorlcf(Sy) is
tensored with botl§, andér, seems completely unrelated to
=T |[¢)((D+AAL AR, #)P|]. (3.6 the choice of signature.

] ] ) ] ) The first procedure outlined in Sec. Il, which consists in
ences the structure of the spin-invariant scalar pro@®i€,  ,, ® &5 and yg® &, , leads to the customary result.
and thus determines the final expression of the Lagrangian |et us now, instead, consider in more detail the second
density. Since we are interested in the description of physicadne, in which the trace in the action is restricted to the physi-
models, we write the classical actids,in Minkowski space cal subspace via the introduction of the projector operator
with signature ¢+ — — —), and correspondingly we adopt the P:
Lorentzian spin-invariant scalar product

Szf d*x

— (T~ i) 2+ W (ih+ AW,

1 a 2
- ZtrFf_“’Fle— ZUF’FQVFEVJF(D,M)(D“@T where P, is the projector onto the componefjtin the finite
Hilbert space. In matrix form,

*®P,, (3.9

1- Vs 0
— — 1
where V| r=x®§ g, x a Dirac spinor ofL%(Sy), & an  Note thatP commutes with the curvature tenséras it can
element ofHg, and tr denotes the trace over the gauge inbe immediately checked by using the propertiesyahatri-
ternal indices. According to our notation, the indite® on  ces. This means that TREP)2=TrP#?P =Tre?P. After a
W refer to the discrete degree of freedom and not to thestraightforward computation we have, for the Lorentzian ac-
chiral component of. tion of the model in this case,

1 1 ) — .
— UL F L, — IR R = ZUlFRTF L+ IR FRI+ (D, ¢) (D 9) " = (6" ¢— dodo) *+ (i 4+ Ay

S=f d*x

+ r(ib+ AR) Yr—[ Y (M+ @) g+ H.C] |, (3.10

where * F{,=(1/2)e*"*’F ;X are the dual gauge tensor fields, of which only one of the two independent
fields, and ¢ gr=x_ r®& g are the physical fermionic components, left-moving or right-moving remains
states. As a result of the projection, all unphysical statess a physical degree of freedom, the other being projected
in S disappear. On the other hand, in the gauge sectonut.

only the anti-self-dual component of the gauge tensor field This result is of course unacceptable from a physical point
F{”, satisfying (in the Minkowski space F{""=—i*F{*"  of view, since the actio3.10 violatesCPT symmetry. As
appears, while the self-dual has a vanishing kinetiove will see in the next section, in fact, similar results hold in
term. Similarly forF&” only the self-dual parEL"=i*F&”  the case of the standard model, and no such dramatic viola-
contributes. In other words the projection over stategdion of CPTsymmetry are allowed by the huge phenomenol-
of definite chirality in the fermionic sector leads to the ogy on electroweak processes at low scale. It is worth notic-
result that a similar projection is made onto the gaugdng however that in the case of a purely vector or axial
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coupling of fermions to gauge fields, with SU{2)or o M 0
SU(2)a gauge symmetry, namely if one makes the identifi- M0 0
cation F{*"==xFg"”, the two topological terms cancel

each other and the corresponding action reduces to the usual De=| o 0

form. This is the case, for example, for SU{3%olor 0 0
interaction. For all chiral gauge models, however, this pro-

cedure of projecting out unphysical degrees of freedom

in H at the level of curvature tensof gives a wrong with

result.

0
0
0 M (3.12)
MT 0

m,® I3 0

B. The standard model M= . (3.12

L I . 0 my® 1
For simplicity we will discuss the Connes-Lott version 4®3

of the gauge theory SU(3®%SU(2) ®U(1)y with only

one quark family. Actually the inclusion of leptons is
quite crucial in order to obtain the correct assignment of
hypercharge quantum number for fermions and
Higgs bosons, by applying the unimodularity condition.

The Connes-Lott representation of the algebra is

See, for example[7]. Our discussion, however, is quite a®ls 0 0 0

general and the results reported can be easily generalized 0 Bel, 0 0

when leptons and the correct number of fermion generations

are considered. p(c.0.B)=| o 0 Lec 0 |-
The algebra in this case is chosen @5(M,(C)® Ag,

with A-=Mz@H®C, with My and H the algebra of 0 0 0 Lec

3X3 complex matrices and of quaternions, respectively.
The fermion Hilbert space is again the tensor
product H=L2%(Sy)®Hg, where the finite factorH
can be obtained from Eq§2.8—(2.12 by only considering
the first term in the direct sums and choosiNg=1. In
particular it has as basis elements the Sy(2jpublet
q¢, the SU(2) singlets ug and dg, which we wil B:(b 0) b (3.14
collectively denote by gg, and the corresponding 0 b* ' '
C-conjugate states. Witha we denote the color

(3.13

with ¢, q elements, respectively, &fl 5, H, and

index. The calculation then goes along the same lines of the
Finally the D¢ term in the Dirac operatof2.3) is the  previous section. In particular for the connectién we
fermion mass matrix get
AL®ls Ys(¢p—do)®lz 0 0
5(¢'— ) @13 B®ls o o0
A(G,AL,B,¢)= 0 0 LeG 0 | (3.1
0 0 0 Le6

where as beforcA,_=EiA:_(ai/2) andG=38_ B3\ ,/2)+138° with A, the Gell-Mann SB) matrices and

_(B 0) \,
B=| o ge) BucC. (3.16

From the condition\{"* = — A{", G** = — G* andB** = —B* in particular it follows 8, = — 8, .
For the curvature tensor, with all junk forms subtracted out, one has instead
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1
> YL+ (67— dido) ~ 75D ¢ 0 0
T 1 t T
v5(D ) > VB + (ddT = dod)) 0 0
o= 1 , (3.17
0 0 > VG 0
1 14
0 0 0 E’)/”VG’U'

with ® ¢=(d+AL) p— $B. The unimodularity condition T+ JAJ)=0 removes the (1) factor corresponding tfiz and
the action, obtained by tracing over the entire Hilbert space, reads, in Minkowski,

Szf d*x

+QS(i b+ AL+ B)Q%+ Qr(i h+ B+ B)Qr+ Qi d— B+ B)QS —[QL(M+ ¢)Qrt+ QUM* +H)QS+H.c]|,  (3.18

1 1 1 —
— JUFLFL,— BB, UGGy, + (D) (D ) = (67 h— ddbo)*+Quii b+ AL+ E)Q

whereQ_ g=x®0q[’ g, With x a Dirac spinor ofL?(Sy). The redundancy of the degrees of freedom due to the presence of
C-conjugate states can be eliminated by identifying the corresponding statgss QEQ’L, namely making the quotient with
respect to the equivalence relation given by the real strudtu@n the other hand, as in the case discussed in the previous
section, in the action appear mirror unphysical states with a chimaiigyatch like y, ®gg or xgr®d, .

If we now restrict the trace of the operatét+ |)((D+A(G,A, ,B,¢))y| via the introduction of the projectd®,

1-ys 0 0 0
1 0 1+ g 0 0
=2l o 0 1ty o0 | (319
0 0 0 1y,

we get

S=f d*x

+qu(id+A +B)g +qR(id+ A+ G+ ar(id+B+G)ag+qf(id—B+G)qf

1 pvpeL s uvk L 1 v TR MV 1 mv m AT T T 2
_Ztr[FL FMV_IFL FMV]_Z[B B/.LV+IB BMV]_ZtrG G;LV+(’D,M¢)(D ¢) _(¢ ¢_¢O¢O)

—[quM+ $)ar+aR(M* + $)af +H. c]|, (3.20

where, to simplify notation, we have denoted withy the IV. THE SPECTRAL ACTION

physical stateg, r®q; g. Hence the topological terms ap-

pear for both the SU(2) and the W1) factor, while the Recently Chamseddine and Connés6,13 have pro-
SU(3). fields, due to its vector coupling to quarks, contrib- posed another form for the bosonic action, which includes
ute toS with the usual &#*G ,, term only. In particular the gravity as well, while the fermionic action remains the same.
self-dual component oF, receives no kinetic contribution ~ The idea behind the spectral action is that while the to-
and isprojected outby the introduction of. In the fermion  pology is encoded by the algebra, all other informatioet-
sector, instead, all unphysical states are absent. As alreadi¢ in the first instanceare encoded by the generalized co-
pointed out this approach, leading to E@.20, or Eq. variant Dirac operatodD,=D+A+JAJ, where nowD,
(3.10, implies CPT symmetry violation and is at variance also contains the spin connection terms. Moreover, the op-
with low-energy phenomenology. eratorD can be characterized completely by its spectrum.
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This leads Connes and Chamseddine to consider as thehere the coefficient$, are given by
bosonic action

fom | x(w u du o= [ v du

0 0

DA
2

S=Tr| x , 4.9

=(— (n) i
where y is a suitable cutoff function. The quantity, is a famiz=(=1)" x(0) with n=0, (4.8

cutoff with dimensions(in natural unit$ of a mass which

indicates at which scale the theory under consideration effe@nd

tively shows its noncommutative geometric nature. The ac-

tion basically sums up the eigenvalues Df, which are DE’RP,_,R DE,RP,_,R 4
smaller tharm,. The trace can be evaluated with heath ker- an( - —mz—) :j \/5 an(X,— —mr)d X.
nel technique$13]. We now consider what happens in the 0 M 0

model discussed in Sec. lll A. To further simplify notations
we make the additional simplification of only considering the .
gauge and gravitational contribution. The other contributiondVOte thata, .V"?‘F“Sh for odan.

can be added without altering the results. This is accom- From Qef|n|t|prjs(4.3), (4.4), and(4.6) one can compute
plished by choosing a Dirac operator with vanishing fermiont® PoSitive definite operator

mass terms

4.9

1
-0 1/2® ]12 - gRM vpo ’yMV’ypO—(X) ]IZ

D, 0 —D{ gPr=
A:<0 DR)' 4.2

i i
_ L.RAum _ pveL,R
where +59uR(DTALR) T 790 RYF L,

[ ; @
Di=V&l~59.AL, (4.3 +|gL,R]I4®AL,RV,u] PLr: (4.10

i where DRALR=V ALR—i(g, r/2)[A;RALR] is the
Dr=Y®l,~ 5 9rAr. (4.4  complete covariant derivative andF};=D%RALR
—DURALR. Moreover, in the previous equatiofl,,
Furthermore, by, we denote the covariant derivative cor- =V " ¥ »= 8" (9, +©,)(9,+ 0,)~T'*(9,+ w,), wherew,
responding to the metric connection only. denotes the spin connectioh/*=g*’I'y,, and finally, we
According to the considerations developed in the previoudave chosen the representation for the Riemann tensor ac-
sections we substitute the expressi@hl) for the action, ~cording to whichRyz;;=1/r? on the 21 sphere of radius.
with a similar expression in which the trace is performedFrom these definitions we can recast@dl0 as
over the physical states only. This can be done by using the

previously defined projectde: - DE,RPL,R: —(9*"P g®1,d,0,+C{' rd,+ B Rr),
(4.1)
PL 0 1 1- Vs 0
P= == . (4.5
0 Pr/ 2\ 0 1+ ys where
Hence in terms of Eq4.5 we get Cl r=[(20*—TH*)®l,—ig L&Al P g, (4.12
Sp=T Di P|=T DiP R
=Tr x| ——|P|=Tr x| —
B X mé X 3 BLr= (&Mw“-i- wﬂw"‘— 7 Jl4—l—"“a)'u ®ﬂ2—igL’Rw#Af_"R
DEPL RPR i i
=Tr — +Tr - ) 4.6 ! : v
X( mj ” X mj 49 - EQL,RL‘X’(DL—JRAﬁR)_ ng’” F;L,,'VR PLr-
where to get the RHS of E@4.6) we have used the property (4.13
the P commutes withD?. Note that the minus sign in Eq.
(4.6) is due to our choice of Hermitiap matrices. In order to apply the formalism developed in REL3] to
The trace(4.6) is defined by using the heat-kernel expan-compute the Seeley—deWitt coefficients, it is convenient to
sion[13] introduce the quantities
D?P s DEP, DRPr 1 i
Tr X\ — mOZ _nBO fn an - mOZ +an - mOZ ! g’lLL’RE E(ClLL,R+FMPL,R): (,L)M®ﬂ2_ EgL,Rﬂ4Af,R> PL,R'

(4.7) (4.14
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E r= BL,R_(3ﬂ§f,R+§ILL,R§,L/R_FM§,LJR) QLR_|Z
w = |2
PLr, (419 (4.18

i
Ruvpe ¥ ® 15— EgL,Rh@ Fl,l'f} PLRr-

R i veL,R
="z 14@I2+ ZQL,RYM Fo

and Thus by following[13] we get

D rPLr 1
ag| X, — ~ _16W2Tr(PL,R®H2)_4_ﬂ_21 (4.17
D rPLr 1 R
az X,_ mg :16772Tr( EL,R+ EPL’R®]2 y (418)
D2 ;P 1 1
aq| x,— L':%L'R): 167 36g B0E+ 60RE+ 180E2+3002,,, 04"+ (120IR+5R2~ 2R, R*"+ 2R ., R*7*)PL g@ ],
(4.19
By substituting in Eqs(4.17)—(4.19 the expression$4.15 and (4.16) we get
DZP, DEPg\ 1
ao| X,— ——| +ag| X,— ==, 4.2
ol X m% o| X S 272 (4.20
DZP, D3Pg 1
a‘Z X, mg a2 X, mg 24472 R! (4 21)
and
D2P, D2Pg 1 1 o 2 g . o 2l s
_ + JE N I + _ v__ vpo 4 v
84 X\~ | Fau X~ | =7g 2 qgg ~1ZIRTBRI-ER,,RYTR,,0R 1597 Tr(F L F{)
1593Tr(FR F&r _5 2Tr(FL *Fpr 4 2Tr(FR *Far 4.2
+ 159 Tr(F, FR") 8g|_"(;w L)+89Rr(,w R) |- (4.22

Note that Eq.(4.22 is in still Euclidean signature, the con- have pointed out that{ contains unphysical fermionic de-
tinuation to Lorentzian signature being straightforward. Wegrees of freedom. Some of these are harmless and can be
can therefore conclude that also in the case of the spectragdmoved with a quotient. The others, behaving as mirror par-
action the effect of considering traces over the physical Hilyjcles, can be eliminated only via a projection. What seems to
bert space is that of adding the topological term to the action,s ynsatisfactory is that the projection operator does not fit

In this case, however, unlike what happens in(@&) case, inig the geometrical construction. In fact since it does not

. i
the_ two components of the gauge f|elds_, the s_elf-dual and]ommute with the generalized Dirac operator, it leads to dif-
anti-self-dual, are both present but their kinetic term arg

) . S . erent results depending on the step in the construction at
weighted by different factors. Again this represents a viola; , . . - :
) which it is applied. Furthermore none of these correspond to
tion of CPT symmetry of the model.

a physically acceptable model. The only way to get, for ex-
ample, the correct result for the standard model is through
the ad hocprescription of neglecting the unphysical fermi-

In this paper we have analyzed the structure of the Hilberpnic degrees of freedom in the action.

spaceH adopted in the noncommutative geometry models of How serious is this problem for the noncommutative ge-
gauge theories of the type describeéd Refs.[1-6]. We  ometry approach to the standard model? One can take two
extreme views. On the one hand, one can consider the fact
that some extra terms in the Lagrangian appear to be irrel-

“4It is worth noticing that there exist different noncommutative evant and simply ignore them without worrying too much.
geometrical approaches to gauge models, see for example Re@n the other hand, one can consider that noncommutative
[14,15, and references therein. geometry fails in its attempt to at least reproduce the action

V. CONCLUSIONS
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of a gauge theory. Obviously both these positions can be ACKNOWLEDGMENTS
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