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In this paper we study the structure of the Hilbert space for the recent noncommutative geometry models of
gauge theories. We point out the presence of unphysical degrees of freedom similar to the ones appearing in
lattice gauge theories~fermion doubling!. We investigate the possibility of projecting out these states at the
various levels in the construction, but we find that the results of these attempts are either physically unaccept-
able or geometrically unappealing.@S0556-2821~97!02310-2#

PACS number~s!: 11.15.Tk. 02.40.2k

I. INTRODUCTION

Noncommutative geometry@1# provides a powerful alge-
braic scheme to handle a large variety of geometrical frame-
works. Its application to gauge theories, and in particular to
the standard model~SM! of strong and electroweak forces
@1–4#, is a unique original way to fully geometrize the inter-
action of elementary particles. More recently, attempts have
been made towards a unification with gravity as well@5,6#.
In noncommutative geometry the role that is classically
played by a manifold, seen as an ensemble of points, is taken
by a * -algebra, which in thecommutativecase is just the
algebra of continuous complex valued functions, but in gen-
eral can be a generic non-Abelian* -algebra. This algebra is
then represented as bounded operators on a Hilbert space on
which a generalized Dirac operatorD also acts, providing all
information usually carried by a metric structure@1#.

A very appealing aspect of the Connes-Lott~CL! version
of the SM and of his subsequent versions and improvements
~for a review see@7#! is that the Hilbert space on which the
algebra and the generalized Dirac operators act is the space
of physical fermions. In the model the fermionic action cor-
responds to a generalization of the~interaction! Dirac action
c̄(]”1A” )c while the bosonic one is obtained by taking the
trace of the squared curvature two-form which is constructed
out of the algebraC`(M ,C)^AF , whereC

`(M ,C) is the

algebra of smooth complex valued function on the~Euclid-
ean! four-dimensional space-time manifoldM , and
AF5M3%H%C, with M3 andH the algebra of 333 com-
plex matrices and of quaternions, respectively. The result
generalizes the Yang-Mills Euclidean action (1/4)FmnFmn .
Most remarkably, in this framework, the scalar Higgs field
appears as the connection in the internal~noncommutative!
space while its action, including the usuallyad hocquartic
potential, naturally appears as the square of the curvature in
the internal space. This model is quite constrained and, with
the choice of the Hilbert space composed by the known fer-
mions only, seems to point to some unique features of the
SM, forbidding, for example, standard grand unified theories
@8#.

Quite recently Chamseddine and Connes~CC! @6# have
also proposed a different definition of the bosonic action,
based on the so-calledspectral action principle, which from
the generalized Dirac operator only, now including also the
gravitational spin connections, produces the SM action
coupled to Einstein plus Weyl gravity.

In both approaches the Hilbert space of fermionsH seems
to play a crucial role. On the one side it is necessary in order
to represent the algebra, which gives the topology of space,
though this last feature can be recovered independently of
whether an explicit representation is assigned or not. On the
other sideH is definitely necessary for the introduction of
theD operator, which encodes, as mentioned, all information
on the metric.

The structure chosen forH is the one of a tensor product
of a continuous infinite dimensional factor, the space
L2(SM) of square integrable Dirac spinor overM , which is
related to space-time, times a finite dimensional space, which
describes the physical particle degrees of freedom,including
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helicity. In this paper we point out that, for a chiral gauge
theory built up in both the CL and CC approaches, this
choice forH, though imposed by the initial ansatz for the
algebra, gives rise to two problems. One due to an over-
counting of the physical degrees of freedom, the other, more
serious, is connected to the presence of unphysical degrees of
freedom. These problems are basically due to the fact that
the helicity degrees of freedom are contained both in the
spinor, and in the finite dimensional space.

As we will see the states responsible for the overcounting
are a consequence of theduplicationof degrees of freedom
in the finite part of the Hilbert space. In all gauge models, in
fact, in which more than one factor of the group acts on some
fermion multiplet, in order to correctly represent the algebra,
it is necessary to include for all fermions the corresponding
charge-conjugated states. Once the action is obtained, a
simpleidentificationprocedure, which is to say, a quotient of
the initial Hilbert space, is sufficient to remove this un-
wanted duplication of particles.1

On the other side, the unphysical degrees of freedom look
like mirror fermions, namely states which couple to the chi-
ral factors of the gauge group but which have, however,
wrong chiral quantum numbers. For the case of the minimal
SM, for example, we will see how right-handed Dirac
spinors would be coupled in general to the SU~2! L gauge
bosons. The presence of these unphysical fermions seems
more closely related to the choice forH in the form of a
tensor product. What is implicitly done in the literature is to
throw away at the very end the unwanted terms from the
action. One wonders therefore if there is a more geometrical
way of getting rid of the unphysical fermions. Actually they
can be eliminated by aprojectiononto a proper subspace of
H. This projection, however, may lead to different results if
performed at different stages of the noncommutative geomet-
ric construction of a gauge theory, since the corresponding
projector operators do not commute with all the intermediate
steps of such a construction. For example, since they project
onto definite chirality states inL2(SM), they do not commute
with the Dirac operator, which contains Diracg matrices, as
well as with the connection one-forms.

As we will see in the following, using the projection at the
level of the algebra leads to a trivial result. It is also possible
to perform the projection, for the bosonic part, at the level of
the curvature two-form. In this way the action is obtained by
tracing the squared curvature over the physical Hilbert sub-
space only. As far as the fermionic action is concerned, this
procedure gives the same result obtained in the literature.
Instead, in the bosonic sector, in addition to the usual kinetic
term, topological terms of the formemnrsF

mnFrs will gen-
erally appear. However, the combination of the two terms in
the curvature is such that only the self-dual or anti-self-dual
components of the field survive. This means that half of the
gauge physical degrees of freedom has been projected out as
well.

It seems therefore that the only consistent procedure to
obtain the action of the SM and, more generally, of any
chiral gauge theory, is to just neglect the unwanted mirror

states in the action. Thisad hocrestriction of the action just
at the very end of the powerful noncommutative construction
is quite unsatisfactory and probably, a different, less trivial
choice for the structure of the fermion Hilbert space is re-
quired, possibly on the lines of a supersymmetric generaliza-
tion @10# or some even more radical changes@11#.

The paper is organized as follows. In Sec. II we review
the CL construction and the concept of spectral triple. We
also discuss the problem of redundant fermionic degrees of
freedom and, in particular, of mirror fermions. In Sec. III we
first discuss a simple model based on a spontaneously broken
SU(2)L^SU(2)R gauge symmetry, showing how the pos-
sible projections work. The case of the standard model is
then considered. Section IV is devoted to a similar study in
the CC model for the simple SU(2)L^SU(2)R unbroken
case. Finally, in Sec. V we give our conclusions and outlook.

II. SPECTRAL TRIPLE, THE CONSTRUCTION
OF GAUGE THEORIES AND FERMION

HILBERT SPACE

The basic ingredient of the noncommutative geometry
construction is the so-calledspectral triple, denoted by
(A,H,D), whereA is an involutive* -algebra faithfully rep-
resented by bounded operators on the Hilbert spaceH, and
D is a self-adjoint operator with compact resolvent~general-
ized Dirac operator!. The spectral triple becomes areal spec-
tral triple if an antilinear isometryJ of H, obeying suitable
relations, is introduced@3#. Note thatJ can be seen as a
generalizedCPT operator.

In this framework a gauge theory, with group of invari-
anceG, is fully geometrized and it is on the same footing as
gravity. The former, in fact, emerges as the gauge theory of
the inner automorphisms of the algebra

A5C`~M ,C! ^AF , ~2.1!

where AF is the smallest* -algebra containingG as the
group of its unitary elements. Analogously, the latter can be
seen as the gauge theory of diffeomorphisms ofM , which
are nothing but the outer automorphisms ofA.

As far as the Hilbert spaceH is concerned a suitable
choice is to take

H5L2~SM ! ^HF , ~2.2!

whereL2(SM) is the space of square integrable spinors de-
fined onM , andHF is a finite dimensional linear space cor-
responding to all discrete degrees of freedom, like chirality,
flavor, charge, etc. Finally, the generalized Dirac operator is

D5]”^ I1g5^DF , ~2.3!

with DF denoting the selfadjoint fermion mass matrix. In this
way, the real spectral triples (A,H,D) is the tensor product
of two real triples, one which is the continuous~space-time!
part „C`(M ,C),L2(SM),]” … and another for the internal part
(AF ,HF ,DF).

Given a generalized Dirac operatorD, the gauge connec-
tion is written as

A5(
i

b i@D,a i #[(
i

b ida i , ~2.4!

wherea i andb i are elements ofA such thatA is Hermitian,
and the differentiald is defined byda[@D,a#. From the

1It is worth noticing at this point that such a problem is absent in
the so called ‘‘old version’’ of the model@1,9#.
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connectionA, one defines the curvatureu as2

u[dA1A2, ~2.5!

and thus the bosonic action is obtained as

SB5Tr u2. ~2.6!

Note that the trace includes the integration overM . For the
fermionic action one has instead

SF5^c,~D1A1JAJ!c&. ~2.7!

It is worth noticing that exterior algebra emerges from the
Clifford algebra as its antisymmetric part, and thus it is cru-
cial that the Hilbert space contains as its continuous part the
space of Dirac spinorsL2(SM). In fact, the use of Weyl
spinors on a four-dimensional space-timeM would lead to
an incorrect result, since the algebra generated by the Pauli
matrices plus identity is only four-dimensional, and thus is
not sufficient to faithfully represent the corresponding 16-
dimensional exterior algebra. In particular, all the two forms
would be junk forms and thusu would be trivial.

The choice~2.2! for the Hilbert space has problems in the
case of theories, like the standard model, where fermions
with different chirality transform independently under the
gauge group. In the new formulation of the SM in the man-
ner of Connes and Lott the discrete part of the Hilbert space
HF results:

HF5HL%HR%HR
c

%HL
c , ~2.8!

where

HL5~C2^CN^C3! % ~C2^CN^C!, ~2.9!

HR5„~C%C! ^CN^C3…% ~C^CN^C!, ~2.10!

andHL,R
c are the corresponding spaces for antiparticles,

HR
c5~C2^CN^C3! % ~C2^CN^C!, ~2.11!

HL
c5„~C%C! ^CN^C3…% ~C^CN^C!. ~2.12!

In this framework a natural basis is given by

S ua

da
D
L

, S ca

sa
D
L

, S taba
D
L

, S ne

e D
L

, S nm

m D
L

, S nt

t D
L

,

~2.13!

~ua!R ,
~da!R

,
~ca!R ,
~sa!R ,

~ ta!R
~ba!R ,

~e!R , ~m!R , ~t!R , ~2.14!

S ua
c

da
c D

R

, S ca
c

sa
c D

R

, S tac
ba
c D

R

, S ne
c

ec
D
R

, S nm
c

mcD
R

, S nt
c

tc
D
R

,

~2.15!

~ua
c !L ,

~da
c !L ,

~ca
c !L ,

~sa
c !L ,

~ ta
c !L

~ba
c !L ,

~ec!L , ~mc!L , ~tc!L ,

~2.16!

wherea51,2,3 is the color index. This exhausts all of the 90
physical fermionic degrees of freedom. However, whenHF
is tensored withL2(SM), the number of degrees of freedom
becomes redundant. In particular, an elementhFPHF can be
decomposed as

hF5hL1hR1hL
c1hR

c , ~2.17!

where the four vectors on RHS of Eq.~2.17! belong to the
corresponding Hilbert spacesHL , HR , HL

c , andHR
c , respec-

tively. Furthermore, for eachxPM a generic spinorc can be
decomposed as

c~x!5cL1cR1cR
c1cL

c . ~2.18!

Thus, by tensoring Eq.~2.18! with Eq. ~2.17! we have 16
possible combinations, namely four times the needed ones.
In order to analyze the physical meaning of these combina-
tions it is useful to divide the tensor productc ^hF in three
parts:

~cL^hL1cR^hR1cR
c

^hR
c1cL

c
^hL

c !, ~2.19!

~cL^hR
c1cR^hL

c1cR
c

^hL1cL
c

^hR!, ~2.20!

~cL1cR
c ! ^ ~hR1hL

c !1~cR1cL
c ! ^ ~hL1hR

c !. ~2.21!

The fermions in this last expression behave as the mirror
fermions present in lattice chiral gauge theories. In fact, if we
consider, for example, the termcL^hR of Eq. ~2.21! it cor-
responds to a left-handed particle~as specified bycL) which
behaves under the gauge group as a right-handed one~as
specified byhR). On the contrary, the other two combina-
tions ~2.19! and~2.20! have the right properties, though each
of them independently is sufficient to describe all the physi-
cal particles. As it will be clear in the next section, this last
redundancy is usually eliminated by identifying the degrees
of freedom of Eq.~2.19! with the ones of Eq.~2.20!. Con-
cerning the unphysical part, it has to be projected out.

Let us denote withP the projector on the physical sub-
space corresponding to the combinations~2.19! and ~2.20!.
Note that this projector cannot be used from the very begin-
ning. The above subspace, in fact, would be no more a tensor
product involving the space of Dirac spinors, but rather Weyl
spinors, and this would lead, as stated above, to a trivial
result. Furthermore, sinceP does not commute with the gen-
eralized Dirac operator and consequently with the gauge con-
nection, the form of the action would depend on the particu-
lar step of the construction in which it has been used.

In literature, this problem seems to be ignored. What
is implicitly done is to compute the trace ofu2 on the
whole Hilbert space to get the bosonic action, while the fer-
mionic part is obtained with thead hocprescription of re-
taining in the scalar product~2.7! only the physical state
contribution.

This operation can be formally viewed as follows. First
we note that the scalar product~2.7! can be seen as a trace,

2Note that thed operator so defined is not nilpotent and hence a
quotient is necessary in order to obtain the correct differential alge-
bras@1,9#. The forms quotiented out are the so-called junk forms.
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SF5Truc&^~D1A1JAJ!cu, ~2.22!

and we define the mapF:H^ V1→B~H!:

F~c,A!5u2~A!1uc&^~D1A1JAJ!cu, ~2.23!

whereV1 is the space of one-form connections. The action is
then the functional Tr+FuHphyŝ V1, i.e., only the physical fer-
mions are retained, while the trace is still performed on the
whole spaceH. This procedure is extremelyad hoc.

A possibility would then be to compute the traces on the
physical Hilbert space. The action is then

S5TrPu21TruPc&^~D1A1JAJ!Pcu. ~2.24!

Note that the only difference with respect to the usual action
is in the presence ofP even for the bosonic term. Remark-
ably, this difference for chiral theories, as we will see in the
next section, will cause the disappearance of some gauge
physical degrees of freedom as well.

III. PHYSICAL HILBERT SPACE
AND THE TOPOLOGICAL TERMS
IN CHIRAL GAUGE MODELS

In order to illustrate the general discussion of the previous
section we consider first a simple model with gauge group
SU(2)L^SU(2)R and then the standard model, limiting our-
selves to the one-quark family case to keep notations to a
minimum.

A. SU„2…L ^SU„2…R model

In this case the algebra can be chosen as
A5C`(M ,C)^ AF where C`(M ,C) is the algebra of
smooth complex valued function onM and AF5HL%HR ,
with H the algebra of quaternions. The Hilbert space is the
tensor productH 5 L2(SM)^HF and is the space of spinor
fields of the model. In particular we takeHF5HL%HR
5C2%C2 corresponding to two doubletsjL and jR under,
respectively, the action ofHL andHR . Finally for the gen-
eralized Dirac operatorD ~2.3!, DF is chosen as the mass
matrix

DF5S 0 M
M† 0 D . ~3.1!

Having assigned the spectral triple (A,H,D) the model is
completely defined once a~faithful! representation of the al-
gebra onH is specified, which we choose as follows:

r~qL ,qR![S qL 0

0 qRD , ~3.2!

where qL,R are quaternions represented as 232 matrices.
Notice that in the general case one should also consider, as
elements of the Hilbert space, the charge conjugated states
jL,R
c , related to thejL,R via the real structureJ. This is only
necessary when more than one factor of the chosen algebra is
acting on each multiplet of the Hilbert space. This is actually
the case of the strong and electroweak standard model, since,
for example, left-handed quark doublets transform both un-
der the algebrasHL andM3(C), whose unimodular elements
correspond to the groups SU(2)L and SU(3)c . In our simple
example this is redundant, since a simple representation of
the algebra can be achieved and no bivector potentials are
required. We will come back to the more general structure
later, when we will consider the case of the standard model.
For the moment we are only interested in showing how pro-
jecting out the unphysical degrees of freedom corresponds to
the natural appearance of topological terms in the classical
action.

The gauge connection, computed according to Eq.~2.4!,
takes the form3

A~AL ,AR ,f!5S A” L g5~f2f0!

g5~f†2f0
†! A” R

D , ~3.3!

where we have definedA” L,R5( iA” L,R
i s i /2[( iqL,R8 i ]”qL,R

i and
f2f0[( iqL8

i(MqR
i 2qL

iM), wheres i are the Pauli matri-
ces, with the conditionAL,R

m* 52AL,R
m . Note that, under a

unimodular elementu of the algebra,A(AL ,AR ,f) trans-
forms as

A~AL ,AR ,f!→u@D,u#1uA~AL ,AR ,f!u* , ~3.4!

and therefore, using the representation for the algebra, it fol-
lows thatAL,R transform, as usual, as the adjoint representa-
tion of the corresponding SU~2! factor, and the Higgs field
f as a doublet under both SU(2)L and SU(2)R . The corre-
sponding curvature two-formu, once the junk forms have
been subtracted out, reads

u5S 1

2
gmnFL

mn1~f†f2f0
†f0! 2g5D” f

g5~D” f!†
1

2
gmnFR

mn1~ff†2f0f0
†!
D , ~3.5!

3Concerning the Euclidean Diracg matrices we choose the Hermitian representationgm
†5gm . Moreover by definitiong

mn[@gm,gn#/2.
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where FL,R
mn are the usual gauge field tensors and

D” f5(]”1A” L)f2fA” R is the covariant derivative of
the Higgs fieldf. Finally the bosonic action is calculated
as Tru2, where the trace is understood over theinternal
gauge degrees of freedom and the external ones, related
to the manifold M , which produces the integration
*d4x.The fermionic action is the scalar product
^c,„D1A(AL ,AR ,f)…c&. Actually this last contribution can
be cast, as already mentioned, in the form of a trace of an
operator as well:

^c,„D1A~AL ,AR ,f!…c&

5Tr@ uc&^„D1A~AL ,AR ,f!…cu#. ~3.6!

It is worth observing that the choice for the signature influ-
ences the structure of the spin-invariant scalar product~3.6!,
and thus determines the final expression of the Lagrangian
density. Since we are interested in the description of physical
models, we write the classical action,S, in Minkowski space
with signature (1222), and correspondingly we adopt the
Lorentzian spin-invariant scalar product

S5E d4x F2
1

4
trFL

mnFmn
L 2

1

4
trFR

mnFmn
R 1~Dmf!~Dmf!†

2~f†f2f0
†f0!

21C̄L~ i ]”1A” L!CL

1C̄R~ i ]”1A” R!CR2@C̄L~M1f!CR1H.c.#G , ~3.7!

whereCL,R5x ^ jL,R , x a Dirac spinor ofL2(SM), j i an
element ofHF , and tr denotes the trace over the gauge in-
ternal indices. According to our notation, the indicesL,R on
C refer to the discrete degree of freedom and not to the
chiral component ofx.

As we have already noticed in the previous section, the
action obtained contains amirror fermion problem, since
both right-handed and left-handed spinorsx of L2(SM)
couple to the chiral gauge bosons.

Note that, as already mentioned, the structure of the fer-
mionic terms of Eq.~3.7!, which comes from Eq.~3.6!, fol-
lows from the signature of the metric onM . More precisely,
the explicit expression of the fermionic bilinears in Eq.~3.7!
in terms of chiral components ofx depends on the signature.
The latter has other profound consequences, such as the re-
ality property of the spinor spaces. These aspects have not
been investigated. However, the mirror fermion problem,
since it only relies on the fact that any spinor ofL2(SM) is
tensored with bothjL andjR , seems completely unrelated to
the choice of signature.

The first procedure outlined in Sec. II, which consists in
simply neglecting in the action thewrong states of the form
xL^ jR andxR^ jL , leads to the customary result.

Let us now, instead, consider in more detail the second
one, in which the trace in the action is restricted to the physi-
cal subspace via the introduction of the projector operator
P:

P5
12g5

2
^P1%

11g5

2
^P2 , ~3.8!

wherePi is the projector onto the componentj i in the finite
Hilbert space. In matrix form,

P5
1

2S 12g5 0

0 11g5D . ~3.9!

Note thatP commutes with the curvature tensoru, as it can
be immediately checked by using the properties ofg matri-
ces. This means that Tr(PuP)25TrPu2P 5Tru2P. After a
straightforward computation we have, for the Lorentzian ac-
tion of the model in this case,

S5E d4x F2
1

4
tr@FL

mnFmn
L 2 iF L

mn* FL
mn#2

1

4
tr@FR

mnFmn
R 1 iFR

mn* FR
mn#1~Dmf!~Dmf!†2~f†f2f0

†f0!
21c̄L~ i ]”1A” L!cL

1c̄R~ i ]”1A” R!cR2@c̄L~M1f!cR1H.c.#G , ~3.10!

where *FL,R
mn 5(1/2)emnrsFrs

L,R are the dual gauge tensor
fields, and cL,R5xL,R^ jL,R are the physical fermionic
states. As a result of the projection, all unphysical states
in S disappear. On the other hand, in the gauge sector,
only the anti-self-dual component of the gauge tensor field
FL

mn , satisfying ~in the Minkowski space! FL
mn52 i *FL

mn

appears, while the self-dual has a vanishing kinetic
term. Similarly forFR

mn only the self-dual partFR
mn5 i *FR

mn

contributes. In other words the projection over states
of definite chirality in the fermionic sector leads to the
result that a similar projection is made onto the gauge

fields, of which only one of the two independent
components, left-moving or right-moving, remains
as a physical degree of freedom, the other being projected
out.

This result is of course unacceptable from a physical point
of view, since the action~3.10! violatesCPT symmetry. As
we will see in the next section, in fact, similar results hold in
the case of the standard model, and no such dramatic viola-
tion of CPTsymmetry are allowed by the huge phenomenol-
ogy on electroweak processes at low scale. It is worth notic-
ing however that in the case of a purely vector or axial
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coupling of fermions to gauge fields, with SU(2)V or
SU(2)A gauge symmetry, namely if one makes the identifi-
cation FL

mn56FR
mn , the two topological terms cancel

each other and the corresponding action reduces to the usual
form. This is the case, for example, for SU(3)c color
interaction. For all chiral gauge models, however, this pro-
cedure of projecting out unphysical degrees of freedom
in H at the level of curvature tensoru gives a wrong
result.

B. The standard model

For simplicity we will discuss the Connes-Lott version
of the gauge theory SU(3)c^SU(2)L^U(1)Y with only
one quark family. Actually the inclusion of leptons is
quite crucial in order to obtain the correct assignment of
hypercharge quantum number for fermions and
Higgs bosons, by applying the unimodularity condition.
See, for example,@7#. Our discussion, however, is quite
general and the results reported can be easily generalized
when leptons and the correct number of fermion generations
are considered.

The algebra in this case is chosen asC`(M ,C)^ AF ,
with AF5M3%H%C, with M3 and H the algebra of
333 complex matrices and of quaternions, respectively.
The fermion Hilbert space is again the tensor
product H5L2(SM)^HF , where the finite factorHF
can be obtained from Eqs.~2.8!–~2.12! by only considering
the first term in the direct sums and choosingN51. In
particular it has as basis elements the SU(2)L doublet
qL

a , the SU(2)L singlets uR
a and dR

a , which we will
collectively denote by qR

a , and the corresponding
C-conjugate states. Witha we denote the color
index.

Finally the DF term in the Dirac operator~2.3! is the
fermion mass matrix

DF5S 0 M 0 0

M† 0 0 0

0 0 0 M*

0 0 MT 0
D ~3.11!

with

M5Smu^ I3 0

0 md^ I3
D . ~3.12!

The Connes-Lott representation of the algebra is

r~c,q,B![S q^ I3 0 0 0

0 B^ I3 0 0

0 0 I2^c 0

0 0 0 I2^c
D ,

~3.13!

with c, q elements, respectively, ofM3, H, and

B5S b 0

0 b* D bPC. ~3.14!

The calculation then goes along the same lines of the
previous section. In particular for the connectionA we
get

A~G,AL ,B,f!5S A” L^ I3 g5~f2f0! ^ I3 0 0

g5~f†2f0
†! ^ I3 B” ^ I3 0 0

0 0 I2^G” 0

0 0 0 I2^G”
D , ~3.15!

where as beforeA” L5( iA” L
i (s i /2) andG” 5(a51

8 G” a(la/2)1I3G”
0 with la the Gell-Mann SU~3! matrices and

B”5S b” 0

0 b” * D bmPC. ~3.16!

From the conditionsAL
m*52AL

m , Gm*52Gm andBm*52Bm in particular it followsbm52bm* .
For the curvature tensor, with all junk forms subtracted out, one has instead
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u51
1

2
gmnFL

mn1~f†f2f0
†f0! 2g5D” f 0 0

g5~D” f!†
1

2
gmnB

mn1~ff†2f0f0
†! 0 0

0 0
1

2
gmnG

mn 0

0 0 0
1

2
gmnG

mn
2 , ~3.17!

with D” f5(]”1A” L)f2fB” . The unimodularity condition Tr(A1JAJ)50 removes the U~1! factor corresponding toGm
0 and

the action, obtained by tracing over the entire Hilbert space, reads, in Minkowski,

S5E d4x F2
1

4
trFL

mnFmn
L 2

1

4
BmnBmn2

1

4
trGmnGmn1~Dmf!~Dmf!†2~f†f2f0

†f0!
21Q̄L~ i ]”1A” L1G” !QL

1Q̄R
c ~ i ]”1A” L1G” !QR

c1Q̄R~ i ]”1B”1G” !QR1Q̄L
c~ i ]”2B”1G” !QL

c2@Q̄L~M1f!QR1Q̄R
c ~M*1f!QL

c1H. c.#G , ~3.18!

whereQL,R5x ^qL,R
a , with x a Dirac spinor ofL2(SM). The redundancy of the degrees of freedom due to the presence of

C-conjugate states can be eliminated by identifying the corresponding states,QL,R[QR,L
c , namely making the quotient with

respect to the equivalence relation given by the real structureJ. On the other hand, as in the case discussed in the previous
section, in the action appear mirror unphysical states with a chiralitymismatch, like xL^qR or xR^qL .

If we now restrict the trace of the operatoru21uc&^„D1A(G,AL ,B,f)…cu via the introduction of the projectorP,

P5
1

2S 12g5 0 0 0

0 11g5 0 0

0 0 11g5 0

0 0 0 12g5

D , ~3.19!

we get

S5E d4x F2
1

4
tr@FL

mnFmn
L 2 iF L

mn* Fmn
L #2

1

4
@BmnBmn1 iBmn*Bmn#2

1

4
trGmnGmn1~Dmf!~Dmf!†2~f†f2f0

†f0!
2

1q̄L~ i ]”1A” L1G” !qL1q̄R
c ~ i ]”1A” L1G” !qR

c1q̄R~ i ]”1B”1G” !qR1q̄L
c~ i ]”2B”1G” !qL

c

2@ q̄L~M1f!qR1q̄R
c ~M*1f!qL

c1H. c.#G , ~3.20!

where, to simplify notation, we have denoted withqL,R the
physical statesxL,R^qL,R

a . Hence the topological terms ap-
pear for both the SU(2)L and the U~1! factor, while the
SU(3)c fields, due to its vector coupling to quarks, contrib-
ute toS with the usual trGmnGmn term only. In particular the
self-dual component ofFL receives no kinetic contribution
and isprojected outby the introduction ofP. In the fermion
sector, instead, all unphysical states are absent. As already
pointed out this approach, leading to Eq.~3.20!, or Eq.
~3.10!, impliesCPT symmetry violation and is at variance
with low-energy phenomenology.

IV. THE SPECTRAL ACTION

Recently Chamseddine and Connes@5,6,12# have pro-
posed another form for the bosonic action, which includes
gravity as well, while the fermionic action remains the same.

The idea behind the spectral action is that while the to-
pology is encoded by the algebra, all other information~met-
ric in the first instance! are encoded by the generalized co-
variant Dirac operatorDA5D1A1JAJ, where nowDA

also contains the spin connection terms. Moreover, the op-
eratorD can be characterized completely by its spectrum.
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This leads Connes and Chamseddine to consider as the
bosonic action

SB5TrFxS 2
DA
2

m0
2D G , ~4.1!

wherex is a suitable cutoff function. The quantitym0 is a
cutoff with dimensions~in natural units! of a mass which
indicates at which scale the theory under consideration effec-
tively shows its noncommutative geometric nature. The ac-
tion basically sums up the eigenvalues ofDA which are
smaller thanm0. The trace can be evaluated with heath ker-
nel techniques@13#. We now consider what happens in the
model discussed in Sec. III A. To further simplify notations
we make the additional simplification of only considering the
gauge and gravitational contribution. The other contributions
can be added without altering the results. This is accom-
plished by choosing a Dirac operator with vanishing fermion
mass terms

DA5SDL 0

0 DR
D , ~4.2!

where

DL[¹” ^ I22
i

2
gLA” L , ~4.3!

DR[¹” ^ I22
i

2
gRA” R . ~4.4!

Furthermore, by¹m we denote the covariant derivative cor-
responding to the metric connection only.

According to the considerations developed in the previous
sections we substitute the expression~4.1! for the action,
with a similar expression in which the trace is performed
over the physical states only. This can be done by using the
previously defined projectorP:

P5S PL 0

0 PR
D 5

1

2S 12g5 0

0 11g5
D . ~4.5!

Hence in terms of Eq.~4.5! we get

SB5TrFxS 2
DA
2

m0
2DPG5TrFxS 2

DA
2P

m0
2 D G

5TrFxS 2
DL
2PL

m0
2 D G1TrFxS 2

DR
2PR

m0
2 D G , ~4.6!

where to get the RHS of Eq.~4.6! we have used the property
the P commutes withD2. Note that the minus sign in Eq.
~4.6! is due to our choice of Hermitiang matrices.

The trace~4.6! is defined by using the heat-kernel expan-
sion @13#

TrFxS 2
D2P

m0
2 D G. (

n>0
f nFanS 2

DL
2PL

m0
2 D 1anS 2

DR
2PR

m0
2 D G ,
(4.7)

where the coefficientsf n are given by

f 05E
0

`

x~u! u du, f 25E
0

`

x~u! du,

f 2~n12!5~21!n x~n!~0! with n>0, ~4.8!

and

anS 2
DL,R
2 PL,R

m0
2 D 5E

M
Ag anS x,2 DL,R

2 PL,R

m0
2 D d4x.

~4.9!

Note thatan vanish for oddn.
From definitions~4.3!, ~4.4!, and ~4.6! one can compute

the positive definite operator

2DL,R
2 PL,R5H 2h1/2^ I22

1

8
Rmnrsgmngrs

^ I2

1
i

2
gL,R~Dm

L,RAL,R
m !1

i

4
gL,RgmnFmn

L,R

1 igL,RI4^AL,R
m ¹mJ PL,R , ~4.10!

where Dm
L,RAn

L,R5¹mAn
L,R2 i (gL,R/2)@Am

L,R ,An
L,R# is the

complete covariant derivative andFmn
L,R[Dm

L,RAn
L,R

2Dn
L,RAm

L,R . Moreover, in the previous equationh1/2

[¹m¹m5gmn(]m1vm)(]n1vn)2Gm(]m1vm), wherevm

denotes the spin connection,Gm[grsGrs
m , and finally, we

have chosen the representation for the Riemann tensor ac-
cording to whichR121251/r 2 on the 2d sphere of radiusr .
From these definitions we can recast Eq.~4.10! as

2DL,R
2 PL,R52~gmnPL,R^ I2]m]n1CL,R

m ]m1BL,R!,
~4.11!

where

CL,R
m 5@~2vm2Gm! ^ I22 igLI4^AL,R

m #PL,R , ~4.12!

BL,R5F S ]mvm1vmvm2
R

4
I42GmvmD ^ I22 igL,RvmAL,R

m

2
i

2
gL,RI4^ ~Dm

L,RAL,R
m !2

i

4
gLg

mnFmn
L,RGPL,R .

~4.13!

In order to apply the formalism developed in Ref.@13# to
compute the Seeley–deWitt coefficients, it is convenient to
introduce the quantities

jL,R
m [

1

2
~CL,R

m 1GmPL,R!5S vm ^ I22
i

2
gL,RI4AL,R

m DPL,R ,

~4.14!
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EL,R[BL,R2~]mjL,R
m 1jL,R

m jm
L,R2Gmjm

L,R!

52FR4 I4^ I21
i

4
gL,RgmnFmn

L,RGPL,R , ~4.15!

and

Vmn
L,R5F14Rmnrsgrs

^ I22
i

2
gL,RI4^Fmn

L,RGPL,R .

~4.16!

Thus by following@13# we get

a0S x,2 DL,R
2 PL,R

m0
2 D 5

1

16p2Tr~PL,R^ I2!5
1

4p2 , ~4.17!

a2S x,2 DL,R
2 PL,R

m0
2 D 5

1

16p2TrSEL,R1
R

6
PL,R^ I2D , ~4.18!

a4S x,2 DL,R
2 PL,R

m0
2 D 5

1

16p2

1

360
@60hE160RE1180E2130VmnVmn1~12hR15R222RmnR

mn12RmnrsR
mnrs!PL,R^ I2#,

~4.19!

By substituting in Eqs.~4.17!–~4.19! the expressions~4.15! and ~4.16! we get

a0S x,2 DL
2PL

m0
2 D 1a0S x,2 DR

2PR

m0
2 D 5

1

2p2 , ~4.20!

a2S x,2 DL
2PL

m0
2 D 1a2S x,2 DR

2PR

m0
2 D 52

1

24p2R, ~4.21!

and

a4S x,2 DL
2PL

m0
2 D 1a4S x,2 DR

2PR

m0
2 D 5

1

16p2

1

180S 212hR15R228RmnR
mn27RmnrsR

mnrs115gL
2Tr~Fmn

L FL
mn!

115gR
2Tr~Fmn

R FR
mn!2

45

8
gL
2Tr~Fmn

L * FL
mn!1

45

8
gR
2Tr~Fmn

R * FR
mn! D . ~4.22!

Note that Eq.~4.22! is in still Euclidean signature, the con-
tinuation to Lorentzian signature being straightforward. We
can therefore conclude that also in the case of the spectral
action the effect of considering traces over the physical Hil-
bert space is that of adding the topological term to the action.
In this case, however, unlike what happens in the~CL! case,
the two components of the gauge fields, the self-dual and
anti-self-dual, are both present but their kinetic term are
weighted by different factors. Again this represents a viola-
tion of CPT symmetry of the model.

V. CONCLUSIONS

In this paper we have analyzed the structure of the Hilbert
spaceH adopted in the noncommutative geometry models of
gauge theories of the type described4 in Refs. @1–6#. We

have pointed out thatH contains unphysical fermionic de-
grees of freedom. Some of these are harmless and can be
removed with a quotient. The others, behaving as mirror par-
ticles, can be eliminated only via a projection. What seems to
us unsatisfactory is that the projection operator does not fit
into the geometrical construction. In fact since it does not
commute with the generalized Dirac operator, it leads to dif-
ferent results depending on the step in the construction at
which it is applied. Furthermore none of these correspond to
a physically acceptable model. The only way to get, for ex-
ample, the correct result for the standard model is through
the ad hocprescription of neglecting the unphysical fermi-
onic degrees of freedom in the action.

How serious is this problem for the noncommutative ge-
ometry approach to the standard model? One can take two
extreme views. On the one hand, one can consider the fact
that some extra terms in the Lagrangian appear to be irrel-
evant and simply ignore them without worrying too much.
On the other hand, one can consider that noncommutative
geometry fails in its attempt to at least reproduce the action

4It is worth noticing that there exist different noncommutative
geometrical approaches to gauge models, see for example Refs.
@14,15#, and references therein.
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of a gauge theory. Obviously both these positions can be
easily criticized. Noncommutative geometry remains a pro-
gram which is able to give very fruitful results in particle
physics and gravity, but probably, in order to obtain the stan-
dard model in a fully geometrical way, some modification of
the spectral triple, or of some other crucial ingredient of the
theory, is needed.
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