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Thomas-Fermi approximation for gauge theories
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An effective field approximation, similar to the atomic Thomas-Fermi approach, is proposed for studying
non-Abelian gauge theories which includes finite-volume effects. As applications of the formalism the equation
of state for an S(2) gauge theory with massless fermions is obtained. The extensions to realistic situations are
briefly discussed.S0556-282(197)03510-9
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[. INTRODUCTION solved; from the solution the equation of state for the system
can be derived. This program requires the evaluation of the
The equation of state of a quark-gluon plasma at highthermally averaged non-Abelian charge densities which we
temperatures and/or densities is one of the most importarbtain using perturbation theory; in this paper we will use
unknowns in our current understanding of strong interactiorthe lowest-order approximation, but a systematic improve-
physics[1]. The applications of such an equation of state arament is straightforward.
varied, ranging from cosmological compact objects to the The atomic Thomas-Fermi approximation is useful when
physics of heavy ion collisions. Unfortunately, because ofcalculating bulk properties of an atom with a large number of
the high degree of nonlinearity present in QCD, the determielectrons, such as the total ionization enef8y; it is also
nation of this equation of state has proved to be a difficuluseful as a starting point for a Hartree-Fock approximation.
task. For example, even within perturbation theory, infraredVe expect the TFQCD model of a quark-gluon plasma to be
singularities require the calculation of an infinite number ofreasonably accurate for bulk properties of the system, such as
graphs for the partition function beyond fifth ord@. Gen-  the equation of state. There are some differences between the
eral expressions for Green’s functions are available for thatomic Thomas-Fermi and the TFQCD formalisms; in par-
case where the internal momentum is largeZ() while the ticular note that, in contrast to the atomic case, the quark-
external momenta are soft~@7), the so-called hard- gluon plasma is not stable: if left alone it will fly apart and
thermal loop region3]; using standard manipulatiog],  undergo a phase transition into a gas of hadrons. In order to
one can then determine the partition function correspondingtudy a gas of quarks and gluons we are forced to imagine
to all hard modes in the theory. The soft-mode contributionghe system to be enclosed in a container at sufficiently large
to the partition function have been studied using various aptemperature and/or density.
proximations[5] and numerical calculations have also been The presence of an external confining agency is reminis-
developedthough not to the extent as in tie=0 case¢[6].  cent of the bag modégB,10]. Through most of the paper we
In this paper we propose a new approximation withinwill consider, in contrast to the usual bag models, a situation
which the physics of a quark-gluon plasma can be studiedwvhere the partons are not confined, and for which the exter-
The formalism is based on the Thomas-Fermi model of thenal pressure is assumed to be generated by some physical
atom[7] and will be called Thomas-Fermi QCOFQCD). apparatus. Despite this difference the bag boundary condi-
We consider a plasma of quarks and gluons confined to &ons are also relevant for the present model: the system is
volume V which we imagine subdivided into a number of assumed to be confined to a spherical volume out of which
subvolumes, each of which is large enough for the partonaeither fermion number nor color can escape, this requires
they contain to be considered a statistical ensemble. Thesee impose both the origing®] and chiral[10] bag boundary
subvolumes interact via a background gauge field whoseonditions. We will also briefly study a system correspond-
sources are the thermally averaged non-Abelian charge deimg to a hadron at zero temperature, and will show that the
sities of the subvolumes. The subvolumes are assumed to bag constant and strong coupling constant obtained in the
small enough for the background field to vary very little present approach are consistent with those obtained using the
inside them, and because of this the background field sourcdésmg model.
are essentially pointlike. The requirement of stability, to- The volume of the systen¥ will be kept finite in all
gether with the Yang-Mills equations for the backgroundcomputations; the results will then include finite-volume ef-
field, furnishes a closed set of equations which can bdects(such as terms in the extensive thermodynamic quanti-
ties proportional??). In the infinite volume limit these sur-
face effects can be neglected and the equation of state

*Electronic address: dixon@agouti.ucr.edu reduces to that of an ideal gas of gluons and quarks.
"Electronic address: pkaus@bslnet.com In the following section we will describe the construction
*Electronic address: jose.wudka@ucr.edu of the TFQCD model and present some simple applications.
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We will concentrate on the case of an @Jgauge theory — 1

with a single species of massless fermions, and then describe L=iyDy— 4 (F3.)% 2.9
the modification required for the important case of an3U

gauge theory with threémassive fermion flavors. The re- where denotes the quark fieldy the gauge field, and
mainder of the paper is organized as follows. In Sec. Ill we

derive the equation of state for this model in the cases of zero Fa,= 0,A5— 0,A%+ geancAnAS . (2.2)
baryon number and zero temperature. The discussion of the

extension to S(B) and to more flavors is presented in Sec. | N€ sources are

IV. Some parting comments are presented in Sec. V and a a_ i Toa

mathematical detail is given in the Appendix. V=T 23

Latin indices from the beginning of the alphaletb,c, etc)
correspond to color indices; Latin indices form the middle of
IIl. DESCRIPTION OF THE MODEL the alphabeti,j,k, etc) denote space indices.

The model we propose is, as mentioned above, an exten-
sion of the Thomas-Fermi model to the case of QCD. We A. Spherically symmetric gauge potentials and equations
consider a gas of partons inside a voluteve then imagine As mentioned in the previous section we will assume that
partitioning V' into small subvolumessV which are big  he |ong-range forces in our system are described by a non-
enough so that the partofiguarks and gluonscontained in - apglian background gauge field generated by the average
them form a statistical gnsemble det_ermlned by a tempergharge of each subvolume. We also assume the system to
ture 7 and, for the fermions, a chemical potential Each  haye spherical symmetry. Thus we need the most general

subvolur_ne i_s required to be in equilibrium with its _environ- expression for a spherically symmetric non-Abelian gauge
ment which implies that the temperature and chemical poteryie|q which is well known[14], and is reviewed for com-
tial are the same throughout the systétmis is intuitively pleteness below.

obvious, we present a proof in Sec. [].0he system is also "~ The most general spherically symmetric ansatz for the
assumed to be static so that no currents are present. gauge potentials of an Abelian theory is simpA®

We assume that the subvolumes have a nonzero average, 1) A=a(r,t)f, whereA denotes the vector potential
color charge, which implies that the zero component of theyngr —j¢|. It is clear, however, that we can choose a gauge
gauge field goes to a consta#t at its boundanf11]. We wherea(r,t)=0, so we can tak&=0.
will refer_ to AO as the background gauge field. The back- For the SW2) non-Abelian case the structure is much
ground field is assumed to vary slowly and smoothly be-icher! the most general spherically symmetry ansa{d#
tween thedV, and is determined self-consistently by requir- (the overbar denotes the background figlds
ing it to satisfy the Yang-Mills equations corresponding to

the average charges of the subvolunfesich themselves Ag= Aol a,

depend on the background fieldsThis approach presup-

poses that the magnitude of the charge in any gi¥grs — (g e, o P ..
small, and that the background field is approximately con-  Aa=€iajlj| = |+ (dia—Tifa) =+ TilaAs,

stant within each subvolume; both these assumptions will be (2.4)
verified a posteriori

Finally, we also assume that our system is sphericallywhich exhibits spin-isospin mixing.The fields ¢y, and
symmetric; this requirement considerably simplifies the cal-4, ; depend orr andt.
culations yet preserves the essential non-Abelian character of Within this ansatz the S@) Yang-Mills Lagrangian be-
the problem. The equations obtained for the backgroundomes
fields are then similar to the ones derived when considering
the coupling of classical, spherically symmetric Yang-Mills 1 ., 1, 1 , ¢ , 1)?
fields to external sourcdd.2,13. 2P =g T 2 DO g | [0 2] L 29

In the rest of this section we will treat the various ingre-
dients of the model separately. We first review the Yangwhere the indiceg., v, etc., equal Xcorresponding t@) or
Mills equations within the spherically symmetric ansatz. We0 (corresponding td); the metric is diag(l;1). We also
then obtain the expression for the partonic sources for theefined f,,=d,A,—d,4,, ®=¢,+i¢,, and D,=d,
background fields and the various thermodynamic observ+ig.A,. The above expression is invariant under the gauge
ables. Next we derive the stability conditions for the systemtransformation
Finally we combine these results in order to obtain the equa- _
tions for the background fields which determine quantita- A,—A,—d, N, DP—eo, (2.6
tively the Thomas-Fermi-QCIOTFQCD) model.

The conventions which we use are the following. TheWwhich is a remnant of the original non-Abelian invariance.
model is based on an SNJj Yang-Mills theory with one
species of massless fermion; ttanti-Hermitiar) group gen-
erators are denoted [y and the gauge coupling constant by IThe sjtuation is similar for larger groups, see Sec. IV.
g. The covariant derivative iD,=d,+A,, where A, 2In this respect the present approach differs from other investiga-
= gAzTa. The full Lagrangian is tions into spherically symmetric hadron physics; see Ri].
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We now consider the coupling of the above fields to aessentially constant. Adopting these approximations we re-

spherically symmetric gharge densip?, where spherical duce the calculation to evaluating gét-(—iAg+ ) yo] with
symmetry requirep®=qr?. The coupling is then described Ao=gAy03/(2i), Ay=const.

by adding a term The partition function for an ideal gas of massless fermi-
it ons at temperaturd in a volume 6V and with a chemical
Linteractior= 9Aop” =90 Ao (2.7 potential equal tqu is given by[4]
to the Lagrangian. BV 7
|nzozﬁ wt+2(mkT )2 u?+ i (wkT)“},
B. The partition function for gluons and fermions (2.11

We now imagine that the volume of the system, denoted
by V, is subdivided into a large number of subvolum®s  where the zero subscript indicates that no gauge fields are
The gauge fields inside each subvolume are separated intdreluded. The constant background gauge fields are then in-

background piecé? and a fluctuatiora? : A% =A%+a3 . cluded by replacing.— u*+g.Ay/2 in Z, with the sign de-
In this subsection we evaluate the partition function forP€nding on the isospin of fermion, and adding the contribu-
the partons inside). This object, which we calf 5, will ~ tons from each isospin component. Thus, within the above

depend orA2 , and we can use this dependence to obtain thgPProximations, we obtain
thermal average of the non-Abelian currents: BoV[giAL  g2A2

= + + ut
InZ, =622 1"16 " &z TH

1

g

0Z.5
IAH2

I

. (2.8

7
+2(mkTu)?+ 1 (mkT)?|, (2.12
Since the system is supposed to be in a static configura-

tion we requirej?=0 which implies we can také?=0 where we defined the thermal wavelength
inside éV. Since the background fields are assumed slowly g

varying, we also také\§ constant insideSV; we then choose 1
a gauge such tha3 is diagonal insidesV. HenceZ g, will A= . (2.13
gaug 0 1S e v 237+ (nKT )2

depend on the temperatufe the fermionic chemical poten-
tial u, and then components oA\, associated with the diag-
onal generatorgn is the rank of the gauge group

As a first approximation we will neglect the interaction
between the fermions and thﬁu as well as the nonlinear
couplings among thaf‘L; these interactions can be included

This approximation t& , generates the following expres-
sions for the fermionic contribution to tHéocal) thermody-
namic quantities

InZ
perturbatively. Concerning the scale 8P we will assume P‘p:T]ﬁ
that it is set by the fermion thermal wavelengthhat is, B
1 [g*45 943

SV~\3. (2.9 4

“6a2 16 8nZ M
We will for the moment restrict ourselves to the case 7

where the gauge group is $2) [the extension to S(3) will +2(mkTw) %+ — (wkT)“},

be described in Sec. IV beldwin this case the group gen- 15

erators are T?=¢?/(2i) and, within 8V, A,=gAJT?

=gAyo3/(2i), so that 2k

sy=5_ (TKT)

92 A3
4

+,u2+115(77k7')2},
Ab=ab+ Ayb,;, AP=al (inside 8V). (2.10

g°A; g*Ag
2402 48

We first evaluate the fermionic contribution to the parti- ¢ :i

. X S 2
tion function, and then calculate the contributions from the 2m

aa

15

7
+ ut+ 2(mkTu)?+ — (WkT)‘l},

o
1 (9lnz 21 |3
R el el e SV SR 2
1. Fermionic contribution n= B&V( e )_ 372 [4 9" Ao+ u”+ (mkT) }
When considering the fermionic partition function we will
assume only one massless fermions spetttes modifica- _ 1 (dInZ,) gA 2 424 1 (2.14
tions required by several species and/or nonzero masses are Qv gBoV\ dA, 2472|9072 '

straightforwargl. Thus we look for an approximate expres-

sion for Z,,=det(D+wy,) where the gluon fields take the whereP denotes the pressure agde, n, g, etc., denote the
form (2.10. Inside a subvolume&V it is assumed that the entropy, energy, particle, and charger unit volume Note
fermions behave as a statistical ensemble, that the interactiahat e,=3P,—2A,q includes the energy of the interaction
with the ] is small, and that the background field§ are  with the gauge fields.
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2. Gluonic contribution where F2° denotes the field strength for the background

The gluonic contribution to the partition function is ob- fields, andp, the thermally averaged non-Abelian charge
tained in a manner similar to the one followed for the fermi-density.
ons. As before we will ignore the self-interactions of the ~Since the total energy momentum tensor is conserved, it
fields ai’ in this case the partition function, including the follows that the averaged partonic contributiég, satisfies

. -~ o
Faddeev-Popov determlnant,. reducetszg.mons— det-Dgg; 3,080 = —gpaFgo. (2.20
where D,q; denote the covariant derivative for the back-
ground fields in the adjoint representatidré]. For static situations the above equation implies

In calculating this determinant we take into account that B _
the partons are supposed to be in a box of side More- 9 Opar= —gpaF L. (2.21

over, the background field is supposed to include the effects N _ _
from the zero(Fourie) modes in the field. It follows that we If in addition we impose spherical symmetfsee Sec. Il A

need to include only modes with energy above paxl?, Adecr? which implieSpaFf,f: —paajAS. For a ho-
mogeneous gas of partons the space components of the en-
P .
pO:2_7T' (2.15 ergy momentum tensor ar@lﬁn— PparSij - Collecting these
A results we gew;Ppa— gpaajAS or, equivalently,
Using the gauge\iz 5%05‘3'3,40 gives dPpar= gpad@ (2.22
_ d®p — B(p-gAy) which is the desired constraint.

INZ giuons=—V 0> Po (2m)3 [In(1-e ) For the Abelian case Eq2.22 reduces to the usual

Thomas-Fermi equilibrium condition: the pressure &his

+In(1—e APT94)) +|n(1—e AP)], balanced by the electrostatic force.

2.16 This stability condition requires the chemical potential
' and temperature to beindependent. Indeed, 4i3,,, the par-

which corresponds to a gas of massless bosons with chemic@n partition function for a small volumaV, is a function of

potentia|tng and 0. 7, .Ao, and,LL; USing Eq(214) we obtain
We will argue below(Sec. 1l D ) that the background 1 (91InzZ 1 {9InzZ
field Ag is monotonic inr and thathg.4Ao<3/2. Using also dPpar= 7, ( ‘W) ot — _5")
the fact thaiBp,= 42 we find that to a good approximation BY | A BV \ du
(mkD* 4kDY L (‘9 '”ZW)d
Pgluons: 1572 + P (B°Pot+2Bpo+2) BY oT
x e~ PPo[ sinh( 8g.A¢/2) ]2 (2.17 z
[sinh(8g.A0/2)]°. . =qusAO'f_npartd:’-‘*"’(epart_ anan) T
This shows that the deviations from the free-gluon values are (2.23
exponentially suppressétecall thatBp,=4?) and can be
neglected. In this case wheren,,;ande,,are, respectively, the particle and energy
densities of the partons angf=qr2. Substituting this ex-
(wkD)* (mkD)* pression folp,, using Eq.(2.4), and comparing to Eq2.22)
gluons™ 752+ Egluons™ T 27> we obtaindu=d7=0.
4k(mwkT)® D. The TFQCD equations
Sgluons™ "5 Aguons=0: 218 The equations of motion are derived from the spherically

symmetric Lagrangian for the background fiel@s5 when
where P denotes the pressure aeds, andq the energy, the potentials interact with a sourgeaccording to Eq(2.7).
entropy, and charge per unit volume, respectively. The error$he source, given in Eq2.14), is itself a function of the
incurred are below a few percent for the thermodynamigotentials. The resulting equations are
guantities and below 0.0075% for the charge.

o4 O [z L
D @-ﬁ- -7 |(I)| ) (13:0,
C. Stability conditions r g
The stability criterion can be obtained from the Wong g*(r?f,,)+2g Im(®*D,d)=—gr2qs,o. (2.24

equationg 17], but a more elegant argument can be gleaned
from a paper by Brown and Weisberdgdr8]. Consider the The gauge invariance of these equations allows us to chose
background field contribution to the energy momentum tenthe A;=0 gauge. The second of the above equations gives,
SOr Bpack, Which satisfies whenv=1 and for static configurations, i ®’'=0, so that
— we can choos@ to be purely imaginary.
3, Obae=9paF 2, (219 We will use the notatiofil2,13



6348 D. D. DIXON, P. KAUS, AND J. WUDKA 55

f(r) 1 In the examples which we consider in detail we will be

AOZF' ¢ = 9 a(r). (2.29  interested in the limit whergl, is large and wherg—0 or

pn—0. In these cases we have
Then, using Eq(2.14), the above equations become o
a 2 @ f2 = ﬁ .Ag (2.30}
f'=2( =) f=—"f|l=+1],
X 67 \X . . o
We will require the volume charge density in the bulk to
1+f2—32 smoothly join the surface charge density at the surface layer,
a’+ —z a=0, (2.26  thatis,p®\=0c? atr=R. Thus we imposeg\=9 atr=R

which, keeping in mind that the solutions produce large val-

wherea=g?/(4m) andx=r/x with \ defined in Eq(2.13.  ues of Ao atR, is equivalent taAf/(4m)=\AY/(37?), or
These equations determine the background selféquivalently

consistently. Their solution requires the specifications of the 37 R

boundary conditions to which we now turn. f(R)= _ (2.30)

1. Boundary conditions

The conditions near the origin are determined by consid!t IS of course possible to modify this condition by requiring

. ; . X only that, atr=R, g\=sd for some numbers=0(1),
ering th?. beh?"'” of Wilson Izoops as_—>0. We find t_hat which is equivalent to replacing—A/s; our results are in-
singularities arise unlessanda“—1 vanish atr =0. Using

th - try(which i t of th sensitive to such a replacement.
eac—a symmetryiwhich is a remnant ot tn€ gauge sym- - 1, qatarmine the consequences of the second of the above
metry) we can then requira—1 asr—0. The precise man-

: hich f and a— 1 ish h . two conditions(color confinementwe need the components
ner in which I-and a Vanish asr approaches z€ro IS st the chromoelectric and chromomagnetic fields parallel and
determined by requiring that the energy should have no di

: . . perpendicular ta,
vergences at this point. We then obtain Perp

. 1 (f\ . 1 a*-1.,
f,a—1=0(r?) for r—0. (2.2 r'Ea:_gT)\<§) ra, r'Ba:_gT)\ v ra,

It is easy to see that the equations of motiar26 require
f to be concave or convex, since we can always exchange. . 1 a 5 A cani 1 fa 5
f——f we can assume thdtis concave. In particular this (FXB%)'=— g2n x Siial (rXE%)'=- g\ X2 Ciial
implies thatf will not vanish forr>0. From Eq.(2.26) it is (2.32
also easy to show thaf{r)’>0. In contrastn can(and will)
have extrema as well as zeroes. The first of these relations, together with the previously de-

As mentioned in the Introduction we assume that the sysrived result ¢/r)’#0, implies that color will leak from the
tem is enclosed in a container which must be spherical due teystem unless an appropriate modification is included. The
the requirement of spherical symmetry; we denoteRbigs  situation is identical to the one present in the bag mgélg!
radius. If the system is to be confined to the regienR,  and the solution which we adopt is the safi€]. We will
there should be no leakage of fermion number or color intaouple our system at the=R boundary to aCP-odd field
the regionr >R. 7' via a term proportional to the Chern-Simons term; this

The first of these two conditiondermion number con- coupling insures that color is confined to the regiocaR
finemen} requires the fermions to have zero radial compo-{10]. Denoting byF,, the decay constant on thg’, the
nent of the momentum at=R. This implies that in the coupling to this field at =R are determined by the relations
vicinity of r=R the fermion gas becomes two dimensional.

The correspondingsurface charge densityc?® takes the A a

a__ v a, .’ ° a_
form r~E—7TF7]’r~B , xXB%=

rxXE%p’
(2.33
from which we derive {-E®)(r X E®) + (1 - B®)(r X B =0;

as mandated by spherical symmetry. Note, however, dhat jn terms of thea and f fields this becomes
does not have a simple analytical form:

o
7TF777

o= 9r2 (2.28

fa(xf'—f )+xa'(a®>~1)=0, atr=R, (2.39

1
9= 82 [Q(Bu+BYAS2) ~ QBr— BYAI2)], which is the desired conditioh.
—ZJWd I eS+e! 2, a2 t k(lZInZ )
Qu)= 0 s eS+e Y| u 3 an P uj 3Concerning Eq(2.34 we know, from the numerical integration

(2.29 of Eq. (2.26), thatf(xf’—f ) does not vanish, we also find that it is
numerically large for the situations we consider in detail. It follows
where the analytic approximation @ is accurate to about that Eq.(2.34 can be approximately replaced by the simpler con-
0.62%; the derivative is accurate to 0.92%. dition a(R)=0.
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(a) (b)

4 amt 568 1
. 2r s
: ! _
ey \E Lo i ’\g FIG. 1. Examples of solutions
~ ~

=0
5 f(x) (dashed lines and a(x)
- (1-ay\ [0 (solid lineg corresponding toR
S — ; ; G =10fm, &V=4 GeV/in?, andT

020 30 40 =150 MeV (X=47). Cases ()
* * and (b) corresponds to the solu-
(c) () tions which minimize the thermo-
dynamic potential. Casel&) and
4 a=0.164 70.5 4 o 70.16 (d) have largerQ and represent
3r % 40.375 3t miHo.12 unstable solutions; the values ef
« 2 025 £ . 2 (rarx Y loos & corresponding to each solution are
s (l-a)x ‘v dozs $ BNy il S ¢ indicated.
ml 125 ~ /\/\ 0.04 ~
0 UU 0 /) A 0
| — e | ] -0.125 -It ' “ . ;4-0‘04
0 20 30 40 10 20 30 40
x x
2. Character of the solutions 1 X 1 f\2 1 /1—a2\2
oo Lol
The TFQCD potential$ anda are then obtained by solv- an Jo X X
ing the equation$2.26) subject to the boundary conditions a\2 o 2
(2.27), (2.31), and(2.34. These solutions, as well as all ther- —(a')?- <! " 2an 2l 2+ 2 ]

modynamic variables, will depend on the parameter
=g%/(47). In order to specifya we first fix the thermody-

13
M4+2u%wk731+15(wk7)ﬂR%

namic variables of the system, such as the energy and vol- T or
ume; the TFQCD expresses these thermodynamic variables
as functions ofw, which is chosen so that the chosen values (2.36
are met.
When considering Eq2.26) we find that, for given val- 1o (x (1, )2 1[1-a%?
ues of X and «, there are several solutions satisfying the &= an J; X[§ (f - ;) 2| T x
boundary condition$ Of these solutions there is a sete, in
fact, found two such solutiopsvhich minimizes(), the ther- o 2 ) f2
modynamic potential at constant pressure and chemical po- +@)H| ]+ Ef 2- X2
tential [19]:
21 4 2 13 4/p3
+§ ur+2u(7kT) +1—5(7TkT)}R,
Qz—fd&P, (2.35 (2.3
_2p |4, 21p3 X e
whereP denotes the total pressure. Numerical studies show N= 7|9 [+ (mkT)TIR H\fo dxf ] (2.39

that there is no crossover aschanges: each member of the
set of solution which minimize8 is a smooth function of.
Selecting the solution which minimizeQ we then deter-
mined a by matching the specified energy and baryon num-
ber.

The explicit expressions fdR, the total energy¥, and the
total number of particlegbaryon number\ are

where

R
X=1 (2.39

13
2 2
mo+ 15 (7kT)

For future reference we also provide the expression for the
1 2 4
K ST ATKT {3 X3\?

(total) entropy of the system
X
o . o . . + f f2dx; .
“This is reminiscent of the situations found in the case of classical K 3 0
solutions to the Yang-Mills equations with external sources. (2.40
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@ () a
12 / ] 3
g / _ 4
S 03 / 27
24 / &5 :
S5 L1 2
- 8
0 10 20 30 40 0 10 20 30 40 J B L
x x \
0 x
. _ o 05 I h
FIG. 2. Validity of the Thomas-Fermi approximatiof@): Only -1
in the regions near the boundaryxat 47 (x>45.5) and the origin 2

(x<1) does the approximation break dowh): The charge is ef-
fectively screened throughout the volume. The logarithm is to base FIG. 3. Solutions for smalK, solid curve:a”(0)= —2, dashed
10. curve:a’(0)=2.
Solutions of the equations fdr and a can be obtained
using standard numerical algorithms; due to the singular na- The magnitude of the charge in a subvolu@ié~\2 is
ture of the equations at the origin the relaxation method ibtained from Eq(2.14), and equals
best suited. 1ofe
We present several examples of the solutions in Fig. 1 89=\3q=—— — _2+1)' (2.42)
where we took R=10fm, &V=4GeV/in?, and T 2472 x | x
=150 MeV (which impliesX=47). All the solutions in Fig. _ o o
1 satisfy Eq.(2.26) and the boundary conditions; the solu- A Plot of this quantity is presented in Fig(l8. As can be
tions which minimize the thermodynamic potential corre-S€en the magnitude of the color charge inside each subvol-
sponds to case@®) and(b).®> These two solutions correspond UMe is quite small except near the-R boundary: the sys-
to indistinguishable thermodynamic¢®ithin numerical er- tem does screen its charges quite effectively.
rors); for the calculations below this duality presents no com-
plications. We have not attempted to study the stability of E. Solutions for small X
these solutions against nonradially symmetric perturbations \wnen X is small thenf will be small also since it is

[20]. monotonid[this follows from the boundary conditiai2.31)].

Given these results we must now determine whether theﬁ1 this case the equation fa decouples and so does the
are consistent with the original assumptions, that is, Whemeﬁoundary conditior(2.34):

f varies slowly enough to be considered constant in a region
of width ~\. We also must determine to what extent are x%a”+(1—a?)a=0, a(0)=1, a’(X)[a(X)?—1]=0.
color charges screened. The plots presented correspond to (2.43
both casega) and(b) in Fig. 1. )

The rate of change of is sufficiently slow provided the If we define
potential A, changes little within a region of sizeg, this is

equivalent to azzg a’(0), (2.44
(f/X)’< : (2.41) it is easy to see that the solution to the above equation is a
(f/x) function of a,x?. It is then enough to assuneg=+1; the

general solutions are obtained from these by rescalinthe
a plot of the left-hand side of this equation if presented insolutions to the above differential equatior a,= +1) are
Fig. 2@). We see that the conditiof2.4]) is satisfied except presented in Fig. 3. The solutions are monotonic, so the
in the vicinity of the origin and the =R boundary. The boundary condition ak=X is satisfied whena(X)=—1
value of Eq.(2.41) nearx=0 presented in Fig. (@) is an  which occurs only fota,<0, numerically:
underestimate generated by numerical erfthe equations )
are singular ak=0); for x—0, (f/x)’/(f/x)=1/x. apX=-41, (2.49

which completely specifies the solution.
Again neglectingf and evaluating numerically the inte-

®The singular nature of the equations allows for the multiplicity of grals gives
solutions; we have found eight solutions in totér the given
values of€ and V but having different values o#), though we .
cannot assert that this an exhaustive list. Using the relaxation EZE+4-23|<7)4V,
method, the solution that minimize® was less sensitive to the
initial trial functions, solutions with largef) become increasingly
more difficult to fin_d as the range of initial configurations which P~ 2‘_91V—4/3+ l.43kT)4. (2.46
relax to such solutions of Eq2.26) becomes more and more re- a
stricted. We have not attempted to perform a complete study of the
properties and number of solutions restricting ourselves to finding-0r example, at7=0, £&=1GeV, R=1fm, a=1, and P
the one solution relevant for physical applications together with=85 MeV/fm®. Fixing V and 7, the coupling strengthy
some examples of unstable solutions. drops as Y.
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At zero temperature we have=23V/(37?) and

542 u*Vy 291 . wut
=R 1972 PV U sgoa 247
so that the equation of state becomes
291 N4B
a3 =7
) M= " 162" (2.48

In this caseN=2, £&=1GeV, andR=1fm imply a=2.4
and P=77 MeV/fm®,

The numbers obtained for the case of smélare then
quite consistent with those obtained using the bag miglel

6351
o B X 25
~ — N <
orx2 =X (59
whose solutiorfusing Eq.(2.31)] reads
67X
f (2.52

:4+(X—X)\/377a.

Using these results we can evaluate the various thermody-
namic quantities for largX. For example,

37 R?

E=Eigeal gas™

(except perhaps for a large value for. Note, however, that from which we find |£— & geal gaLIEidea, gas~ 1/X. All other
in the present calculation the contributions from the nonideathermodynamic quantities exhibit this behavior: for laife
gas terms are very important and the numerical agreement énd fixed R (corresponding to largeX) the system ap-
not trivial. It is also true that the present model is far from proaches a mixture of ideal gases.

realistic[being based on an §P) gauge theory with a single

We emphasize that this is not a result of asymptotic free-

species of massless quafkshese results are therefore quite dom (when the running of the coupling is included the large
encouraging but not conclusive as to the physical relevanck behavior will acquire logarithmic correctiopsut a prop-

of this model.

erty of the solutions to the differential equations. In the infi-

Concerning the other thermodynamic quantities they renite volume limit the charges are screened which requires

lapse to their free-particle values up @(f2) corrections.
Note that the adiabats are, in general, definedXbyconst
which, for the caseN=0, imply P°V*=const just like a
relativistic ideal gas.

Whenp=0 an approximate solution fdrwhich satisfies
the boundary conditions is

X2
f=457, (2.49

in this case the entropy becomés=1.5%X® and the heat

capacity equal€C,=3S; the largest contribution to these

quantities (~94%) comes from the f? term.

F. Solutions for large X

In order to study the solutions to E@.26) for x finite but
X—oo it proves convenient to defing=x/X. We are then

interested in the smaly behavior of the solutions and a

power series is appropriate:

2a
f="f, y>+ ?2+u y4
6a; f3 5ufs 2ua, 14u?

35 70 122t 7 T 5

3a3-13) ,
10

a=1+ayy’+ o 3 1)Vt

where u= aX?/(60m). Numerical simulations indicate that

neitherf, nor a, increase withX which, using Eqs(2.31)
and (2.34), leads tof~3mx%/2X? and a~1—x2/X? for x
<X. Thus, asX—o, f—0 anda—1 for x finite.

For x<X the boundary conditions requir@=0 and f

>1; the first of the Eqs(2.26) can then be approximated by

Ap,=0 [see Eq(2.42)].
It is also worth noticing that Eq2.53 explicitly displays
the finite-volume corrections to the ideal gas results.

Ill. APPLICATIONS

We now consider some applications of the above formal-
ism. We first study a system with vanishing baryon number
(corresponding tq.=0), and then consider the case of zero
temperature.

A. Zero baryon number

This situation is believed to be of relevance in relativistic
heavy ion collisions, such as those to be produced at the
BNL Relativistic Heavy lon CollideRHIC) [21], where, in
the standard picture, the nuclei will go through one another
leaving behind a region of hot quark-gluon plasma with zero
baryon numbef22].

The requirementN=0 in Eq. (2.38 corresponds tqu
=0 which simplifies some of the expressions. In particular
the only scales in the system are the temperature and the
volume. The plot of the equation of state is given in Figs. 4
and 5.

We have determined by requiring the solution to mini-
mize the thermodynamic potenti® when the energy den-
sity equals 4 GeV/frhat T=150 MeV, R=10 fm (which is
consistent with the expectations for RH|Gn this casea
=1.568.

If we now allow the system to expand adiabatically, we
can use the above expressions to obtain the relationship be-
tweenT andR corresponding to this process. This isentropic
transformation describe§in an admittedly oversimplified
manney the expansion of a quark-gluon plasma. The entropy
is obtained from Eq(2.40 by settingu=0; the result is

15— 13x3+1JXo| f2 3.1
K 13 3 ), 9% (x). (3.0
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logN 4.5
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FIG. 4. Equation of state within the Thomas-Fermi approxima-
tion for the N=0 case. The graph displays the pressure as a func-
tion of the volume for several values of the temperat(Pein
MeV4 V in fm3, T in MeV; the logarithms are base 10

Since S is a function of X only (a consequence of having

only two scales in the probleni® and7), the equation for F_IG. 6. The equation of state within _the Thomas-_Fermi approxi-

the adiabats i = const or, equivalentlyVngconst corre- mathn for the zero temperature cade in MeV*, V in fm% the

sponding to an adiabatic index=4. Note that thef 2 term  l0garithms are base 10

in S modifies the usual free fermion gas relati®n7°>; the ) ] )

corrections are- 20% (which is smaller than the correspond- I calculating this expression one must remember that the

ing contributions in the case of smad, see Sec. Il E boundary conditions to the TFQCD equations depend on
We can also easily determine the energy density for thigk: SO that we should in fact writé=f(X;x); when the

isentropic process. From the expression for the total energartial derivative is taken in Eq3.2), f must also be differ-

in Eq. (2.37) it follows that & is a function ofX only (for ~ €ntiated under the integral sign.

the =0 case. It follows that at constant entrogyscales as

7. The energy density then will scale &R3«T*, just as for B. Zero temperature

an ideal gas of massless particles.

Using the expression fa we obtain the heat capacity at . We now turn to the case of zero temperature; j[he dimen-
constant volume: sional quantities in the system are ngwandR. In this case

all dimensionless quantities such &g: will be functions of

Ru only. The chemical potential is determined in terms of
R and A using Eq.(2.38 but this must be done numerically
since the nonideal gas term is significant and cannot be ig-
nored. The plot of the equation of state for this case is given
in Fig. 6.

The equivalent contour plot for various values Mfis
presented in Fig. 7. The equation of stéfer the range of
variables presented in Fig) i& well represented by the equa-
tion

(3.2

i

—
13 aaa——
NS

o]

11 NS
T~

Q700

pafvn
8| sasfshiyg

L

\ 428

15 2 25 3 3.5 4
log‘V

—~

FIG. 5. Three-dimensional rendition of the equation of state for FIG. 7. Pressure as a function of volume at zero temperature, for
N=0 (P in MeV* V in fm3 T in MeV; the logarithms are base various values of lagy (P in MeV*, V in fm?, the logarithms are
10). base 10
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field is summarized by the replacements
)
mopt s (Aot Bo/v3),

w5 (= Ao+ BylV3),

u—9By/1v3, 4.1
in Zy [EqQ. (2.11)]. The resulting fermionic partition function
is then

Bov|gt 212 g’ 2_ 12
g’ 2 122 4 2 2
+W (AO+BO)+ILL +2u(7kT)
7
+ — (wkT)?|. 4.2
FIG. 8. The chemical potential as a function of volume and 15
baryon number at zero temperatuR in MeV?, V in fm%, u in
MeV; the logarithms are base 110 Using this result we obtain the charge densities
2
1/4 94 |9 2 2 1
43_ : _ Us=—2 | (Ag+Bg) +v3gubBo+ |,
PV Z(N); logz(N)=12.82+ 5.46{In< 191X 104” . 672 | 4 4N
(3.3
__ 9 926 A2+ 1B V3 A2 B2 By
The PV behavior is a result of simple scaling arguments 9875 =5 | 7 o(Ag+Bo) + 5 gu(Ag—Bo) + 133
and is therefore present here as well as for sidalln con- 4.3
trast, the\ dependence of the equation of state is radically
different[cf. Eq. (2.48]. The second modification concerns the form of the spheri-

We have also determined the chemical potential as a funczally symmetric ansatz for the background gauge potentials.
tion of temperature and volume. The result is presented iffor SU3) a possible ansatz takes the fofnow including a

Fig. 8. As7—0 the entropy goes to zero linearly, contribution in the\ g direction
S Tk [[X\® 1 (% Ad=Ajf, (a=1,23,
—_ s — || = +—f dxfe(x) |,
akT ‘/EM 3 3 Jo 1+ 0
i ~ P2 ~ A 1 aa
A= €iajTj| ——| T (8ia—Tifa) T trireAr (a=123,
Xo=2V3Ru, (3.4
since the fermionic contribution dominates in this limit; we Ag=1By. (4.9

then also have€,, =S. . .
v Note however that the choice of the &)Y subgroup in

which the potential®\y, (a=1,2,3) reside is arbitrary, and
that it costs no energy to change from one such subgroup to
The inclusion of more flavors is quite straightforward, theanother; these degrees of freedom are included through a set
charges generated by each simply add. Possible computaf collective coordinatef23]. The full ansatz we use is then
tional difficulties arise when the fermion mass cannot be nefwe defineA*=\,AL/(2i), where the\, denote the usual
glected(as is the case for the strange qudide in this case  Gell-Mann matriceb
a closed form for the fermionic partition function is not o o
available. We will not pursue here this situation further as it A*—UTA*U, 4.5
involves no new concepts. _
A more interesting extension is obtained by consideringvhere the A% are given in Eqg.(4.4) and U is a time-
SU(3) as the gauge group. In this case there are two impordependent S(3) matrix.
tant modifications. First, within each subvolurég, though The Lagrangian for the background gauge fields then be-
we still have Ap=const and diag, this now implied, comes
=g(Agh3+ Byhg)/(2i). In general3,+# 0, so in this case we L L
will have additional contributions depending on this new po- - - Oic n - "
tential. The TFQCD equations are derived in the same way 2 trF””HE P, 2 WFALRIFULA L RILALR],
as for the SW2) case. Therefore the presence of the gauge (4.6

IV. EXTENSIONS OF THE METHOD
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where of the collective coordinates to the thermodynamics of the
. system. We will consider these issues in a forthcoming pub-
R=uUu" (4.7 lication.

and F is the field strength corresponding 2 When the
form of the gauge potentials in the 8) subgroup takes the V. CONCLUSIONS
form (4.4), R should have no components along the genera-

tors of the SW2) subgroup generated by, 5, that is, we We have presented an approximate treatment of QCD

based on the same ideas as the Thomas-Fermi atom. Within

take . :
this framework the thermodynamics of the system can be
1 derived and the results can be compared with the experimen-
R= 2 o7 NaR™, (4.8 tal results which will soon be available.
n=4

The method is based on a subdivision of the system into
subvolumes which are still large enough to be considered
statistical systems. These subvolumes interact through an av-
erage gauge field whose sources are the thermodynamically

1 1 . averaged non-Abelian charges for the subvolumes. These
Szf d4 252 tl’Ffw-i- > czf dt trutu; charges, though small, are not completely screened due to
9 the assumed smallness of the subvolumes.
1 (R The formalism was developed in this paper for the sim-
cl==— f dr(a—1)>2. (4.9 plified case of an S(2) gauge group, though we did provide
@ Jo a brief discussion of the modifications required for and
SU(3) theory. We also ignored fermion masses and all inter-
actions between the partons inside each of the subvolumes.
Nonetheless we found that the numerical values for the pres-
sure in the small\V case are in rough agreement with the

which considerably simplifies Eq4.6). The corresponding
action i$

Numerically the coefficient can be very largéfor the nu-
merical solutions presentaxt3.5X 10°)).
We will use the notation

h(r) bag-model calculations.
= (4.10 For large temperatures, or densitioé1) the solutions
g to the equations of motion are such that all thermodynamic

quantities approach those of a mixture of ideal gases, with
1/X measuring the deviation from this limiting behavior.
This feature is not related to asymptotic freedom but a result

whence the TFQCD equations becorf@e prime denotes a
derivative with respect ta=r/\),

232 o 24 h2 h of screening.
fl'=—f+_—f —+(4V3\p) —+1]|, In the limit R—« we havef =0 anda=1, and the equa-
X 6m X X tion of state reduces to that of an ideal gas. This model then
221 provides an approximation to the finite-volume corrections to
a'=———a, the ideal gas, this is explicitly demonstrated in Eg8.53
X which gives the surface corrections to the energy of the sys-
2 2 2 2 tem.
h a |[h(f*+h%) fe=h A realistic calculations must be performed for an(SU

+hi,

gauge theory with massive fermions; the partition function
(4.11 inside each subvolume should be evaluated to the highest
] ) order availablglor possiblg in perturbation theory. The in-
which can be solved using the same methods as before. Noigsion of radiative corrections will induce, among other
thath=0 is not allowed whemqu#0. _ things, a dependence of t{eow running coupling con-

For the interesting casg=0, h=0 is a solution to the  siants on the temperature and chemical potential. For the
above equations. Hence, for zero baryon number, the previsresent calculation no such effects were included. Finally,
ous solutions also satisfy the &) TFQCD equations. It one should also include finite volume effects as well as the
does not follow, however, that these solutions again mini¢orrections induced by the gluonic partition function. We
mize the thermodynamic potential. Note also that even in thgyj| investigate such realistic situations in a forthcoming
caseh=0 there is an additional contribution to the thermo- publication.
dynamic functions from the collective variables We found two solutions to the equations of motion satis-

We will not pursue this case further in this paper. A real-fying the boundary conditions and which minimize the ther-
istic investigation of the S(3) case requires we include modynamic potential). Both lead to the same thermody-
mass term for thestrangg quarks, and also the contributions namics and appear indistinguishable except near the origin

(at least within numerical errgrsA complete study of the
behavior of these solutions under nonspherical perturbations
®The simplicity of this result is a consequence of the factthas ~ @long the lines of Refl.20] is required to determine the one
made to reside in S@)/SU2)~S®, a five-dimensional sphere, Which is most stable. We have not performed such an inves-
where the number of invariants is very limited. The solutions to thetigation since the presence of two such solutions does not
classical equations of motion fdd are geodesics representing a alter the thermodynamics derived within the TFQCD ap-
motion along the great circles &. proach.
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The above treatment was not based on a semiclassicalhere ¢ denotes the electrostatic potential anthe charge

expansion of the partition function for the complete system

of the fermions(only one flavor is considergdNote that

It is indeed possible to consider such an approach and usg, is positive definite.

Eq.(2.12 as an approximation to the fermionic contribution.
Then the integration over the gauge fields can be approx
mated by a saddle point method. We have not done thi

Assuming spherical symmetry the gauge potentials are of
ithe form, ¢=¢(r),A=a(r)r. Choosing thea=0 gauge
gives the following expression for the partition functi@n

because the effective action which is to be minimized in the= [[d¢]exp&.), where
last step is, due to the Thomas-Fermi approximations used to

obtainZw, unbounded from below. It is found that the solu-

tions will soon violate the Thomas-Fermi conditions and the

method is not consistent; this is displayed explicitly in the

. (Ad)

B R 1
seﬁ=4wJ dtJ dr rz{—— (¢')+P,
o Jo 2

Appendix for the case of QED. In contrast, the approach _ _ _
described in the above is consistent with the original apwhereg denotes the inverse temperatuiReis the radius of

proximations.

APPENDIX

In this appendix we present a semiclassical calculation of 1h€ integrand i

the partition function of QED using the Thomas-Fermi ap-
proximation for the fermionic partition function. The general
expression is

z- [ (aATauIrapie® (AL
whereS=S;+S,,, the first term denoting the gauge contri-
bution, the second all terms involving the fermions. By defi-
nition we have

Z,= f [dyIdy]ed, (A2)

which is approximated biwzfd4xP¢, where

7
Py (n+ed)*+2(7kT)*(u+ed)?+ 1—5(7Tk’T)4 ,

T 1272

(A3)

the spherical vessel containing the system, a dash denotes a
derivative with respect to, the radial coordinate, antdde-
notes the Euclidean time variable.

rSg IS not positive definite. Consider for
example ¢= ¢y coskr+v) for constanty. If ¢q is suffi-
ciently small andk sufficiently large, the first term iS¢

will dominate; the largek, the more negativ&,; becomes.
The problem in this case is that these expressions for the
scalar potential violate the Thomas-Fermi condition which
requires\ ¢'/p<<1. This shows that a semiclassical treat-
ment of the partition function is inconsistent with the
Thomas-Fermi approximation. We have verified that the
same problems arise in the non-Abelian case.
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