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An effective field approximation, similar to the atomic Thomas-Fermi approach, is proposed for studying
non-Abelian gauge theories which includes finite-volume effects. As applications of the formalism the equation
of state for an SU~2! gauge theory with massless fermions is obtained. The extensions to realistic situations are
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I. INTRODUCTION

The equation of state of a quark-gluon plasma at high
temperatures and/or densities is one of the most important
unknowns in our current understanding of strong interaction
physics@1#. The applications of such an equation of state are
varied, ranging from cosmological compact objects to the
physics of heavy ion collisions. Unfortunately, because of
the high degree of nonlinearity present in QCD, the determi-
nation of this equation of state has proved to be a difficult
task. For example, even within perturbation theory, infrared
singularities require the calculation of an infinite number of
graphs for the partition function beyond fifth order@2#. Gen-
eral expressions for Green’s functions are available for the
case where the internal momentum is large (;T ) while the
external momenta are soft (;gT ), the so-called hard-
thermal loop region@3#; using standard manipulations@4#,
one can then determine the partition function corresponding
to all hard modes in the theory. The soft-mode contributions
to the partition function have been studied using various ap-
proximations@5# and numerical calculations have also been
developed~though not to the extent as in theT50 case! @6#.

In this paper we propose a new approximation within
which the physics of a quark-gluon plasma can be studied.
The formalism is based on the Thomas-Fermi model of the
atom @7# and will be called Thomas-Fermi QCD~TFQCD!.
We consider a plasma of quarks and gluons confined to a
volume V which we imagine subdivided into a number of
subvolumes, each of which is large enough for the partons
they contain to be considered a statistical ensemble. These
subvolumes interact via a background gauge field whose
sources are the thermally averaged non-Abelian charge den-
sities of the subvolumes. The subvolumes are assumed to be
small enough for the background field to vary very little
inside them, and because of this the background field sources
are essentially pointlike. The requirement of stability, to-
gether with the Yang-Mills equations for the background
field, furnishes a closed set of equations which can be

solved; from the solution the equation of state for the system
can be derived. This program requires the evaluation of the
thermally averaged non-Abelian charge densities which we
obtain using perturbation theory; in this paper we will use
the lowest-order approximation, but a systematic improve-
ment is straightforward.

The atomic Thomas-Fermi approximation is useful when
calculating bulk properties of an atom with a large number of
electrons, such as the total ionization energy@8#; it is also
useful as a starting point for a Hartree-Fock approximation.
We expect the TFQCD model of a quark-gluon plasma to be
reasonably accurate for bulk properties of the system, such as
the equation of state. There are some differences between the
atomic Thomas-Fermi and the TFQCD formalisms; in par-
ticular note that, in contrast to the atomic case, the quark-
gluon plasma is not stable: if left alone it will fly apart and
undergo a phase transition into a gas of hadrons. In order to
study a gas of quarks and gluons we are forced to imagine
the system to be enclosed in a container at sufficiently large
temperature and/or density.

The presence of an external confining agency is reminis-
cent of the bag model@9,10#. Through most of the paper we
will consider, in contrast to the usual bag models, a situation
where the partons are not confined, and for which the exter-
nal pressure is assumed to be generated by some physical
apparatus. Despite this difference the bag boundary condi-
tions are also relevant for the present model: the system is
assumed to be confined to a spherical volume out of which
neither fermion number nor color can escape, this requires
we impose both the original@9# and chiral@10# bag boundary
conditions. We will also briefly study a system correspond-
ing to a hadron at zero temperature, and will show that the
bag constant and strong coupling constant obtained in the
present approach are consistent with those obtained using the
bag model.

The volume of the systemV will be kept finite in all
computations; the results will then include finite-volume ef-
fects ~such as terms in the extensive thermodynamic quanti-
ties proportionalV2/3!. In the infinite volume limit these sur-
face effects can be neglected and the equation of state
reduces to that of an ideal gas of gluons and quarks.

In the following section we will describe the construction
of the TFQCD model and present some simple applications.
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We will concentrate on the case of an SU~2! gauge theory
with a single species of massless fermions, and then describe
the modification required for the important case of an SU~3!
gauge theory with three~massive! fermion flavors. The re-
mainder of the paper is organized as follows. In Sec. III we
derive the equation of state for this model in the cases of zero
baryon number and zero temperature. The discussion of the
extension to SU~3! and to more flavors is presented in Sec.
IV. Some parting comments are presented in Sec. V and a
mathematical detail is given in the Appendix.

II. DESCRIPTION OF THE MODEL

The model we propose is, as mentioned above, an exten-
sion of the Thomas-Fermi model to the case of QCD. We
consider a gas of partons inside a volumeV; we then imagine
partitioning V into small subvolumesdV which are big
enough so that the partons~quarks and gluons! contained in
them form a statistical ensemble determined by a tempera-
ture T and, for the fermions, a chemical potentialm. Each
subvolume is required to be in equilibrium with its environ-
ment which implies that the temperature and chemical poten-
tial are the same throughout the system~this is intuitively
obvious, we present a proof in Sec. II C!. The system is also
assumed to be static so that no currents are present.

We assume that the subvolumes have a nonzero average
color charge, which implies that the zero component of the
gauge field goes to a constantĀ0 at its boundary@11#. We
will refer to Ā0 as the background gauge field. The back-
ground field is assumed to vary slowly and smoothly be-
tween thedV, and is determined self-consistently by requir-
ing it to satisfy the Yang-Mills equations corresponding to
the average charges of the subvolumes~which themselves
depend on the background fields!. This approach presup-
poses that the magnitude of the charge in any givendV is
small, and that the background field is approximately con-
stant within each subvolume; both these assumptions will be
verifieda posteriori.

Finally, we also assume that our system is spherically
symmetric; this requirement considerably simplifies the cal-
culations yet preserves the essential non-Abelian character of
the problem. The equations obtained for the background
fields are then similar to the ones derived when considering
the coupling of classical, spherically symmetric Yang-Mills
fields to external sources@12,13#.

In the rest of this section we will treat the various ingre-
dients of the model separately. We first review the Yang-
Mills equations within the spherically symmetric ansatz. We
then obtain the expression for the partonic sources for the
background fields and the various thermodynamic observ-
ables. Next we derive the stability conditions for the system.
Finally we combine these results in order to obtain the equa-
tions for the background fields which determine quantita-
tively the Thomas-Fermi-QCD~TFQCD! model.

The conventions which we use are the following. The
model is based on an SU(N) Yang-Mills theory with one
species of massless fermion; the~anti-Hermitian! group gen-
erators are denoted byTa and the gauge coupling constant by
g. The covariant derivative isDm5]m1Am , where Am

5gAm
aTa. The full Lagrangian is

L5 i c̄D” c2
1

4
~Fmn

a !2, ~2.1!

wherec denotes the quark field,A the gauge field, and

Fmn
a 5]mAn

a2]nAm
a1geabcAm

bAn
c . ~2.2!

The sources are

j m
a5 i c̄Tagmc. ~2.3!

Latin indices from the beginning of the alphabet~a,b,c, etc.!
correspond to color indices; Latin indices form the middle of
the alphabet~i , j ,k, etc.! denote space indices.

A. Spherically symmetric gauge potentials and equations

As mentioned in the previous section we will assume that
the long-range forces in our system are described by a non-
Abelian background gauge field generated by the average
charge of each subvolume. We also assume the system to
have spherical symmetry. Thus we need the most general
expression for a spherically symmetric non-Abelian gauge
field, which is well known@14#, and is reviewed for com-
pleteness below.

The most general spherically symmetric ansatz for the
gauge potentials of an Abelian theory is simplyA0

5f(r ,t), A5a(r ,t) r̂ , whereA denotes the vector potential
and r5ur u. It is clear, however, that we can choose a gauge
wherea(r ,t)50, so we can takeA50.

For the SU~2! non-Abelian case the structure is much
richer;1 the most general spherically symmetry ansatz is@14#
~the overbar denotes the background fields!

Āa
05A0r̂a ,

Āa
i 5e ia j r̂ j S g211w2

r D1~d ia2 r̂ i r̂a!
w1

r
1 r̂ i r̂aA1 ,

~2.4!

which exhibits spin-isospin mixing.2 The fields w1,2 and
A0,1 depend onr and t.

Within this ansatz the SU~2! Yang-Mills Lagrangian be-
comes

1

4
Fmn
a 25

1

4
f mn
2 2

1

r 2
uDFu21

g2

2r 4 S uFu22
1

g2D
2

, ~2.5!

where the indicesm, n, etc., equal 1~corresponding tor ! or
0 ~corresponding tot!; the metric is diag(1,21). We also
defined f mn5]mAn2]nAm , F5w11 iw2 , and Dm5]m
1 igAm . The above expression is invariant under the gauge
transformation

Am→Am2]mL, F→eigLF, ~2.6!

which is a remnant of the original non-Abelian invariance.

1The situation is similar for larger groups, see Sec. IV.
2In this respect the present approach differs from other investiga-

tions into spherically symmetric hadron physics; see Ref.@15#.
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We now consider the coupling of the above fields to a
spherically symmetric charge densityra, where spherical
symmetry requiresra5qr̂a. The coupling is then described
by adding a term

Linteraction5gĀ0
ara5gqA0 ~2.7!

to the Lagrangian.

B. The partition function for gluons and fermions

We now imagine that the volume of the system, denoted
by V, is subdivided into a large number of subvolumesdV.
The gauge fields inside each subvolume are separated into a
background pieceĀm

a and a fluctuationam
a : Am

a5Ām
a1am

a .
In this subsection we evaluate the partition function for

the partons insidedV. This object, which we callZdV , will
depend onĀm

a , and we can use this dependence to obtain the
thermal average of the non-Abelian currents:

j̄ m
a5

1

g
S ]ZdV

]ĀmaD . ~2.8!

Since the system is supposed to be in a static configura-
tion we require j̄ i

a50 which implies we can takeĀi
a50

inside dV. Since the background fields are assumed slowly
varying, we also takeĀ0

a constant insidedV; we then choose
a gauge such thatĀ0

a is diagonal insidedV. HenceZdV will
depend on the temperatureT, the fermionic chemical poten-
tial m, and then components ofĀ0 associated with the diag-
onal generators~n is the rank of the gauge group!.

As a first approximation we will neglect the interaction
between the fermions and theam

a , as well as the nonlinear
couplings among theam

a ; these interactions can be included
perturbatively. Concerning the scale ofdV we will assume
that it is set by the fermion thermal wavelengthl that is,

dV;l3. ~2.9!

We will for the moment restrict ourselves to the case
where the gauge group is SU~2! @the extension to SU~3! will
be described in Sec. IV below#. In this case the group gen-
erators are Ta5sa/(2i ) and, within dV, Ā05gĀ0

aTa

5gA0s3 /(2i ), so that

A0
b5a0

b1A0db3 , Ai
b5a1

b ~ inside dV!. ~2.10!

We first evaluate the fermionic contribution to the parti-
tion function, and then calculate the contributions from the
am
a .

1. Fermionic contribution

When considering the fermionic partition function we will
assume only one massless fermions species~the modifica-
tions required by several species and/or nonzero masses are
straightforward!. Thus we look for an approximate expres-
sion for Zc5det(iD”1mg0) where the gluon fields take the
form ~2.10!. Inside a subvolumedV it is assumed that the
fermions behave as a statistical ensemble, that the interaction
with the am

a is small, and that the background fieldsĀm
a are

essentially constant. Adopting these approximations we re-
duce the calculation to evaluating det@i]”1(2iĀ01m)g0# with
Ā05gA0s3 /(2i ), A05const.

The partition function for an ideal gas of massless fermi-
ons at temperatureT in a volumedV and with a chemical
potential equal tom is given by@4#

lnZ05
bdV
12p2 Fm412~pkT !2m21

7

15
~pkT !4G ,

~2.11!

where the zero subscript indicates that no gauge fields are
included. The constant background gauge fields are then in-
cluded by replacingm→m6gA0/2 in Z0 with the sign de-
pending on the isospin of fermion, and adding the contribu-
tions from each isospin component. Thus, within the above
approximations, we obtain

lnZc5
bdV
6p2 Fg4A0

4

16
1
g2A0

2

8l2 1m4

12~pkTm!21
7

15
~pkT !4G , ~2.12!

where we defined the thermal wavelength

l5
1

2A3m21~pkT !2
. ~2.13!

This approximation toZc generates the following expres-
sions for the fermionic contribution to the~local! thermody-
namic quantities

Pc5
lnZc

bdV

5
1

6p2 Fg4A0
4

16
1
g2A0

2

8l2 1m4

12~pkTm!21
7

15
~pkT !4G ,

sc5
2k

3p
~pkT!Fg2A0

2

4
1m21

7

15
~pkT !2G ,

ec5
1

2p2 Fg2A0
2

24l22
g4A0

4

48
1m412~pkTm!21

7

15
~pkT !4G ,

n5
1

bdV S ] lnZc

]m D5
2m

3p2 F34 g2A0
21m21~pkT !2G ,

qc5
1

gbdV S ] lnZc

]A0
D5

gA0

24p2 Fg2A0
21

1

l2G , ~2.14!

whereP denotes the pressure ands, e, n, q, etc., denote the
entropy, energy, particle, and chargeper unit volume. Note
that ec53Pc22A0q includes the energy of the interaction
with the gauge fields.
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2. Gluonic contribution

The gluonic contribution to the partition function is ob-
tained in a manner similar to the one followed for the fermi-
ons. As before we will ignore the self-interactions of the
fields am

a , in this case the partition function, including the
Faddeev-Popov determinant, reduces toZgluons5det2D̄adj

2 ,
where D̄adj denote the covariant derivative for the back-
ground fields in the adjoint representation@16#.

In calculating this determinant we take into account that
the partons are supposed to be in a box of side;l. More-
over, the background field is supposed to include the effects
from the zero~Fourier! modes in the field. It follows that we
need to include only modes with energy above

p05
2p

l
. ~2.15!

Using the gaugeĀm
a5dm,0d

a,3A0 gives

lnZgluons52VE
p.p0

d3p

~2p!3
@ ln~12e2b~p2gA0!!

1 ln~12e2b~p1gA0!!1 ln~12e2bp!#,

~2.16!

which corresponds to a gas of massless bosons with chemical
potential6gA0 and 0.

We will argue below~Sec. II D 1! that the background
fieldA0 is monotonic inr and thatlgA0<3p/2. Using also
the fact thatbp0>4p2 we find that to a good approximation

Pgluons5
~pkT!4

15p2 1
4~kT!4

p2 ~b2p0
212bp012!

3e2bp0@sinh~bgA0/2!#2. ~2.17!

This shows that the deviations from the free-gluon values are
exponentially suppressed~recall thatbp0>4p2! and can be
neglected. In this case

Pgluons.
~pkT!4

15p2 , egluons.
~pkT!4

5p2 ,

sgluons.
4k~pkT!3

15p
, qgluons.0, ~2.18!

whereP denotes the pressure ande, s, andq the energy,
entropy, and charge per unit volume, respectively. The errors
incurred are below a few percent for the thermodynamic
quantities and below 0.0075% for the charge.

C. Stability conditions

The stability criterion can be obtained from the Wong
equations@17#, but a more elegant argument can be gleaned
from a paper by Brown and Weisberger@18#. Consider the
background field contribution to the energy momentum ten-
sor uback, which satisfies

]muback
mn 5graF̄a

n0, ~2.19!

where F̄a
n0 denotes the field strength for the background

fields, andra the thermally averaged non-Abelian charge
density.

Since the total energy momentum tensor is conserved, it
follows that the averaged partonic contributionupart satisfies

]mupart
mn 52graF̄a

n0. ~2.20!

For static situations the above equation implies

] iupart
i j 52graF̄a

j0. ~2.21!

If in addition we impose spherical symmetry~see Sec. II A!
ra} r̂

a, Ā0
a} r̂ a which impliesraF̄a

j052ra] j Ā0
a . For a ho-

mogeneous gas of partons the space components of the en-
ergy momentum tensor areupart

i j 5Ppartd i j . Collecting these

results we get] jPpart5gra] j Ā0
a or, equivalently,

dPpart5gradĀ0
a, ~2.22!

which is the desired constraint.
For the Abelian case Eq.~2.22! reduces to the usual

Thomas-Fermi equilibrium condition: the pressure ondV is
balanced by the electrostatic force.

This stability condition requires the chemical potential
and temperature to ber independent. Indeed, lnZdV , the par-
ton partition function for a small volumedV, is a function of
T, A0 , andm; using Eq.~2.14! we obtain

dPpart5
1

bV S ] lnZdV
]A0

DdA01
1

bV S ] lnZdV
]m Ddm

1
1

bV S ] lnZdV
]T DdT

5gqdA01npart dm1~epart2mnpart!
dT
T ,

~2.23!

wherenpart andepart are, respectively, the particle and energy
densities of the partons andra5qr̂a. Substituting this ex-
pression forra , using Eq.~2.4!, and comparing to Eq.~2.22!
we obtaindm5dT50.

D. The TFQCD equations

The equations of motion are derived from the spherically
symmetric Lagrangian for the background fields~2.5! when
the potentials interact with a sourceq according to Eq.~2.7!.
The source, given in Eq.~2.14!, is itself a function of the
potentials. The resulting equations are

D2F1
g2

r 2 S uFu22
1

g2DF50,

]m~r 2f mn!12g Im~F*DnF!52gr2qdn,0 . ~2.24!

The gauge invariance of these equations allows us to chose
theA150 gauge. The second of the above equations gives,
whenn51 and for static configurations, ImF*F850, so that
we can chooseF to be purely imaginary.

We will use the notation@12,13#
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A05
f ~r !

rg
, F5

1

ig
a~r !. ~2.25!

Then, using Eq.~2.14!, the above equations become

f 922S axD
2

f5
a

6p
f S f 2x2 11D ,

a91
11 f 22a2

x2
a50, ~2.26!

wherea5g2/(4p) andx5r /l with l defined in Eq.~2.13!.
These equations determine the background self-

consistently. Their solution requires the specifications of the
boundary conditions to which we now turn.

1. Boundary conditions

The conditions near the origin are determined by consid-
ering the behavior of Wilson loops asr→0. We find that
singularities arise unlessf anda221 vanish atr50. Using
thea↔2a symmetry~which is a remnant of the gauge sym-
metry! we can then requirea→1 asr→0. The precise man-
ner in which f and a21 vanish asr approaches zero is
determined by requiring that the energy should have no di-
vergences at this point. We then obtain

f ,a215O~r 2! for r→0. ~2.27!

It is easy to see that the equations of motion~2.26! require
f to be concave or convex, since we can always exchange
f→2 f we can assume thatf is concave. In particular this
implies thatf will not vanish forr.0. From Eq.~2.26! it is
also easy to show that (f /r )8.0. In contrasta can~and will!
have extrema as well as zeroes.

As mentioned in the Introduction we assume that the sys-
tem is enclosed in a container which must be spherical due to
the requirement of spherical symmetry; we denote byR its
radius. If the system is to be confined to the regionr,R,
there should be no leakage of fermion number or color into
the regionr.R.

The first of these two conditions~fermion number con-
finement! requires the fermions to have zero radial compo-
nent of the momentum atr5R. This implies that in the
vicinity of r5R the fermion gas becomes two dimensional.
The corresponding~surface! charge densitysa takes the
form

sa5q r̂ a ~2.28!

as mandated by spherical symmetry. Note, however, thatq
does not have a simple analytical form:

q5
1

8pb2 @Q~bm1bgA0/2!2Q~bm2bgA0/2!#,

Q~u!52E
0

`

ds lnF es1eu

es1e2uG.S u21 p2

3 D tanhS 12 ln2p2 uD ,
~2.29!

where the analytic approximation toQ is accurate to about
0.62%; the derivative is accurate to 0.92%.

In the examples which we consider in detail we will be
interested in the limit whereA0 is large and whereb→0 or
m→0. In these cases we have

q.
g2

16p
A0
2. ~2.30!

We will require the volume charge density in the bulk to
smoothly join the surface charge density at the surface layer,
that is,ral5sa at r5R. Thus we impose,ql5q at r5R
which, keeping in mind that the solutions produce large val-
ues ofA0 at R, is equivalent toA0

2/(4p)5lA0
3/(3p2), or

equivalently

f ~R!5
3p

2

R

l
. ~2.31!

It is of course possible to modify this condition by requiring
only that, at r5R, ql5sq for some numbers5O(1),
which is equivalent to replacingl→l/s; our results are in-
sensitive to such a replacement.

To determine the consequences of the second of the above
two conditions~color confinement! we need the components
of the chromoelectric and chromomagnetic fields parallel and
perpendicular tor ,

r̂•Ea52
1

g2l S fxD 8
r̂ a, r̂•Ba52

1

g2l

a221

x2
r̂ a,

~ r̂3Ba! i52
1

g2l

a8

x
e i ja r̂

j , ~ r̂3Ea! i52
1

g2l

f a

x2
e i ja r̂

j .

~2.32!

The first of these relations, together with the previously de-
rived result (f /r )8Þ0, implies that color will leak from the
system unless an appropriate modification is included. The
situation is identical to the one present in the bag model@9#,
and the solution which we adopt is the same@10#. We will
couple our system at ther5R boundary to aCP-odd field
h8 via a term proportional to the Chern-Simons term; this
coupling insures that color is confined to the regionr<R
@10#. Denoting byFh8 the decay constant on theh8, the
coupling to this field atr5R are determined by the relations

r̂•Ea5
a

pFh8
r̂•Bah8, r̂3Ba52

a

pFh8
r̂3Eah8

~2.33!

from which we derive (r̂•Ea)( r̂3Ea)1( r̂•Ba)( r̂3Ba)50;
in terms of thea and f fields this becomes

f a~x f82 f !1xa8~a221!50, at r5R, ~2.34!

which is the desired condition.3

3Concerning Eq.~2.34! we know, from the numerical integration
of Eq. ~2.26!, that f (x f82 f ) does not vanish, we also find that it is
numerically large for the situations we consider in detail. It follows
that Eq.~2.34! can be approximately replaced by the simpler con-
dition a(R)50.
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2. Character of the solutions

The TFQCD potentialsf anda are then obtained by solv-
ing the equations~2.26! subject to the boundary conditions
~2.27!, ~2.31!, and~2.34!. These solutions, as well as all ther-
modynamic variables, will depend on the parametera
5g2/(4p). In order to specifya we first fix the thermody-
namic variables of the system, such as the energy and vol-
ume; the TFQCD expresses these thermodynamic variables
as functions ofa, which is chosen so that the chosen values
are met.

When considering Eq.~2.26! we find that, for given val-
ues ofX and a, there are several solutions satisfying the
boundary conditions.4 Of these solutions there is a set~we, in
fact, found two such solutions! which minimizesV, the ther-
modynamic potential at constant pressure and chemical po-
tential @19#:

V52E d3xP, ~2.35!

whereP denotes the total pressure. Numerical studies show
that there is no crossover asa changes: each member of the
set of solution which minimizesV is a smooth function ofa.
Selecting the solution which minimizesV we then deter-
mineda by matching the specified energy and baryon num-
ber.

The explicit expressions forV, the total energyE, and the
total number of particles~baryon number! N are

V5
1

al E
0

X

dxH 12 S f 82
f

xD
2

1
1

2 S 12a2

x D 2

2~a8!22S f ax D 22 a

24p
f 2S 21

f 2

x2D J
2

2

9p Fm412m2~pkT !21
13

15
~pkT !4GR3,

~2.36!

E5
1

al E
0

X

dxH 12 S f 82
f

xD
2

1
1

2 S 12a2

x D 2

1~a8!21S f ax D 21 a

24p
f 2S 22

f 2

x2D J
1

2

3p Fm412m2~pkT !21
13

15
~pkT !4GR3,

~2.37!

N5
2m

p H 49 @m21~pkT !2#R31lE
0

X

dx f2J , ~2.38!

where

X5
R

l
. ~2.39!

For future reference we also provide the expression for the
~total! entropy of the system

1

k
S5

2

3
lpkT H 43 X3l2Fm21

13

15
~pkT !2G1E

0

X

f 2dxJ .
~2.40!

4This is reminiscent of the situations found in the case of classical
solutions to the Yang-Mills equations with external sources@13#.

FIG. 1. Examples of solutions
f (x) ~dashed lines! and a(x)
~solid lines! corresponding toR
510 fm, E/V54 GeV/fm3, andT
5150 MeV (X547). Cases ~a!
and ~b! corresponds to the solu-
tions which minimize the thermo-
dynamic potential. Cases~c! and
~d! have largerV and represent
unstable solutions; the values ofa
corresponding to each solution are
indicated.
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Solutions of the equations forf and a can be obtained
using standard numerical algorithms; due to the singular na-
ture of the equations at the origin the relaxation method is
best suited.

We present several examples of the solutions in Fig. 1
where we took R510 fm, E/V54 GeV/fm3, and T
5150 MeV ~which impliesX547!. All the solutions in Fig.
1 satisfy Eq.~2.26! and the boundary conditions; the solu-
tions which minimize the thermodynamic potential corre-
sponds to cases~a! and~b!.5 These two solutions correspond
to indistinguishable thermodynamics~within numerical er-
rors!; for the calculations below this duality presents no com-
plications. We have not attempted to study the stability of
these solutions against nonradially symmetric perturbations
@20#.

Given these results we must now determine whether they
are consistent with the original assumptions, that is, whether
f varies slowly enough to be considered constant in a region
of width ;l. We also must determine to what extent are
color charges screened. The plots presented correspond to
both cases~a! and ~b! in Fig. 1.

The rate of change off is sufficiently slow provided the
potentialA0 changes little within a region of sizel, this is
equivalent to

~ f /x!8

~ f /x!
,1; ~2.41!

a plot of the left-hand side of this equation if presented in
Fig. 2~a!. We see that the condition~2.41! is satisfied except
in the vicinity of the origin and ther5R boundary. The
value of Eq.~2.41! nearx50 presented in Fig. 2~a! is an
underestimate generated by numerical errors~the equations
are singular atx50!; for x→0, (f /x)8/( f /x).1/x.

The magnitude of the charge in a subvolumedV;l3 is
obtained from Eq.~2.14!, and equals

dq5l3q5
1

24p2

f

x S f 2x2 11D . ~2.42!

A plot of this quantity is presented in Fig. 2~b!. As can be
seen the magnitude of the color charge inside each subvol-
ume is quite small except near ther5R boundary: the sys-
tem does screen its charges quite effectively.

E. Solutions for smallX

When X is small then f will be small also since it is
monotonic@this follows from the boundary condition~2.31!#.
In this case the equation fora decouples and so does the
boundary condition~2.34!:

x2a91~12a2!a50, a~0!51, a8~X!@a~X!221#50.
~2.43!

If we define

a25
1

2
a9~0!, ~2.44!

it is easy to see that the solution to the above equation is a
function of a2x

2. It is then enough to assumea2561; the
general solutions are obtained from these by rescalingx. The
solutions to the above differential equation~for a2561! are
presented in Fig. 3. The solutions are monotonic, so the
boundary condition atx5X is satisfied whena(X)521
which occurs only fora2,0, numerically:

a2X
2.24.1, ~2.45!

which completely specifies the solution.
Again neglectingf and evaluating numerically the inte-

grals gives

E.
5.42

aR
14.28~kT !4V,

P.
2.91

a
V24/311.43~kT !4. ~2.46!

For example, atT50, E51 GeV, R51 fm, a.1, andP
.85 MeV/fm3. Fixing V and T, the coupling strengtha
drops as 1/E.

5The singular nature of the equations allows for the multiplicity of
solutions; we have found eight solutions in total~for the given
values ofE and V but having different values ofa!, though we
cannot assert that this an exhaustive list. Using the relaxation
method, the solution that minimizesV was less sensitive to the
initial trial functions, solutions with largerV become increasingly
more difficult to find as the range of initial configurations which
relax to such solutions of Eq.~2.26! becomes more and more re-
stricted. We have not attempted to perform a complete study of the
properties and number of solutions restricting ourselves to finding
the one solution relevant for physical applications together with
some examples of unstable solutions.

FIG. 2. Validity of the Thomas-Fermi approximation.~a!: Only
in the regions near the boundary atx547 (x.45.5) and the origin
(x,1) does the approximation break down.~b!: The charge is ef-
fectively screened throughout the volume. The logarithm is to base
10.

FIG. 3. Solutions for smallX, solid curve:a9(0)522, dashed
curve:a9(0)52.
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At zero temperature we haveN.2m3V/(3p2) and

E.
5.42

aR
1

m4V
19.74

, P5
2.91

a
V24/3

m4

59.04
, ~2.47!

so that the equation of state becomes

PV 4/3.
2.91

a
1
N 4/3

1.62
. ~2.48!

In this caseN52, E51 GeV, andR51 fm imply a.2.4
andP.77 MeV/fm3.

The numbers obtained for the case of smallX are then
quite consistent with those obtained using the bag model@9#
~except perhaps for a large value fora!. Note, however, that
in the present calculation the contributions from the nonideal
gas terms are very important and the numerical agreement is
not trivial. It is also true that the present model is far from
realistic@being based on an SU~2! gauge theory with a single
species of massless quarks#. These results are therefore quite
encouraging but not conclusive as to the physical relevance
of this model.

Concerning the other thermodynamic quantities they re-
lapse to their free-particle values up toO( f 2) corrections.
Note that the adiabats are, in general, defined byX5const
which, for the caseN50, imply P3V45const just like a
relativistic ideal gas.

Whenm50 an approximate solution forf which satisfies
the boundary conditions is

f.4.57
x2

X
, ~2.49!

in this case the entropy becomesS.1.5kX3 and the heat
capacity equalsCV.3S; the largest contribution to these
quantities (;94%) comes from the* f 2 term.

F. Solutions for largeX

In order to study the solutions to Eq.~2.26! for x finite but
X→` it proves convenient to definey5x/X. We are then
interested in the smally behavior of the solutions and a
power series is appropriate:

f5 f 2Fy21S 2a25 1uD y4
1S 6a2235

2
f 2
2

70
1
5u f2

2

14X2 1
2ua2
7

1
14u2

5 D y61•••G ,
a511a2y

21S 3a222 f 2
2

10 D y41S a23102 3a2f 2
2

35
2
u f2

2

14 D y61•••,

~2.50!

whereu5aX2/(60p). Numerical simulations indicate that
neither f 2 nor a2 increase withX which, using Eqs.~2.31!
and ~2.34!, leads to f;3px2/2X2 and a;12x2/X2 for x
!X. Thus, asX→`, f→0 anda→1 for x finite.

For x&X the boundary conditions requirea.0 and f
@1; the first of the Eqs.~2.26! can then be approximated by

f 9.
a

6p

f 3

X2 ; x&X, ~2.51!

whose solution@using Eq.~2.31!# reads

f.
6pX

41~X2x!A3pa
. ~2.52!

Using these results we can evaluate the various thermody-
namic quantities for largeX. For example,

E2Eideal gas.A 3p

16a

R2

l3 ; X@1 ~2.53!

from which we find uE2Eideal gasu/Eideal gas;1/X. All other
thermodynamic quantities exhibit this behavior: for largeT
and fixed R ~corresponding to largeX! the system ap-
proaches a mixture of ideal gases.

We emphasize that this is not a result of asymptotic free-
dom ~when the running of the coupling is included the large
X behavior will acquire logarithmic corrections!, but a prop-
erty of the solutions to the differential equations. In the infi-
nite volume limit the charges are screened which requires
A050 @see Eq.~2.42!#.

It is also worth noticing that Eq.~2.53! explicitly displays
the finite-volume corrections to the ideal gas results.

III. APPLICATIONS

We now consider some applications of the above formal-
ism. We first study a system with vanishing baryon number
~corresponding tom50!, and then consider the case of zero
temperature.

A. Zero baryon number

This situation is believed to be of relevance in relativistic
heavy ion collisions, such as those to be produced at the
BNL Relativistic Heavy Ion Collider~RHIC! @21#, where, in
the standard picture, the nuclei will go through one another
leaving behind a region of hot quark-gluon plasma with zero
baryon number@22#.

The requirementN50 in Eq. ~2.38! corresponds tom
50 which simplifies some of the expressions. In particular
the only scales in the system are the temperature and the
volume. The plot of the equation of state is given in Figs. 4
and 5.

We have determineda by requiring the solution to mini-
mize the thermodynamic potentialV when the energy den-
sity equals 4 GeV/fm3 at T5150 MeV, R510 fm ~which is
consistent with the expectations for RHIC!; in this casea
.1.568.

If we now allow the system to expand adiabatically, we
can use the above expressions to obtain the relationship be-
tweenT andR corresponding to this process. This isentropic
transformation describes~in an admittedly oversimplified
manner! the expansion of a quark-gluon plasma. The entropy
is obtained from Eq.~2.40! by settingm50; the result is

1

k
S5

13

135
X31

1

3 E
0

X

dx f2~x!. ~3.1!
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SinceS is a function ofX only ~a consequence of having
only two scales in the problem,R andT !, the equation for
the adiabats isX5const or, equivalently,VT 35const corre-
sponding to an adiabatic indexg54. Note that the* f 2 term
in S modifies the usual free fermion gas relationS}T 3; the
corrections are;20% ~which is smaller than the correspond-
ing contributions in the case of smallX, see Sec. II E!.

We can also easily determine the energy density for this
isentropic process. From the expression for the total energy
in Eq. ~2.37! it follows that El is a function ofX only ~for
them50 case!. It follows that at constant entropyE scales as
T. The energy density then will scale asT/R3}T 4, just as for
an ideal gas of massless particles.

Using the expression forS we obtain the heat capacity at
constant volume:

1

k
CV5XS ]S

]XD . ~3.2!

In calculating this expression one must remember that the
boundary conditions to the TFQCD equations depend on
X, so that we should in fact writef5 f (X;x); when the
partial derivative is taken in Eq.~3.2!, f must also be differ-
entiated under the integral sign.

B. Zero temperature

We now turn to the case of zero temperature; the dimen-
sional quantities in the system are nowm andR. In this case
all dimensionless quantities such asE/m will be functions of
Rm only. The chemical potential is determined in terms of
R andN using Eq.~2.38! but this must be done numerically
since the nonideal gas term is significant and cannot be ig-
nored. The plot of the equation of state for this case is given
in Fig. 6.

The equivalent contour plot for various values ofN is
presented in Fig. 7. The equation of state~for the range of
variables presented in Fig. 7! is well represented by the equa-
tion

FIG. 4. Equation of state within the Thomas-Fermi approxima-
tion for theN50 case. The graph displays the pressure as a func-
tion of the volume for several values of the temperature~P in
MeV4, V in fm3, T in MeV; the logarithms are base 10!.

FIG. 5. Three-dimensional rendition of the equation of state for
N50 ~P in MeV4, V in fm3, T in MeV; the logarithms are base
10!.

FIG. 6. The equation of state within the Thomas-Fermi approxi-
mation for the zero temperature case~P in MeV4, V in fm3; the
logarithms are base 10!.

FIG. 7. Pressure as a function of volume at zero temperature, for
various values of logN ~P in Mev4, V in fm3; the logarithms are
base 10!.
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PV 4/35z~N!; logz~N!.12.8215.46F lnS N
1.913104D G

1/4

.

~3.3!

ThePV 4/3 behavior is a result of simple scaling arguments
and is therefore present here as well as for smallX. In con-
trast, theN dependence of the equation of state is radically
different @cf. Eq. ~2.48!#.

We have also determined the chemical potential as a func-
tion of temperature and volume. The result is presented in
Fig. 8. AsT→0 the entropy goes to zero linearly,

S
pkT ——→

T→0 k

)m
F SX0

3 D 31 1

3 E
0

X0
dx f2~x!G ,

X052)Rm, ~3.4!

since the fermionic contribution dominates in this limit; we
then also haveCV5S.

IV. EXTENSIONS OF THE METHOD

The inclusion of more flavors is quite straightforward, the
charges generated by each simply add. Possible computa-
tional difficulties arise when the fermion mass cannot be ne-
glected~as is the case for the strange quark! for in this case
a closed form for the fermionic partition function is not
available. We will not pursue here this situation further as it
involves no new concepts.

A more interesting extension is obtained by considering
SU~3! as the gauge group. In this case there are two impor-
tant modifications. First, within each subvolumedV, though
we still have Ā05const and diag, this now impliesĀ0
5g(A0l31B0l8)/(2i ). In generalB0Þ0, so in this case we
will have additional contributions depending on this new po-
tential. The TFQCD equations are derived in the same way
as for the SU~2! case. Therefore the presence of the gauge

field is summarized by the replacements

m→m1
g

2
~A01B0 /) !,

m1
g

2
~2A01B0 /) !,

m2gB0 /), ~4.1!

in Z0 @Eq. ~2.11!#. The resulting fermionic partition function
is then

lnZc5
bdV
4p2 Fg424 ~A0

21B02!21
mg3

3)
B0~3A0

22B02!

1
g2

12l2 ~A0
21B02!1m412m2~pkT !2

1
7

15
~pkT !4G . ~4.2!

Using this result we obtain the charge densities

q35
gA0

6p2 Fg24 ~A0
21B02!1)gmB01

1

4l2G ,
q85

g

2)p2 Fg24 B0~A0
21B02!1

)

2
gm~A0

22B02!1
B0
4l2G .

~4.3!

The second modification concerns the form of the spheri-
cally symmetric ansatz for the background gauge potentials.
For SU~3! a possible ansatz takes the form~now including a
contribution in thel8 direction!

Āa
05A0r̂a ~a51,2,3!,

Āa
i 5e ia j r̂ j S 11w2

r D1~d ia2 r̂ i r̂a!
w1

r
1 r̂ i r̂aA1 ~a51,2,3!,

Ā8
05B0 . ~4.4!

Note however that the choice of the SU~2! subgroup in
which the potentialsĀa

m , (a51,2,3) reside is arbitrary, and
that it costs no energy to change from one such subgroup to
another; these degrees of freedom are included through a set
of collective coordinates@23#. The full ansatz we use is then
@we defineĀm5lnĀn

m/(2i ), where theln denote the usual
Gell-Mann matrices#

Ām→U†ĀmU, ~4.5!

where the Ān
m are given in Eq.~4.4! and U is a time-

dependent SU~3! matrix.
The Lagrangian for the background gauge fields then be-

comes

1

2
trF̄mn

2 →
1

2
trF̄mn

2 12 trF0i@Āi ,R#1tr$@Āi ,R#@Āi ,R#%,

~4.6!

FIG. 8. The chemical potential as a function of volume and
baryon number at zero temperature~P in MeV4, V in fm3, m in
MeV; the logarithms are base 10!.
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where

R5U̇U† ~4.7!

and F̄ is the field strength corresponding toĀ. When the
form of the gauge potentials in the SU~2! subgroup takes the
form ~4.4!, R should have no components along the genera-
tors of the SU~2! subgroup generated byl1,2,3, that is, we
take

R5 (
n54

`
1

2i
lnR

n, ~4.8!

which considerably simplifies Eq.~4.6!. The corresponding
action is6

S5E d4x
1

2g2
trFmn

2 1
1

2
c2E dt trU̇†U̇;

c25
1

a E
0

R

dr~a21!2. ~4.9!

Numerically the coefficientc can be very large~for the nu-
merical solutions presentedc;3.53103l!.

We will use the notation

B05
h~r !

rg
, ~4.10!

whence the TFQCD equations become~a prime denotes a
derivative with respect tox5r /l!,

f 95
2a2

x2
f1

a

6p
f F f 21h2

x2
1~4)lm!

h

x
11G ,

a95
a22 f 221

x2
a,

h95
a

6p Fh~ f 21h2!

x2
1~2)lm!

f 22h2

x
1hG ,

~4.11!

which can be solved using the same methods as before. Note
that h50 is not allowed whenmÞ0.

For the interesting casem50, h50 is a solution to the
above equations. Hence, for zero baryon number, the previ-
ous solutions also satisfy the SU~3! TFQCD equations. It
does not follow, however, that these solutions again mini-
mize the thermodynamic potential. Note also that even in the
caseh50 there is an additional contribution to the thermo-
dynamic functions from the collective variablesU.

We will not pursue this case further in this paper. A real-
istic investigation of the SU~3! case requires we include
mass term for the~strange! quarks, and also the contributions

of the collective coordinates to the thermodynamics of the
system. We will consider these issues in a forthcoming pub-
lication.

V. CONCLUSIONS

We have presented an approximate treatment of QCD
based on the same ideas as the Thomas-Fermi atom. Within
this framework the thermodynamics of the system can be
derived and the results can be compared with the experimen-
tal results which will soon be available.

The method is based on a subdivision of the system into
subvolumes which are still large enough to be considered
statistical systems. These subvolumes interact through an av-
erage gauge field whose sources are the thermodynamically
averaged non-Abelian charges for the subvolumes. These
charges, though small, are not completely screened due to
the assumed smallness of the subvolumes.

The formalism was developed in this paper for the sim-
plified case of an SU~2! gauge group, though we did provide
a brief discussion of the modifications required for and
SU~3! theory. We also ignored fermion masses and all inter-
actions between the partons inside each of the subvolumes.
Nonetheless we found that the numerical values for the pres-
sure in the smallN case are in rough agreement with the
bag-model calculations.

For large temperatures, or densities (X@1) the solutions
to the equations of motion are such that all thermodynamic
quantities approach those of a mixture of ideal gases, with
1/X measuring the deviation from this limiting behavior.
This feature is not related to asymptotic freedom but a result
of screening.

In the limit R→` we havef50 anda51, and the equa-
tion of state reduces to that of an ideal gas. This model then
provides an approximation to the finite-volume corrections to
the ideal gas, this is explicitly demonstrated in Eq.~2.53!
which gives the surface corrections to the energy of the sys-
tem.

A realistic calculations must be performed for an SU~3!
gauge theory with massive fermions; the partition function
inside each subvolume should be evaluated to the highest
order available~or possible! in perturbation theory. The in-
clusion of radiative corrections will induce, among other
things, a dependence of the~now running! coupling con-
stants on the temperature and chemical potential. For the
present calculation no such effects were included. Finally,
one should also include finite volume effects as well as the
corrections induced by the gluonic partition function. We
will investigate such realistic situations in a forthcoming
publication.

We found two solutions to the equations of motion satis-
fying the boundary conditions and which minimize the ther-
modynamic potentialV. Both lead to the same thermody-
namics and appear indistinguishable except near the origin
~at least within numerical errors!. A complete study of the
behavior of these solutions under nonspherical perturbations
along the lines of Ref.@20# is required to determine the one
which is most stable. We have not performed such an inves-
tigation since the presence of two such solutions does not
alter the thermodynamics derived within the TFQCD ap-
proach.

6The simplicity of this result is a consequence of the fact thatU is
made to reside in SU~3!/SU~2!;S5, a five-dimensional sphere,
where the number of invariants is very limited. The solutions to the
classical equations of motion forU are geodesics representing a
motion along the great circles ofS5.
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The above treatment was not based on a semiclassical
expansion of the partition function for the complete system.
It is indeed possible to consider such an approach and use
Eq. ~2.12! as an approximation to the fermionic contribution.
Then the integration over the gauge fields can be approxi-
mated by a saddle point method. We have not done this
because the effective action which is to be minimized in the
last step is, due to the Thomas-Fermi approximations used to
obtainZc , unbounded from below. It is found that the solu-
tions will soon violate the Thomas-Fermi conditions and the
method is not consistent; this is displayed explicitly in the
Appendix for the case of QED. In contrast, the approach
described in the above is consistent with the original ap-
proximations.

APPENDIX

In this appendix we present a semiclassical calculation of
the partition function of QED using the Thomas-Fermi ap-
proximation for the fermionic partition function. The general
expression is

Z5E @dA#@dc#@dc̄#eS, ~A1!

whereS5Sg1Sc , the first term denoting the gauge contri-
bution, the second all terms involving the fermions. By defi-
nition we have

Zc5E @dc#@dc̄#eSc, ~A2!

which is approximated byZc.*d4xPc , where

Pc5
1

12p2 F ~m1ef!412~pkT !2~m1ef!21
7

15
~pkT !4G ,

~A3!

wheref denotes the electrostatic potential ande the charge
of the fermions~only one flavor is considered!. Note that
Pc is positive definite.

Assuming spherical symmetry the gauge potentials are of
the form, f5f(r ),A5a(r ) r̂ . Choosing thea50 gauge
gives the following expression for the partition functionZ
5*@df#exp(Seff), where

Seff54pE
0

b

dtE
0

R

dr r 2F2
1

2
~f8!21PcG , ~A4!

whereb denotes the inverse temperature,R is the radius of
the spherical vessel containing the system, a dash denotes a
derivative with respect tor , the radial coordinate, andt de-
notes the Euclidean time variable.

The integrand inSeff is not positive definite. Consider for
examplef5f0 cos(kr1n) for constantn. If f0 is suffi-
ciently small andk sufficiently large, the first term inSeff
will dominate; the largerk, the more negativeSeff becomes.
The problem in this case is that these expressions for the
scalar potential violate the Thomas-Fermi condition which
requireslf8/f!1. This shows that a semiclassical treat-
ment of the partition function is inconsistent with the
Thomas-Fermi approximation. We have verified that the
same problems arise in the non-Abelian case.
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