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Following systematically the generalized Hamiltonian approach of Batalin and Fradkin, we demonstrate the
equivalence of a self-dual model with the Maxwell-Chern-Simons theory by embedding the former second-
class theory into a first-class theory.@S0556-2821~97!02708-2#

PACS number~s!: 11.15.Kc

I. INTRODUCTION

It has long been recognized that the addition of a Chern-
Simons three-form to a Maxwell term in 211 dimensions
will generate a topological mass for the ‘‘photon’’@1#. An-
other model which also describes the propagation of a single
massive mode in 211 dimensions is the ‘‘self-dual’’~SD!
model originally proposed in Ref.@2#. This suggested a pos-
sible equivalence between the~second-class! SD model and
the ~first-class! Maxwell-Chern-Simons ~MCS! theory,
which has subsequently been demonstrated on a semiclassi-
cal level by Deser and Jackiw@3#. Since then there have
appeared a number of papers studying different aspects of
this equivalence@4–6#. However, a study within the gener-
alized canonical framework of Batalin Fradkin~BF! and
Tyutin @7,8#, allowing for the systematic conversion of
second-class systems into first-class ones, is lacking.

In this paper we demonstrate the above equivalence be-
tween these two models by embedding the SD model into a
gauge theory, following systematically the procedure of Ref.
@7#. The first-class constraints and the unitarizing Hamil-
tonian are constructed in Sec. II. We then show in Sec. III
that the partition function of the SD model and MCS theory
are obtained for different choices of gauge, thereby establish-
ing the claimed equivalence as a consequence of the Fradkin-
Vilkovisky theorem@11#. Our conclusions are given in Sec.
IV.

II. BF HAMILTONIAN EMBEDDING

The Lagrangian of the self-dual~SD! model @3# is given
by

LSD5
1

2
f m f m2

1

2m
emln f

m]l f n. ~2.1!

It describes a pure second-class system with three primary
constraints

T05p0'0, Ti5p i1
1

2m
e i j f

j'0, ~2.2!

and a secondary constraint

T35
1

m S f 01 1

m
e i j ] i f

j D'0, ~2.3!

wherepm are the momenta canonically conjugate tofm. The
secondary constraint follows from the requirement

$T0~x!,HT%'0, ~2.4!

whereHT is the total Hamiltonian@13#,

HT5Hc1E d2xS v0T01(
i51

2

v iTi D , ~2.5!

with v0,v i Lagrange multipliers, andHc the canonical
Hamiltonian:

Hc5E d2xH 2
1

2
f m f m1

1

m
e i j f

0] i f j J . ~2.6!

The nonvanishing Poisson brackets of the constraints are
given by

$T0~x!,T3~y!%52
1

m
d~xW2yW !,

~2.7!

$Ti~x!,Tj~y!%5
1

m
e i jd~xW2yW !,

$Ti~x!,T3~y!%52
1

m2 e i j ] jd~xW2yW !.

In order to establish the connection of the self-dual model
with the Maxwell-Chern-Simons~MCS! gauge theory, we
now make use of the formalism of Batalin, Fradkin, and
Tyutin @7,8# to embed the second-class SD model into a first-
class theory.

We begin by converting the second-class constraints into
first-class ones. We closely follow the notation of Ref.@7#,
with the commutators in this reference being obtained from
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the Poisson brackets via the substitutioni $q,p%→@q,p#. In
the notation of @7# the first-class constraints
Ta8 (a50,1,2,3) are given by

Ta8 ~x!5Ta~x!1E d2yE d2zVa
g~x,y!vgb~y,z!fb~z!,

~2.8!

wherevgb(x,y) and the structure functionsVa
g(x,y) are re-

stricted by the original second-class constraint algebra. The
tensorvab(x,y) is ac-numerical, completely antisymmetric
invertible matrix, which in our case has zero Grassman sig-
nature. The fieldfa(x) satisfies the symplectic algebra

$fa~x!,fb~y!%5vab~x,y!, ~2.9!

wherevab(x,y) is the inverse ofvab(x,y):

E d2zvag~x,z!vgb~z,y!5db
ad~xW2yW !. ~2.10!

For the constraint algebra~2.7! a possible choice for
vab(x,y) andVa

b(x,y) is given by

v03~x,y!5
1

m
d~xW2yW !,

v i j ~x,y!5
1

m
e i jd~xW2yW !,

v0i~x,y!52
1

m2 e ik]kd~xW2yW !, ~2.11!

and

V0
3~x,y!5d~xW2yW !, Vi

j~x,y!5d i
jd~xW2yW !, ~2.12!

with Va
b(x,y)5Vb

a(y,x). All remaining elements ofVa
b van-

ish.
The inversevab of vab is found from Eqs.~2.10! and

~2.11! to be

v21~x,y!5S 0 0 0 2m

0 0 2m 2]1
x

0 m 0 2]2
x

m 2]1
x 2]2

x 0

D d~xW2yW !.

~2.13!

In terms of the choice~2.11! and ~2.12!, the first-class con-
straints~2.8! read

T08~x!5T0~x!2
1

m
f0~x!,

Ti8~x!5Ti~x!1
1

m
e ikf

k~x!2
1

m2 e ik]kf
0~x!,

T38~x!5T3~x!1
1

m
f3~x!2

1

m2 ekl] lf
k~x!. ~2.14!

One readily verifies the strongly involutive algebra

@Ta8 ~x!,Tb8 ~y!#50. ~2.15!

We next construct the corresponding involutive Hamiltonian
H8. Following @7#, it is given by

H85HH@w#expE d2x
]Q

]wa~x!
fa~x!J

w50

, ~2.16!

wherewa(x) are real-valued fields, andH@w# is obtained by
solving the equation

]H@bw#

]b
5~ i !22FH@bw#,FV,E d2xV̄a~x!wa~x!G G ,

~2.17!

subject to the boundary conditionH@0#5Hc . The operators
V andV̄a are defined in Ref.@7#, and in our particular case
have the simple form

V5E d2xTa~x!Ca~x!,

V̄a~x!5E d2yV̄a
g~x,y!P̄g~y!, ~2.18!

whereV̄a
g is the inverse ofVa

g , given by

V̄0
3~x,y!5V̄3

0~yW ,xW !5d~xW2yW !,

V̄1
1~x,y!5V̄2

2~x,y!5d~xW2yW !, ~2.19!

with the remaining matrix elements vanishing. The fields
Ca(x) and P̄b(x) represents a canonical ghost pair with op-
posite Grassman parity to that of the constraintsTa :

@Ca~x!,P̄b~y!#5 idb
ad~xW2yW !. ~2.20!

Defining the generating functional

L@w#5E d2xd2ywa~x!Va
g~x,y!Tg~y!, ~2.21!

the solution to Eq.~2.17! for b51 can be written in the form

H@w#5eiL [w]Hce
2 iL [w] . ~2.22!

Expanding the exponentials in powers ofL@w#, one finds
that the series truncates after the third term, with the result
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H@w#5Hc1@ iL ,Hc#1
1

2!
†iL ,@ iL ,Hc#‡

5Hc2E d2zHmw3~z!T3~z!1
1

m
wk~z!@ekl] l f

0~z!2 f k~z!#J
2

1

2!E d2zH w3~z!w3~z!2wk~z!wk~z!2
2

m
eklw

3~z!] lw
k~z!J , ~2.23!

wherek and l take the values 1,2. From hereon and with the
definition ~2.16! one obtains, for the involutive Hamiltonian,

H85Hc2E d2zmf3~z!T38~z!

1
1

2E d2z@fk~z!fk~z!1f3~z!f3~z!#

2E d2zfk~z!S 1mekl] l f
0~z!2 f k~z! D , ~2.24!

with the strongly involutive property

@H8,Ta8 ~x!#50. ~2.25!

One readily checks that the involutive Hamiltonian~2.24! is
obtained from the canonical one by a simple translation in
the fields

H85Hc@ f
i1f i , f 01f3#. ~2.26!

This property will be useful in the forthcoming analysis.
We next proceed to construct the Becchi-Rouet-Stora-

Tyutin ~BRST! Hamiltonian and the corresponding partition
function. From the work of Ref.@7# it is readily seen that

H85HBRST, ~2.27!

sinceH8 is strongly involutive. The remaining step concerns
the construction of the unitarizing HamiltonianHU as de-
fined in @7#

HU5HBRST1
1

i
@C,Q#, ~2.28!

where the nilpotent BRST chargeQ and the fermion function
C are given by

Q5E d2z~Ta8C
a1paPa!, ~2.29!

C5E d2z~C̄axa1P̄aq
a!, ~2.30!

where (qa,pa) are canonically conjugate multiplier fields,
andxa are gauge-fixing functions having the same statistics
as the constraints, and are required to satisfy

det$xa,Tb8 %5” 0. ~2.31!

This completes our analysis on the operator level.

We now consider the partition function corresponding to
the unitarizing Hamiltonian~2.28!:

Z5E @Dm#~detv!21/2eiSU, ~2.32!

where

SU5E d3xH pm ḟ m1
1

2
favabḟb1paq̇

a1PaC̄
˙ a

1CaP̄
˙a2H82

1

i
@C,Q#J ~2.33!

and the integration measure@dm# involves all the fields ap-
pearing in the exponent. The second term in Eq.~2.33! is due
to the symplectic algebra~2.9! satisfied by thef fields, and
the field independence of the corresponding symplectic met-
ric vab @9#. This term~including detv) can in principle be
put into a standard canonical form via a Darboux transfor-
mation @10#. In the present case it is, however, more conve-
nient to proceed directly from Eq.~2.33!.

In the following we consider gauge functionsxa which
do not depend on the multipliersqa,pa . By suitably rescal-
ing the fields@11,12# xa→xa/b, pa→bpa , C̄a→bC̄a ~the
super-Jacobian of this transformation is unity! and taking
b→0, one can carry out the integrals over the ghost vari-
ables and multiplier fields, with the result

Z5E DpmDf
mDfad@x#d@T8#det@xa,Tb8 #

3expS i E d3x$pm ḟ
m1 1

2 favabḟb

2Hc@ f
i1f i , f 01f3#% D , ~2.34!

where we have used Eq.~2.26! and have dropped
(detv)21/2, which is just an~irrelevant! constant.

III. EQUIVALENCE OF SD AND MCS MODELS

In this section we prove the equivalence of the self-dual
@3# and the Maxwell-Chern-Simons theory, by using the
Fradkin-Vilkovisky theorem@11# stating the gauge indepen-
dence of the partition function~2.34!. To start out with, we
choose a class of gauges resticted by the two gauge condi-
tions
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x i5f i2
1

m
] if

0'0, i51,2. ~3.1!

The other two conditionsx0'x3'0 are still arbitrary. Using
Eq. ~3.1!, all momentum integrals as well asf1,f2, and
f3 integrals can be done trivially, leading to the result

Z5E Df mDf0d@x0#d@x3#

3expF i E S 2
1

m2f0e i j ] i ḟ
j1

1

m
f i] if

01
1

m
f 1 ḟ 2

2
1

2m2 ~e i j ] i f
j !22

1

2
fW22

1

2m2 ~] if
0!2D G , ~3.2!

where the propertye i j ] if
j50, following from Eq.~3.1! has

been used. Note that at least one of the gauge conditions
x0'x3'0 must involvef 0 in order to render thef 0 integral
finite.

A. Recovery of the SD model in the unitary gauge

Choosing, for the remaining gauge conditions,

x05f0'0, ~3.3!

x35T35 f 01
1

m
e i j ] i f

j'0, ~3.4!

one is led to the partition function of the self-dual model,

Z5E Df mdF f 01 1

m
e i j ] i f

j GexpS i E LSDD . ~3.5!

Note that to arrive at this expression, repeated use has been
made of the gauge condition~3.4!. This gauge condition is
just the original second-class constraintT3'0. Similarly
from d@T80# in Eq. ~2.34! we see that the condition~3.3! can
also be viewed as the original second-class constraint
T05p0'0. For this reason the above gauge is referred to in
the literature@7,8# as the ‘‘unitary’’ gauge.

B. Recovery of the MCS model in the Coulomb-like gauge

Consider the gauge condition@6#

x0,x3: f i2
1

m
e i j ] j f

0'0. ~3.6!

Since this gauge implies] i f
i50, we refer to it as the

Coulomb-like gauge. Using Eq.~3.4!, the partition function
~3.2! can be put into the form

Z5E Df mDf0dF f i2 1

m
e i j ] j f

0G
3expF i E d3xS 2

1

m2f0e i j ] i ḟ
j1

1

2m2f0¹W 2f01
1

m
f 1 ḟ 2

2
1

2m2 ~e i j ] i f
j !22

1

2m2 ~e i j ] j f
0!2D G . ~3.7!

Performing the Gaussianf0 integration we find

Z5E Df mdF f i2 1

m
e i j ] j f

0G
3expF i E d3xS 2

1

2m2 ~e i j ] i ḟ
j !
1

¹W 2
~ekl]k ḟ

l !1
1

2m
e i j f

i ḟ j

2
1

2m2 ~e i j ] i f
j !22

1

2m2 ~e i j ] j f
0!2D G . ~3.8!

Making repeated use of the gauge condition, the partition
function can be put into the manifestly covariant form

Z5E Df mdF f i2 1

m
e i j ] j f

0GexpS i E d3xLMCSD , ~3.9!

whereLMCS is the Maxwell-Chern-Simons Lagrangian:

LMCS52
1

4m2 f mn f
mn2

1

2m
emnl f

m]n f l. ~3.10!

It is simple to see that the gauge condition appearing in Eq.
~3.9! is equivalent to the Coulomb gauge and Gauss law in
that gauge. This completes the proof of the equivalence of
the self-dual model and the Maxwell-Chern-Simons theory
within the BF framework.

IV. CONCLUSION

The equivalence of the self-dual~SD! model of Ref.@2#
and the Maxwell-Chern-Simons theory has been discussed
using different approaches@3–6#. It was the objective of this
paper to demonstrate this equivalence by suitably extending
the phase space of the SD model, following systematically
the procedure of Ref.@7#. This involved the conversion of
the four second-class constraints of the SD model into the
first-class ones, and the corresponding construction of the
unitarizing Hamiltonian. The gauge-invariant partition func-
tion associated with this Hamiltonian was shown to reduce to
that of the original second-class SD model in the ‘‘unitary
gauge’’ and to the MCS theory in a Coulomb-like gauge. It
is interesting to note that the fieldfm in the embedded parti-
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tion function~2.34! played the role of either the fundamental
field of the SD model or the gauge potential of the MCS
theory, in the unitary and Coulomb-like gauge, respectively.

Finally, we wish to point out that the equivalence inves-
tigated here has proved useful in the study of Abelian

bosonization in 211 dimensions of massive fermionic mod-
els @14,15#.
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