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Hamiltonian embedding of the self-dual model and equivalence
with Maxwell-Chern-Simons theory
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Following systematically the generalized Hamiltonian approach of Batalin and Fradkin, we demonstrate the
equivalence of a self-dual model with the Maxwell-Chern-Simons theory by embedding the former second-
class theory into a first-class theof$0556-282(97)02708-3
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I. INTRODUCTION 1 ,
To=770%0, Ti:’iTi‘f'ﬁEiij%O, (22)

It has long been recognized that the addition of a Chern-
Simons three-form to a Maxwell term in+2 dimensions and a secondary constraint
will generate a topological mass for the “photofiZ]. An-
other model which also describes the propagation of a single
massive mode in 21 dimensions is the “self-dual'(SD)
model originally proposed in Ref2]. This suggested a pos-
sible equivalence between titgecond-clagsSD model and  where, are the momenta canonically conjugatefto The
the (first-clasg Maxwell-Chern-Simons (MCS) theory, secondary constraint follows from the requirement
which has subsequently been demonstrated on a semiclassi-
cal level by Deser and Jackiy]. Since then there have {To(x),H7}=0, (2.4
appeared a number of papers studying different aspects of ) o
this equivalencd4—6]. However, a study within the gener- WhereHr is the total Hamiltoniari 13],
alized canonical framework of Batalin Fradki8F) and 2
Tyutin [7,8], allowing _for t.he systematic .conversion of HT:HCJFJ dzx(v°T0+E UiTi), 2.5
second-class systems into first-class ones, is lacking. i=1

In this paper we demonstrate the above equivalence be- _ o .
tween these two models by embedding the SD model into ®ith v™,v' Lagrange multipliers, ancH; the canonical
gauge theory, following systematically the procedure of RefHamiltonian:
[7]. The first-class constraints and the unitarizing Hamil-
tonian are constructed in Sec. Il. We then show in Sec. llI H :j d2x[ - Efﬂvf + ie,foﬂifj] 2.6

o : c i . .

that the partition function of the SD model and MCS theory 2 4 m™
are obtained for different choices of gauge, thereby establish- o _ )
ing the claimed equivalence as a consequence of the Fradkia-:he nonvanishing Poisson brackets of the constraints are
Vilkovisky theorem[11]. Our conclusions are given in Sec. 91ven by

1 1 .
T3=E f0+ Eeijﬂifj ~0, (23)

0

V. 1.
(To(0), Ta(y)} = = = 8-,
Il. BF HAMILTONIAN EMBEDDING 2.7
byThe Lagrangian of the self-du&SD) model[3] is given {Ti(x),T;(y)}= %eij S(X—y),
1 N
1 1 {Ti(x), Ta(y)} = — €, 8(x—y).
Lop=y 11~ 5 e TN, 2.1)

In order to establish the connection of the self-dual model

with the Maxwell-Chern-SimongMCS) gauge theory, we
It describes a pure second-class system with three primamnyow make use of the formalism of Batalin, Fradkin, and
constraints Tyutin [7,8] to embed the second-class SD model into a first-

class theory.

We begin by converting the second-class constraints into
*On sabbatical leave from S. N. Bose National Centre for Basidirst-class ones. We closely follow the notation of Réf],

Sciences, DB-17, Sec 1, Salt Lake, Calcutta-700064, India. with the commutators in this reference being obtained from
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the Poisson brackets via the substitutigg,p}—[q,p]. In
the notation of [7] the first-class constraints
T, («=0,1,2,3) are given by

T;(X)=TQ(X)+J dzyf d’zV(x,y) w,5(y,2) $7(2),
2.9

wherew,5(x,y) and the structure functiong’(x,y) are re-
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’ 1 0
To(X)=To(X)— Ed) (%),
’ 1 k 1 0
T (X)=Ti(x)+ Efik¢ (x)— e €k P (X),

' _ 1 3 1 Kk
T400=To(0)+ ~ %0~ eqandh(x). (214

stricted by the original second-class constraint algebra. Thg,e readily verifies the strongly involutive algebra

tensorw,4(X,y) is ac-numerical, completely antisymmetric
invertible matrix, which in our case has zero Grassman sig-

nature. The fieldp“(x) satisfies the symplectic algebra

{970, 9P (y)} = 0™B(x,y), (2.9

wherew®#(x,y) is the inverse ofw,,5(X,y):

f A2z (X,2) w,4(2,y) = 558(x—y).  (2.10

For the constraint algebrd2.7) a possible choice for
w.5(X,y) andVA(x,y) is given by

1 . .
w3 X,y)= 550(_)/),
1 IR
wij(X,Y) = € A(X—Y),

1 N
woi(X,y)=— Weikaké(X_Y)u (2.1

and

VE(x,y)=8(x=y), Vixy)=dax-y), (212
with V&(x,y) =V§(y.X). All remaining elements o¥% van-
ish.

The inversen®? of w,p is found from Eqgs.(2.10 and
(2.11) to be

0 0 -m
T D Py

’ 0 m 0 —d5

m -9 —d5 O

(2.13

In terms of the choicé€2.11) and (2.12), the first-class con-
straints(2.8) read

[Ta(x),T(y)]=0. (2.19

We next construct the corresponding involutive Hamiltonian
H’. Following [7], it is given by

P

d
de*(X)

H'= (2.19

¢“(X)] :

¢=0

H[cp]expf d?x

wherep®(x) are real-valued fields, ard[ ¢] is obtained by
solving the equation

H[Be]
B

(2.17

subject to the boundary conditid[0]=H.. The operators

Q and(), are defined in Ref.7], and in our particular case
have the simple form

(i)_z[H[ﬂw].[Q,f A2, (X) 9(x)

Q= f d?x T ,(X)C¥(X),

0.00= [ AWVixyPw. (218
Wherev_g is the inverse oW}, given by

V306Y) = V(Y. X) = 8(X ),

Viy) =V3(xy) = 8(x-), (219

with the remaining matrix elements vanishing. The fields

C*(x) andPg(x) represents a canonical ghost pair with op-
posite Grassman parity to that of the constraihjs

[C(X), Pa(y) =i 558(X—Y).

Defining the generating functional

(2.20

L[qo]=f d>xd?y e ()VIXYTAy),  (2.2D
the solution to Eq(2.17) for 8=1 can be written in the form

(2.22

Expanding the exponentials in powers lof¢], one finds
that the series truncates after the third term, with the result

H[ o] =€ [¢1H e iLTel.
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. 1
Hle]=H +[iL,H ]+ E[|L,[|L,Hc]]

:Hc_f dzz[ m¢3(Z)T3(Z)+%qok(z)[ékvﬂfo(z)—fk(Z)]]

1 2
~ 57 dzz( ¢*(2)6°(2) ~ (D)9 (D)~ — e’ (2916 (2) | (2.23

wherek andl take the values 1,2. From hereon and with the We now consider the partition function corresponding to
definition (2.16) one obtains, for the involutive Hamiltonian, the unitarizing Hamiltoniari2.28:

H’=HC—J d?zme(2)T4(2) z:f [Du](deiw) Y%y, (2.32
+ ; J d%z[ $4(2) $(2) + $%(2) $%(2)] where
1 . 1 . . —
—f d22¢k(z)(aek|&|f°(z)—fk(z)), (2.24 SU:J d3X[ Tt S 0 apd P Pt
with the strongly involutive property +C 'ﬁ_ H — E[\If Q]] (2.33
(23 | il .

[H',T.(x)]=0. (2.25
and the integration measufdw ] involves all the fields ap-
earing in the exponent. The second term in @33 is due
o the symplectic algebr@.9) satisfied by thep fields, and
the field independence of the corresponding symplectic met-
H' =HJfi+ ¢!, O+ ¢3]. (2.2  ric a_)"‘ﬁ [9]. This term(including det») can in principle be
put into a standard canonical form via a Darboux transfor-
This property will be useful in the forthcoming analysis.  mation[10]. In the present case it is, however, more conve-
We next proceed to construct the Becchi-Rouet-Storanient to proceed directly from E¢2.33.
Tyutin (BRST) Hamiltonian and the corresponding partition  In the following we consider gauge function$’ which
function. From the work of Ref.7] it is readily seen that do not depend on the multipliets*,p,, . By suitably rescal-
, ing the fieldg11,12 xy*— x*/8, p,— BP., C,— BC, (the
H'=Hersr, (2.27) super-Jacobian of this transformation is uhignd taking
B—0, one can carry out the integrals over the ghost vari-
ables and multiplier fields, with the result

One readily checks that the involutive Hamiltonigh24) is
obtained from the canonical one by a simple translation i
the fields

sinceH’ is strongly involutive. The remaining step concerns
the construction of the unitarizing Hamiltonidth,; as de-
fined in[7]

1 sz Dm, Df*D " x][ T’ Jdef x*, T4]
Hyu=Hgrstt 71V.Ql, (2.28
Xex;{ iJ dBX{WMf”+ 1 ¢“wa3¢ﬁ

where the nilpotent BRST charggand the fermion function

V¥ are given by
—Hc[fi+¢‘.f°+¢3]}), (2.39
sz d%z(T/C%+ p,P9Y), (2.29
where we have used EQq(2.26 and have dropped
_ (detw) "Y', which is just an(irrelevan} constant.
xlfzf d?z(C x“+P,q%), (2.30

Ill. EQUIVALENCE OF SD AND MCS MODELS
where @“,p,) are canonically conjugate multiplier fields, _ ) _
and y“ are gauge-fixing functions having the same statisticst In this section we prove the equivalence of the self-dual
as the constraints, and are required to satisfy 3] and the Maxwell-Chern-Simons theory, by using the
Fradkin-Vilkovisky theorenj11] stating the gauge indepen-

de{X“,T,g}qEO. (2.31) dence of the partition functiof2.34). To start out with, we
choose a class of gauges resticted by the two gauge condi-
This completes our analysis on the operator level. tions
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1 .
X'=¢'—E(9i¢°~0, i=1,2. (3.0

The other two conditiong®~ x3~0 are still arbitrary. Using
Eqg. (3.1, all momentum integrals as well ag’, ¢?, and
¢° integrals can be done trivially, leading to the result

Z:f Df“D ¢S5 x°16[ x°]
Xexp{iJ (_le¢05ij(9ifj+%fi(9i¢o+%flfz
(3.2

1 . 1. 1
- W(fijﬁif')z— §f2_ W(é’mﬁo)zﬂ,

where the property;; d; ¢1=0, following from Eq.(3.1) has

been used. Note that at least one of the gauge conditions

x°~ x3~0 must involvef® in order to render thé° integral
finite.

A. Recovery of the SD model in the unitary gauge
Choosing, for the remaining gauge conditions,

(3.3

1 .
X3=T3=f0+mfijﬂif1“~“0' (3.9

one is led to the partition function of the self-dual model,

exp<if CSD). (3.5

1 :
f0+ afijaifl

Z=f Df#é

Z:f Df#§
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Z= | Df*D¢%| f' ! fO

= d) —Eéijﬁj
, 1 I 1 .
XeX[{IJ d3X(—W¢OEijaifJ+W¢OV2¢)O+ Eflfz

. (3.7

1 . 1
- W(fijﬁif’)z— W(ﬁijﬁjfo)z

Performing the Gaussia#® integration we find

o1
0
fl—aéijajf }

_ 5 1 ‘| 1 ol 1 i
Xexpgi| d°x _W(fijaif )@(Ekﬁkf)"‘ﬁfijff

. (3.8

1 e L 0)2
~omz € dit) 5 7 (€jo;fY)

Making repeated use of the gauge condition, the partition

function can be put into the manifestly covariant form

. 3.9

exp{ i J d*XLycs

o1
sz Df“ﬁ fl__é'ijgjfo
m

where Ly cs is the Maxwell-Chern-Simons Lagrangian:

1
‘CMCS: - —24m fMVfMV— ﬁeﬂy)\f“&”f)‘.

(3.10

It is simple to see that the gauge condition appearing in Eq.
(3.9 is equivalent to the Coulomb gauge and Gauss law in

Note that to arrive at this expression, repeated use has be#rat gauge. This completes the proof of the equivalence of

made of the gauge conditiai3.4). This gauge condition is
just the original second-class constraifit~0. Similarly
from 8[ T'°] in Eq. (2.34 we see that the conditiaf3.3) can

also be viewed as the original second-class constraint

the self-dual model and the Maxwell-Chern-Simons theory
within the BF framework.

IV. CONCLUSION

TO=#%9~0. For this reason the above gauge is referred to in

the literaturg 7,8] as the “unitary” gauge.

B. Recovery of the MCS model in the Coulomb-like gauge
Consider the gauge conditigf]

o1
XO,X3:fI_Eeijajf0~O_ (36)

Since this gauge implies;f'=0, we refer to it as the
Coulomb-like gauge. Using E¢3.4), the partition function
(3.2) can be put into the form

The equivalence of the self-duébD) model of Ref.[2]

and the Maxwell-Chern-Simons theory has been discussed
using different approach¢8—6|. It was the objective of this
paper to demonstrate this equivalence by suitably extending
the phase space of the SD model, following systematically
the procedure of Ref.7]. This involved the conversion of
the four second-class constraints of the SD model into the
first-class ones, and the corresponding construction of the
unitarizing Hamiltonian. The gauge-invariant partition func-
tion associated with this Hamiltonian was shown to reduce to
that of the original second-class SD model in the “unitary
gauge” and to the MCS theory in a Coulomb-like gauge. It
is interesting to note that the fiefd in the embedded parti-
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tion function(2.34) played the role of either the fundamental bosonization in 21 dimensions of massive fermionic mod-
field of the SD model or the gauge potential of the MCSels[14,15.
theory, in the unitary and Coulomb-like gauge, respectively. ACKNOWLEDGMENTS
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