
Vortices and domain walls in a Chern-Simons theory with magnetic moment interactions

Armando Antillón*
Laboratorio de Cuernavaca, Instituto de Fı´sica, Universidad Nacional Auto´noma de Me´xico,

Apdo. Postal 48-3, 62251 Cuernavaca, Morelos, Me´xico

Joaquı´n Escalona†

Facultad de Ciencias, Universidad Auto´noma del Estado de Morelos, Apdo. Postal 396-3, 62250 Cuernavaca, Morelos, Me´xico

Manuel Torres‡

Instituto de Fı´sica, Universidad Nacional Auto´noma de Me´xico, Apdo. Postal 20-364, 01000 Me´xico, D.F., México
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We study the structure and properties of vortices in a recently proposed Abelian Maxwell-Chern-Simons
model in 211 dimensions. The model which is described by a gauge field interacting with a complex scalar
field includes two parity- and time-violating terms: the Chern-Simons and the anomalous magnetic terms.
Self-dual relativistic vortices are discussed in detail. We also find one-dimensional soliton solutions of the
domain wall type. The vortices are correctly described by the domain wall solutions in the large flux limit.
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I. INTRODUCTION

Of the gauge field theories, the self-dual theories deserve
special attention. Self-duality refers to theories in which the
interactions have particular forms and special strengths such
that the equations of motion reduce from second- to first-
order differential equations; these configurations minimize a
functional, often the energy@1#. For example, the Abelian-
Higgs model admits topological solitons of the vortex type
@2#. In this model the scalar potential is of the form
V(f);(ufu22v2)2 and the vortices satisfy a set of
Bogomol’nyi or self-dual equations when the vector and sca-
lar masses are chosen to be equal@3,4#. The self-dual point
corresponds to the boundary between type-I and type-II su-
perconductors. In this point the vortices become noninteract-
ing and static multisoliton solutions may be expected@5,6#.
We also notice that the self-dual structure of the gauge theo-
ries is related at a fundamental level to the existence of an
extended supersymmetry@7#.

Recently, considerable interest has been paid to the study
of vortex solutions in ~211!-dimensional Chern-Simons
~CS! gauge theories. One common feature of the Chern-
Simons solitons is that they carry electric charge as well as
magnetic flux@8#, in contrast with the electrically neutral
Nielsen-Olesen vortices. In addition, they possess fractional
spin, a property that is fundamental to consider them as can-
didates for anyonlike objects in quasiplanar systems. Self-
dual Chern-Simons theories are known to exist if one con-
siders pure CS theories. In these theories the Maxwell term
in the Lagrangian is absent and the dynamics for the gauge
field is solely provided by the Chern-Simons term@9,10#.
The self-dual Chern-Simons theories enable a realization

with either relativistic@11# or nonrelativistic@12,13# dynam-
ics for the matter degrees of freedom. In the case of the
relativistic theory self-dual topological and nontopological
vortex solutions have been found with a particular sixth-
order potential of the formV(f);ufu2(ufu22v2)2 when the
vector and scalar masses are equal@12,13#.

The question can be posed as to whether there are self-
dual models in which the gauge field Lagrangian includes
both the Maxwell and the Chern-Simons term. A self-dual
Maxwell-Chern-Simons gauge theory can be constructed if a
magnetic moment interaction is added between the scalar
and the gauge fields@14#.1 If the interest is pursuit in a low
energy effective theory containing at most second-order de-
rivative terms, such a magnetic moment interaction has to be
included. Two steps are followed to obtain the self-dual
limit. First, a particular relation between the CS mass and the
anomalous magnetic coupling is established whereby the
equations for the gauge fields reduce from second- to first-
order differential equations similar to those of the pure CS
theory. Second, if the scalar potential is selected as a simple
f2 potential and the scalar mass is made equal to the topo-
logical mass, the energy obeys a Bogomol’nyi-type lower
bound, which is saturated by fields satisfying self-duality
equations. The potential possesses a unique minimum at
f50 and topological solitons certainly do not exist, yet the
theory allows nontopological vortex configurations. In this
paper we examine the theory and the properties of these non-
topological vortices in more detail. In addition, we find that
the model admits one-dimensional soliton solutions of the
domain wall type. The domain wall carries both magnetic
flux and electric charge per unit length. Furthermore, we find
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that the domain wall configurations provide an approximate
solution to the self-dual vortices in the large flux limit. It
must be emphasized that the existence of domain wall solu-
tions is unexpected, because the scalar potential has a unique
nondegenerate minimum.

As mentioned above there are several aspects of thef2

Maxwell-Chern-Simons gauge theory which justify further
consideration. In Sec. II we introduce the model in which a
charged scalar field is coupled via a generalized covariant
derivative to the gauge field whose dynamics includes both
the Maxwell and the Chern-Simons term. Initially, we con-
sider an arbitrary renormalizable scalar potential in 211 di-
mensions in order to discuss properties of the theory both in
the symmetric and in the spontaneously broken phase. As
first pointed out in Ref.@16#, the nonminimal term in the
covariant derivative combined with the spontaneous symme-
try mechanism induces a kind of Chern-Simons term. How-
ever, we demonstrate that the induced CS term behaves in
the same way as the explicit CS term only in the topological
trivial sector of the theory. The properties of the two terms
are different in the topological nontrivial sector, in particular
the induced CS term does not contribute to the fundamental
relation between charge and magnetic flux. Rather, the mag-
netic moment induces a contribution to the magnetization of
the vortex that is proportional to the charge of the configu-
ration. In Sec. III we study the propagating modes for the
vector field, which consist of two longielliptic waves with
different values for the masses. Then in Sec. IV we discuss
the conditions required to reduce the original gauge field
equations to equations of the pure Chern-Simons type. Sec-
tion V is devoted to the derivation of the self-duality equa-
tions, and to the detailed analytical and numerical study of
the cylindrically symmetric vortex solutions. In Sec. VI we
discuss domain wall solutions with finite energy per unit
length and use these to further examine the properties of the
vortex solutions in the large flux limit. Concluding remarks
comprise the final section.

II. THE MODEL

Our model possesses a local U~1! symmetry and is de-
scribed by the effective Lagrangian

L52
1

4
FmnF

mn 1
k

4
emnaAmFna1

1

2
uDmfu22V~ ufu!,

~2.1!

where k is the topological mass,Fmn5]mAn2]nAm . We
use natural units\5c51 and the Minkowski-space metric
is gmn5diag(1,21,21); m50,1,2. The covariant derivative
is generalized as

Dm5]m2 ieAm2 i
g

4
emnaF

na[]m2 ieAm2 i
g

2
Fm ,

~2.2!

where we have defined the dual field

Fm[
1

2
emabF

ab. ~2.3!

In terms of the dual field the CS term takes the simpler form
(k/2)AmF

m. The introduction of an anomalous magnetic
term in the covariant derivative is consistent with the Lorentz
and the gauge invariance of the theory; however, it breaks
the P and T symmetries. A specific feature of a
(211)-dimensional world is that a Pauli-type coupling~i.e.,
a magnetic coupling! can be incorporated into the covariant
derivative, even for spinless particles@16,17,14#. In fact, in
Ref. @18# it was demonstrated that radiative corrections can
induce a magnetic coupling for anyons, proportional to the
fractional spin. The electromagnetic interactions of charged
anyons, in particular its magnetic moment, have also been
discussed for point particles in 211 dimensions using the
appropriate representations of the Poincare´ group @19#.

The most general renormalizable potential in 211 dimen-
sions is of the form

V~f!5a6ufu61a4ufu41a2ufu2. ~2.4!

As we shall see later, the particular second-order form of the
scalar potential together with its overall strength is fixed by
self-duality condition. For the time being we leave the pa-
rameter in Eq.~2.4! free in order to discuss both the broken
and the unbroken phases of the theory.

As Paul and Khare@16# point out a CS term can be gen-
erated by spontaneous symmetry breaking. However, the
properties of this CS term are not the same as those of the
explicit CS term appearing in Eq.~2.1!; we would like to
understand the origin of these differences. Suppose the po-
tential is selected to have symmetry-breaking minimum at
ufu5v. Then in terms of the gauge-invariant potential

Ãm 5 Am2
1

e
]m Arg ~f!, ~2.5!

the contribution of the covariant derivative to the Lagrangian
evaluated in the vacuum configurations (ufu5v) can be
written as

1

2
uDmfu25

1

2Fe2v2ÃmÃ
m1

g2v2

4
FmF

m1egv2ÃmF
mG .

~2.6!

The first term in this expression is the usual gauge field mass
(M5ev) generated by the spontanous symmetry breaking.
The second term modifies the coefficient of the Maxwell
term in the Lagrangian. Finally, the last term is a kind of
CS-type term generated by the spontaneous symmetry break-
ing with topological massev2g. However, the explicit CS
term is of the form (k/2)AmF

m. Instead, in the induced CS
term Fm couples toÃm rather than toAm . The gauge field
Ãm is massive so it has a finite correlation length. This does
not imply thatAm should also fall off exponentially; it can
remain a pure gauge. Indeed, this is the case around a vortex
where the long-range contribution, which is locally pure
gauge, is globally nontrivial giving rise to a nonvanishing
magnetic flux. One of the effects of the explicit CS term is
that a vortex with magnetic fluxF must also carry electric
chargeQ, with the two quantities related asQ52kF. The
induced CS mass termev2g does not contribute to this rela-
tion because of the finite correlation length ofÃm . Conse-
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quently, we conclude that in topologically nontrivial sector
the induced termÃmF

m in Eq. ~2.6! has not the same prop-
erties as those of the CS term; so it cannot be considered a
genuine CS term. Only in the topologically trivial sector
does the induced term have the same properties as those of
the explicit CS term.

The equations of motion for the Lagrangian in Eq.~2.1!
are

DmDmf522
dV

df*
, ~2.7!

emna]mFFa1
g

2e
JaG5Jn2kFn , ~2.8!

where the conserved Noether current is given as

Jm52
ie

2
@f* ~Dmf!2f~Dmf!* #. ~2.9!

From the equation of motion~2.8! it is clear that we can
define a currentJm that is also conserved.Jm is defined by

Jm5Jm1
g

2e
emna]nJa. ~2.10!

If the currentJm is bounded or vanishes faster than 1/r at
spatial infinity, then the charges calculated fromJ0 andJ0
coincide@21#.

Let us further examine the gauge field equations of mo-
tion ~2.8! expressed in terms of the electric and magnetic
fieldsEi5F0i andB5F12, respectively; they read

¹•EW 2kB5r1
g

2e
e i j ]

iJj ,

e i j ~] jB1kEj !5Ji1
g

2
e i j ]

jr1]0Ei . ~2.11!

These equations can be identified as the modified Gauss and
Ampere laws, respectively. One of the most important con-
sequences of the CS term is the fact that any object with
magnetic flux F5*d2xB also carries electric charge
Q5*d2xr, with the two quantities related as

Q 5 2kF. ~2.12!

Indeed, integrating the Gauss law~2.11! over all space we
find that the contribution of¹•EW is zero, because of the
long-distance damping produced by the ‘‘photon’’ mass.
Similarly, the integral of the last term also vanishes; this is
true even if the symmetry is spontaneously broken. The rea-
son, as explained earlier, is that in the Higgs vacuum the
current Jm makes use of the massive fieldÃm instead of
Am . Hence, we obtain the desired result in Eq.~2.12!.

While the magnetic momentg does not have a direct
effect on the fundamental relation~2.12!, it does produce
interesting effects, one of which can be found in the magne-
tization of the excitations of the system. The magnetization

is found by coupling an external magnetic field and extract-
ing the linear coupling from the Lagrangian~2.1!. It is given
by

M 5 E d2x~e i j x
iJj !, ~2.13!

whereJW is the matter current in Eq.~2.9!. Utilizing the modi-
fied Ampere law in Eq.~2.11!, we find for a static configu-
ration

M5F2
g

2e
Q2

k

2E d2x~rW•EW !. ~2.14!

In the absence of parity-breaking terms the magnetization is
equal to the magnetic flux, a result known for the neutral
Nielsen-Olesen vortices@2#. HereM has two extra pieces:
the magnetic momentg which induces a contribution propor-
tional to the charge of the configuration; and the term pro-
portional tok which, unlike the two first contributions, de-
pends on the structure factor of the vortex configuration so it
cannot be explicitly integrated.

Finally, the energy-momentum tensor is obtained by vary-
ing the curved-space form of the action with respect to the
metric

Tmn5S 12
g2

4
ufu2D ~FmFn2 1

2gmnFaF
a!

1
1

2
$¹mf~¹nf!*2gmn@ 1

2 u¹lfu22V~ ufu!#1H. c.%,

~2.15!

where¹m5]m2 ieAm only includes the gauge potential con-
tribution. The Chern-Simons and linear terms ing do not
appear explicitly inTmn . This is a consequence of the fact
that these terms do not make use of the space-time metric
tensorgmn , thus whengmn is varied to produceTmn no con-
tributions arise from these terms@10#. The expression~2.15!
can be considered as the energy-momentum tensors of an
Abelian Higgs model in which the Maxwell term is multi-
plied by a particular dielectric function of the form
@12(g2/4)ufu2# @20#.

III. PROPAGATING MODES

The model described in the previous section has in gen-
eral three propagating modes in the vacuum state, one of
which corresponds to the scalar field. In order to describe the
particle content of the gauge field degrees of freedom, we
consider the broken phase in which the potential has a
symmetry-breaking minimum atufu5v. The plane wave so-
lutions to the linearized Maxwell equation~2.11! with Am

}eik•x and km5(v,kW ) lead to the dispersion relation

v5AukW u21m6
2 , where the photon masses are given by

m65
6~k1ev2g!1A~k1ev2g!214e2v2~12v2g2/4!

2~12v2g2/4!
.

~3.1!
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The two values for the photon mass are related with two
different polarizations of the electromagnetic wave. From the
plane wave solution forAm and assuming that the wave
propagates along thex axis we find that the the electric field
can be written as

EW }S 6
im6

v
, 1Deik•x. ~3.2!

Hence, the waves are neither transverse nor longitudinal; in-
stead, the solutions correspond to right-handed and left-
handed longielliptic waves. We notice that the two masses in
Eq. ~3.1! may also be deduced from the gauge propagator, or
by the explicit analysis of the corresponding Maxwell-Proca
equation.

From the work of Pisarski and Rao@22# it is known that
the combined effect of the CS term with the mass induced by
the Higgs mechanism produces two gauge modes with dif-
ferent masses. From Eq.~3.1! it follows that to have two
distinct masses it is required that both spontaneous symmetry
breaking and at least one of theP- and T-violating terms
exist. The induced termev2g simply adds to the CS mass
k, as we are considering here the topologically trivial sector
of the theory.

Our result in Eq.~3.1! reduces to well-known cases when
the corresponding limits are considered:~i! If the parity-
violating terms vanish (k5g50) we obtain the usual gauge
mass m65ev produced by the spontaneous symmetry
breaking;~ii ! in the symmetric phasev50 there is only one
propagating mode with massk. The existence of massive
gauge-invariant theories in 211 dimension, without the
Higgs mechanism, is known from the topological massive
gauge theories@9#; ~iii ! if we cancel the magnetic moment
(g50) we recover the result of Paul and Khare@8#.

The stability of the model is a genuine concern and we
now address this point. In terms of the electric and magnetic
fields the energy density (T00) can be written as

T005
1

2 S 12
g2

4
ufu2D ~Ei

21B2!1 1
2 u¹0fu21 1

2 u¹ ifu2

1V~f!. ~3.3!

Hence, one may think that the magnetic moment contribution
will in general spoil the positive definiteness of the Hamil-
tonian.

To investigate the conditions required to have a stable
model consider small scalar and gauge field fluctuations
around the vacuum solution, in such a way that only qua-
dratic terms on the fluctuation fields are retained. First, it is
straightforward to check that the model is stable for small
fluctuations of the scalar field. This fact would not be true in
the presence of a constant external magnetic field; however,
we recall that, because of the topological mass term, a con-
stant magnetic field is not a solution of the equations of
motion. The next step is to consider gauge field fluctuations,
whereas the scalar field remains at the minimum of the po-
tential, i.e., ufu5v. Clearly, the energy remains positive
definite if the following relation holds:

4

g2
>v2. ~3.4!

If the previous relation is not satisfied then the model is no
longer positive definite. In this case any gauge field fluctua-
tion with wave vectorkW , such that

ukW u.
v2e2

g2v224
2
m6
2

2
~3.5!

will render the model unstable.
For the purposes of our pursuit we have considered that

condition~3.4! holds, thus expect the theory to be stable both
for classical and quantum fluctuations of the fields. In par-
ticular, for af2 potential wherev50 condition~3.4! is sat-
isfied. The analysis above considered the stability of the
model under the assumption of small field fluctuations. The
analysis of the stability under large field fluctuations is a
matter of further work. In this section we have analyzed the
propagating modes and the stability of these solutions in the
topological trivial sector of the theory; the stability of the
soliton vortex configuration will be discussed at the end of
Sec. V B.

IV. THE PURE CHERN-SIMONS LIMIT

A theory in which the Maxwell kinetic term is dropped
and the dynamics is solely provided by the CS term has been
frequently considered@9,10#. As mentioned in the introduc-
tion, charged vortex solutions are possible in these models.
In the Maxwell-Chern-Simons theory without magnetic mo-
ment interactions the pure CS limit can be formally obtained
by taking the limite2, k → ` keepinge2/k fixed and re-
scaling the gauge field byAm →Am /e @23#. This limit is
shown to be equivalent to simply neglecting theFmn

2 term in
the Lagrangian. In the model described by Eq.~2.1! there is
a particular relation between the CS mass and the anomalous
magnetic moment for which the Eqs.~2.8! for the gauge
fields reduces from second- to first-order differential equa-
tion @17,14,24#, similar to that of the pure CS type. To obtain
this limit we notice that if we set

k52
2e

g
, ~4.1!

then any solution to the Eq.~2.8! can be written as

Fm5
1

k
Jm 1 lGm , ~4.2!

wherel is an arbitrary constant andGm is solution of the
homogeneous field equation

emna]mGa52kGn . ~4.3!

In the vacuum the original theory possesses two gauge
propagating modes with different masses. In the limit
k522e/g, the gauge field masses in Eq.~3.1! reduce to
m15ke2v2/(k22e2v2) andm25k, respectively. Clearly,
the excitations described by the fieldGm carry a mass
m25k. However, if the nonperturbative sector with vortex
solutions is considered, it is easy to see that any solution to
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the homogeneous equation~4.3! gives an infinite contribu-
tion to the energy of the configuration. Consequently, for the
solitons to have finite energy the constantl in Eq. ~4.2!
should be set to zero. Hence, when the relation~4.1! between
the coupling constant holds, the gauge field equation of mo-
tion reduces to

Fm5
1

k
Jm . ~4.4!

This is a first-order differential equation that automatically
satisfies the second-order equation~2.8! when k522e/g.
This equation has the same structure as that of the pure CS
theory@9,10#. So, we shall refer to Eqs.~4.1! and~4.4! as the
pure CS limit. However, we should notice that the explicit
expression forJm differs from that of the usual pure CS
theory, because according to Eqs.~2.2! and~2.9!, Jm receives
contributions from the anomalous magnetic moment.

The gauge field equation~4.4! represents a first-order dif-
ferential equation, so its propagating modes should be char-
acterized by only one mass. It is straightforward to check
that this mass is given bym15ke2v2/(k22e2v2). The
other massm25k decouples in the nontrivial topological
sector because of the finite energy condition. Henceforth, we
work on the limit in which Eqs.~4.1! and ~4.4! are valid.
Consequently, we shall consider Eq.~4.4! instead of the Eq.
~2.8! as the equation of motion for the gauge fields.

In terms of the gauge-invariant potential in Eq.~2.5!, the
pure CS equation~4.4! reads

Fm52
ke2ufu2

~k22e2ufu2!
Ãm . ~4.5!

V. NONTOPOLOGICAL SOLITONS

A. Bogomol’nyi limit

In the Bogomol’nyi limit all equations of motion are
known to become first-order differential equations@3#; fur-
thermore, it is possible to recast the equations of motion as
self-duality equations. In the pure CS limit~4.1!, the gauge
field equations have been already reduced to the first-order
equations in Eq.~4.4!; however, the scalar field is still gov-
erned by the second-order equations~2.7!. Here we outline
the necessary steps to derive the self-duality limit. The self-
duality equations for thef2 model have been reported pre-
viously @25,26# but are mentioned here for completeness and
also to be used in the discussion of domain wall solutions.
We can exploit the pure CS equation~4.5! to eliminateA0
andEi from the expression of the energy density in Eq.~3.3!.
Hence, we can write down the energyE5*d2xT00 for a
static configuration as

E5E d2xS k22e2ufu2

2e2ufu2
B21

1

2 F u] ifu21
k2e2ufu2

k22e2ufu2
Ã i

2G
1V~f! D . ~5.1!

To ensure the positivity of the energy here it is assumed that
k2>e2ufu2 . The energy written in the previous form is
similar to the expression that appears in the Nielsen-Olesen

model. Thus, starting from Eq.~5.1!, we can follow the usual
Bogomol’nyi-type arguments in order to obtain the self-dual
limit. The energy may then be rewritten, after an integration
by parts, as

E5
1

2E d2xFk22e2ufu2

e2ufu2 S B7
keufu2

Ak22e2ufu2
D 2

1S ]6ufu2 i
keufu

Ak22e2ufu2
Ã6D 2G

1E d2xFV~f!2
1

2
k2ufu2G 1

k2

e
uFu, ~5.2!

where]65]16 i ]2, Ã65Ã16 iÃ2, andF denotes the mag-
netic flux. From the previous equation we observe that the
energy is bounded below; for a fixed value of the magnetic
flux the lower bound is given byE >(k2/e)F, provided that
the potential is chosen asV(f)5(m2/2)ufu2 with the criti-
cal valuem5k, i.e., when the scalar and the topological
masses are equal. Therefore, in this limit we are necessarily
within the symmetric phase of the theory. From Eq.~5.2! we
see that the lower bound for the energy

E 5
k2

e
uFu5

k

e
uQu ~5.3!

is saturated when the following self-duality equations are
satisfied:

B 5 6
keufu2

@k22e2ufu2#1/2
, ~5.4!

1

2
]6ufu25

iekufu2

@k22e2ufu2#1/2
Ã6 , ~5.5!

where the upper~lower! sign corresponds to a positive~nega-
tive! value of the magnetic flux. We should remark that the
present model in the self-duality limit corresponds to the
bosonic part of a theory with an (N52)-extended supersym-
metry @27#.

Equation ~5.4! implies that the magnetic field vanishes
wheneverf does. The finiteness energy condition forces the
scalar field to vanish both at the center of the vortex~except
for the nontopological solitons, see next section! and also at
spatial infinity; consequently, the magnetic flux of the vorti-
ces lies in a ring. It is interesting to observe that Eq.~5.5! can
be written as an explicit self-duality equation; indeed, if we
define a new covariant derivative asD̃ i5] i
2 i2ek/Ak22e2ufu2, then Eq.~5.5! is equivalent to

D̃ i ufu257 i e i j D̃ j ufu2. ~5.6!

Equations~5.4! and~5.5! can be reduced to one nonlinear
second-order differential equation for a unknown function.
To do this first notice that Eq.~5.5! implies thatÃi can be
determined in terms of the scalar field, on substituting the
result in Eq.~5.4! we get
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] iFAk22e2ufu2

2ek
] i ln~ ufu2!G1

keufu2

Ak22e2ufu2
50. ~5.7!

B. Rotationally symmetric solutions

The self-dual limit is attained for af2 potential; conse-
quently, topological solitons do not exist. However, the
theory allows nontopological soliton solutions. In order to
look for vortex solutions we now consider static, rotationally
symmetric solutions of vorticityn represented by the ansatz

AW ~rW !52 û
a~r!2n

er
, A0~rW !5

k

e
h~r! ,

f~rW !5
k

e
f ~r!exp~2 inu!, ~5.8!

wherer,u are the polar coordinates. After substituting this
ansatz the self-duality equations~5.4! and ~5.5! become

1

r

da

dr
57

k2f 2

~12 f 2!1/2
, ~5.9!

d f

dr
56

f a

r~12 f 2!1/2
. ~5.10!

Notice that the functionh(r) can be explicitly solved using
Eq. ~4.4! ash(r)5(12 f 2)1/2. In what follows, we select the
signs~upper signs in the previous equations! corresponding
to positive magnetic flux (n.0). The equations forn,0 are
obtained with the replacementa→2a, f→ f , andh→2h.

The boundary conditions are selected in such a way that
the fields are nonsingular at the origin and give rise to a finite
energy solution. The first condition implies thata(0)5n and
n f(0)50. Whereas the finiteness of the energy implies that
a→2an and f→0 asr→`. Notice that these requirements
leave a(`)52an undetermined. Consequently, the mag-
netic flux for nontopological solitons is not quantized, but
rather is a continuous parameter describing the solution. In-
deed, once the boundary conditions are known, the ‘‘quan-
tum’’ numbers of the soliton can be explicitly computed.
With the ansatz ~5.8!, the magnetic field is B
5(1/r )(da/dr), and so using the boundary conditions the
magnetic flux and electric charge are

F52
Q

k
5E d2xB5

2p

e
@a~0!2a~`!#5

2p

e
~n1an!.

~5.11!

We shall later see that for every value of the vorticityn the
allowed values foran are restricted according to Eq.~5.18!.
The solutions are also characterized by the spinS ~which in
general is fractional! and the magnetic momentM . The spin
is obtained from the gauge-invariant symmetric energy-
momentum tensor~2.15! via S5*d2x(e i j xiT0 j ); whereas for
the magnetic moment we use Eq.~2.14!. An explicit calcu-
lation yields

S5
pk

e2
~an

22n2! ,

M52
p

eE0
`

r 2
dh

dr
dr. ~5.12!

Notice that the magnetic flux, the charge, and the spin can be
explicitly integrated, because they depend solely on the
boundary conditions. Instead, the magnetic moment depends
on the structure factor of the vortex configuration.

For the rotationally symmetric ansatz~5.8! the Eq.~5.7!
reduces to

1

r

d

dr Fr d fdrG5
1

f ~12 f 2!F S d fdr D 22k2f 4G . ~5.13!

The same result is obviously obtained if we combine Eqs.
~5.9! and ~5.10!. If we consider the case of smallf we can
approximate (12 f 2)21'1. Then, Eq.~5.13! reduces to the
rotationally symmetric form of the Liouville’s equation,
which has the following solution:

f ~r!5
2N

kr F S r

r0
D N1S r0

r D NG21

, ~5.14!

whereN andr0 are arbitrary constants.
As mentioned before, the finiteness of the energy implies

that f (`)50 and, therefore, the valuea(`)52an is not
constrained. We asymptotically solve Eqs.~5.9! and ~5.10!
asr→`:

f ~r !5
Cn

~kr!a 2
Cn
3

4~a21!2 ~kr!3a22 1O„~kr!25a14
… ,

a~r !52a1
Cn
2

2~a21! ~kr!2a22 2O„~kr!24a14
…,

~5.15!

wherea[an andCn is a constant. Notice thatf (r) is as-
ymptotically small so the first two terms of the previous
expansion forf (r) can be directly obtained from the Liou-
ville approximation ~5.14! if we set N5a21 and
(kr0)

a215Cn /2(a21).
In the origin the boundary conditions area(0)5n and

n f(0)50. Hence, it is convenient to consider separately
two categories of solutions: the zero vorticity and the non-
zero vorticity.

1. n50. Nontopological solitons

In this casea(0) must vanish to ensure that the solution is
nonsingular at the origin, butf (0)5 f 0 is not so constrained.
These are nontopological solitons that are characterized by
the value of the magnetic fluxF5(2p/e)ua0u. The large-
distance behavior is given by Eqs.~5.15!, while asr→0 we
obtain a power-series solution

f ~r!5 f 02
f 0
3

4~12 f 0
2!

~kr!21
f 0
5~42 f 0

2!

64~12 f 0
2!3

~kr!4

1O„~kr!6… , ~5.16!
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a~r!52
f 0
2

2~12 f 0
2!1/2

~kr!21
f 0
4~22 f 0

2!

16~12 f 0
2!5/2

~kr!4

1O„~kr!6….

Acceptable soliton solutions exist for values off 0 in the
range 0, f 0,1. The short- and large-distance behaviors of
the solutions are related, sincea0 is a function off 0, see Fig.
1. The extreme values on this plot are obtained as follows. If
f 0!1 then f (r) remains small for allr and can, therefore,
be approximated by the Liouville solution. Comparing the
expansion in Eq.~5.16! with the one obtained from the Liou-
ville solution near the origin we see that the constantN in
Eq. ~5.14! should be set to 1 whilekr052/f 0. But now the
same Liouville solution is also applicable in the large-
distance region, comparing with Eqs.~5.15! we obtain
a52. Instead, asf 0→1 we find by numerical integration
thata0→1.755. Thus, the magnetic flux varies continuously
betweenF50.877(4p/e) andF54p/e. In Fig. 2 we show
profiles of the magnetic fieldB as function ofkr for several
values of the parameterf 0. For nontopological solitons the
magnetic field decreases monotonically from its maximum
value at the origin, so the soliton has a flux tube structure.

2. nÞ0. Nontopological vortices

Following Jackiwet al. @13#, we shall refer to these con-
figurations with nonvanishing vorticity as nontopological
vortices. In this case the boundary conditions imply that
f (0) must vanish anda(0)5n. The large-distance behavior
of the fields is given by Eqs.~5.15!. For smallr, a power-
series solution gives

f ~r!5 f n~kr!n2
f n
3

4~n11!2
~kr!3n121O„~kr!5n12

… ,

a~r!5n2
f n
2

2~n11!
~kr!2n121O„~kr!2n14

…. ~5.17!

The constantf n is not determined by the behavior of the
field near the origin, but is instead fixed by requiring proper

behavior at spatial infinity and that the function remains real
for all r. For each integern there will be a continuous set of
solutions corresponding to the range 0, f n, f n

max. For val-
ues such thatf n. f n

max there are no real solutions to the field
equations~5.9! and~5.10!, because the conditionf (r),1 is
not satisfied for allr.

If we consider the casef n!1, then f (r) is small for all
r and the Liouville approximation can be used everywhere.
In order to match the solution in Eq.~5.14! with both the
short- and large-distance approximations in Eqs.~5.17! and
~5.15! we should set:N5n11, (kr0)

(n11)52(n11)/ f n
andan5n12. Hence, the corresponding value of the mag-
netic flux isF54p(n11)/e .

The valuean5n12 is an upper bound. On the other
hand, asf n→ f n

max we find thatan tends to a minimum value
an
min . In fact, it is possible to derive sum rules@28# to prove

that an is restricted asn , an , n12. However, from a
numerical analysis we find a more stringent condition on the
lower bound. In Table I we present the values of the param-
etersan

min and f n
max for several vorticity numbersn. We ob-

serve that the lower bound foran can be taken asn11; this

FIG. 1. Behavior of thea0 as function of f 0 in the case of
nontopological solitons (n50). FIG. 2. The magnetic field in units of 1/e for the nontopological

soliton solution and values of the parameterf 0 of 0.8, 0.6, and
0.4.

TABLE I. The parametersf n
max andan

min for the short and large
expansion of the nontopological vortices as a function of the vor-
ticity numbern.

n f n
max an

min

1 0.607 2.142
2 0.153 3.043
3 2.2623 1022 4.021
4 2.3793 1023 5.013
5 1.9463 1024 6.009
6 1.3013 1025 7.009
7 7.3723 1027 8.006
8 3.6233 1028 9.003
9 1.5693 1029 10.002
10 6.3033 10211 11.002
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approximation improves for largern. Hence, we conclude
that the parameteran satisfies the inequalities

n11 , an , n12. ~5.18!

According to the previous results we can setan
min'n11.

Thus, for each integern the flux varies continuously between
Fn

min5(4p/e)@n11/2# and Fn
max5(4p/e)@n11#. Simi-

larly @see Eq.~5.3!# the energy spectrum consists of bands of
finite width:

4pk2

e2 Fn1
1

2G<En<
4pk2

e2
@n11#. ~5.19!

In Fig. 3 we show the magnetic fieldB(r) for the n51
andn52 solutions. For nontopological vortices the magnetic
field is localized within a ring.

If we select the value of the parameterf n5 f n
max in Eqs.

~5.17!, the functionf (r) will reach it maximum value at a
given radiusr5Rn , i.e., f (Rn)51. This parameterRn can

be considered as the radius of the soliton. In Fig. 4 we show
the profiles of the energy density as a function ofkr for
several values ofn. The energy is indeed concentrated in the
region r'Rn . In the next section we shall see that in the
largen limit, the vortex can be considered as a ring of radius
Rn'n/k and thickness 1/k. Furthermore, in the region
r;R the fields can be correctly approximated by a domain
wall solution. The value off n

max as a function ofn is plotted
in Fig. 5, where the solid line indicates the prediction of Eq.
~6.14! which we obtain in the next section using the domain
wall approximation.

We conclude this section with some comments about the
stability of the vortex solutions and also about the interaction
between vortices. The vortices are neutrally stable at the self-
dual pointm5k. This fact is easily demonstrated on account
of the relation ~5.3! between the energy and the charge:
E5kuQu/e: The mass of the elementary excitations of the

FIG. 3. The magnetic field in units of 1/e. ~a! For the nontopo-
logical vortex solution withn51 and values of the parameterf 1 of
0.6, 0.4, and 0.2.~b! For then52 vorticity solution with values of
f 2 of 0.15, 0.11, and 0.07.

FIG. 4. Plots of energy density for the vortex solutions with
several values of the vorticity numbern. In all of these configura-
tions the maximum value of the parameterf n5 f n

max was selected
from Table I.

FIG. 5. Behavior of f n
max as a function ofn. The solid line

corresponds to the asymptotic formula~6.14!, while the squares
represent actual data. The logarithm is to basee.
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theory ~scalar particles! is m and the chargee; because of
charge conservation, a decaying soliton should radiateQ/e
‘‘quanta’’ of the scalar particles, thus the energy of the el-
ementary excitations will beE5mQ/e. This indicates that
the vortices are at the threshold of stability against decay to
the elementary excitations because the ratioEn /E5k/m is
equal to 1 at the critical pointm5k. In fact, it is possible to
consider a perturbative method away from the self-dual point
@28# to prove that the soliton is stable against dissociation
into free scalar particles when the scalar mass is bigger than
the topological mass~i.e.,m.k). Instead, form,k the soli-
ton becomes unstable.

The self-dual point also corresponds to a point in which
the vortices become noninteracting. Again, this property en-
sues from the fundamental relation~5.3!. Consider two soli-
tons of chargesQ1 andQ2 of the same sign that are far apart.
According to Eq. ~5.3! their total energy is E
5(k/e)(Q11Q2). If the two vortices are superimposed at
the same point, because of charge conservation the resulting
configuration will represent a vortex solution of charge
Q11Q2. Then according to Eq.~5.3! the total energy will
again beE5(k/e)(Q11Q2). We, therefore, conclude that
the vortices are noninteracting. The perturbative analysis of
Ref. @28# shows that the vortex-vortex interaction is repul-
sive if m.k and attractive ifm,k. The self-dual point
m5k represents a transition between a phase in which vor-
tices attract and a phase in which they repel each other, simi-
lar to the transition between type-I and type-II superconduct-
ors. In fact, what we demonstrate in thef2 model is that the
attraction between vortices because of the interaction
through the scalar field has the same strength as the repulsion
because of the interaction through the vector field. Therefore,
when the range of the two interactions is the same (m5k),
the vortices become noninteracting. On the other hand, if the
range of the scalar interaction is smaller than the range of the
vector interaction (m.k), the intervortex potential is repul-
sive; while form,k the potential is attractive.

VI. DOMAIN WALLS

Domain walls appear in theories where the scalar poten-
tial possesses two or more disconnected but degenerate
minima. The field configuration interpolates between two ad-
jacent minima of the potential; the infinitely long boundary
separating these two vacua states is precisely the domain
wall. In 311 dimensions the domain walls are planar struc-
tures, instead in 211 dimensions they correspond to one-
dimensional structures with finite energy per unit length. Do-
main wall solutions have been found in a Chern-Simons
model @13# with a scalar potential of the formV(f)
}ufu2(v22ufu2)2.

The presentf2 theory possesses a single minimum, yet it
is possible to find one-dimensional soliton solutions of the
domain wall type. Consider a one-dimensional structure de-
pending only on thex variable, both atx→` and x→2`
the scalar field should vanish. However, there can be an in-
termediate region wherefÞ0, i.e., a region of false vacuum.
The maximum off determines the position of the wall. In
this section we show that such solutions indeed exist for the
f2 model. The domain wall carries both magnetic flux and
electric charge per unit length. Furthermore, these solutions

provide an approximate solution to the self-dual vortices in
the large-flux limit~largen limit !.

Seeking a domain wall solution parallel to they axis, the
translational invariance of the theory implies that all the
fields depend only onx. By an appropriate gauge transfor-
mation the scalar field is made real everywheref5(k/e) f
and the potentialAW is selected along they axis. Hence, the
expression ~5.1! for the energy with a potential
V(f)5(m2/2)f2 can be written as

E5
1

2E d2r Fk2

e2 S d fdx6mfD 21S ~12 f 2!1/2

f

dAy
dx

7
k fAy

~12 f 2!1/2D
2

7
mk2

e2
d f2

dx
6k

dAy
2

dx G . ~6.1!

As mentioned earlier, the boundary conditions for the scalar
field are f (2`)5 f (`)50. The magnetic flux per unit
length (g) is given by g5Ay(`)2Ay(2`), so Ay(`)
ÞAy(2`) is required in order to get a nonvanishing mag-
netic flux. A configuration is sought which has a definite
symmetry with respect to the positionX of the domain wall,
thenAy(`)52Ay(2`)[g/2 is selected.

The static solution is obtained minimizing the energy per
unit length withg fixed. The boundary conditions cannot be
satisfied if the same upper~or lower! signs in Eq.~6.1! are
used for allx. Rather, the upper signs in the region to the
right of the domain wall (x.X) are selected, whereas for
x,X we take the lower signs. With this selection the mini-
mum energy per unit length becomes

E5
k2m

e2
f 0
21

k

4
g2, ~6.2!

where f 0[ f (X). This result is obtained provided that the
fields satisfy the equations

d f

dx
57mf ,

dAy
dx

56
k f 2

~12 f 2!
Ay, ~6.3!

where the upper~lower! sign must be taken forx.X
(x,X). These equations are easily integrated to give

f ~x!5e2mux2Xu ,

Ay~x!5sgn~x2X!
g

2
~12e22mux2Xu!k/2m. ~6.4!

This is a domain wall configuration localized atx5X
with a width of order 1/m. The solution to the first in Eqs.
~6.3! does not restrict the value off 0. However,f 051 has to
set so the gauge field be continuous everywhere. The anti-
kink configuration is obtained by simply reversing the signs
of the fields in Eqs.~6.4!.

The domain wall carries a magnetic flux and charge per
unit length given byg and 2kg, respectively. Although
there is a linear momentum flow along the domain wall
given by
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T0y5
k

2

dAy
2

dx
, ~6.5!

where Eqs.~2.15! and ~4.5! have been used, we notice that
the flow at opposite sides of the wall cancels, hence the total
linear momentum of the domain wall vanishes. The magnetic
field is given by

B5
kg

2
e2mux2Xu~12e22mux2Xu!k/2m21. ~6.6!

Notice that fork,2m the magnetic field is concentrated
nearx5X and falls off rapidly away from the wall. Instead,
for k>2m the magnetic field vanishes atx5X and the pro-
file of B is double peaked with maximums at
x5X6(1/m)u ln(k/2m)u.

The method presented in this section resembles the one
used to derive the self-duality equations, so it could be ques-
tioned whether the two methods are equivalent. In general, it
is not so: the self-dual limit is valid whenm5k, whereas for
the domain wall solution there is no such restriction. How-
ever, form5k it is straightforward to check that the fields in
Eqs. ~6.4! exactly solve the self-duality equations~5.4! and
~5.5!, with the magnetic flux and energy per unit length de-
termined as

g5
2k

e
, E5

2k3

e2
. ~6.7!

The domain wall solutions in Eqs.~6.4! can also be
adapted to approximate rotationally symmetric configura-
tions. Indeed, the vortex configurations simplify in the large
n limit and it is possible to utilize the domain wall as an
approximated solution to the self-dual vortices. Let us con-
sider a ring of large radiusR and thickness of order 1/m
separating two regions of vacuum. The magnetic flux is con-
centrated within this domain of width;1/m where a region
of false vacuum (fÞ0) is trapped. IfR@1/m;1/k, then
the fields near the ring should be well approximated by the
domain wall solutions~6.4!. Nevertheless, in order to have a
configuration with vorticityn the phase of the scalar field
should vary uniformly with angle, see Eq.~5.8!; hence, we
gauge transform the fields in Eqs.~6.4!. Thus in the region
r;R, the fields configuration reads

f~r!'
k

e
e2 inue2mur2Ru ,

AW ~r!'ûFg2sgn~r2R!~12e22mur2Ru!k/2m2
n

eRG ,
~6.8!

with g5F/(2pR). In first approximation the energy is
dominated by the contribution near the domain wall; so ac-
cording to Eq.~6.2! the energy can be approximated by

E'2pRFmk2

e2
1S F

4pRD 2G . ~6.9!

To obtain a domain wall that is stable against contraction
or expansion the energy is minimized for a given magnetic
flux. Minimizing the energy as a function of the radius yields

R'
eF

4pAmk
, ~6.10!

and thus

E'Am

k

k2

e
F. ~6.11!

This value for the energy saturates the Bogomol’nyi limit
~5.3! whenm5k, indicating that the fields must be solutions
of the self-duality equations. Indeed, we can verify that near
r'R the fields in Eq.~6.8! solve the Bogomol’nyi equations
~5.9! and ~5.10! if the radiusR is chosen as in Eq.~6.10!.
Using the expression~5.11! for the magnetic flux we obtain
R5(n1an)/(2k) for the radius that minimizes the energy.
Then, the conditionR@1/k implies n@1, as expected for
the largen limit.

In the domain wall solution the scalar field reaches its
maximum valuef51 at r5R. Recalling the discussion of
the previous section, forn@1 the domain wall approximates
the vortex solution in which the constantf n in the short-
distance expansion~5.17! is chosen asf n5 f n

max. But for
f n5 f n

max the parameteran reaches its minimum value; then
according to Eq.~5.18! we can takean5an

min'n11 and so
the magnetic flux and the radius become

F'
4p

e S n1
1

2D ,
R'

1

k S n1
1

2D , ~6.12!

respectively. This result forR is in agreement with the one
predicted by the maximum of the energy density in Fig. 4.

The domain wall solution can be combined with the Liou-
ville approximation to find an explicit expression for the con-
stant f n

max. The scalar field decays exponentially away from
the domain wall, whereas the asymptotic behavior of the
Liouville solution shows a power law both at large and small
r. However, in the largen limit both approaches can be
compatible. We introduce the relative coordinatej5R2r,
the domain wall approximation for the scalar field is
f (r )'exp(2kuju). At small r we can use the power-series
solution ~5.17! or, equivalently, the Liouville approximation
~5.14! with N replaced by n11 and (kr0)

(n11) by
2(n11)/ f n , in either case the leading contribution yields

f ~r !' f n
maxkn~R2j!n5 f n

max nn S 11
~1/2!2kj

n D n
' f n

max nn exp@~1/2!2kuju#. ~6.13!

As we are considering the largen limit the last equality was
obtained using the identity limn→`(12z/n)n5e2z. By com-
paring the previous result with the domain wall solution we
find that the constant in the short-distance expansion~5.17!
of the vortex solution must be
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f n
max5

e21/2

nn
. ~6.14!

This result is expected to provide an adequate approximation
for largen. Remarkably, as shown in Fig. 5, the actual value
of f n

max is reproduced rather well by Eq.~6.14! for all values
of n.

The Liouville approximation is also valid at larger;
therefore, we can use the same approach to determine the
coefficientCn in the large-distance expansion~5.15!. How-
ever, the large-distance expansion~5.15! and the domain
wall solution can only be made compatible if we take
an'n instead ofan5n11; a sensible approximation for
largen. This yieldsCn5nn' f n

21 . This result suggests the
existence of a relation between the large- and short-distance
behavior of the vortex configuration. Indeed, comparing the
leading terms in Eqs.~5.15! and ~5.17! and recalling that
an'n, we find that for largen the vortex configuration is
symmetric under the exchangekr/n↔n/kr.

VII. FINAL REMARKS

In this work we described a self-dual Maxwell-Chern-
Simons model which includes an anomalous magnetic cou-
pling between the scalar and the gauge fields. We first con-
sidered a general scalar potential in order to discuss both the
symmetric and the broken phases of the theory. We found
that the induced Chern-Simons term, arising from the com-
bined effect of the spontaneous symmetry mechanism and
the magnetic moment, has the same properties as those of the
explicit CS term only in the topological trivial sector of the
theory. We also found that in the broken phase the propagat-
ing modes of the gauge field consist of two longielliptic
waves with different values for the masses.

For a particular relation between the Chern-Simons mass
and the magnetic moment, Eq.~4.1!, the gauge field equa-
tions reduce from second- to first-order differential equa-
tions, similar to those of the pure Chern-Simons-type. The
self-dual limit occurs for a simplyf2 potential when the
scalar and the Chern-Simons masses are equal. Several prop-
erties of the self-dual vortices were analyzed both by analyti-
cal and numerical methods. In particular, the energy spec-

trum of the nontopological vortices consists of bands of
constant width,DEn52pk2/e2, centered at the values
En5(4pk2/e2)(n13/4), see Eq.~5.19!.

We also considered one-dimensional configurations. Ex-
act analytical domain wall solutions were found@Eq. ~6.4!#
for arbitrarym andk. In general, these configurations will
not be stationary. We found, however, that form5k, the
fields in Eqs.~6.4! saturate the Bogomol’nyi limit and con-
sequently, the configuration represent a one-dimensional
stable kink with magnetic flux and energy per unit length
given by Eq.~6.7!. Furthermore, we found that in the large
flux limit the nontopological vortices can be correctly ap-
proximated by the domain wall solution.

In the self-dual pointm5k the vortices become noninter-
acting and static multisoliton solutions are expected. The
index-theorem methods can be used to determine the number
of independent free parameters that characterize a general
n-vortex solution of the self-dual equations. The result can
be obtained by counting the zero modes of the small fluctua-
tions which preserve the self-duality equations. For nontopo-
logical vortices the calculation requires the subtraction of the
continuous spectrum. The form of the fluctuations of Eqs.
~5.4! and ~5.5! near and far from the origin are similar to
those of solitons in thef6 model considered in Ref.@13#.
The result can then be taken from that paper. The number of
free parameters in the general solution of nontopological
vortices is 2(n1ân21) whereân is the greatest integer less
than an . But according to Eq.~5.18! in the f2 model we
have ân5n11. Consequently, the number of independent
free parameters for then-soliton solution is 4n. The result is
consistent with the fact that we require 2n parameters to fix
the position ofn solitons in the plane, while the phases and
the fluxes are determined by the other 2n parameters.

This model raises a number of interesting questions for
further investigation. In particular, a complete description of
the multisoliton solution deserves to be clarified. It may also
be interesting to investigate the properties of the model away
from the self-dual point, including the vortex interactions.
Finally will be of great interest the study of the properties of
the Chern-Simons vortices upon quantization, because they
can be considered as candidates for anyonlike objects in pla-
nar systems.
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6338 55ANTILLÓN, ESCALONA, AND TORRES


