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Vortices and domain walls in a Chern-Simons theory with magnetic moment interactions
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We study the structure and properties of vortices in a recently proposed Abelian Maxwell-Chern-Simons
model in 2+ 1 dimensions. The model which is described by a gauge field interacting with a complex scalar
field includes two parity- and time-violating terms: the Chern-Simons and the anomalous magnetic terms.
Self-dual relativistic vortices are discussed in detail. We also find one-dimensional soliton solutions of the
domain wall type. The vortices are correctly described by the domain wall solutions in the large flux limit.
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I. INTRODUCTION with either relativistic{11] or nonrelativistic{12,13 dynam-
ics for the matter degrees of freedom. In the case of the

Of the gauge field theories, the self-dual theories deserveelativistic theory self-dual topological and nontopological
special attention. Self-duality refers to theories in which thevortex solutions have been found with a particular sixth-
interactions have particular forms and special strengths suabrder potential of the fornv( )~ | ¢|%(| #|>—v?)? when the
that the equations of motion reduce from second- to firstvector and scalar masses are edqdal13.
order differential equations; these configurations minimize a The question can be posed as to whether there are self-
functional, often the energhl]. For example, the Abelian- dual models in which the gauge field Lagrangian includes
Higgs model admits topological solitons of the vortex typeboth the Maxwell and the Chern-Simons term. A self-dual
[2]. In this model the scalar potential is of the form Maxwell-Chern-Simons gauge theory can be constructed if a
V(¢)~(|¢|2—v?)? and the vortices satisfy a set of magnetic moment interaction is added between the scalar
Bogomol'nyi or self-dual equations when the vector and scaand the gauge fieldsl4].! If the interest is pursuit in a low
lar masses are chosen to be ed®df]. The self-dual point energy effective theory containing at most second-order de-
corresponds to the boundary between type-l and type-Il suivative terms, such a magnetic moment interaction has to be
perconductors. In this point the vortices become noninteractincluded. Two steps are followed to obtain the self-dual
ing and static multisoliton solutions may be expeci&b]. limit. First, a particular relation between the CS mass and the
We also notice that the self-dual structure of the gauge theanomalous magnetic coupling is established whereby the
ries is related at a fundamental level to the existence of aequations for the gauge fields reduce from second- to first-
extended supersymmetfy]. order differential equations similar to those of the pure CS

Recently, considerable interest has been paid to the studheory. Second, if the scalar potential is selected as a simple
of vortex solutions in(2+1)-dimensional Chern-Simons ¢? potential and the scalar mass is made equal to the topo-
(CS gauge theories. One common feature of the Chernlogical mass, the energy obeys a Bogomol'nyi-type lower
Simons solitons is that they carry electric charge as well abound, which is saturated by fields satisfying self-duality
magnetic flux[8], in contrast with the electrically neutral equations. The potential possesses a unigue minimum at
Nielsen-Olesen vortices. In addition, they possess fractionap=0 and topological solitons certainly do not exist, yet the
spin, a property that is fundamental to consider them as canheory allows nontopological vortex configurations. In this
didates for anyonlike objects in quasiplanar systems. Selfpaper we examine the theory and the properties of these non-
dual Chern-Simons theories are known to exist if one contopological vortices in more detail. In addition, we find that
siders pure CS theories. In these theories the Maxwell ternthe model admits one-dimensional soliton solutions of the
in the Lagrangian is absent and the dynamics for the gauggomain wall type. The domain wall carries both magnetic
field is solely provided by the Chern-Simons tef$110.  flux and electric charge per unit length. Furthermore, we find
The self-dual Chern-Simons theories enable a realization

1The author of Ref[15] analyzed the Abelian Chern-Simons

*Electronic address: armando@ce.ifisicam.unam.mx model with a sixth-order potential when the Maxwell term is in-
"Electronic address: joaquin@servm.fc.uaem.mx cluded. In this case it is necessary to add a neutral scalar field to
*Electronic address: manuel@teorical.ifisicacu.unam.mx obtain the self-dual condition.
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that the domain wall configurations provide an approximatdn terms of the dual field the CS term takes the simpler form

solution to the self-dual vortices in the large flux limit. It («/2)A, F#. The introduction of an anomalous magnetic

must be emphasized that the existence of domain wall solierm in the covariant derivative is consistent with the Lorentz

tions is unexpected, because the scalar potential has a unigard the gauge invariance of the theory; however, it breaks

nondegenerate minimum. the P and 7 symmetries. A specific feature of a
As mentioned above there are several aspects ofsthe (2+ 1)-dimensional world is that a Pauli-type couplifig.,

Maxwell-Chern-Simons gauge theory which justify further a magnetic couplingcan be incorporated into the covariant

consideration. In Sec. Il we introduce the model in which aderivative, even for spinless particlg6,17,14. In fact, in

charged scalar field is coupled via a generalized covariarRef. [18] it was demonstrated that radiative corrections can

derivative to the gauge field whose dynamics includes botlinduce a magnetic coupling for anyons, proportional to the

the Maxwell and the Chern-Simons term. Initially, we con-fractional spin. The electromagnetic interactions of charged

sider an arbitrary renormalizable scalar potential #112di-  anyons, in particular its magnetic moment, have also been

mensions in order to discuss properties of the theory both idiscussed for point particles in 21 dimensions using the

the symmetric and in the spontaneously broken phase. Aappropriate representations of the Poinagnaup[19].

first pointed out in Ref[16], the nonminimal term in the The most general renormalizable potential in22dimen-

covariant derivative combined with the spontaneous symmesions is of the form

try mechanism induces a kind of Chern-Simons term. How-

ever, we demonstrate that the induced CS term behaves in V() =ag|p|°+asl p|*+az| p|°. 2.4

the same way as the explicit CS term only in the topological

trivial sector of the theory. The properties of the two termsAs We shall see later, the particular second-order form of the

are different in the topological nontrivial sector, in particular scalar potential together with its overall strength is fixed by

the induced CS term does not contribute to the fundament&elf-duality condition. For the time being we leave the pa-

relation between charge and magnetic flux. Rather, the magameter in Eq(2.4) free in order to discuss both the broken

netic moment induces a contribution to the magnetization ofind the unbroken phases of the theory.

the vortex that is proportional to the charge of the configu- As Paul and Khar¢16] point out a CS term can be gen-

ration. In Sec. Ill we study the propagating modes for theerated by spontaneous symmetry breaking. However, the

vector field, which consist of two longielliptic waves with Properties of this CS term are not the same as those of the

different values for the masses. Then in Sec. IV we discusgxplicit CS term appearing in Eq2.1); we would like to

the conditions required to reduce the original gauge fieldinderstand the origin of these differences. Suppose the po-

equations to equations of the pure Chern-Simons type. Seéential is selected to have symmetry-breaking minimum at

tion V is devoted to the derivation of the self-duality equa-|¢|=v. Then in terms of the gauge-invariant potential

tions, and to the detailed analytical and numerical study of 1

the cylindrically symmetric vortex solutions. In Sec. VI we X _ A _ T

discuss domain wall solutions with finite energy per unit Au = Ay e[?" ATg (), @9

length and use these to further examine the properties of the

vortex solutions in the large flux limit. Concluding remarks the contribution of the covariant derivative to the Lagrangian

comprise the final section. evaluated in the vacuum configurationgp(=v) can be

written as

Il. THE MODEL 2.2

1 1 ~~ 0 ~
: = 2= e2?A A*+ ——F FA+egqu?A FH|.
Our model possesses a loca(lY) symmetry and is de- 2|D"¢)| 2/ €Y Auh 4 FuFfreqA,

scribed by the effective Lagrangian (2.6

1 p 1 The first term in this expression is the usual gauge field mass
L=— ZFWF“” +Ze’“’aAﬂFm+ §|DM¢|2—V(|¢|), (M=ev) generated by the spontanous symmetry breaking.
2.2) The second term modifies the coefficient of the Maxwell
' term in the Lagrangian. Finally, the last term is a kind of
. . CS-type term generated by the spontaneous symmetry break-
where « is the topological mass,,=d,A,~d,A,. We a0 \ith topological masev2g. However, the explicit CS
use natu_ral un|t§=c=.1 and the Mlnkowskl_—space_me_tnc term is of the form (/2)A F*. Instead, in the induced CS
s 9,,=diag(1;~1,-1); ©=0.1,2. The covariant derivative . ru couples toA,, rather than toA,,. The gauge field
is generalized as ~ ) oM o (ol )
A, is massive so it has a finite correlation length. This does

not imply thatA, should also fall off exponentially; it can

Fre=g —jeA —i 9,: remain a pure gauge. Indeed, this is the case around a vortex
)2 L 2 7R . . . .
where the long-range contribution, which is locally pure
(2.2) gauge, is globally nontrivial giving rise to a nonvanishing

magnetic flux. One of the effects of the explicit CS term is
where we have defined the dual field that a vortex with magnetic flu® must also carry electric
chargeQ, with the two quantities related &= — «®. The
induced CS mass tergv2g does not contribute to this rela-
tion because of the finite correlation length A&f . Conse-

. .9
DMZ&M—IEAM—IZGMM

F =

"

€.apF“P. (2.3

N| -
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quently, we conclude that in topologically nontrivial sectoris found by coupling an external magnetic field and extract-
the induced termA ,F* in Eq. (2.6) has not the same prop- ing the linear coupling from the Lagrangi&®.1). It is given
erties as those of the CS term; so it cannot be consideredy

genuine CS term. Only in the topologically trivial sector

does the induced term have the same properties as those of -

the explicit CS term. M = J d*x(ex J), (213

The equations of motion for the Lagrangian in Ef.1)
are where] is the matter current in E¢2.9). Utilizing the modi-

fied Ampere law in Eq(2.11), we find for a static configu-
D, Dhp= —Zﬂ 2.7) ration
® 5¢* ! )
g K o = =

g M:q)—g —Efdx(r-E). (2.19

€uvad” F“+2—eJ“ =J,—«kF,, (2.9

In the absence of parity-breaking terms the magnetization is

where the conserved Noether current is given as equal to the magnetic flux, a result known for the neutral
Nielsen-Olesen vorticeg2]. Here M has two extra pieces:
B ie . . the magnetic momergt which induces a contribution propor-

Ju=- EW (Dudb) = H(Dup)* . (29 tional to the charge of the configuration; and the term pro-
portional tox which, unlike the two first contributions, de-

From the equation of motiof2.8) it is clear that we can Pends on the structure factor of the vortex configuration so it

define a currenty, that is also conservedr, is defined by ~ cannot be explicitly integrated. _ _
Finally, the energy-momentum tensor is obtained by vary-
g ing the curved-space form of the action with respect to the
T,=J,+ Eewaa”\)“. (210  metric
2
If th(_e currentJ,, is bounded or vanishes faster tham &t T g_|¢|2)(|:ﬂ|:v_ 29, FaF%)
spatial infinity, then the charges calculated frdmand 7, 4
coincide[21]. 1
_ Let us further exar_nine the gauge field gquations of mo- + E{V,LQ”(VM)* —gﬂv[%lvx¢|2—V(|¢|)]+H. cl,
tion (2.8) expressed in terms of the electric and magnetic

fields E;=F andB=F*2 respectively; they read (2.15

1_

wr=—

A\ E_KB:p+ %E”&I\]J y

whereV ,=d,—ieA, only includes the gauge potential con-
tribution. The Chern-Simons and linear termsgndo not
appear explicitly inT,,,. This is a consequence of the fact
) ) g ) that these terms do not make use of the space-time metric
€j(d'B+kE) =3+ §€ijﬁjp+5oEi : (21)  tensorg,,, thus wherg,,, is varied to producd ,, no con-
tributions arise from these term%0]. The expressioi2.15
n be considered as the energy-momentum tensors of an
elian Higgs model in which the Maxwell term is multi-
lied by a particular dielectric function of the form

1-(g*/4)||*] [20].

These equations can be identified as the modified Gauss ari
Ampere laws, respectively. One of the most important con-
sequences of the CS term is the fact that any object wit
magnetic flux ®=[d?xB also carries electric charge
Q= fd?xp, with the two quantities related as

I1l. PROPAGATING MODES

Q= —«o. 212 The model described in the previous section has in gen-

. . eral three propagating modes in the vacuum state, one of

Indeed, integrating the Gauss Lé(\?l-ll) over all space we which corresponds to the scalar field. In order to describe the

find that the contribution ofV-E is zero, because of the particle content of the gauge field degrees of freedom, we

long-distance damping produced by the “photon” mass.consider the broken phase in which the potential has a

Similarly, the integral of the last term also vanishes; this issymmetry-breaking minimum &t|=v. The plane wave so-

true even if the symmetry is spontaneously broken. The reégytions to the linearized Maxwell equatid2.11) with A,

son, as explained earlier, is that in the Higgs vacuum thexeik'x and k“= (o IZ) lead to the dispersion relation
rrentJ, mak f the massive fi in f = ' .

A Hense, we obian the desired result m €212, - @=IK>+ e, where the photon masses are given by
While the magnetic momeng does not have a direct 5 — — —

effect on the fundamental relatiof2.12, it does produce _E(ktev )+ V(k+ev?g)?+4e’v?(1-v?g?/4)

interesting effects, one of which can be found in the magne- = 2(1-v2g%l4)

tization of the excitations of the system. The magnetization 3.1
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The two values for the photon mass are related with two 4

different polarizations of the electromagnetic wave. From the —=v° (3.4
plane wave solution foA* and assuming that the wave g

propagates along theaxis we find that the the electric field |f the previous relation is not satisfied then the model is no
can be written as longer positive definite. In this case any gauge field fluctua-

tion with wave vectok, such that

elkx, (3.2 i v2e?  mi 2
| | 9202_4 2 ( 5)

Hence, the waves are neither transverse nor longitudinal; inwill render the model unstable.
stead, the solutions correspond to right-handed and left- For the purposes of our pursuit we have considered that
handed longielliptic waves. We notice that the two masses igondition(3.4) holds, thus expect the theory to be stable both
Eg. (3.1) may also be deduced from the gauge propagator, dior classical and quantum fluctuations of the fields. In par-
by the explicit analysis of the corresponding Maxwell-Procaticular, for a¢? potential wherey=0 condition(3.4) is sat-
equation. isfied. The analysis above considered the stability of the
From the work of Pisarski and Rd4@2] it is known that model under the assumption of small field fluctuations. The
the combined effect of the CS term with the mass induced bynalysis of the stability under large field fluctuations is a
the Higgs mechanism produces two gauge modes with difmatter of further work. In this section we have analyzed the
ferent masses. From E@3.1) it follows that to have two propagating modes and the stability of these solutions in the
distinct masses it is required that both spontaneous symmettgpological trivial sector of the theory; the stability of the
breaking and at least one of tie and 7-violating terms  soliton vortex configuration will be discussed at the end of
exist. The induced ternev2g simply adds to the CS mass Sec. V B.
k, as we are considering here the topologically trivial sector

of the theory. IV. THE PURE CHERN-SIMONS LIMIT
Our result in Eq(3.1) reduces to well-known cases when
the corresponding limits are considerdd: If the parity- A theory in which the Maxwell kinetic term is dropped

violating terms vanish£=g=0) we obtain the usual gauge and the dynamics is solely provided by the CS term has been
mass m.=ev produced by the spontaneous symmetryfrequently consideref9,10]. As mentioned in the introduc-
breaking;(ii) in the symmetric phase=0 there is only one tion, charged vortex solutions are possible in these models.
propagating mode with mass. The existence of massive In the Maxwell-Chern-Simons theory without magnetic mo-
gauge-invariant theories in 21 dimension, without the ment interactions the pure CS limit can be formally obtained
Higgs mechanism, is known from the topological massiveby taking the limite?, k — o keepinge® « fixed and re-
gauge theorie$9]; (iii) if we cancel the magnetic moment scaling the gauge field bp, —A /e [23]. This limit is
(g=0) we recover the result of Paul and Kh#8d. shown to be equivalent to simply neglecting ﬂflﬁy term in

The stability of the model is a genuine concern and wethe Lagrangian. In the model described by E2j1) there is
now address this point. In terms of the electric and magnetia particular relation between the CS mass and the anomalous
fields the energy densityT(,) can be written as magnetic moment for which the Eq&.8) for the gauge

fields reduces from second- to first-order differential equa-

1 G tion [17,14,24, similar to that of the pure CS type. To obtain
TOOZE( 1— Z|¢,|2 (E?+B?)+3|Vop|?+1|V,0|? this limit we notice that if we set
2e
+V(g). 3.3 K== 4.1

Hence, one may think that the magnetic moment contributioh€n any solution to the Eq2.8) can be written as

will in general spoil the positive definiteness of the Hamil- 1

tonian. _ = _ F,==J, + \G,, (4.2)
To investigate the conditions required to have a stable K

model consider small scalar and gauge field fluctuations hereX i bit tant an@ . i luti f th

around the vacuum solution, in such a way that only quayv ereA IS an arbitrary constant ana,, 1S sofution ot the

dratic terms on the fluctuation fields are retained. First, it ishomogeneous field equation

straightforward to check that the model is stable for small €,,a0"GY=—kG,. (4.9

fluctuations of the scalar field. This fact would not be true in K

the presence of a constant external magnetic field; however, In the vacuum the original theory possesses two gauge

we recall that, because of the topological mass term, a corpropagating modes with different masses. In the limit

stant magnetic field is not a solution of the equations ofx=—2e/g, the gauge field masses in E@®.1) reduce to

motion. The next step is to consider gauge field fluctuationsm, = ke?v?/(k?>—e?v?) and m_=«, respectively. Clearly,

whereas the scalar field remains at the minimum of the pothe excitations described by the field, carry a mass

tential, i.e.,|¢|=v. Clearly, the energy remains positive m_=«. However, if the nonperturbative sector with vortex

definite if the following relation holds: solutions is considered, it is easy to see that any solution to
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the homogeneous equatida.3) gives an infinite contribu- model. Thus, starting from E@5.1), we can follow the usual
tion to the energy of the configuration. Consequently, for theBogomol'nyi-type arguments in order to obtain the self-dual
solitons to have finite energy the constantin Eq. (4.2 limit. The energy may then be rewritten, after an integration
should be set to zero. Hence, when the relatibt) between by parts, as

the coupling constant holds, the gauge field equation of mo-

tion reduces to e Ef i K2_292|f|2/ . xe|¢|? )2
ety (4.4 i I A efar
o Hfotoi-1 =24 x|
This is a first-order differential equation that automatically - V2= g2

satisfies the second-order equati@8 when k= —2e/g.
This equation has the same structure as that of the pure CS +J' d2x
theory[9,10]. So, we shall refer to Eq$4.1) and(4.4) as the
pure CS limit. However, we should notice that the explicit
expression forJ, differs from that of the usual pure CS whered. =d,*+id,, A.=A;*iA,, and® denotes the mag-
theory, because according to E¢&2) and(2.9), J, receives  netic flux. From the previous equation we observe that the
contributions from the anomalous magnetic moment. energy is bounded below; for a fixed value of the magnetic
The gauge field equatiofd.4) represents a first-order dif- flux the lower bound is given b =(«?e)®, provided that
ferential equation, so its propagating modes should be chathe potential is chosen Ag ) =(m?/12)| $|? with the criti-
acterized by only one mass. It is straightforward to checkcal valuem=«, i.e., when the scalar and the topological
that this mass is given byn,=«e’v? (k*~e*?). The masses are equal. Therefore, in this limit we are necessarily
other massm_= « decouples in the nontrivial topological within the symmetric phase of the theory. From E52) we
sector because of the finite energy condition. Henceforth, weee that the lower bound for the energy
work on the limit in which Egs(4.1) and (4.4) are valid.
Consequently, we shall consider Ed.4) instead of the Eq. K2 K
(2.8) as the equation of motion for the gauge fields. E = ?ICI>|= EIQI (5.3
In terms of the gauge-invariant potential in E8.5), the
pure CS equatioi4.4) reads

+K2c1> 5.2
g| |, (5.2

1
V()= 5122

is saturated when the following self-duality equations are

ke b2 ~ satisfied:

F.=— = 7A.. 4,

" (K2—62|¢|2) " ( 5) Ke|¢|2

® T e .
V. NONTOPOLOGICAL SOLITONS
A. Bogomol'nyi limit 1 iex|o|? _
il : : 50| P = A (5.9
In the Bogomol'nyi limit all equations of motion are 2 [k*—e?| ¢|°]

known to become first-order differential equatidi®g; fur-

thermore, it is possible to recast the equations of motion aghere the uppeflower sign corresponds to a positiveega-
self-duality equations. In the pure CS lint#.1), the gauge tive) value of the magnetic flux. We should remark that the
field equations have been already reduced to the first-ordgjresent model in the self-duality limit corresponds to the
equations in Eq(4.4); however, the scalar field is still gov- posonic part of a theory with altN(= 2)-extended supersym-
erned by the second-order equatid@s’). Here we outline metry [27].

the necessary steps to derive the self-duality limit. The self- Equation (5.4) implies that the magnetic field vanishes
duality equations for thes”> model have been reported pre- wheneverg does. The finiteness energy condition forces the
viously [25,26] but are mentioned here for completeness andscalar field to vanish both at the center of the vortexcept
also to be used in the discussion of domain wall solutionsfor the nontopological solitons, see next sectiand also at
We can exploit the pure CS equatioh5) to eliminateA,  spatial infinity; consequently, the magnetic flux of the vorti-
andE; from the expression of the energy density in 313 ces lies in a ring. It is interesting to observe that &q5) can
Hence, we can write down the ener@y=/d’xTqo for @ be written as an explicit self-duality equation; indeed, if we

static configuration as define a new covariant derivative asD;=4
L[kl 1 L kgl -, —i2ex/\Jk?—e?|$[?, then Eq.(5.5) is equivalent to
Di|¢|°=Fie;Djl 4| (5.9
+V(¢)>- (5.1) Equations(5.4) and(5.5) can be reduced to one nonlinear

second-order differential equation for a unknown function.
To ensure the positivity of the energy here it is assumed thato do this first notice that Eq5.5) implies thatA; can be
k’=e?|¢|? . The energy written in the previous form is determined in terms of the scalar field, on substituting the
similar to the expression that appears in the Nielsen-Oleseresult in Eq.(5.4) we get
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72 42 2
VKk“—e?| | xe|¢| K 2
3| ——=——aIn(|¢|?) |+ —=—=—=—==0. (5. S= —(ap—n9),
m (= ,d
B. Rotationally symmetric solutions M=-2 o Edr- (5.12

The self-dual limit is attained for & potential; conse-
quently, topological solitons do not exist. However, theNotice that the magnetic flux, the charge, and the spin can be
theory allows nontopological soliton solutions. In order toexplicitly integrated, because they depend solely on the
look for vortex solutions we now consider static, rotationally boundary conditions. Instead, the magnetic moment depends

symmetric solutions of vorticity represented by the ansatz on the structure factor of the vortex configuration.
For the rotationally symmetric ansat.8) the Eq.(5.7)

. . a(p)—n . K reduces to

Alp)=—10 + Aolp)=ghlp),
1d[ df] 1 df\? 2 51
pdp|Pdp| Fa-1ldp) <" 13

$(p)= = f(p)exa ~in), (5.8

The same result is obviously obtained if we combine Egs.
(5.9 and(5.10. If we consider the case of smdllwe can
where p, 0 are the polar coordinates. After substituting this @Pproximate (%) ~*~1. Then, Eq/(5.13 reduces to the

ansatz the self-duality equatiofs.4) and (5.5 become rotationally symmetric form of the Liouville’s equation,
which has the following solution:

l1da _  «%f? 5.9 ON[{ p\N [ po\N~
S ds T (12 - f(p)=— —) +(—> : (5.19
pdp  (1-19 (p) kp |\ po p

df fa whereN andp, are arbitrary constants.

%z im' (5.10 As mentioned before, the finiteness of the energy implies

that f(2)=0 and, therefore, the valug(«)=—«, is not

] ] o ] constrained. We asymptotically solve E¢S.9 and (5.10
Notice that the functiomn(p) can be explicitly solved using asp—w:

Eq. (4.4) ash(p)=(1—f?)*2 In what follows, we select the
signs(upper signs in the previous equatipr®rresponding
to positive magnetic fluxr(>>0). The equations fon<<0 are
obtained with the replacemeat-—a, f—f, andh— —h.
The boundary conditions are selected in such a way that c2
the fields are nonsingular at the origin and give rise to a finite  g(r)=—a+ n
energy solution. The first condition implies the&t0)=n and 2(a—1) (kp
n f(0)=0. Whereas the finiteness of the energy implies that
a— —ay andf—0 asp—oo. Notice that these requirements

leave a(e) = —a, undetermined. Consequently, the rnag'ymptotically small so the first two terms of the previous

netic flux for nontopological solitons is not quantized, bUtexpansion forf(p) can be directly obtained from the Liou-

rather is a continuous parameter describing the solution. "\’/ille approximation (5.14 if we set N=a—1 and

deed, once the boundary conditions are known, the “quan—Kp )y 1=C/2(a—1)
" : L 0 =Ln :
tum” numbers of the soliton can be explicitly computed. In'the origin the boundary conditions ag0)=n and

With the ansatz (5.8, the magnetic field is B L ) )
o : - n f(0)=0. Hence, it is convenient to consider separately
=(1/r)(da/dr), and so using the boundary conditions thetwo categories of solutions: the zero vorticity and the non-

magnetic flux and electric charge are zero vorticity.

Cn

3
(kp)®  4a—1)% (x

f(r): p)3a72+o((’<p)75a+4):

)22 —O((kp) %),
(5.15

where a=«,, and C,, is a constant. Notice thdt(p) is as-

1. n=0. Nontopological solitons

2 2
b=- %= J d?xB= ?Tr[a(O)—a(OO)]=?7T(n+ ap).
(5.11

We shall later see that for every value of the vortigityhe
allowed values fow, are restricted according to E¢5.18).
The solutions are also characterized by the $pimhich in
general is fractiongland the magnetic momeM. The spin

is obtained from the gauge-invariant symmetric energy-

momentum tensof2.15) via S= [ d?x(e' x;Ty;); whereas for
the magnetic moment we use HG.14. An explicit calcu-
lation yields

In this casea(0) must vanish to ensure that the solution is
nonsingular at the origin, budt(0)= f, is not so constrained.
These are nontopological solitons that are characterized by
the value of the magnetic flup=(27/€)|ay|. The large-
distance behavior is given by Eq$.15, while asp—0 we
obtain a power-series solution

~ 3 , 4=t
f(P)—fo_4(l—_f(2)—)(KP) +m("[’)

+0((xp)®), (5.16
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FIG. 1. Behavior of theay as function off, in the case of
nontopological solitons(=0). FIG. 2. The magnetic field in units of&for the nontopological
soliton solution and values of the paramefgrof 0.8, 0.6, and

5 fo2—13) 04
a(p) =~ sy (kp)*+ e —zen(kp)’ . o . |
2(1-1p) 16(1—f5) behavior at spatial infinity and that the function remains real
+0((xp)9). for all p. For each integen there will be a continuous set of
solutions corresponding to the range: 6,<f'®*. For val-
Acceptable soliton solutions exist for values fif in the  ues such that,>f ™ there are no real solutions to the field
range O<f,<1. The short- and large-distance behaviors ofequationg5.9) and(5.10, because the conditiof(p) <1 is
the solutions are related, sinag is a function off, see Fig.  not satisfied for alp.
1. The extreme values on this plot are obtained as follows. If If we consider the casé,<1, thenf(p) is small for all
fo<1 thenf(p) remains small for alp and can, therefore, p and the Liouville approximation can be used everywhere.
be approximated by the Liouville solution. Comparing theln order to match the solution in E45.14 with both the
expansion in Eq(5.16 with the one obtained from the Liou- short- and large-distance approximations in E&s17) and
ville solution near the origin we see that the constanin (5.15 we should settN=n+1, (kpo)"*Y=2(n+1)/f,
Eq. (5.14 should be set to 1 whilepy=2/f,. But now the anda,=n+2. Hence, the corresponding value of the mag-
same Liouville solution is also applicable in the large-netic flux is®=4m(n+1)/e.
distance region, comparing with Eq$5.15 we obtain The valuea,=n+2 is an upper bound. On the other
a=2. Instead, afq—1 we find by numerical integration hand, as,— f"® we find thata,, tends to a minimum value
that @y— 1.755. Thus, the magnetic flux varies continuouslyanm‘”_ In fact, it is possible to derive sum rulg28] to prove
betweend =0.877(4r/e) and®=4m/e. In Fig. 2 we show that a,, is restricted a1 < a, < n+2. However, from a
profiles of the magnetic fielB as function ofxp for several numerical analysis we find a more stringent condition on the
values of the parametdp. For nontopological solitons the [ower bound. In Table | we present the values of the param-
magnetic field decreases monotonically from its maximumetersa"™ and f'®* for several vorticity numbera. We ob-
value at the origin, so the soliton has a flux tube structure. serve that the lower bound far,, can be taken as+1; this

2. n#0. Nontopological vortices TABLE I. The parameter§™ and ™" for the short and large

Following Jackiwet al. [13], we shall refer to these con- €xpansion of the nontopological vortices as a function of the vor-
figurations with nonvanishing vorticity as nontopological ticity numbern.
vortices. In this case the boundary conditions imply that

max min

f(0) must vanish ana(0)=n. The large-distance behavior n fn “n
of the fields is given by Eqg5.19. For smallp, a power- 4 0.607 2142
series solution gives 2 0.153 3.043
3 3 2.262x 102 4.021

—3

f( )If (K )n_ n (K )3n+2+o((K )5n+2)1 4 2.379% 10 5.013
PI= I Pl 4 (nr )2 P P 5 1.946x 1074 6.009
) 6 1.301x 1075 7.009
o n ot 2 ot 4 7 7.372x 1077 8.006
Alp)=n= gy (k)T O(kep) ™). (51D g 3.623x 10°° 9.003
9 1.569x 107° 10.002
The constant, is not determined by the behavior of the 19 6.303x 10~ 1 11.002

field near the origin, but is instead fixed by requiring proper:
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FIG. 3. The magnetic field in units of &/(a) For the nontopo-
logical vortex solution witm=1 and values of the parametir of
0.6, 0.4, and 0.2(b) For then=2 vorticity solution with values of
f, of 0.15, 0.11, and 0.07.

approximation improves for larger. Hence, we conclude
that the parametex,, satisfies the inequalities

n+1< a,<n+2. (5.18

According to the previous results we can mﬂf‘”wnJrl.
Thus, for each integer the flux varies continuously between
"= (4m/e)[n+1/2] and OI¥=(4n/e)[n+1]. Simi-

larly [see Eq(5.3)] the energy spectrum consists of bands of

finite width:

2 1 K2
+_
T3

4k

2

<E,<

2 [n+1]. (5.19

In Fig. 3 we show the magnetic fieB(p) for then=1

andn=2 solutions. For nontopological vortices the magnetic

field is localized within a ring.

If we select the value of the parametg/= in Eqgs.
(5.17), the functionf(p) will reach it maximum value at a
given radiusp=R,, i.e., f(R,)=1. This parameteR, can

max
fn

1.8

n=2

1.6

14 |

12

1

0.8

Energy density

0.6

04

0.2

FIG. 4. Plots of energy density for the vortex solutions with
several values of the vorticity numbar In all of these configura-
tions the maximum value of the paramefgr=f)'** was selected
from Table 1.

be considered as the radius of the soliton. In Fig. 4 we show
the profiles of the energy density as a functiongf for
several values afi. The energy is indeed concentrated in the
region p~R,,. In the next section we shall see that in the
largen limit, the vortex can be considered as a ring of radius
R,~n/k and thickness 1. Furthermore, in the region
p~R the fields can be correctly approximated by a domain
wall solution. The value of ™ as a function oh is plotted

in Fig. 5, where the solid line indicates the prediction of Eq.
(6.14 which we obtain in the next section using the domain
wall approximation.

We conclude this section with some comments about the
stability of the vortex solutions and also about the interaction
between vortices. The vortices are neutrally stable at the self-
dual pointm= k. This fact is easily demonstrated on account
of the relation(5.3) between the energy and the charge:
E=«|Ql/e: The mass of the elementary excitations of the

-10

log ()

-25

FIG. 5. Behavior off"™ as a function ofn. The solid line
corresponds to the asymptotic formulé.14), while the squares
represent actual data. The logarithm is to base
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theory (scalar particlesis m and the charge; because of provide an approximate solution to the self-dual vortices in
charge conservation, a decaying soliton should radi@e  the large-flux limit(largen limit).

“quanta” of the scalar particles, thus the energy of the el- Seeking a domain wall solution parallel to theaxis, the
ementary excitations will b&€=mQ/e. This indicates that translational invariance of the theory implies that all the
the vortices are at the threshold of stability against decay tfields depend only ox. By an appropriate gauge transfor-
the elementary excitations because the r&jdé=«/m is  mation the scalar field is made real everywhere («/e)f
equal to 1 at the critical poinh= «. In fact, it is possible to  and the potentiah is selected along thg axis. Hence, the
consider a perturbative method away from the self-dual poingxpression (5.1 for the energy with a potential
[28] to prove that the soliton is stable against dissociationy( ¢)=(m?/2)¢?2 can be written as

into free scalar particles when the scalar mass is bigger than

the topological mas§.e.,m> «). Instead, fom< « the soli- 1( , |«?(df Z2 [(1-f3)12dA,
ton becomes unstable. E= EJ r g(&— f) +(f e
The self-dual point also corresponds to a point in which
the vortices become noninteracting. Again, this property en- _ «fA 2 mk? df? dA§
sues from the fundamental relati¢5.3). Consider two soli- +(1_f2)1/2) e A K ax (6.1

tons of charge®; andQ, of the same sign that are far apart.

According to Eq. (5.9 their total energy is E  As mentioned earlier, the boundary conditions for the scalar
=(x/e)(Q1+Qy). If the two vortices are superimposed at field are f(—»)=f()=0. The magnetic flux per unit
the same point, because of charge conservation the resultingngth (y) is given by y=Ay(2) —A/ (=), S0 Ay (=)
configuration will represent a vortex solution of charge;&Ay(_oo) is required in order to get a nonvanishing mag-
Q:+Q;. Then according to Eq5.3) the total energy will netic flux. A configuration is sought which has a definite
again beE=(«/e)(Q,+Q,). We, therefore, conclude that symmetry with respect to the positiotof the domain wall,
the vortices are noninteracting. The perturbative analysis oﬂhenAy(oo)= —Ay(—®)=7/2 is selected.

Ref. [28] shows that the vortex-vortex interaction is repul-  The static solution is obtained minimizing the energy per
sive if m>x and attractive ifm<x. The self-dual point unit length withy fixed. The boundary conditions cannot be
m= k represents a transition between a phase in which vorsatisfied if the same uppéor lowen signs in Eq.(6.1) are
tices attract and a phase in which they repel each other, simitsed for allx. Rather, the upper signs in the region to the
lar to the transition between type-I and type-Il superconductright of the domain wall x>X) are selected, whereas for

ors. In fact, what we demonstrate in thé model is that the x<X we take the lower signs. With this selection the mini-
attraction between vortices because of the interactiofnum energy per unit length becomes

through the scalar field has the same strength as the repulsion

because of the interaction through the vector field. Therefore, K‘m , )
when the range of the two interactions is the samme=(«), &= ?fOJr 4 (6.2
the vortices become noninteracting. On the other hand, if the

range of the scalar interaction is smaller than the range of thethere f,=1f(X). This result is obtained provided that the
vector interaction > «), the intervortex potential is repul- fields satisfy the equations

sive; while form< « the potential is attractive.

df
d_ =Fmf y
VI. DOMAIN WALLS X
Domain walls appear in theories where the scalar poten- dA, kf?
i i ——=t-——A,, 6.3
tial possesses two or more disconnected but degenerate dx (1—f2)"Y

minima. The field configuration interpolates between two ad-
jacent minima of the potential; the infinitely long boundary where the upper(lower) sign must be taken fox>X

separating these two vacua states is precisely the domafix<X). These equations are easily integrated to give
wall. In 3+ 1 dimensions the domain walls are planar struc-
tures, instead in 21 dimensions they correspond to one- f(x)=e mX,
dimensional structures with finite energy per unit length. Do-
main wall solutions have been found in a Chern-Simons
model [13] with a scalar potential of the fornV(¢)
<[ |2 (v =] 4|2

The presenty? theory possesses a single minimum, yet it This is a domain wall configuration localized &t X
is possible to find one-dimensional soliton solutions of thewith a width of order Irh. The solution to the first in Egs.
domain wall type. Consider a one-dimensional structure def6.3) does not restrict the value 6§. However,f;=1 has to
pending only on the variable, both ak—« and x— —© set so the gauge field be continuous everywhere. The anti-
the scalar field should vanish. However, there can be an irkink configuration is obtained by simply reversing the signs
termediate region wher¢+ 0, i.e., a region of false vacuum. of the fields in Eqs(6.4).
The maximum of¢ determines the position of the wall. In The domain wall carries a magnetic flux and charge per
this section we show that such solutions indeed exist for thenit length given byy and — kv, respectively. Although
¢? model. The domain wall carries both magnetic flux andthere is a linear momentum flow along the domain wall
electric charge per unit length. Furthermore, these solutiongiven by

Ay(X) = Sgrix—X) %(1— e 2mhXyezm (g 4)
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K dAf, To obtain a domain wall that is stable against contraction
Toy:§ ax’ (6.5  or expansion the energy is minimized for a given magnetic
flux. Minimizing the energy as a function of the radius yields
where Eqs(2.15 and (4.5 have been used, we notice that ed
the flow at opposite sides of the wall cancels, hence the total R~ , (6.10
linear momentum of the domain wall vanishes. The magnetic Am\mk
field is given by and thus
K 2
B:%e—m\x—x\(l_e—2m|x—X\)K/2m—1. (6.6) E~ TK_(D 6.1

K €

Notice that for k<2m the magnetic field is concentrated  This value for the energy saturates the Bogomol'nyi limit
nearx=X and falls off rapidly away from the wall. Instead, (5.3) whenm= «, indicating that the fields must be solutions
for k=2m the magnetic field vanishes at= X and the pro- of the self-duality equations. Indeed, we can verify that near
fle of B is double peaked with maximums at r~R the fields in Eq(6.8) solve the Bogomol'nyi equations
x=X= (1/m)|In(«/2m)|. (5.9 and (5.10 if the radiusR is chosen as in Eq6.10.
The method presented in this section resembles the orlésing the expressiotb.11) for the magnetic flux we obtain
used to derive the self-duality equations, so it could be quedR=(n+ a;)/(2«) for the radius that minimizes the energy.
tioned whether the two methods are equivalent. In general, ithen, the conditiorR>1/x implies n>1, as expected for
is not so: the self-dual limit is valid whem= , whereas for  the largen limit.
the domain wall solution there is no such restriction. How- In the domain wall solution the scalar field reaches its
ever, form= « it is straightforward to check that the fields in maximum valuef=1 at p=R. Recalling the discussion of
Egs. (6.4 exactly solve the self-duality equatiofs.4) and  the previous section, far>1 the domain wall approximates
(5.5), with the magnetic flux and energy per unit length de-the vortex solution in which the constaff in the short-

termined as distance expansioii5.17) is chosen asf,=fI'®. But for
f,="f1""the parameter, reaches its minimum value; then
2K 2k according to Eq(5.18 we can takex,= aj""~n+1 and so
Y=o (6.7 the magnetic flux and the radius become
. . . 41 1
The domain wall solutions in Egs6.4) can also be b~ — n+§ ,
adapted to approximate rotationally symmetric configura- €
tions. Indeed, the vortex configurations simplify in the large
L o - s . 1 1
n limit and it is possible to utilize the domain wall as an R~=|n+=|, (6.12
approximated solution to the self-dual vortices. Let us con- K 2

sider a ring of large radiuR and thickness of order fin
separating two regions of vacuum. The magnetic flux is con
centrated within this domain of widtk 1/m where a region
of false vacuum §+#0) is trapped. IfR>1/m~1/k, then

respectively. This result foR is in agreement with the one
predicted by the maximum of the energy density in Fig. 4.
The domain wall solution can be combined with the Liou-

the fields near the ring should be well approximated by the/!ll® approximation to find an explicit expression for the con-
domain wall solutiong6.4). Nevertheless, in order to have a Stantfn" . The scalar field decays exponentially away from

configuration with vorticityn the phase of the scalar field e domain wall, whereas the asymptotic behavior of the
should vary uniformly with angle, see E¢6.8); hence, we Liouville solution shows a power law both at large and small

gauge transform the fields in Eq&.4). Thus in the region P- However, in the largen limit both approaches can be
p~R, the fields configuration reads compatible. We introduce the relative coordindte R—p,

the domain wall approximation for the scalar field is
« f(r)~exp(—«|&). At small r we can use the power-series
d(p)~ —g infg=mlp—RI solution(5.17) or, equivalently, the Liouville approximation
e (5.149 with N replaced byn+1 and (xpo)""Y by
2(n+21)/f,, in either case the leading contribution yields

(1/2)—K§)”
+—

Y n
—Sgl’(p— R)(l_e—Zmlp—R\)K/Zm_ _}'
2 eR (6 8) f(r)%fnmaxKn(R_g)n:fnmaxnn (1

A(p)~0

n

__fgmax n _
with y=®/(27R). In first approximation the energy is ~fa n" exil (112~ «[¢]]. 613

dom!nated by the contribution near the doma_lin wall; so acag we are considering the largelimit the last equality was
cording to Eq.(6.2) the energy can be approximated by obtained using the identity lig...(1—z/n)"=e~2 By com-
paring the previous result with the domain wall solution we
find that the constant in the short-distance expangioh?)

of the vortex solution must be

mx?
E~27R ?4—

o 2
) . 6.9

47R
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e~ 12 trum of the nontopological vortices consists of bands of

(6.19  constant width, AE,=2m«?/e?, centered at the values
E,=(47k?/e?)(n+3/4), see Eq(5.19.

This result is expected to provide an adequate approximation We also considered one-dimensional configurations. Ex-

for largen. Remarkably, as shown in Fig. 5, the actual value@Ct analytical domain wall solutions were foufieq. (6.4)]

max ; for arbitrarym and «. In general, these configurations will
g]; :l” 's reproduced rather well by E¢6.14 for all values not be stationary. We found, however, that for= «, the

The Liouville approximation is also valid at large: fields in Egs.(6.4) saturate the Bogomol'nyi limit and con-

heref h hto d i sequently, the configuration represent a one-dimensional
therefore, we can use the same approach to determine HEable kink with magnetic flux and energy per unit length
coefficientC,, in the large-distance expansigb.15. How-

. ; . given by Eq.(6.7). Furthermore, we found that in the large
ever, the large-distance expansii19 and the domain g, jimit the nontopological vortices can be correctly ap-
wall solution can only be made compatible if we take

o d of. — i iol imation f proximated by the domain wall solution.
ap~n instead ofa,=n+1; a sensible approximation for =, e seif-dual point= « the vortices become noninter-

large n. This yieldsC,=n"~f,*. This result suggests the acting and static multisoliton solutions are expected. The
existence of a relation between the large- and short-distanGggex-theorem methods can be used to determine the number
behavior of the vortex configuration. Indeed, comparing thef jndependent free parameters that characterize a general
leading terms in Eqs(5.19 and (5.17 and recalling that _yortex solution of the self-dual equations. The result can
ap~n, we find that for largen the vortex configuration is  pe optained by counting the zero modes of the small fluctua-

max__
fn - n"

symmetric under the exchange/n—n/«p. tions which preserve the self-duality equations. For nontopo-
logical vortices the calculation requires the subtraction of the
VII. FINAL REMARKS continuous spectrum. The form of the fluctuations of Egs.

. . 3 ) _(5.4) and (5.9 near and far from the origin are similar to
In this work we described a self-dual Maxwell-Chern hose of solitons in thes® model considered in Ref13].

Simons model which includes an anomalous magnetic COLE-rh It then be taken f that Th ber of
pling between the scalar and the gauge fields. We first con- € resuft can then be taken from that paper. 1he number o
[ee parameters in the general solution of nontopological

sidered a general scalar potential in order to discuss both t ) ) - . )
symmetric and the broken phases of the theory. We founyortices is 20+ a,—1) whereq, is the greatest integer less
that the induced Chern-Simons term, arising from the comthan a,. But according to Eq(5.18 in the ¢* model we
bined effect of the spontaneous symmetry mechanism anldave a,=n+1. Consequently, the number of independent
the magnetic moment, has the same properties as those of tiree parameters for the-soliton solution is 4. The result is
explicit CS term only in the topological trivial sector of the consistent with the fact that we require parameters to fix
theory. We also found that in the broken phase the propagathe position ofn solitons in the plane, while the phases and
ing modes of the gauge field consist of two longielliptic the fluxes are determined by the other Barameters.
waves with different values for the masses. This model raises a humber of interesting questions for
For a particular relation between the Chern-Simons masfurther investigation. In particular, a complete description of
and the magnetic moment, E@.1), the gauge field equa- the multisoliton solution deserves to be clarified. It may also
tions reduce from second- to first-order differential equa-be interesting to investigate the properties of the model away
tions, similar to those of the pure Chern-Simons-type. Thdrom the self-dual point, including the vortex interactions.
self-dual limit occurs for a simplyp? potential when the Finally will be of great interest the study of the properties of
scalar and the Chern-Simons masses are equal. Several prape Chern-Simons vortices upon quantization, because they
erties of the self-dual vortices were analyzed both by analytican be considered as candidates for anyonlike objects in pla-
cal and numerical methods. In particular, the energy spemar systems.
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