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We investigate ’t Hooft–Mandelstam monopoles in QCD in the presence of a single classical instanton
configuration. The solution to the maximal Abelian projection is found to be a circular monopole trajectory
with radiusR centered on the instanton. At zero loop radius, there is a marginally stable~or flat! direction for
loop formation toO(R4lnR). We argue that loops will form, in the semiclassical limit, due to small perturba-
tions such as the dipole interaction between instanton–anti-instanton pairs. As the instanton gas becomes a
liquid, the percolation of the monopole loops may, therefore, provide a semiclassical precursor to the confine-
ment mechanism.@S0556-2821~97!03810-1#

PACS number~s!: 11.15.Ha, 12.38.Aw, 12.38.Gc

I. INTRODUCTION

Both instantons and magnetic monopoles are thought to
play an important role in the Euclidean description of the
Yang-Mills vacuum. In QCD instantons provide the solution
to the U~1! problem@1# and a vacuum composed of a liquid
of instantons@2# can explain chiral symmetry breaking and
the low mass spectrum, at least at a qualitative level@3,4#.
Nonetheless, it is generally believed, as conjectured by Man-
delstam@5# and ’t Hooft @6#, that magnetic monopoles, not
instantons, are essential for confinement in QCD and related
gauge theories. For example, compact QED with a lattice
cutoff is known to be exactly dual to a Coulomb gas of
monopoles, which upon condensation causes confinement
via a dual Meisner effect@7#. Similarly there is evidence for
the role of monopole condensation in the three-dimensional
~3D! Yang-Mills-Higgs ~or Georgi-Glashow! model @8# and
more recently in~4D! N52 supersymmetric Yang-Mills
theory @9#.

Consequently, we are faced with a dilemma of two com-
peting pictures of the QCD vacuum~or more accurately the
Euclidean equilibrium phase! as either a coherent ensemble
of instantons or a condensate of magnetic monopoles. In this
paper, we show that these two pictures may in fact be two
descriptions for the same phase. To establish a precise and
indisputable link between the monopole trajectories and in-
stantons, we define the monopole current in a field configu-
ration via ’t Hooft’s maximal Abelian~MA ! projection and
demonstrate that in the background of a single instanton the
MA projection leads to a circular monopole current loop of
radiusR centered on an isolated instanton of ‘‘width’’r. We
also begin the study of monopole trajectories in the presence
of interacting instanton pairs.

Let us review briefly the attempts to identify monopole
currents in QCD.~The reader is referred to Polikarpov@10#
and references therein for more details.! It is well known that
the only topological stable solutions to Euclidean Yang-Mills
theory are the multi-instanton solutions@11# with topological
chargeQ. On the other hand, the ’t Hooft–Polyakov mono-
pole solution to 3D Yang-Mills-Higgs theory can also be

viewed as a static solution to the pure Yang-Mills Euclidean
field equations in 4D, whereA0 plays exactly the same role
as the adjoint Higgs field1 in the Bogomol’ni-Prasad-
Sommerfield ~BPS! limit. Of course, since the classical
theory is now scale invariant, the monopole massM is an
arbitrary parameter. Quantum effects will be necessary to set
the scale. Subsequently Rossi@13# has pointed out that this
monopole configuration can be identified with~i.e., has the
same field configuration as! an infinite sequence of instan-
tons equally spaced byM218p2/e2 on the time axis in the
limit r→`.

Turning now to the MA projection, Chernodub and
Gubarev@14# have recently shown that a straight line mono-
pole trajectory through the center of an instanton~or pair of
instantons! satisfied the MA gauge condition. However, if
one looks at the MA gauge-fixing functional

G5 1
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1(x)Am
2(x), Am

6[Am
16 iAm

2 , for the
Chernodub-Gubarev solution, one notices that it diverges at
large distances. Since the proper definition of the MA pro-
jection is not just a stationary point but a minimum of this
functional, this solution is still not a very satisfactory linkage
between an instanton and the monopole. The basic problem
is that the instanton is restricted to a space-time region
whereas the static monopole solution has an infinite trajec-
tory. In contrast we have found that our monopole loop so-
lution to the MA projection, which is localized at the instan-
ton, does give a finite value toG, which drops gradually to
an absolute minimum as the radius decreases:
G.4p2r2@114.6(R/r)4ln(r/R)#. We then argue that this
solution is easily stabilized by small Gaussian perturbations
or nearby interactions with anti-instantons. We feel this is
the first rather precise connection between the instanton and
monopole trajectories.

1Essentially the same use is made of the adjoint fieldA0 in the
MA projection that diagonalizes the Polyakov loop as discussed by
Suganumaet al. @12#, but we do not pursue this approach further
since it does not provide a Lorentz-invariant definition of monopole
variables.
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In addition to this continuum analysis, there has been
some recent numerical evidence in lattice simulations pre-
sented by Hart and Teper@15#, by Bornyakov and Schierholz
@16#, by Markum et al., Thumeret al. @17#, and by Fuku-
shimaet al. @18# that shows that monopole loops are corre-
lated with multi-instantons configurations. These numerical
results also indicate that a correlation between monopole
condensation and the formation of a dense liquid of instan-
tons are a property of the quantum vacuum. However, our
immediate goal is a more modest one: establishing a clear
kinematical connection between monopoles and instantons in
the semiclassical limit. While this limited exercise is unable
to show that thedynamicsof the full quantum theory is in
some sense approximated by a monopole-instanton-
correlated background and that confinement results from the
percolation of these objects, we feel that clarifying the kine-
matics is an important first step in bringing these two pic-
tures together.

To go beyond the analytical study, we have also under-
taken a numerical MA projection in the background of an
isolated instanton by minimizing the functionalG discretized
on a 4D hypercubic lattice. The only solutions we have
found were identical to our analytical monopole loop solu-
tion albeit stabilized to a fixed radius~in lattice units! by
lattice artifacts. We have also begun to study the monopole
loops in the background of an interacting instanton–anti-
instanton~I-A ! pair and found that the individual loops ap-
pear to be stabilized by the interaction, if the I-A molecule is
oriented so that the dipole interaction is attractive. At a criti-
cal separation of the I-A pair, the individual monopole loops
fuse into a single loop. Details of the multi-instanton study
are left to a future publication@19#. Nonetheless, on the basis
of our preliminary analysis, we conjecture that the I-A inter-
action provides a semiclassical mechanism whereby the
monopoles are ‘‘liberated’’ from the individual instantons,
and which may therefore represent a precursor to condensa-
tion and confinement.

The organization of the paper is as follows. We begin by
noting that the maximal Abelian projection, which is usually
presented as a gauge-fixing procedure, is equivalent to the
introduction of an ‘‘auxiliary Higgs’’ fieldF5fW •tW , which
is determined by minimizing the Higgs kinetic term:

G5
1

4E d4x@Dm~A!fW #2. ~1!

~The Higgs field is related to the usual gauge rotation by
F5V†t3V.! This approach has several advantages in terms
of analysis and a clearer relation to the standard discussion of
monopole topology.~See the Appendix for details.!

Next, in Sec. II, we solve the stationarity equations for the
Higgs field@or gauge rotation in the SU~2!/U~1! coset space#,
to find the monopole loop solution for fixed radiusR. Mono-
pole loops in Abelian gauge theories are reviewed to guide
the construction.

In Sec. III, we consider the full manifold of solutions and
their collective coordinates. We note that there is an interest-
ing correlation between the average over the orientations of
all monopole loops at fixedR and the isospin orientation of
the instanton given by

^Nmn&5 1
2 @~dm,3dn,42dm,4dn,3!2~dm,1dn,22dm,2dn,1!#,

~2!

whereNmn is the skew symmetric unit tensor defining the
plane of the loop in 4D.

In Sec. IV, we report on our numerical solutions leading
to a preliminary picture of the role of instanton anti-instanton
~I-A ! interactions for loop stabilization at large separation
and for the I-A pair loop fusion and percolation at small
separations.

Finally, in Sec. V, we discuss our results and suggest
future lines of investigation. We comment on the naturalness
of the instanton-monopole connection. The loop vacuum ex-
pectation value~VEV! naturally breaks the SO~4! group
down to the coset direct product SUL(2)/
UL(1)3SUR(2)/UR(1) in close analogy to isospin breaking
in the ’t Hooft–Polyakov monopole construction. Also we
note that the Abelian projection for the instanton in the sin-
gular gauge spreads the singularity at the origin to the trajec-
tory of the monopole loop, directly relating the instanton’s
topological chargeQ to the monopole chargeg by the iden-
tity Q5eg/4p. In summary we conclude that monopole
loops are peculiarly well matched to the instanton, leading us
to hope that there is a deeper connection in confining gauge
theories transcending our particular construction.

II. MONOPOLE LOOP SOLUTION
IN THE INSTANTON BACKGROUND

The maximal Abelian projection was introduced by
’t Hooft @6# in order to define magnetic monopole coordi-
nates by a partial gauge-fixing procedure that leaves the
maximal Abelian subgroup free. In analogy with the Higgs
system, ’t Hooft suggested introducing an adjoint fieldX,
which by the gauge transformationX→XV5VXV† is di-
agonalized to fix the gauge in the coset space
SU(N)/U(1)N21 up to U~1! factors. Exceptional space-time
trajectories whereX has degenerate eigenvalues represent the
Abelian monopole configurations. Various examples forX
were suggested such asF12 or the~untraced! Polyakov loop,
etc.

Subsequently a particular Lorentz-covariant gauge has
proved to best correlate the monopoles condensate with con-
finement in lattice simulations@20#. This gauge is now re-
ferred to as the maximal Abelian~MA ! gauge. For SU(2), it
is expressed as the minimization of the functional:

G@Am#5
1

4E d4xAm
1~x!Am

2~x!, ~3!

where Am
6[Am

16 iAm
2 . In differential form the MA gauge

condition becomes

D6~x![~]m6 ieAm
3 !Am

650, ~4!

with the additional stipulation to avoid Gribov copies that
one should find the solutions corresponding to the global
minimum ofG. @We will sometime refer to the stationarity
condition~4! by itself as the ‘‘differential’’ MA projection.#

Before presenting the details of our monopole loop solu-
tion, it is possible~at least with hindsight! to see why mag-
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netic loops might appear in an instanton background. Con-
sider the field configuration for a single instanton@21–23# in
the singular gauge:

Am[
1

2
AW m•tW5

e

2
tah̄mn

a ]nln~11r2/x2!, ~5!

where the anti-self-dual ’t Hooft symbol ish̄mn
a

[( i /2)Tr(tatntm
† ) and tm5( i ,tW ) with Latin indices re-

stricted to the vector components. First one notices that this
field configuration already satisfies the differential MA~as
well as the Lorentz! gauge condition. Also it gives a finite
value

G@Am#52e2E d4x
r4

x2~x21r2!2
54p2e2r2 ~6!

to the MA gauge fixing functional — the dominant contribu-
tion to G coming from the core of the instanton, 0<x<r.
On the other hand, the instanton in the nonsingular gauge
also satisfies the differential Eq.~4! for the MA projection,
but now the functionalG diverges logarithmically at large
distances:

G@Am
~ns!#52e2E d4x

r2

~x21r2!2
→`. ~7!

Nonetheless, the nonsingular gauge does reduce the contri-
bution toG in the core of the instanton. Consequently, com-
parison between the singular and nonsingular gauges sug-
gests that itmightbe possible to find an intermediate solution
which minimizesG by a gauge transformation such that the
central region, inside some radius (x<R), is converted to the
nonsingular gauge, while the large distance behavior is un-
changed from the singular gauge configuration. In essence
this will turn out to be the way we construct the monopole
loop solution.

In addition, by a general argument one can understand
why this construction might lead to monopole singularities.
No local gauge transformation on the instanton can change
the total topological charge. However, if we express the to-
pological charge for the instanton in the singular gauge via
Gauss’ law,Q5*d4x]mKm , in terms of the flux for the
gauge-variant current,

Km5
1

8p2 emnrlTrFAnS ]rAl2
2i

3
ArAlD G ,

one knows that the entire contribution comes from the sin-
gular point atx50. Any gauge rotation that removes this
singularity but does not change the gauge at infinity must
replace it with another singularity at some finite distance. As
we will explain in more detail in the Conclusion, our mono-
pole loop current is the source of this singularity and its
magnetic charge can therefore be directly related to the to-
pological charge of the instanton.

A. General equations

In searching for solutions to the MA projection, we have
found it more convenient to use a gauge-covariant formula-
tion in terms of an auxiliary Higgs-like field,F(x)

[V†t3V, instead of working directly with the gauge trans-
formationV(x) itself ~see the Appendix for details!. In terms
of the isovector fieldfW , F[fW •tW , the functionalG becomes

G5
1

2E d4xH 12 @Dm~A!fW #21V~fW 2!J , ~8!

where Dmfa[]mfa1eeabgAm
bfg and the potential is

V(fW 2)5s(fW 221) with a Lagrange multipliers. @One can
see by inspection that Eq.~8! is identical to Eq.~3!, after the
substitutionF[V†t3V.# It is also natural to generalize the
MA projection with a quartic Higgs potential:

V~fW 2!5 1
4 l~fW 22v2!2, ~9!

with F(x) now given byfW (x)•tW /ufW (x)u. We will refer to
this more general from as the ‘‘Higgs MA projection.’’ The
conventional MA projection is recovered in the limitl→`
at fixed VEV v in which the Higgs boson mass scale
mH→` as well. Not only does the covariant formulation
have numerous technical advantages, it shows that the MA
projection need not be seen as a gauge-fixing prescription but
instead as a gauge-covariant method of identifying the ap-
propriate magnetic variables.

The general problem is to construct solutions to the dif-
ferential form of the MA projection,

Dm~A!2fW 2¹W fV~f!50, ~10!

in the background of a single instanton. For the standard MA
projection, this yields a linear partial differential equation
~PDE! for fW (x),

]m
2fW 12AW m3]mfW 1AW m3~AW m3fW !2sfW 50, ~11!

subject to the constraintfW 251. For an instanton in the sin-
gular gauge ~5!, the potential also can be written as
Am52 ix2f (x)g†(x)]mg(x), where g†(x)52 ixmtm /uxu,
tm5(tW ,i ),

f ~x!5
1

x2
r2

x21r2
, ~12!

and we have also set the gauge couplinge51.
Solving this equation is very similar to the problem, first

considered by ’t Hooft@1#, for computing the Gaussian fluc-
tuations of gauge, fermionic, and Higgs fields in the back-
ground of an instanton. In studying self-dual solutions and
their supersymmetric extensions, it is useful to introduce ten-
sors that reflect the chiral SUL(2)3SUR(2) decomposition
of the O~4! Euclidean Lorentz group, which suggests the
conformal coordinates u5x1 iy5ueiw and v5z1 i t
5veic, which enter into the bispinor,

xaḃ[xm~tm!aḃ5S z1 i t x2 iy

x1 iy 2z1 i t D 5S v u*

u 2 v* D ,
~13!
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for the singular gauge transformationg†(x)aḃ52 ixaḃ /uxu.
This notation, as we will see in Sec. III, is also convenient
for exhibiting the Lorentz symmetries of the monopole solu-
tion.

It follows from the property ofh̄mn
a that isospin compo-

nents ofAW m are orthogonal, i.e.,Am
aAm

b}dab . As a conse-

quence, the last two terms in Eq.~11! both point alongfW in
the isospin space. Let us parametrize this ‘‘radial direction’’
at eachx by a unit vector,

f̂~x![~sinbcosa,sinbsina,cosb!, ~14!

and introduce two unit tangent vectors orthogonal to
f̂(x), â(x)[(2sina,cosa,0) and b̂(x) [(cosbcosa,
cosbsina,2sinb). By projecting Eq.~11! onto theâ(x) and
b̂(x) axes, the two independent differential equations for the
MA gauge are

sinb]m
2a12cosb~]ma!~]mb!522sinb~f̂•AW m!~]mb!,

~15!

]m
2b2 1

2 sin~2b!~]ma!252sinb~f̂•AW m!~]ma!, ~16!

respectively.@The more general equations for the Higgs MA
projection for arbitraryl are given in Eqs.~A15!–~A17!.#
Our task is to find solutions to these equations.

For the explicit monopole content of a solution, it is in-
structive to return to the active transformation, Eq.~A1!, and
to decompose the transformed field into two parts, Eq.~A2!,
Am

V(x)5Ām(x)1Mm(x), where

Ām~x![V~x!Am~x!V†~x!, Mm~x![
1

ie
V~x!]mV†~x!.

The gauge rotation in terms of three Euler’s angles is

V~x!5eiv~x!5eigt3/2eibt2/2eiat3/2. ~17!

One can readily verify that this is consistent with Eq.~14!
and, owing to the residual U~1! invariance,fW (x) is indepen-
dent of the angleg. Focusing on the Abelian field
am(x)[Tr(t3Am

V)5Ām
31Mm

3 , one observes that the first

term Ām
35f̂•AW m provides the source for our PDE’s, Eqs.

~15! and ~16!. The induced term

Mm
3 ~x!52

1

e
@cosb~x!]ma~x!1]mg~x!# ~18!

will give rise to topological current for the monopoles, Eq.
~A5!. In terms of the Euler’s angles, the magnetic current is
explicitly given as

km~x!5
1

2pe
emnrs]n@]sa~x!]rcosb~x!#. ~19!

Note thatMm
3 is not specified uniquely due to the residual

U~1! gauge symmetry. Generally, we will chooseg(x)
52a(x) so that the Dirac sheet associated with the mono-
pole loop solutions can be oriented conveniently and so that

V~x!5cos~b/2!1 isin~b/2!@~cosa!t12~sina!t2# ~20!

obeys the boundary conditionV→1 asb→0.

B. Monopole loop in U„1… gauge theory

To construct monopole loop solutions, we have found it
helpful to work ‘‘backward’’ from specific examples of U~1!
monopole currents. First, recall Dirac’s construction for a
static monopole of magnetic chargeg at the origin
x5y5z50, with magnetic currentkm(x)5gd (3)(xW )dm4.
The field is given by

am5
g

4p
@12cosq#]mw, ~21!

in spherical coordinates 0<q[arctan(Ax21y2/z)<p and
w5tan21(y/x). The singular behavior due to]mw

5ŵ/Ax21y2 asAx21y2→0 corresponds to having placed a
Dirac string along the negativez axis, which in 4D leads to a
Dirac sheet in the left-half of the 3-4 plane. The Dirac sheet
can be moved by a gauge transformation.

This construction is an example of a general formalism
for writing down a solution with a Dirac sheet attached to a
closed Euclidean monopole current loop@24#. Consider a
unit monopole trajectoryxm5ym(t) and its associated mag-
netic currentkm(x)5*dt]tym(t)d

4(x2y). We can attach to
it a Dirac sheet described byym(t,s), wherexm5ym(t,0).
The associated vector potential for the monopole loop is

am~x!52
1

4pE d4x8
]nG̃nm~x8!

ux2x8u2
, ~22!

where G̃mn5 1
2 emnrsGrs and Gmn(x)5*dtds$]tym]syn

2]tyn]sym%d4„x2y(t,s)….
We now apply Eq.~22! to a monopole of chargeg mov-

ing in a closed loop of radiusR in the 3-4 plane centered at
the origin. The Dirac sheet~or solenoid world sheet! is cho-
sen to run across the loop~see Fig. 1!, parametrized by
y15y250, y35R(12s)cospt, y45R(12s)sinpt, where
21<t,1 and 0<s,1. It is convenient to use the confor-

FIG. 1. ~a! The Dirac sheet for a monopole loop in QED.~b!
u6 variables for Dirac loops solution.
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mal coordinates introduced earlier, u5x1 iy5ueiw and
v5z1 i t5veic. The magnetic current

km~x!5
g

2p
d~x!d~y!d~v2R!ĉ ~23!

results in the potential

am5
g

4p
@12cos~u11u2!#]mw, ~24!

where u6[tan21@u/(v6R)#. ~See Fig. 1 for a geometric
interpretation foru6 .!

As for the case of a single monopole,]mw5ŵ/u is sin-
gular as one approaches the 3-4 plane,u→0. For v.R,
u6→0, the prefactor vanishes, and this singularity is absent.
However, for 0,v,R, u1→0, u2→p, the prefactor ap-
proaches 2 and a Dirac sheet is present. We are now ready to
generalize this construction to the maximal Abelian projec-
tion in the background of an instanton.

C. Monopole loop in an instanton background

Returning to the differential MA conditions, Eq.~15! and
Eq. ~16!, an obvious solution corresponds to the gauge rota-
tion from the singular to the nonsingular gauge,
V5g†5(x41 ixW•tW )/uxu. In the Euler parametrization, this
corresponds to a5w2c, g5p2(w1c), and b
52u[2arctan(u/v). However, on surfaces where]ma is
singular (u50 orv50), cosb50 so that no magnetic mono-
pole is formed.2

With the gauge choiceg52a, the induced potential
Mm

3 becomes

Mm
3 ~x!5

1

e
@12cosb~x!#]ma~x!. ~25!

Note the similarity between this expression and the mono-
pole solutions for QED, Eq.~24!. The Dirac sheet is formed
on the surface where]ma becomes singular and
b(x)56p. The magnetic current is on the boundary of the
Dirac sheet whereb has a discontinuity.

Consider the ansatz wherea andb are only functions of
(w,c) and (u,v), respectively, i.e.,a(w,c) andb(u,v). It
can be shown that the first of the two MA conditions, Eq.
~15!, is solved under this ansatz by

a5w2c. ~26!

It follows from the QED example that a Dirac sheet can be
present either in the 1-2 plane (v→0) or the 3-4 plane
(u→0), or both. It is sufficient for us to seek solutions where

the monopole loops are oriented in the 3-4 plane. Other ori-
entations, including that oriented in the 1-2 plane, can be
obtained by performing appropriate O~4! rotations, as we
demonstrate in Sec. III.

Instead of u and v, we convert tox and u, where
x25u21v2 and u5tan21(u/v), 0<u<p/2. ~See Sec. IV
for further discussion of the ansatz in theu-v coordinate
system.! Now Eq. ~16! becomes

1

x3
]x~x

3]xb!1
1

x2sin2u
]u~sin2u]ub!2

2sin2b

x2sin2~2u!

14 f ~x!sin2b~cotb2cot2u!50. ~27!

For G to remain finite, one must impose the boundary con-
dition sinb50 at u50 andu5p/2. There remains the free-
dom forb to take on values which are integral multiples of
p.

Recall that we are seeking solutions withAm
V(x) ap-

proaching the behavior of the nonsingular gauge at the ori-
gin, and approaching the behavior of the singular gauge at
infinity. We therefore expect a solution withb
.2u(modp) for x small and withb→0(modp) at infinity.
A monopole loop lying in the 3-4 plane corresponds to a
solution whereb has a discontinuity on the positivev axis.
To be precise, we seek solutions where~i! b(x,p/2)50, ~ii !
b(x,0)52p for 0,x,R, andb(x,0)50 forR,x,`, and
~iii ! b(x,u)→0 for x→`.

An analytic solution forb(x,u) in the limit of small
monopole size,R/r→0, can be found; this will be discussed
in Sec. III. For generalR/r, the solution to Eq.~27! can be
obtained numerically. Using a simple relaxation method for
G ~described in Sec. IV!, very accurate solution forb can be
found, as illustrated in Fig. 2. Independent of the detailed
form of the solution, witha5w2c, the discontinuity in
b(x,u50) at x5R leads to a magnetic current

km~x!5
2

e
d~x1!d~x2!d~v2R!ĉ, ~28!

where we have reintroduced the charge factor. Therefore our
solution corresponds to a loop of monopole with a magnetic
chargeg54p/e in the instanton background.

2The solution@14# given by Chernodub and Gubarev corresponds
to b5q and a5w, whereq and w are the polar and azimuthal

angles for the spatial three vectorxW . This is the standard static

‘‘hedgehog’’ configuration forfa5xa/uxW u, which gives rise to the

’t Hooft–Polyakov monopole with charge 4p/e at xW50. This so-
lution leads to a divergence value for the gauge-fixing functional
G.

FIG. 2. Solution to b(u,v) for a monopole loop with
R/r50.81 andr51.
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In fact we have explored the more general case of a Higgs
potentialV(f)5l(f221)2, wheref is the magnitude of

the Higgs fieldfW . The change in the value ofG is almost
independent of the parameterl. It is now clear that our gen-
eral monopole loop solutions yield a family of solutions
which all satisfy the local MA condition and which interpo-
late between the singular gauge and the nonsingular gauge
for an instanton. For 0<x!R, V(x);g†(x) up to a U~1!
rotation; the effect of the gauge transformation is to remove
the singularity atx50. Sinceb→0 for x→`, it follows
that, withg52a, V→I rapidly and the large-x behavior of
the gauge fields is unchanged. The transition between
‘‘small’’ x and ‘‘large’’ x is marked by the presence of a
monopole loop of radiusR in the 3-4 plane. AsR goes to
`, the monopole loop is pushed to infinity, leaving behind a
gauge field configuration which is the instanton in the non-
singular gauge.

There is in fact a very large manifold of solutions. In
addition to the loops described above, one can clearly im-
pose the boundary conditions forb to jump by6p on either
the u50 axis or theu5p/2 axis or both, at arbitrary radii
Ri . As long as the final value ofb asx2→` is set to be the
same multiple ofp on both boundaries, no topological
charge has been pushed to the spatial infinity and the func-
tionalG will still be finite. This will give a series of concen-
tric loops with increasing radii and magnetic charge either
g or 2g. In addition as described in Sec. IV, the application
of Lorentz invariance to these solutions will reorient these
loops in 4D space.

III. COLLECTIVE COORDINATES AND STABILITY
OF MONOPOLE LOOP

In this section, we first address the question concerning
the degeneracy of the monopole loop solutions constrained
to a fixed radiusR in the instanton background. This analysis
closely parallels the discussion of the collective coordinates
for the instanton itself. The Yang-Mills action is invariant
under the 15-parameter conformal and the 3-parameter glo-
bal SU~2! groups. However, an instanton solution breaks 8 of
these symmetries leading to 8 collective coordinates, roughly
identified as 4 for its location, 1 for its size, and 3 for its
isospin orientation~see below for a more precise definition.!
A monopole solution in each instanton background with
these 8 coordinates held fixed further breaks some of the
remaining 10 symmetries, leading to additional collective co-
ordinates for the orientation of the loop.

Next we will address the dependence of the loop solution
on the loop radiusR. Each solution is a stationary point of
the gauge-fixing functional under the constraint of fixed ra-
dius. To restrict further the MA projection, one may also
impose the condition thatG is a global minimum. We there-
fore need to studyG(R), 0<R,`, and determine if there is
a true minimum for a finite nonvanishing value of loop ra-
dius R. We shall show that, for a large instanton with size
r ~or equivalently small monopole loops with radiiR!r),
there is a very weak dependence of the gauge-fixing func-
tional G in R, and so the scale of the loops is ‘‘nearly’’ a
collective coordinate. This near-zero mode leads to ‘‘mar-
ginal instability’’ for the formation of small monopole loops.

A. O„4… invariance and orientation of the monopole loop

The fact that we constructed the monopole loop solution
lying in the 3-4 plane is purely for mathematical conve-
nience; a larger family of loop solutions can be obtained by
applying O~4! Lorentz transformations. Since SO(4)
5SUL(2)3SUR(2), it is possible to define two sets of mu-
tually commuting angular momentum generators by
LL
a52( i /2)h̄mn

a xm]n andLR
a52( i /2)hmn

a xm]n . ~In terms of

the conventional ‘‘rotation’’ and ‘‘boost’’ operators,JW and
KW , one hasLW L5@JW2KW #/2 and LW R5@JW1KW #/2.! Using the
spinor basis, it is trivial to show that an instanton configura-
tion is invariant under an arbitrary rotation in SUR(2), gen-
erated by LW R . An instanton is also invariant under an
SUL(2) rotation ~generated byLW L), provided that a corre-
sponding isospin rotation is performed simultaneously.

If we consider the kinematics of the loop in the 3-4 plane,
ignoring the instanton background for now, clearly rotations
in the 1-2 and 3-4 planes leave it invariant. In fact it
can be easily shown that these are the only invariances
and that the remaining four-parameter coset space
SUL(2)/UL(1)3SUR(2)/UR(1) rotates the loop to an arbi-
trary plane. Thus the loop breaks both left and right chiral
SU~2! factors in the O~4! group, analogous to the way the
’t Hooft–Polyakov monopole breaks the SU~2! isospin
group. Since a MA gauge also fixes a direction in the isospin
space by identifyingt3, the only remaining symmetry trans-
formations belong to SUR(2). Thus given a monopole loop
solution, all other inequivalent solutions can be obtained by
performing O~4! rotations belonging to the quotient space
SUR(2)/UR(1).

We now provide a few details on these transformations.
Any rotation UPSUR(2), expressed in the conformal coor-
dinates of Eq.~13!, acts onxaḃ to givexaḃ

8 5xaḃ8U ḃ8ḃ
† . Let

us see what happens to a circular loop of radiusR centered in
the 3-4 plane: u0(s)5x0(s)1 iy0(s)50 and v0(s)
5z0(s)1 i t 0(s)5Reis/2, where 0<s<4p. First consider a

rotation,R3(l)5eilLR
3
5eilt3/2, in the U~1! subgroup of SU

(2)R . It simultaneously rotates the 1-2 and 3-4 planes by the
same angle l/2, i.e., u0→u(s)5u0(s)e

2 il/2 and
v0→v(s)5v0(s)e

2 il/2. This clearly leaves a monopole
loop lying in the 3-4 plane invariant. Next consider rotations

R2(l)5eilLR
2
5eilt2/2. Again using conformal coordinates,

one finds that

u~s!5cos~l/2! u0~s!2sin~l/2! v0* ~s!

52sin~l/2!Re2 is/2,

v~s!5cos~l/2! v0~s!1sin~l/2! u0* ~s!

5cos~l/2!Reis/2.

The resulting loop has a circular projection onto the 1-2 and
3-4 planes with radiiRsin(l/2) andRcos(l/2), respectively.
In particular, forl5p, it rotates a loop in the 3-4 plane to
one lying in the 1-2 plane, as promised. Finally, consider a
general SUR(2) rotation. Since it can be parametrized using
Euler’s angles asU(l3 ,l2 ,l38)5R3(l3)R2(l2)R3(l38), one
finds that the resulting loop is given by
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u~s!52Rsin~l2/2!e2 i ~s1l32l38!/2,

v~s!5Rcos~l2/2!ei ~s2l32l38!/2.

For l3Þ0, although the projections onto the 1-2 and 3-4
planes remain circular, it is no longer circular for projections
onto other planes, e.g., the 1-4 plane. Clearly, all distinct
loops can be characterized by two independent angles, pa-
rametrized byl3 andl2.

Given a fixed isospin orientation for an instanton, the av-
erage over the loop orientation tensorNmn can now be found.
For instance, for the standard isospin orientation given by
Eq. ~5!, the monopole loop solution lying in the 3-4
plane is characterized by an antisymmetric tensor
Nmn5(dm,3dn,42dm,4dn,3). Averaging over SUR(2), one
finds that

^Nmn&5 1
2 @~dm,3dn,42dm,4dn,3!2~dm,1dn,22dm,2dn,1!#.

~29!

In a random dilute instanton gas, this implies a correlation
between the monopole loops and the isospin orientation of
the associated instanton. As discussed in the Conclusion this
correlation may provide a signature of our mechanism for
loop formation in the QCD vacuum.

B. Limit of small monopole loop

Classically SU~2! gauge theory in four dimensions has no
dimensionful parameter, and so the instanton solution breaks
scale invariance through the introduction of the widthr.
Consequently our monopole solutions depend on the dimen-
sionless ratior/R, and we may consider the solutions in the
limit for small loops sizer/R→`. Let us return to Eq.~27!,
where the width parameterr enters through the function
f (x)5r2/@x2(x21r2)#. After scaling bothx and r by R,
one finds that the equation is greatly simplified in the limit
r/R→`, f (x)→x22.

In this limit, an exact monopole loop solution to Eq.~27!
is

b~x,u!5b0~x,u![2u2~u11u2!1p, ~30!

with u65arctan@u/(v6R)#, as defined for the earlier QED
example with a monopole loop in the 3-4 plane. Note that
b050 on theu axis, and it has a jump byp on thev axis at
v5R (b052p for 0,v,R and b050 for R,v,`).
This solution is valid provided that 0,R!r. The Dirac
sheet lies in the 3-4 plane bounded by the circle of radius
R where the monopole current resides.

In the limit of small monopole loop and for 0<x!R, the
function b.2u2p and thereforeb is not ‘‘small.’’ This
reflects the fact thatV.g†(x) in the limit x→0, and so it is
singular at the origin. On the other hand, outside of the
monopole loop radius,R,x,`, b scales withR. Therefore
in this ‘‘outer region,’’ forR→0, b admits an expansion in
(R2/x2) as

tanb;tanb05
2R2sin~2u!

x22R2cos~2u!
;2sin~2u!SR2

x2 D1OSR4

x4 D .
~31!

Consequently, for fixedx andx50, the limit of small mono-
pole loop is characterized by ‘‘small’’ gauge transforma-
tions. This allows us to examine the stability of monopole
solutions by a linear analysis aboutfa(x);da,3 .

C. Marginal stability of the small monopole

Our monopole solutions are stationary values ofG con-
strained by the boundary condition to a fixed radiusR. We
therefore proceed to study the functionalG(R) evaluated at
the loop solution in the range 0<R,`. NearR→`, G(R)
is monotonically increasing sinceG is divergent for an in-
stanton in the nonsingular gauge. ForR small, a leading
order monopole solution is known. Initially we had hoped
thatG(R) has a minimum for some fixedR.0. However, in
spite of our best effort, variational calculations have so far
led to results whereG(R) is always monotonically increas-
ing. This is also confirmed by very accurate numerical inte-
gration of our 2D PDE’s as described in Sec. IV. We are now
convinced that the strong MA projection defined by the glo-
bal minimum of the functionalG is simply the singular
gauge itself, which can be viewed as the limit of a monopole
loop with radius shrinks to zero. Using our small radius so-
lutions forb, we are able to analyze the smallR behavior for
G(R).

We now consider in detail the region near toR50. As-
suming thatR50 is a minimum, one would expect that
G(R);r2@d01d1(R/r)

21•••#, with d1.0. It came ini-
tially as a surprise that we foundd150. This suggests the
possibility of a zero mode in the stability equation around the
singular gauge.

Let us expandG@f# to quadratic order in the neighbor-
hood offW 05(0,0,1), parametrized byfW .fW 01vW ,

G@f#.G@f0#1
1

4E d4xvW •MvW , ~32!

where the constraintufW u251 is realized to this order by hav-
ing vW •fW 050; i.e., vW only has two transverse components.
The stability of small oscillations is studied by finding eigen-
values of a Hermitian operator,

Mv i5l iv i , ~33!

where

M52]x
22

3

x
]x2

4

x2
LW L
228 f ~x!T3LL

3 , ~34!

with LW L as generators of SUL(2) andTW of isospin rotations
in the adjoint representation.

ExpandingvW in terms of these normalized eigenvectors,

vW 5( iaW iv i , one hasG@f#.G@f0#1 1
4 ( il i uaW i u2. With

R50 as a minimum forG, stability requires all eigenvalues
be nonnegative, i.e.,l i>0. One would also expect that an
infinitesimal loop is ‘‘nucleated’’ along the directionvW of
the eigenvector with the lowest eigenvalue,l0, and
aW 050(R). It follows thatd1}l0. The fact that our numerical
treatment indicates thatd1.0 as depicted in Fig. 3~de-
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scribed in Sec. IV! implies thatl050; i.e., to quadratic or-
der, there is a zero mode. We now try to construct this zero
mode.

With vW in the 1-2 plane,T3 takes on eigenvalues
t3561. SinceM commutes withLW L

2 , LL
3 , andT3, there is a

family of eigenvalues$l i% for each set of$ l ( l11),l 3 ,t3%,
l50,1,2,. . . , 2 l< l 3< l , and it can be found by solving an
ordinary differential equation

H 2]x
22

3

x
]x1

4l ~ l11!

x2
28t3l 3f ~x!J C~x!5lC~x!,

whereC is the ‘‘radial’’ part of the eigenfunction. With
f (x).0, the attractive case corresponds tol 3t351 and the
lowest energy level isl51. We find that all eigenvalues are
positive, except possibly one. This zero eigenvalue solution
can be constructed by changing variable toz51/x2, and
solving

F2
d2

dz2
1Veff~z!GC5lz23C, ~35!

where Veff(z)52/z222/z3f (1/Az)52r22/(z1r22). The
zero eigenvalue solution is

C~x!5S 11
1

x2D2S 11
x2

2 D lnS 11
1

x2D . ~36!

Thex→` limit is C(x)→x24 as it must. But thex→0 limit
is C(x)→x22, which leads to logarithmic divergence in the
norm at short distances. This divergence seems to render this
‘‘near’’-zero mode questionable. However, it should be rec-
ognized that our ‘‘small loop’’ solution~31! is valid only for
R,x,`. A proper treatment of our small oscillations prob-
lem requires cutting out a small ball around the origin, with
a radiusr 05O(R). Moreover, because of the zero eigen-
value, the divergence in the norm does not imply a diver-
gence inG. We should in principle be able to solve this
problem by finding the lowest eigenvalue and then letting
r 0 go to zero. With respect to this cutoff, our ‘‘near’’-zero
mode is physically meaningful. An alternative approach,
which is under investigation, may be to use the more general

MA gauge with a Higgs potential. This has a natural length
scale 1/mH , which probably provides the necessary cutoff at
short distances.

As one extends beyond the quadratic approximation, one
can see that this zero mode leads to our ‘‘exact solution’’ in
the special case off51/x2, that is, the formalr→` limit
solution. In this sense, it is easy to see that the divergence
should be cut off byr. For the exact solution, the eigenvalue
is of the order (R/r)2ln(r/R), which is consistent with our
numerical calculation as exhibited in Fig. 3.

IV. NUMERICAL SOLUTIONS TO MA PROJECTION

For a general value of the monopole loop radiusR, we
were unable to find an analytic solution. Consequently we
have discretized our PDE’s and found numerical solutions.
The need for a numerical integration method is not surprising
since even the ’t Hooft–Polyakov monopole has no known
solution in closed form, except in the BPS limit.

With the simplifying ansatz~26!, we were able to reduce
the problem from a 4D to a 2D set of PDE’s, allowing us to
construct very accurate solutions on a 2D grid. To check the
validity of this ansatz, we also consider the standard 4D hy-
percubic grid conventionally used in Monte Carlo studies of
non-Abelian gauge field theory. An important advantage of
the 4D grid is the ability of making a global search for sta-
tionary points. However, this numerical integration method
should not be confused with Monte Carlo simulations. Here
the grid is used merely to solve numerically the classical
PDE’s of Yang-Mills theory. As always for discretization
methods, it is important to consider carefully errors arising
from the grid spacinga and the volume of the box. Our
analysis of these errors will shed some light on earlier inves-
tigations@15–17# of the Abelian projection in ‘‘cooled’’ in-
stanton configurations.

A. Single instanton case

Once we have made our ansatz~26!, b(x,y,z,t) only de-
pends on two ‘‘radial’’ coordinates:u5Ax21y2 and
v5Az21t2. This feature also generalizes to the case of the
MA projections~8! with a Higgs potential which allows the
magnitudef(x,y,z,t)[ufW u to fluctuate. Here our ansatz
~26! implies that bothb(xm) andf(xm) depend only onu
andv. The functionalG takes the simple form

G54p2E dudvuvF12M ~b!f21
1

2
~]mf!2

1
1

4
l~f221!2G , ~37!

wheref(u,v)5ufu, (]mf)25(df/du)21(df/dv)2, and

M ~b!58 f ~x2!1~db/du!21~db/dv !21sin2bS 1u2 1
1

v2D
28 f ~x2!Fsin2b2

1

2
sinbcosbS vu2

u

v D G .
The conventional MA gauge is given in the limitl→`.

FIG. 3. For l50.01,0.10,̀ , the change in the gauge-fixing
functionalG as a function of the monopole loop radiusR.
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We introduce grids inu andv, mapping the infiniteu-v
plane to a finite region, for a range of values ofR/r andl
~see Fig. 3!. For all l ~including the BPS limitl50), we
found that the monopole loop solution exists and that the
functionalG increases asR4 within errors. For all values of
l the global minima appeared to be at the point where
R→0 and the instanton returned to the singular gauge. If we
perturbed the background field slightly away from a pure
instanton by changing the functional form,f (x)
5r2/@x2(x21r2)#, one can easily find field configurations
in the same topological sector which stabilized the loop at a
fix radius. This strongly suggests that quantum fluctuations
or instanton interactions can cause monopole loop formation.

To make a global search for minimal solutions for the MA
projection and to verify our theoretical ansatz, we have re-
sorted to a 4D grid. A natural choice is the standard Wilson
approach with link variables,

Um~x!5eiaAm~x!, ~38!

wherea is the lattice spacing. On this grid the MA functional
which leaves the maximal Abelian subgroup U~1! uncon-
strained is

G5 1
2a

2(
m,x

$12 1
2 Tr@f̂~x!Um~x!f̂~x1m!Um~x!†#%. ~39!

In order to numerically approximate its value, we restrict the
summation over a finite volumeV around the origin with
open boundary conditions on the surface. This is a good
approximation for an isolated instanton, since the contribu-
tions to the sum for largex drops as 1/x2. Furthermore, to
obtain a finite value forG in the infinite volume limit, we
know that the gauge rotation must become a constant at in-
finity. The minimization of the restricted functional was done
using the standard overrelaxation algorithm@25#.

The instantons are placed on the grid in the nonsingular
gauge and then rotated to singular form. Each link is ap-
proximated by its integral using the trapezoid rule. The re-
sulting configurations gave topological charge and action de-
viating at worst by 10% from their continuum values, 1 and
2p2, respectively.

We have investigated a range of different sizes of lattices
and instantons. As expected@15,16#, we have found mono-
pole loop formation in the maximal Abelian gauge. But our
monopole radii do not scale with the instanton size. This is a
clear signal that the stabilization of the monopole loop is a
lattice artifact. Despite that, we find that once a loop is
formed, the gauge rotation accurately satisfies our theoretical
ansatz~26! thata5w2c andb depends only onu andv.

A finite volume and finite spacing analysis has been done
in order to further establish the fact that the monopole loop is
a lattice artifact. We measure the change

D~r/a,L !5
GMA2Ginstanton

Ginstanton
~40!

of the MA functional after gauge fixing and we demonstrate
that it vanishes in the combined limit of infinite volume and
zero lattice spacing. In order to show this, we have found a
series of solutions for lattice sizes 204, 224, 244, 264, 284,

304, and 324 with a fixed instanton size. The infinite volume
limit is obtained by doing a linear extrapolation in 1/L,
whereL5V1/4 is the linear dimension of our lattice. Figure
4~a! shows this extrapolation forr/a54. The second ex-
trapolation to zero lattice spacing is done from these extrapo-
lated values ofD for various values of the instanton radius
r. At infinite volume, the only scale in the problem isr, and
it therefore defines the lattice spacinga;1/r. Thus one takes
the a→0 limit by taking ther/a→` limit. This extrapola-
tion is done using instanton sizesr/a53,4,5,6,7.

The results are shown in Fig. 4~b!. The extrapolated value
of D(r/a,L) in the limit of a→0 andL→` is clearly zero
within the numerical error. Another indication that the global
minimum of the MA functional is the instanton in the singu-
lar gauge is the fact thatD is so small;1023. This is also
supported by our experience with the minimizing routine.
Starting with the gauge background for an instanton in the
singular gauge, it took very few iterations to converge, which
shows that the displacement of the minimum due to lattice
artifacts is actually very small.

B. Solutions for instanton pairs

We have also used our 4D grid to begin to investigate
solutions to the MA projection in the background of interact-
ing instanton pairs. For example, we have begun to study
instantons~I-I ! pairs and instanton anti-instantons pairs~I-A !
with various sizes, relative separations and relative isospin
orientations. Already several general conclusions can be
drawn. The I-I pairs appear to be very similar to the case of
single instantons. Indeed, for the ’t Hooft ansatz, one can
again show that the two instanton solutions~or indeed the
multi-instanton solution!

AW m•tW5tah̄mn
a ]nln~11r1

2/x1
21r2

2/x2
2! ~41!

already satisfies the MA gauge condition. On the 4D grid our
preliminary study indicates that the MA projections of the
two instantons have small loops centered at each instanton
which again appear to be due entirely to lattice artifacts. It is
natural to ask whether there is a general property of all exact
classical solutions that the global minimum of the MA pro-
jection has no monopole trajectories.

FIG. 4. The finite lattice spacing and finite volume dependence
for the monopole loop solution on the lattice:~a! typical infinite
volume extrapolation and~b! a→0 extrapolation.
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On the other hand, we have computed the MA projection
for an I-A pair with isospins oriented in the most attractive
configuration. In this case, contrary to the single instanton
and I-I pair large loops are formed in the MA projection. At
large separation, each instanton in the I-A pair has its own
monopole loop as illustrated in Fig. 5, but as the separation
d is decreased the individual loops fuse atd/r.1.88 to form
a large loop which surrounds the I-A pair. These loops
clearly scale with the size of the system and the reduction of
the MA functional is clearly larger. Furthermore, this reduc-
tion in G becomes larger as one approaches the continuum
limit. Although we have not yet finished the same detailed
finite size and finite lattice spacing analysis as in the single-
instanton case, we have considerable evidence that this effect
will survive in the continuum.

In the dipole interactions between I-A pairs, we believe
we are seeing the first semiclassical mechanism for nucleat-
ing monopole loops. As the instantons become denser, the
monopole loops begin to percolate between the individual
instantons. It is easy to imagine that in an instanton liquid
there is a critical density at which the percolation clusters are
infinite and the monopoles can be said to condense. This
effect is an intriguing possibility for a semiclassical mecha-
nism for confinement. Additional studies of monopole trajec-
tories for interacting instantons and further analysis to sup-
port ~or refute! this scenario are postponed to a future
publication@19#.

V. CONCLUSIONS

The main goal of this paper was to find the earliest point
in the semiclassical instanton vacuum in which the ’t Hooft–
Mandelstam monopole appears. We believe that this is the
formation of small current loops centered at each instanton
and anti-instanton. In the extreme limit of infinite separation,
i.e., an isolated instanton, the loops shrink to zero. However,
to O(R4lnR) in the radius there is a flat direction for loop
formation in the gauge-fixing functional. We have begun to
investigate the effect of instanton anti-instanton interactions.
Here it appears that when the relative isospin orientation of
an instanton anti-instanton~I-A ! pair is most attractive, the

monopole loops are stabilized at a finite radius and as the
pair moves closer together the individual loops fuse.

There is much more to learn about the mechanism for
loop stabilization and the effects of instanton interactions.
For the most part we postpone this to a future publication
@18#. However, it is worth posing some of the questions and
extending several arguments touched on early.

First we have noticed that the single instanton in the sin-
gular gauge already satisfies the differential form of the MA
gauge and gives rise to a finite contribution to the gauge-
fixing functionalG. In fact it is trivial to see that all multi-
instanton configurations that satisfy the ’t Hooft ansatz
Am
a5h̄mn

a ]nln@11F(x2)# likewise satisfy the MA gauge
with a finite contribution forG. Thus it is tempting to con-
jecture that any exact self-dual classical solution minimizes
this functional without explicit monopole currents. We are
investigating this conjecture further. In this scenario the es-
sential mechanism for monopole loop formation would be
the interaction terms between self-dual and anti-self-dual re-
gions that act as the ‘‘domain walls’’ between I-A pairs.

Next it is worth expanding a little on the relationship be-
tween the topological charge and the monopole charge for an
isolated instanton. In the singular gauge, when we write the
topological chargeQ5(1/16p2)*d4xTr@ F̃mnFmn# in terms
of the gauge-variant currentQ5*d4x]mKm , one must ex-
clude singular regions. Indeed, via Gauss’ theorem, the flux
into these excluded singularities gives the net topological
charge. We have studied carefully how this theorem is satis-
fied in the presence of our monopole loop. In the singular
gauge, we may write the instanton as

Am5Ām1Mm52
g†]mg

i

x2

x21r2
1
g†]mg

i
. ~42!

As we shrink a small sphere toward the originx25d2→0 the
surface area isO(d3). However, one sees that the singular
part of the current

Km5
1

8p2 emnrlTrFAnS ]rAl2 i
2

3
ArAlD G ~43!

diverges asO(1/d3) and that the contribution toQ comes
entirely from the pure gauge pieceMm . On the other hand,
as we rotate the field configuration into a monopole loop,

Mm→Mm5
Vg†]m~Vg†!†

i
, ~44!

the singularity is spread out to the loop at radiusx25R2.
Now the toroidal surface area around the loop isO(Rd2),
but again a careful analysis shows that the only divergent
piece ofO(1/d2) comes fromMm . The argument is com-
pletely general for a monopole loop gauge and it requires the
magnetic charge to be quantized to match the topological
charge. This shows that the monopole loop has a very natural
fit to the instanton.

Finally we have found that when an isospin orientation of
an isolated instanton is fixed, the monopole loops are con-
strained to a portion of the full O~4! group. Again there is a
rather remarkable ‘‘coincidence’’ this time between the sym-
metries of the monopole loop and the instanton. A single

FIG. 5. Monopole loops for an I-A molecule with the most
attractive orientation:~a! loops stabilized at separationd/r51.88
and ~b! loop fusion at separationd/r51.38.
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loop ‘‘kinematically’’ breaks the Lorentz group
SUL(2)3SUR(2) into a factor of coset spaces
SUL(2)/UL(1)3SUR(2)/UR(1) in the same sense that the
’t Hooft–Polyakov monopole breaks the SU~2! isospin sym-
metry down to SU~2!/U~1!. Then, if we fix the isospin axis of
the instanton~anti-instanton! and choose the MA gauge rela-
tive to t3, the loop is only reoriented by the right~or left!
coset. This implies a correlation between the plane of the
loop and the isospin orientation, which can be tested in typi-
cal background configurations of instantons generated in a
Monte Carlo simulation. In this way we can determine
whether or not our conjecture that these monopole loops are
important configurations for the full quantum theory is cor-
rect.

In conclusion, although there are many more details worth
considering, there is a remarkable coincidence between the
form of an instanton and its monopole loop in the MA pro-
jection. This is reflected in topological, symmetry, and sta-
bility terms. This leads us to see the instanton in a new light
as the ‘‘seed’’ for the formation of monopole loops. The
dynamical implications are much more difficult, but it ap-
pears that I-A interactions may play a crucial role and the
large ‘‘entropy’’ of monopole loops percolating between
near by instantons suggest a promising direction for future
research on electric confinement.
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APPENDIX: GAUGE COVARIANT FORMULATION
OF THE ABELIAN PROJECTION

The usual way to study the MA gauge is to apply the
gauge transformation to the field,

Am~x!→Am
V~x!5V~x!Am~x!V†~x!1

1

ie
V~x!]mV†~x!,

~A1!

and find that rotationV(x) which satisfies a gauge condition.
Alternatively, one may introduce an auxiliary adjoint Higgs-
like field F5fW •tW , expressing the entire problem in a gauge-
invariant form. We refer to these two methods as ‘‘active’’
and ‘‘passive,’’ respectively. In this appendix, we collect to-
gether basic formalism for each form.

In the passive description, the MA gauge is cast in a
gauge-covariant form familiar to the Higgs@25# model, with
the entire formalism reexpressed exactly in the form used to
construct the ’t Hooft–Polyakov monopole. This covariant
formulation both simplifies our analysis and emphasizes the
important physical point that the maximal Abelian projection

needs not be viewed as a gauge-fixing prescription but rather
as a way to define magnetic degrees of freedom. We prefer
the latter interpretation.3

1. Active view of MA gauge and magnetic current

In the active form, the resulting Abelian field
am(x)5Tr@t3Am

V(x)# ~or more properly its derivatives!,
which depends on the choice on the non-Abelian background
field, can have singularities leading to a nonzero magnetic
current. Introducing the notationĀm(x)[V(x)Am(x)V

†(x)
andMm(x)[(1/ie)V(x)]mV†(x), the transformed field be-
comes

Am
V~x!5Ām~x!1Mm~x!. ~A2!

This splits the Abelian field into two components
am(x)5Ām

3 (x)1Mm
3 (x). The first termĀm

3 , for our problem,
comes from a direct rotation of the instanton field. The sec-
ond ‘‘induced’’ term Mm

3 can contain monopoles as its
source when appropriate conditions are met as we demon-
strate next.

The Abelian field strengthf mn[]man2]nam is given by

f mn5~VFmnV†!32 ieFVSAm1
1

ie
]mDV†,

VSAn1
1

ie
]nDV†

3 , ~A3!

where (•••)35Tr@t3•••#. It again is split into two pieces

fmn5~]mĀn
32]nĀm

3 !1~]mM n
32]nMm

3 !. ~A4!

Since the dual of the first combination is obviously diver-
gentless, only the second term contributes to a nonvanishing
magnetic current,

km~x!5
e

8p
emnrsTr$t3]n@M r~x!,Ms~x!#%, ~A5!

wherekm5(1/4p)]n f̃ nm and f nm5 1
2 emnrs f rs .

2. Gauge-invariant view of MA projection

We now reformulate the MA projection in passive form.
Let us begin by noting that the functional

G5
1

4E ~Am
11 iAm

2 !~Am
12 iAm

2 !d4x ~A6!

is just the mass term in the broken phase of an SU~2! Georgi-
Glashow model. This suggests a change of variables from
V(x) to

F~x!5V†~x!t3V~x!. ~A7!

3There is also a considerable literature@27,28#, which goes on to
try to construct an appropriate monopole condensate order param-
eter in the U~1! sector. Our fieldF is not this object, since it, like
the Higgs field, lives in the coset space.
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The functionalG now takes form of action for a Higgs
field,

G5
1

2E d4xH 12 @Dm~A!fW #21V~fW 2!J , ~A8!

whereF5fW •tW , Dmfa[]mfa1eeabcAm
bfc, and the poten-

tial

V~fW 2!5s~fW 221! ~A9!

involves a Lagrange multipliers in order to maintain the
constraintfW •fW 51. We also suggest a generalization of the
MA projection to include the standard quartic Higgs poten-
tial,

V~fW 2!5 1
4 l~fW 22v2!2, ~A10!

with F(x) now given byfW (x)•tW /ufW (x)u. This more general
form we will refer to as the ‘‘Higgs MA projection.’’ Thus
the MA gauge is precisely the same as minimizing the action
for a nondynamical~or auxiliary! Higgs-like field in a back-
ground Yang-Mills theory. The limitl→` at fixed VEV v
results in the usual MA projection. This is the limit which
takes the Higgs massmH to infinity. This formulation corre-
sponds to a passive description of a gauge transformation. In
the active description, rotationV is applied directly to the
gauge field in Eq.~3! so thatf̂→(0,0,1). Clearly, the pas-
sive and the active descriptions are equivalent: Each speci-
fies a gauge transformationV up to the U~1! subgroup. How-
ever, the passive description is more ‘‘natural’’ sincef̂ lives
in the coset space.

The Abelian field strength~A3! now takes a manifestly
gauge-invariant form

f mn5f̂aFmn
a 2 ieeabcf̂aDmf̂bDnf̂c, ~A11!

and the magnetic current is the well-known conserved topo-
logical current

km~x!5
1

8pe
emnrseabc]nf̂a]rf̂b]sf̂c. ~A12!

The essential identity in deriving these expressions from our
earlier equations is]mF5 i @V†MmV,F#. An alternative
form for f mn follows directly from Eq.~A4!:

f mn5]mĀn
32]mĀn

32 ieeabcf̂a]mf̂b]nf̂c. ~A13!

This approach to MA projection not only provides a gauge-
invariant treatment, but also allows a topological interpreta-
tion for the possible presence of magnetic sources. For ex-
ample, as in the case of the ’t Hooft–Polyakov monopole,
the presence of a monopole charge can be understood to be
due to a nontrivial homotopyP2„SU(2)/U(1)…5Z.

3. Higgs MA projection for instantons

For general reference to our analysis, we finally give the
full set of differential equations for the Higgs MA projection,

Dm~A!2fW 2¹W fV~f!50. ~A14!

The two independent PDE’s for the tangential components
now take the form

f]m
2a12]mf]ma12fcotb~]ma!~]mb!

522@f~f̂•AW m!~]mb!2~ b̂•AWAm!~]mf!#, ~A15!

f]m
2b12]mf]mb2 1

2 fsin2b~]ma!2

52@fsinb~f̂•AW m!~]ma!2~ â•AWAm!~]mf!#,

~A16!

by projecting Eq.~11! onto theâ(x) andb̂(x) axes, respec-
tively. In addition there is a new equation for the radial
mode,

]m
2f52H 2@sinb~b̂•AW m!~]ma!1~ â•AW m!]mb#

1FV8~f2!2
2

3
AW m
2 G J f. ~A17!

Under our ansatza5w2c, with b(u,v) and f(u,v)
only functions ofu and v, Eq. ~A15! is still satisfied auto-
matically. Now Eq.~A16! becomes

f]m
2b12~]uf]ub1]vf]vb!2S u21v2

2u2v2 Dfsin~2b!

52 f ~x!H fF S v22u2

uv D sin2b2sin2bG
1@v]uf2u]vf#J , ~A18!

and the radial equation~A17! becomes

]m
2f52H f ~x!Fsin2bS v22u2

uv D14sin2b

12~u]vb2v]ub!G1FV8~f2!2
2

3
AW m
2 G J f.

~A19!

Both analytical and numerical properties of these equations
are discussed in the text. There appears to be remarkably
little dependence of our monopole loop solution onl from
l50 ~the BPS limit! to l5` ~the standard MA projection!.

4. Abelian-projected theory

In the MA gauge, one is left with an intermediate descrip-
tion of a U~1! gauge theory,

L~am ,Am
6!5

1

4
f mn
2 1~dmAn

1!~dmAn
2!

1e2~Am
1An

22An
1Am

2!Am
1An

2 , ~A20!

interacting exclusively through charged vectorsA65Am
1

6 iAm
2 . The U~1!-covariant derivative isdm5]m1 ieam .
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In addition to the standard Wilson loopW(C)
5TrPCexp(i*dxmAm), one may introduce the Abelian Wil-
son loop,

WAB~C!5expS i E dxmam D , ~A21!

which in turn can be split up into ‘‘photon’’ and ‘‘mono-
pole’’ factors

WAB~C!5expF i E dxmĀm
3 G

3expF ieE E dsmneabcf̂a]mf̂b]nf̂cG .
~A22!

The second integral is taken over any surface whose bound-
ary is given by the loopC. The near ‘‘saturation’’ of the
non-Abelian string tension by the Abelian part in the MA
gauge,sAB.0.92s, and the Abelian part by the monopole
contribution,smonopole.0.95sAB , observed in lattice simula-
tions @29#, is referred to as Abelian dominance. If this sur-
vives the continuum limit, this may provide the dynamical
link between monopole configuration and confinement.

To understand the role that Abelian dominance might play
in the continuum theory, it is useful to look at the very in-
teresting form of the Wilson loop suggested by Diakonov
and Petrov@30#:

W~C!5E Df̂~x!

3expF i 12E dxmf̂•AW mG
3expF E dsmneabcf̂a]mf̂b]nf̂cG . ~A23!

A comparison with the Abelian Wilson loop in the MA
gauge shows that this hasexactly the same form with the
additional step that one must average over all gauge trans-
formation in the SU~2!/U~1! coset. Consequently, Abelian
dominance is the statement that in the true quantum vacuum,
the contributions to thef̂ average is approximated by the
MA projection. Thus one strategy to proving confinement is
to first establish Abelian dominance@or more precisely the
inequalityW(C)<WAB(C) for large loops# and then to dem-
onstrate that monopole condensation occurs forcing an area
law for the Abelian loop.
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