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Magnetic monopole loop for the Yang-Mills instanton
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We investigate 't Hooft—Mandelstam monopoles in QCD in the presence of a single classical instanton
configuration. The solution to the maximal Abelian projection is found to be a circular monopole trajectory
with radiusR centered on the instanton. At zero loop radius, there is a marginally staiflat) direction for
loop formation toO(R*NR). We argue that loops will form, in the semiclassical limit, due to small perturba-
tions such as the dipole interaction between instanton—anti-instanton pairs. As the instanton gas becomes a
liquid, the percolation of the monopole loops may, therefore, provide a semiclassical precursor to the confine-
ment mechanisn].S0556-282(197)03810-1]

PACS numbeps): 11.15.Ha, 12.38.Aw, 12.38.G¢c

I. INTRODUCTION viewed as a static solution to the pure Yang-Mills Euclidean
field equations in 4D, wherA, plays exactly the same role
Both instantons and magnetic monopoles are thought t8S the adjoint Higgs field in the Bogomol'ni-Prasad-
play an important role in the Euclidean description of theSommerfield (BPS limit. Of course, since the classical
Yang-Mills vacuum. In QCD instantons provide the solution th€ory is now scale invariant, the monopole massis an
to the U1) problem[1] and a vacuum composed of a liquid arbitrary parameter. Quantum effects WI!| be necessary to set
of instantong 2] can explain chiral symmetry breaking and the scale. Subsequently Ro$$B] has pointed out that this
the low mass spectrum, at least at a qualitative 1§8ef]. ~ Monopole configuration can be identified witte., has the
Nonetheless, it is generally believed, as conjectured by Marsa@me field conf|gurahon}ianszzmlte sequence of instan-
delstam[5] and 't Hooft[6], that magnetic monopoles, not NS equally spaced byl ~“87“/e” on the time axis in the
instantons, are essential for confinement in QCD and relatelimit p—°. o
gauge theories. For example, compact QED with a lattice Turning now to the MA projection, Chernodub and
cutoff is known to be exactly dual to a Coulomb gas 0qubare\_/[14] have recently shown thata_stralght I|ne. mono-
monopoles, which upon condensation causes confinemeRpl€ trajectory through the center of an instantonpair of
via a dual Meisner effedt7]. Similarly there is evidence for instanton$ satisfied the MA gauge condition. However, if
the role of monopole condensation in the three-dimensionfn€ 10oks —at the MA  gauge-fixing  functional
(3D) Yang-Mills-Higgs (or Georgi-Glashowmodel[8] and ~ G= 7 [d*xA7 (X)A,(X), A,=A.*iAZ2,  for the
more recently in(4D) N=2 supersymmetric Yang-Mills Chernodub-Gubarev solution, one notices that it diverges at
theory[9]. large distances. Since the proper definition of the MA pro-
Consequently, we are faced with a dilemma of two com-ection is not just a stationary point but a minimum of this
peting pictures of the QCD vacuufor more accurately the functional, this solution is still not a very satisfactory linkage
Euclidean equilibrium phageas either a coherent ensemble between an instanton and the monopole. The basic problem
of instantons or a condensate of magnetic monopoles. In this that the instanton is restricted to a space-time region
paper, we show that these two pictures may in fact be twavhereas the static monopole solution has an infinite trajec-
descriptions for the same phase. To establish a precise amory. In contrast we have found that our monopole loop so-
indisputable link between the monopole trajectories and inlution to the MA projection, which is localized at the instan-
stantons, we define the monopole current in a field configuton, does give a finite value 1@, which drops gradually to
ration via 't Hooft's maximal Abelian(MA) projection and an absolute minimum as the radius decreases:
demonstrate that in the background of a single instanton th6=472p?[1+4.6(R/p)*In(p/R)]. We then argue that this
MA projection leads to a circular monopole current loop of solution is easily stabilized by small Gaussian perturbations
radiusR centered on an isolated instanton of “widtly: We  or nearby interactions with anti-instantons. We feel this is
also begin the study of monopole trajectories in the presencene first rather precise connection between the instanton and
of interacting instanton pairs. monopole trajectories.
Let us review briefly the attempts to identify monopole
currents in QCD(The reader is referred to Polikarppt0]
and references therein for more detailsis well known that IEssentially the same use is made of the adjoint fijdn the
the only topological stable solutions to Euclidean Yang-Mills MA projection that diagonalizes the Polyakov loop as discussed by
theory are the multi-instanton solutiofl] with topological ~ Suganumaet al. [12], but we do not pursue this approach further
chargeQ. On the other hand, the 't Hooft—Polyakov mono- since it does not provide a Lorentz-invariant definition of monopole
pole solution to 3D Yang-Mills-Higgs theory can also be variables.
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In addition to this continuum analysis, there has been /\ y—1ris5 .5 — 6 .5 D—(5 6 —6. -6
some recent numerical evidence in lattice simulations pre- Ny = 2 [(04.38047 8114009 = (818027 Oz V’l)]'(z)
sented by Hart and Tepgt5], by Bornyakov and Schierholz
[16], by Markumet al, Thumeret al. [17], and by Fuku- whereN,,, is the skew symmetric unit tensor defining the
shimaet al. [18] that shows that monopole loops are corre-pjane of the loop in 4D.
lated with multi-instantons configurations. These numericaP In Sec. IV, we report on our numerical solutions leading

results also indicate that a correlation between monopolg, a preliminary picture of the role of instanton anti-instanton
condensation and the formation of a dense liquid of instan¢|-a) interactions for loop stabilization at large separation

tons are a property of the quantum vacuum. However, OUgnd for the I-A pair loop fusion and percolation at small
immediate goal is a more modest one: establishing a cleajeparations.

kinematical connection between monopoles and instantons in Einally, in Sec. V, we discuss our results and suggest

the semiclassical limit. While this limited exercise is Unablefuture lines of investigation_ We comment on the naturalness
to show that thedynamicsof the full quantum theory is in  of the instanton-monopole connection. The loop vacuum ex-
some sense approximated by a monopole-instantoryectation value(VEV) naturally breaks the S@) group
correlated background and that confinement results from thgown  to  the coset direct product  $(2)/
percolation of these objects, we feel that clarifying the kine-y (1)x SUL(2)/Ux(1) in close analogy to isospin breaking
matics is an important first step in bringing these two pic-jn the 't Hooft—Polyakov monopole construction. Also we
tures together. _ note that the Abelian projection for the instanton in the sin-
To go beyond the analytical study, we have also underyy|ar gauge spreads the singularity at the origin to the trajec-
taken a numerical MA projection in the background of antory of the monopole loop, directly relating the instanton’s
isolated instanton by minimizing the functior@ldiscretized  opological charge) to the monopole chargg by the iden-
on a 4D hypercubic lattice. The only solutions we havejjity Q=eg4m. In summary we conclude that monopole
found were identical to our analytical monopole 100p solu-jgops are peculiarly well matched to the instanton, leading us
tion albeit stabilized to a fixed radiugn lattice unit3 by 1o hope that there is a deeper connection in confining gauge

lattice artifacts. We have also begun to study the monopolénepries transcending our particular construction.
loops in the background of an interacting instanton—anti-

instanton(l-A) pair and found that the individual loops ap-
pear to be stabilized by the interaction, if the I-A molecule is
oriented so that the dipole interaction is attractive. At a criti-
cal separation of the I-A pair, the individual monopole loops The maximal Abelian projection was introduced by
fuse into a single loop. Details of the multi-instanton study't Hooft [6] in order to define magnetic monopole coordi-
are left to a future publicatiofl9]. Nonetheless, on the basis nates by a partial gauge-fixing procedure that leaves the
of our preliminary analysis, we conjecture that the I-A inter- maximal Abelian subgroup free. In analogy with the Higgs
action provides a semiclassical mechanism whereby theystem, 't Hooft suggested introducing an adjoint fiédd
monopoles are “liberated” from the individual instantons, which by the gauge transformatiog—X®=QXQ" is di-
and which may therefore represent a precursor to condensggonalized to fix the gauge in the coset space
tion and confinement. SUN)/U(1)N~1 up to U1) factors. Exceptional space-time
The organization of the paper is as follows. We begin bytrajectories wher& has degenerate eigenvalues represent the
noting that the maximal Abelian projection, which is usually Abelian monopole configurations. Various examples Xor
presented as a gauge-fixing procedure, is equivalent to thgere suggested such Bs, or the (untraced Polyakov loop,
introduction of an “auxiliary Higgs” field®=¢- 7, which  etc.
is determined by minimizing the Higgs kinetic term: Subsequently a particular Lorentz-covariant gauge has
proved to best correlate the monopoles condensate with con-
1 finement in lattice simulationg20]. This gauge is now re-
G= _J d4X[DM(A)(,§]2_ ) ferred to as the maximal AbeliaiMA) gauge. For S(R), it
4 is expressed as the minimization of the functional:

IIl. MONOPOLE LOOP SOLUTION
IN THE INSTANTON BACKGROUND

(The Higgs field is related to the usual gauge rotation by :Ef 4y A+ -

®=0"7,0.) This approach has several advantages in terms GLA,] 4 dA, ()AL (X0, ©
of analysis and a clearer relation to the standard discussion of

monopole topology(See the Appendix for detai)s. where A=A’ *iA% . In differential form the MA gauge

Next, in Sec. Il, we solve the stationarity equations for thecondition becomes
Higgs field[or gauge rotation in the SB)/U(1) coset spacke

to find the monopole loop solution for fixed radiRs Mono- Ai(x)z(%i ieAi)Alf =0, 4
pole loops in Abelian gauge theories are reviewed to guide
the construction. with the additional stipulation to avoid Gribov copies that

In Sec. Ill, we consider the full manifold of solutions and one should find the solutions corresponding to the global
their collective coordinates. We note that there is an interestminimum of G. [We will sometime refer to the stationarity
ing correlation between the average over the orientations afondition (4) by itself as the “differential” MA projection}
all monopole loops at fixe® and the isospin orientation of Before presenting the details of our monopole loop solu-
the instanton given by tion, it is possible(at least with hindsightto see why mag-
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netic loops might appear in an instanton background. Con=Q"7;0), instead of working directly with the gauge trans-
sider the field configuration for a single instanf@1—-23 in  formationQ(x) itself (see the Appendix for detajlsin terms

the singular gauge: of the isovector fieldp, ®= ¢- 7, the functionalG becomes
A= 2R, 7= o AR a.In(1+ p2hd) (5) aNE 212\ g2
=R T TTLAINLE p7D), 6= [ a5 martv . @

where the anti-self-dual 't Hooft symbol is;f”,
E(i/2)Tr(7-E"7-VrL) and 7,=(i ,;-) with Latin indices re-
stricted to the vector components. First one notices that thi
field configuration already satisfies the differential Mas
well as the Lorentzgauge condition. Also it gives a finite
value

where D, ¢*=4,¢*+ee*®"ALpY and the potential is
¥($2)=0($2—1) with a Lagrange multiplier. [One can
See by inspection that E(B) is identical to Eq(3), after the
substitution®=0"7;0.] It is also natural to generalize the
MA projection with a quartic Higgs potential:

p

X—
X2(X2+ p2)2

72y _ 1 72 2\2

G[AM]ZZEZJ g4 = 4m2e2p? ) V(¢%)= i N(d"—v)*, 9

with ®(x) now given by é(x) - /| (x)|. We will refer to

this more general from as the “Higgs MA projection.” The
8onventional MA projection is recovered in the limit— o

at fixed VEV v in which the Higgs boson mass scale
my—o as well. Not only does the covariant formulation
have numerous technical advantages, it shows that the MA

to the MA gauge fixing functional — the dominant contribu-
tion to G coming from the core of the instantonsX&=<p.

On the other hand, the instanton in the nonsingular gaug
also satisfies the differential E¢4) for the MA projection,
but now the functionalG diverges logarithmically at large

distances: o L s
projection need not be seen as a gauge-fixing prescription but
p? instead as a gauge-covariant method of identifying the ap-
G[Aifs)]ZZEZJ' d4X—2—2—z(X it (7)  propriate magnetic variables.

The general problem is to construct solutions to the dif-

Nonetheless, the nonsingular gauge does reduce the contffrential form of the MA projection,

bution toG in the core of the instanton. Consequently, com-

parison between the singular and nonsingular gauges sug- DM(A)2$—6¢V(¢)=0, (10
gests that itnightbe possible to find an intermediate solution

which minimizesG by a gauge transformation such that thein the background of a single instanton. For the standard MA
central region, inside some radius<R), is converted to the  projection, this yields a linear partial differential equation
nonsingular gauge, while the large distance behavior is “”%PDE) for J)(x)
changed from the singular gauge configuration. In essenc '
this will turn out to be the way we construct the monopole 2+ S - S -
loop solution. Iyt 2R, X0, ¢+ A X(AXP)—a¢p=0, (11)

In addition, by a general argument one can understand
why this construction might lead to monopole singularities.subject to the constrair&zzl. For an instanton in the sin-
No local gauge transformation on the instanton can changgular gauge (5), the potential also can be written as
the total topological charge. However, if we express the tOAM= — ixzf(x)gT(x)aMg(x), where g'(x)= —ixMTﬂllxl,
pological charge for the instanton in the singular gauge via, :(; i)
Gauss’ law,Q=[d"*xd,K,, in terms of the flux for the * * "7

gauge-variant current, 1 P2

f(X):szpr (12

KM:WE#VPKT" AV

3 °

2i
I,A— A A)\)
and we have also set the gauge coupkngl.
one knows that the entire contribution comes from the sin- Solving this equation is very similar to the problem, first
gular point atx=0. Any gauge rotation that removes this considered by 't Hooff1], for computing the Gaussian fluc-
singularity but does not change the gauge at infinity mustuations of gauge, fermionic, and Higgs fields in the back-
replace it with another singularity at some finite distance. Agground of an instanton. In studying self-dual solutions and
we will explain in more detail in the Conclusion, our mono- their supersymmetric extensions, it is useful to introduce ten-
pole loop current is the source of this singularity and itssors that reflect the chiral S2)X SUg(2) decomposition
magnetic charge can therefore be directly related to the toef the O(4) Euclidean Lorentz group, which suggests the
pological charge of the instanton. conformal coordinates =x+iy=ue'® and \=z+it
In searching for solutions to the MA projection, we have

=pe'?, which enter into the bispinor,
v u*
found it more convenient to use a gauge-covariant formula- x+iy —z+it)] \u —o*)
tion in terms of an auxiliary Higgs-like field,®(x) (13

A. General equations
z+it  x—iy
Xap=Xu(Ty)ap=
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for the singular gauge transformatign(x) .= —iXap/|X|.
This notation, as we will see in Sec. lll, is also convenient
for exhibiting the Lorentz symmetries of the monopole solu-
tion.

It follows from the property ofpj, that isospin compo-
nents ofA are orthogonal, |eA“ABo<5a5. As a conse-
guence, the last two terms in E@.1) both point alongg in
the isospin space. Let us parametrize this “radial direction”
at eachx by a unit vector,

&(x)=(sinBcosy, sinBsina, cosB), (14)

and introduce two unit tangent vectors orthogonal to
d(x), a(xX)=(—sina,cos,0) and B(X) =(cosBco, @ (b)
cosBsina, —sinB). By projecting Eq.(11) onto thea(x) and

B(x) axes, the two independent differential equations for the FIG. 1. (a) The Dirac sheet for a monopole loop in QE()
MA gauge are 6. variables for Dirac loops solution.

SinBa%a+2co$B(d,a)(3,B8)= —2sinB(¢-A,)(d,B8), Q(x)=cog B/2) +isin( BI2)[ (cosx) 7 — (sina) 75] (20)
(15

obeys the boundary conditidd —1 asg—0.
9B 3SiN(2B)(d,a)°=2sINB(¢-A,)(9,a), (16)

B. Monopole loop in U(1) gauge theory
respectively[ The more general equations for the Higgs MA
projection for arbitraryx are given in Eqs(A15)—(A17).]
Our task is to find solutions to these equations.

For the explicit monopole content of a solution, it is in-
structive to return to the active transformation, E41), and
to decompose the transformed field into two parts, Bg),
AL(X)=A,(X) + M ,(x), where

To construct monopole loop solutions, we have found it
helpful to work “backward” from specific examples of(l)
monopole currents. First, recall Dirac’'s construction for a
static monopole of magnetic chargg at the origin
x=y=2z=0, with magnetic currentk,(x)=g5®(x)3,s.
The field is given by

_ _ 9.
AL ()=0(X)A,(X)QT(X), MM(X)E%Q(X)%QT(X). A= g1 COM1e, (21)

in spherical coordinates 99=arctan(/x’>+y?/z)<= and
p=tan (y/x). The singular behavior due tod ¢
Q(x)=e'oX =gl r73/2giBral2giasl2 17 =l X?+y?asx?+y?—0 corresponds to having placed a
Dirac string along the negativeaxis, which in 4D leads to a

One can readily verify that this is consistent with E&i4)  Dirac sheet in the left-half of the 3-4 plane. The Dirac sheet

and, owing to the residual (@) invariance,$(x) is indepen- ~ can be moved by a gauge transformation.

dent of the angley. Focusing on the Abelian field This construction is an example of a general formalism
(x)—Tr(rsAQ) A3 + M3 . one observes that the first for writing down a solution with a Dirac sheet attached to a

term AG = b-A prowdes the source for our PDE’s, Egs. closed Euclidean monopole current lopp4]. Consider a
Lot K unit monopole trajectorx, =y ,(7) and its associated mag-

The gauge rotation in terms of three Euler’'s angles is

(15) and(16). The induced term netic currenk ,(x)=fd7d,y ,(7) 5*(x—vy). We can attach to
1 it a Dirac sheet described by, (7,0), wherex, =y ,(7,0).
Mi(x)z - E[cosB(x)aﬂa(x)nLaﬂ(x)] (18)  The associated vector potential for the monopole loop is
will give rise to topological current for the monopoles, Eq. a,(x)=— f d4x’ | | ) 22)
X—X

(A5). In terms of the Euler’'s angles, the magnetic current is
explicitly given as

where EMV= te and G, (x)=fdrda{d,y,d,Y,

1 Y I,
Ku(X)= 2me Snrpo 9L 950(x),C08B(X) ] (19 We novl\L/ apply Eq(22) to a monopole of chargg mov-
ing in a closed loop of radiuR in the 3-4 plane centered at
Note thathL is not specified uniquely due to the residual the origin. The Dirac shedbr solenoid world shegis cho-
U(l) gauge symmetry. Generally, we will choosgx) sen to run across the loofsee Fig. 1, parametrized by
= —a(x) so that the Dirac sheet associated with the monoy,=Yy,=0, y3=R(1—o)cosr7, y,=R(1— o)sinwr, where
pole loop solutions can be oriented conveniently and so that 1<7<1 and G<o<1. It is convenient to use the confor-
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mal coordinates introduced earlier,=u+iy=u€e'¢ and 1
v=z+it=ve'’. The magnetic current o}

0.8f
g -
Ku(X)=5—38(x)8(y) (v —R)¢ (23 o7
0.6f
results in the potential vost
0.4r

g
aM=E[l—cos(0++0,)]p7M<p, (249 03
0.2

where 6. =tan [u/(v+R)]. (See Fig. 1 for a geometric 01
interpretation foré.. .) 0¥

As for the case of a single monopol@ﬂ(p:fp/u is sin-
gular as one approaches the 3-4 plane;0. For v>R,
0. —0, the prefactor vanishes, and this singularity is absentR/
However, for 6<v<R, 6,.—0, §_— , the prefactor ap-

proaches 2 and a Dirac sheet is present. We are now readyttlge monopole loops are oriented in the 3-4 plane. Other ori-

gene_rallze this construction o the maximal Abelian PrOl€C-entations, including that oriented in the 1-2 plane, can be
tion in the background of an instanton.

obtained by performing appropriate(4) rotations, as we
_ _ demonstrate in Sec. Ill.
C. Monopole loop in an instanton background Instead ofu and v, we convert tox and 6, where
Returning to the differential MA conditions, EqL5) and ~ X?=u?+v? and §=tan *(u/v), O<@<m/2. (See Sec. IV
Eg. (16), an obvious solution corresponds to the gauge rotafor further discussion of the ansatz in thev coordinate
tion from the singular to the nonsingular gauge, System: Now Eq.(16) becomes

Q=g"=(x,+ix-7)/|x|. In the Euler parametrization, this

12

FIG. 2. Solution to B(u,v) for a monopole loop with
p=0.81 andp=1.

_ _ 1 1 2sin2B
corresponds to a=¢—¢, y=m—(e+y), and B = 0(X30,B) + ————3,(SiN200 yB) — —————
=26=2arctan(/v). However, on surfaces whew®,a is & KB T Sagim 76 oB) x%sirf(26)
singular =0 orv =0), cogB=0 so that no magnetic mono- 1 4t (x)sirPB(cotB— cot26) 0. 27

pole is formed’
With the gauge choicey=—«, the induced potential

3 For G to remain finite, one must impose the boundary con-
M}, becomes

dition sinB=0 at #=0 and 6= 7/2. There remains the free-
1 dom for B to take on values which are integral multiples of
M3 (x) = S[1—cosB(x)]9,a(x). (25 .

Recall that we are seeking solutions Witkﬁ(x) ap-
Note the similarity between this expression and the monoProaching the behavior of the nonsingular gauge at the ori-
pole solutions for QED, E¢(24). The Dirac sheet is formed 9N, and approaching the behavior of the singular gauge at
on the surface whered,a becomes singular and infinity. We therefore expect a solution with3
B(x) =+ 7. The magnetic current is on the boundary of the=26(modm) for x small and with3— 0(modw) at infinity.
Dirac sheet wherg has a discontinuity. A mc_)nopole loop lying in the. 3-4 plane corre_spondg to a

Consider the ansatz whereand 3 are only functions of ~Solution whereg has a discontinuity on the positive axis.
(¢,4) and (U,v), respectively, i.e.a(e,¥) and B(u,v). It To be precise, we seek solutions whépeB(x,w/2)=0, (ii)
can be shown that the first of the two MA conditions, Eq.B8(x,0)=— 7 for 0<x<R, and(x,0)=0 for R<x<<, and

(15), is solved under this ansatz by (iii) B(x,0)—0 for x—oo. _ .
An analytic solution forB(x,6) in the limit of small
a=¢p—i. (26) monopole sizeR/p—0, can be found; this will be discussed

in Sec. lll. For generaR/p, the solution to Eq(27) can be
It follows from the QED example that a Dirac sheet can beobtained numerically. Using a simple relaxation method for
present either in the 1-2 plane0) or the 3-4 plane G (described in Sec. I\ very accurate solution fg8 can be
(u—0), or both. Itis sufficient for us to seek solutions wherefound, as illustrated in Fig. 2. Independent of the detailed
form of the solution, witha=¢— ¢, the discontinuity in
B(x,0=0) atx=R leads to a magnetic current
2The solution[14] given by Chernodub and Gubarev corresponds
to =9 and a= ¢, whered and ¢ are the polar and azimuthal ~
angles for the spatial three vectar This is the standard static k#(x): Eé(xl)ﬁ(xz)ﬁ(v—R) ¥,
“hedgehog” configuration f0r¢“=x“/|§|, which gives rise to the
't Hooft—Polyakov monopole with chargeme atx=0. This so- where we have reintroduced the charge factor. Therefore our
lution leads to a divergence value for the gauge-fixing functionalsolution corresponds to a loop of monopole with a magnetic
G. chargeg=4m/e in the instanton background.

(28)
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In fact we have explored the more general case of a Higgs A. O(4) invariance and orientation of the monopole loop

potential V(¢) :j\(d’z_l)zy where ¢ is the magnitude of e fact that we constructed the monopole loop solution
the Higgs field¢. The change in the value @ is almost lying in the 3-4 plane is purely for mathematical conve-
independent of the parameter It is now clear that our gen- nience; a larger family of loop solutions can be obtained by
eral monopole loop solutions yield a family of solutions applying Q4) Lorentz transformations. Since SO(4)
which all satisfy the local MA condition and which interpo- =SU, (2)X SUg(2), it is possible to define two sets of mu-
late between the singular gauge and the nonsingular gaugeally commuting angular momentum generators by
for an instanton. For &x<R, Q(x)~g'(x) up to a U1) sz—(ilzﬁiyx“av andL&=—(i/2) %%, x*d,. (In terms of
[ﬁtatlpn; tlhe_teffef[:; ofothg_gau%e tré’:lr}sformatlor!tls% t|‘|3 réMOV&he conventional “rotation” and “boost” operators} and
€ sihguiarly alx=1. >Ince5—14 1of X—=%, It Tolows K, one hasL, =[J—K]/2 and Lg=[J+K]/2.) Usin

B ) . . . L R . g the

that, with y=—a, (31 rapidly and the larga-behavior of spinor basis, it is trivial to show that an instanton configura-

‘tlhe g?uge f|el(‘jls IS ”unqhanged. The transition betweeﬂon is invariant under an arbitrary rotation in {{(2), gen-
small” x and “large” x is marked by the presence of a - . ) ) )
monopole loop of radiuR in the 3-4 plane. AR goes to erated byLg. An instanton is also invariant under an

%, the monopole loop is pushed to infinity, leaving behind aSU,(2) rotation (generated by ), provided that a corre-
gauge field configuration which is the instanton in the non-sponding isospin rotation is performed simultaneously.
singular gauge. If we consider the kinematics of the loop in the 3-4 plane,
There is in fact a very large manifold of solutions. In ignoring the instanton background for now, clearly rotations
addition to the loops described above, one can clearly imin the 1-2 and 3-4 planes leave it invariant. In fact it
pose the boundary conditions f@rto jump by= 7 on either ~ can be easily shown that these are the only invariances
the #=0 axis or theg= /2 axis or both, at arbitrary radii and that the remaining four-parameter coset space
R;. As long as the final value g8 asx®—x is set to be the SUL(2)/U_ (1) X SUg(2)/Ug(1) rotates the loop to an arbi-
same multiple of7 on both boundaries, no topological trary plane. Thus the loop breaks both left and right chiral
charge has been pushed to the spatial infinity and the fundU(2) factors in the @) group, analogous to the way the
tional G will still be finite. This will give a series of concen- 't Hooft—Polyakov monopole breaks the & isospin
tric loops with increasing radii and magnetic charge eitheigroup. Since a MA gauge also fixes a direction in the isospin
g or —g. In addition as described in Sec. 1V, the applicationspace by identifyings, the only remaining symmetry trans-
of Lorentz invariance to these solutions will reorient theseformations belong to SR(2). Thus given a monopole loop

loops in 4D space. solution, all other inequivalent solutions can be obtained by
performing @4) rotations belonging to the quotient space
SUR(2)/Ug(1).
IIl. COLLECTIVE COORDINATES AND STABILITY We now provide a few details on these transformations.
OF MONOPOLE LOOP Any rotation Ue SUg(2), expressed in the conformal coor-

; . R R
dinates of Eq(13), acts onx,j to give xap—xaB,UB,B. Let

In this section, we first address the ques_tion concerr_ﬂngIS see what happens to a circular loop of raduntered in
the d_egenera_lcy qf the _monopole loop solunons_constrame e 3-4 plane: up(o)=xe(0) +iye()=0 and (o)
to a fixed radiuRR in the_ instanton background._ This ana_ly5|s =270(0) +ito(o) =RE2 where 0< o<4r. First consider a
closely parallels the discussion of the collective coordinates . ENERT
for the instanton itself. The Yang-Mills action is invariant "Ofation,Rs(\)=e""r=e'""s" in the U1) subgroup of SU
under the 15-parameter conformal and the 3-parameter gl¢2)r- It simultaneously rotates the 1-2 and 3"{&',‘3”‘95 by the
bal SU2) groups. However, an instanton solution breaks 8 ofS@Me  angle )‘lziwé'e" Up—u(o)=Ug(0)e and
these symmetries leading to 8 collective coordinates, roughlyfo— V(o) =Vo(a)€™ ™. This clearly leaves a monopole
identified as 4 for its location, 1 for its size, and 3 for its [0OP lying |n2the 3-4 plane invariant. Next consider rotations
isospin orientatiorisee below for a more precise definitipn. R,(\)=e'*-r=¢'*"22, Again using conformal coordinates,
A monopole solution in each instanton background withone finds that
these 8 coordinates held fixed further breaks some of the ]
remaining 10 symmetries, leading to additional collective co- u(o) =cog\/2) up(o) —sin(\/2) vg (o)
ordinates for the orientation of the loop. — _sin(\/2)Re 172

Next we will address the dependence of the loop solution '
on the loop radiufk. Each solution is a stationary point of
the gauge-fixing functional under the constraint of fixed ra- V(o) =Ccog\/2) Vo(o)+Ssin(N/2) U5 (o)
dius. To restrict further the MA projection, one may also — cog\/2)Rd"?
impose the condition thas is a global minimum. We there- - '
fore need to stud@(R), 0s<R<«, and determine if there is
a true minimum for a finite nonvanishing value of loop ra- The resulting loop has a circular projection onto the 1-2 and
dius R. We shall show that, for a large instanton with size 3-4 planes with radiRsin(A/2) andRcos{/2), respectively.

p (or equivalently small monopole loops with radii<p), In particular, forA =, it rotates a loop in the 3-4 plane to
there is a very weak dependence of the gauge-fixing funcene lying in the 1-2 plane, as promised. Finally, consider a
tional G in R, and so the scale of the loops is “nearly” a general SW(2) rotation. Since it can be parametrized using
collective coordinate. This near-zero mode leads to “mar-Euler’'s angles atl (A 3,A5,A3) =R3(A3)Ra(A2)R3(N3), one
ginal instability” for the formation of small monopole loops. finds that the resulting loop is given by
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(o) = —Rsin(\,/2)e" i@+ M—xé)/z, Consequently, for fixeat andx=0, the limit of small mono-
pole loop is characterized by “small’ gauge transforma-
B (o haAD)/2 tions. This allows us to examine the stability of monopole
V(o) =Rcog\,/2)e 3 T solutions by a linear analysis abogf(x)~ &, 3.

For A3#0, although the projections onto the 1-2 and 3-4
planes remain circular, it is no longer circular for projections
onto other planes, e.g., the 1-4 plane. Clearly, all distinct Our monopole solutions are stationary valuesGoton-
loops can be characterized by two independent angles, patrained by the boundary condition to a fixed radRisWe
rametrized by ; and\,. therefore proceed to study the functioi®{R) evaluated at
Given a fixed isospin orientation for an instanton, the av-the loop solution in the rangesOR<<ec, NearR— =, G(R)
erage over the loop orientation tendby, can now be found. is monotonically increasing sind® is divergent for an in-
For instance, for the standard isospin orientation given bytanton in the nonsingular gauge. Fersmall, a leading
Eq. (5), the monopole loop solution lying in the 3-4 order monopole solution is known. Initially we had hoped
plane is characterized by an antisymmetric tensothatG(R) has a minimum for some fixeld>0. However, in
N,,=(6,30,4—6,46,3). Averaging over SW(2), one spite of our best effort, variational calculations have so far
finds that led to results wher&(R) is always monotonically increas-
ing. This is also confirmed by very accurate numerical inte-
(N,,)=3[(8,30,4=6,46,3)~(8,16,2~ 8,20,1)]- gration of our 2D PDE’s as described in Sec. IV. We are now
(29 convinced that the strong MA projection defined by the glo-
bal minimum of the functionalG is simply the singular

In a random dilute instanton gas, this implies a correlationy, e jtself, which can be viewed as the limit of a monopole
between the monopole loops and the isospin orientation b yith radius shrinks to zero. Using our small radius so-
the associated instanton. As discussed in the Conclusion thigtions for 3, we are able to analyze the sm@lbehavior for

correlation may provide a signature of our mechanism forG(R)
loop formation in the QCD vacuum. i

C. Marginal stability of the small monopole

We now consider in detail the region nearRe=0. As-
o suming thatR=0 is a minimum, one would expect that
B. Limit of small monopole loop G(R)~p2[60+ 61(R/p)2+---], with ,>0. It came ini-

Classically SW2) gauge theory in four dimensions has no tially as a surprise that we found, =0. This suggests the
dimensionful parameter, and so the instanton solution breaki0ssibility of a zero mode in the stability equation around the
scale invariance through the introduction of the wigth ~ Singular gauge. _ _ _
Consequently our monopole solutions depend on the dimen- L&t us expands[ 4] to quadratic order in the neighbor-
sionless ratigp/R, and we may consider the solutions in the hood of ¢o=(0,0,1), parametrized by= ¢+ w,
limit for small loops sizep/R— 0. Let us return to Eq(27), 1
where the width parametes enters through the function - il P N
£(x) = p2I[X2(x2+ p2)]. After scaling bothx and p by R, CLe1=Cldol+ 4f d'xw- Mo, 32
one finds that the equation is greatly simplified in the limit
p/lR—, f(x)—x"2.

where the constraintp|?=1 is realized to this order by hav-
In this limit, an exact monopole loop solution to EG7)

ing @ $o=0; i.e., » only has two transverse components.

is The stability of small oscillations is studied by finding eigen-
B(X,0)=Bo(X,0)=20— (6. +6_)+, (30) values of a Hermitian operator,
with 4. =arctanfu/(v=R)], as defined for the earlier QED Moi=N\joi, (33)

example with a monopole loop in the 3-4 plane. Note that

Bo="0 on theu axis, and it has a jump by on thev axis at  Where

v=R (Bg=—m for 0<v<R and By=0 for R<p<®). 3 4

This solution is valid provided that OR<p. The Dirac 2.2, _ “r2 3| 3

sheet lies in the 3-4 plane bounded by the circle of radius M= =0 x * szL BIOOTLL, (34
R where the monopole current resides.

In the limit of small monopole loop and forOx<R, the  with [, as generators of S2) andT of isospin rotations

reflects the fact tha® =g'(x) in the limitx—0, and so it is L . .

singular at the origin. On the other hand, outside of the. Expfmdlngw in terms of these normlahzed :mgenvgctors,
monopole loop radiusR<x<s, B scales withR. Therefore ~ @==i&®i, one has G[¢]=GC[ o]+ fTEi)‘i|ai |_ - With

in this “outer region,” forR—0, 8 admits an expansion in R=0 as a minimum foiG, stability requires all eigenvalues

(R?/x?) as be nonnegative, i.eA;=0. One would also expect 'Ehat an
infinitesimal loop is “nucleated” along the direction of
—R?sin(206) _ R? R* the eigenvector with the lowest eigenvalug,, and
tan'BNtanBO:xz—chogza) ~—sm(20)<7 +0 7)‘ a,=0(R). It follows that8;%\ . The fact that our numerical

(31 treatment indicates thaf;=0 as depicted in Fig. 3de-
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MA gauge with a Higgs potential. This has a natural length
scale 1, which probably provides the necessary cutoff at
short distances.

As one extends beyond the quadratic approximation, one
can see that this zero mode leads to our “exact solution” in
the special case df=1/x?, that is, the formajp—oc limit
solution. In this sense, it is easy to see that the divergence
should be cut off by. For the exact solution, the eigenvalue
is of the order R/p)?In(p/R), which is consistent with our
numerical calculation as exhibited in Fig. 3.

IV. NUMERICAL SOLUTIONS TO MA PROJECTION

For a general value of the monopole loop radRiswe
were unable to find an analytic solution. Consequently we
have discretized our PDE’s and found numerical solutions.
The need for a numerical integration method is not surprising
since even the 't Hooft—Polyakov monopole has no known
solution in closed form, except in the BPS limit.

With the simplifying ansat£26), we were able to reduce
e problem from a 4D to a 2D set of PDE’s, allowing us to
oL 3 . construct very accurate solutions on a 2D grid. To check the

With o in the 1-2 plane,T° takes on eigenvalues ygjigity of this ansatz, we also consider the standard 4D hy-
t;==*1. SinceM commutes witi_.?, L?, andT?, there isa  percubic grid conventionally used in Monte Carlo studies of
family of eigenvalueg\;} for each set ofI(I+1),l3,t3}, non-Abelian gauge field theory. An important advantage of

FIG. 3. ForA=0.01,0.10%, the change in the gauge-fixing
functional G as a function of the monopole loop radiRs

scribed in Sec. IYimplies that\,=0; i.e., to quadratic or-
der, there is a zero mode. We now try to construct this zerg,
mode.

1=0,1,2,..., —I=<Iz=<lI, and it can be found by solving an the 4D grid is the ability of making a global search for sta-
ordinary differential equation tionary points. However, this numerical integration method
should not be confused with Monte Carlo simulations. Here

3 4l(l+1) the grid is used merely to solve numerically the classical
_6X2_§‘9X+ X2 = 8lalaf(X) (¥ () =AW (x), PDE’s of Yang-Mills theory. As always for discretization
methods, it is important to consider carefully errors arising
where ¥ is the “radial” part of the eigenfunction. With from the grid spacinga and the volume of the box. Our
f(x)>0, the attractive case correspondd ;=1 and the analysis of these errors will shed some light on earlier inves-
lowest energy level i=1. We find that all eigenvalues are tigations[15—17 of the Abelian projection in “cooled” in-
positive, except possibly one. This zero eigenvalue solutiostanton configurations.
can be constructed by changing variable zte 1/x?, and

solving A. Single instanton case
g2 Once we have made our ans&2b), B(x,y,z,t) only de-
[_ a2 T Ver(2) V=\z3Y, (35  pends on two “radial” coordinates:u=x?+yZ and

v=\ZZ+12. This feature also generalizes to the case of the
where Vi(2)=2/22— 2123 (1NZ)=2p~%(z+p~2). The MA projections(8) with a Higgs potential which allows the

€ . >
zero eigenvalue solution is magnitude ¢(x,y,z,t)=|¢| to fluctuate. Here our ansatz
(26) implies that boths(x,) and ¢(x,) depend only oru

andv. The functionalG takes the simple form
W(x)=

. (36)

1
1+

XZ
1+ 3) In

1
1+

1M 2 1 2
FM(B) o™+ E(é’,ﬁﬁ)

o ) o G=47sz dudvuy
Thex—o limitis W (x)—x~* as it must. But the&c—0 limit

is ¥(x)—x "2, which leads to logarithmic divergence in the 1

norm at short distances. This divergence seems to render this + = N(p?— 1)2} (37)
“near”-zero mode questionable. However, it should be rec- 4

ognized that our “small loop” solutiori31) is valid only for ) ) )
R<x<o. A proper treatment of our small oscillations prob- where ¢(u,v)=|¢l, (9,¢)°=(d¢/du)*+(d¢/dv)*, and
lem requires cutting out a small ball around the origin, with
a radiusro=0O(R). Moreover, because of the zero eigen-
value, the divergence in the norm does not imply a diver-
gence inG. We should in principle be able to solve this
problem by finding the lowest eigenvalue and then letting —8f(x?)
ro go to zero. With respect to this cutoff, our “near”-zero

mode is physically meaningful. An alternative approach,

which is under investigation, may be to use the more generalhe conventional MA gauge is given in the limNt—oo.

1,1
u?’ p?

M(B)=8f(x?)+(dB/du)?+ (dB/dv)?+sir’B

SireB— %sinﬂcosﬂ(% - ;)
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We introduce grids iru andv, mapping the infiniteu-v X107
plane to a finite region, for a range of valuesRffjp and A 0007 2
(see Fig. 3 For all A (including the BPS limitA =0), we -0.008 o
found that the monopole loop solution exists and that the -0.009
functional G increases aR* within errors. For all values of -2

N\ the global minima appeared to be at the point where -oot

i
R—0 and the instanton returned to the singular gauge. If we  €-0.011 g -4 s
perturbed the background field slightly away from a pure (55_0.012 &
instanton by changing the functional formf(x) -
= p?I[x?3(x?+ p?)], one can easily find field configurations 0013
in the same topological sector which stabilized the loop at a -0.014
fix radius. This strongly suggests that quantum fluctuations 0015 10
or instanton interactions can cause monopole loop formation. ° 002 004 006 0 A 04

To make a global search for minimal solutions for the MA (@ )
projection and to verify our theoretical ansatz, we have re-
sorted to a 4D grid. A natural choice is the standard Wilson FIG. 4. The finite lattice spacing and finite volume dependence
approach with link variables, for the monopole loop solution on the lattic&) typical infinite
volume extrapolation anth) a—0 extrapolation.

j—1

/Gi

U ,(x)=€'aRu®), (39
30* and 32 with a fixed instanton size. The infinite volume
wherea is the lattice spacing. On this grid the MA functional limit is obtained by doing a linear extrapolation inL1/
which leaves the maximal Abelian subgrouglluncon-  whereL =V is the linear dimension of our lattice. Figure
strained is 4(a) shows this extrapolation fop/a=4. The second ex-
trapolation to zero lattice spacing is done from these extrapo-
1 P N lated values ofA for various values of the instanton radius
G= 532% {1=2To()U () b(x+w)U, ()T (39) p. At infinite volume, the only scale in the problemgsand
it therefore defines the lattice spaciag 1/p. Thus one takes
In order to numerically approximate its value, we restrict thethe a—0 limit by taking thep/a—c limit. This extrapola-
summation over a finite volum¥ around the origin with tion is done using instanton sizpga=3,4,5,6,7.
open boundary conditions on the surface. This is a good The results are shown in Fig(l). The extrapolated value
approximation for an isolated instanton, since the contribuof A(p/a,L) in the limit of a—0 andL—< is clearly zero
tions to the sum for large drops as 2. Furthermore, to  Within the numerical error. Another indication that the global
obtain a finite value foiG in the infinite volume limit, we Minimum of the MA functional is the instanton in the singu-
know that the gauge rotation must become a constant at ifar gauge is the fact that is so small~10~°. This is also
finity. The minimization of the restricted functional was done supported by our experience with the minimizing routine.
using the standard overrelaxation algoriths). Starting with the gauge background for an instanton in the
The instantons are placed on the grid in the nonsingulagingular gauge, it took very few iterations to converge, which
gauge and then rotated to singular form. Each link is apShOWS that the displacement of the minimum due to lattice
proximated by its integral using the trapezoid rule. The re-artifacts is actually very small.
sulting configurations gave topological charge and action de-
viating at worst by 10% from their continuum values, 1 and B. Solutions for instanton pairs
2, respectively.
We have investigated a range of different sizes of Iattice§O
and instantons. As expecté¢tl5,16, we have found mono-
pole loop formation in the maximal Abelian gauge. But our

monop_ole radii do not SC"’.‘I.e W.'th the instanton size. Thls_|s ith various sizes, relative separations and relative isospin
clear signal that the stabilization of the monopole loop 'S Brientations. Already several general conclusions can be

lattice artifact. Despite_ that, we find that.once a loop Sdrawn. The I-I pairs appear to be very similar to the case of
formed, the gauge rotation accurately satisfies ourtheoretlcg ngle instantons. Indeed, for the 't Hooft ansatz, one can

ansatz(26) that = ¢—¢ and$ depends only om andv. again show that the two instanton solutiofus indeed the

A finite volume and finite spacing analysis has been don‘?nulti—instanton solution

in order to further establish the fact that the monopole loop is

We have also used our 4D grid to begin to investigate
lutions to the MA projection in the background of interact-

ing instanton pairs. For example, we have begun to study
instantongl-1) pairs and instanton anti-instantons pdlr#\)

a lattice artifact. We measure the change 'E‘M‘ il r”‘?j‘iva,,ln(1+p§/xf+p§/x§) (41)
A(pla,L)= Gma — Ginstanton (40) already satisfies the MA gauge condition. On the 4D grid our
pre, Ginstanton preliminary study indicates that the MA projections of the

two instantons have small loops centered at each instanton
of the MA functional after gauge fixing and we demonstratewhich again appear to be due entirely to lattice artifacts. It is
that it vanishes in the combined limit of infinite volume and natural to ask whether there is a general property of all exact
zero lattice spacing. In order to show this, we have found &lassical solutions that the global minimum of the MA pro-
series of solutions for lattice sizes R®@2*, 24*, 26%, 28",  jection has no monopole trajectories.
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monopole loops are stabilized at a finite radius and as the
pair moves closer together the individual loops fuse.
There is much more to learn about the mechanism for
% loop stabilization and the effects of instanton interactions.
For the most part we postpone this to a future publication
20 20 [18]. However, it is worth posing some of the questions and
extending several arguments touched on early.
15} 15} 1 First we have noticed that the single instanton in the sin-
gular gauge already satisfies the differential form of the MA
10} ] 10 1 gauge and gives rise to a finite contribution to the gauge-
- fixing functional G. In fact it is trivial to see that all multi-
5 1 5 . instanton configurations that satisfy the 't Hooft ansatz
‘ . ‘ A?L:;i_,,a_yln[l+ F_(xz_)] likewise satisfy the MA gauge
10 20 30 10 20 30 with a finite contribution forG. Thus it is tempting to con-
z z jecture that any exact self-dual classical solution minimizes
@) ® this functional without explicit monopole currents. We are
investigating this conjecture further. In this scenario the es-
sential mechanism for monopole loop formation would be
the interaction terms between self-dual and anti-self-dual re-
gions that act as the “domain walls” between I-A pairs.
Next it is worth expanding a little on the relationship be-

for an I-A pair with isospins oriented in the most attractive (V€N th? topological charge and the monopole charge_ for an
configuration. In this case, contrary to the single instantor{SOIateq instanton. In the sm%ularllgaugve, when.we write the
and |-l pair large loops are formed in the MA projection. At topological chargeQ=(1/167°)/d 4xTr[FWFM] In terms
large separation, each instanton in the I-A pair has its ow®f the gauge-variant currei@=fd"xd,K,, one must ex-
monopole loop as illustrated in Fig. 5, but as the separatioff/ude singular regions. Indeed, via Gauss’ theorem, the flux
d is decreased the individual loops fusel4p~1.88 to form  INtO these excluded singularities gives the net topological
a large loop which surrounds the I-A pair. These |oopsqharge. We have studied carefully how this theorem is satis-
clearly scale with the size of the system and the reduction off€d in the presence of our monopole loop. In the singular
the MA functional is clearly larger. Furthermore, this reduc-9auge, we may write the instanton as

tion in G becomes larger as one approaches the continuum L g 3
limit. Although we have not yet finished the same detailed A=A +M =— 9 .Mg X 9 .ﬂg_
finite size and finite lattice spacing analysis as in the single- rooRETH ioxt+pt

instanton case, we have considerable evidence that this effect . L )
will survive in the continuum. As we shrink a small sphere toward the origf+ 5°— 0 the

In the dipole interactions between I-A pairs, we believesurface area i©(4%). However, one sees that the singular
we are seeing the first semiclassical mechanism for nucleaPart of the current
ing monopole loops. As the instantons become denser, the 1 5
monopole loops begin to percolate between the individual K,==¢€,, fo[Ay<t9 Ay —i=A A}\)} (43)
instantons. It is easy to imagine that in an instanton liquid K8t H P 3 °
there is a critical density at which the percolation clusters are o
infinite and the monopoles can be said to condense. Thidiverges asO(1/6°) and that the contribution t@ comes
effect is an intriguing possibility for a semiclassical mecha-entirely from the pure gauge pied¢,, . On the other hand,
nism for confinement. Additional studies of monopole trajec-2S We rotate the field configuration into a monopole loop,
tories for interacting instant(_)ns and further analysis to sup- Qgta.(0ght
port (or refute this scenario are postponed to a future M M = 9 2 9
publication[19]. " # i

301 1 301

25

FIG. 5. Monopole loops for an I-A molecule with the most
attractive orientation(a) loops stabilized at separatiaiip=1.88
and (b) loop fusion at separatiod/p=1.38.

On the other hand, we have computed the MA projectio

2 t

(42

: (44)

the singularity is spread out to the loop at radifs= R?.
Now the toroidal surface area around the loopDiER5?),

The main goal of this paper was to find the earliest poinfout again a careful analysis shows that the only divergent
in the semiclassical instanton vacuum in which the 't Hooft—piece of O(1/6%) comes fromM . The argument is com-
Mandelstam monopole appears. We believe that this is thpletely general for a monopole loop gauge and it requires the
formation of small current loops centered at each instantomagnetic charge to be quantized to match the topological
and anti-instanton. In the extreme limit of infinite separation,charge. This shows that the monopole loop has a very natural
i.e., an isolated instanton, the loops shrink to zero. Howeveffjt to the instanton.
to O(R*nR) in the radius there is a flat direction for loop  Finally we have found that when an isospin orientation of
formation in the gauge-fixing functional. We have begun toan isolated instanton is fixed, the monopole loops are con-
investigate the effect of instanton anti-instanton interactionsstrained to a portion of the full @) group. Again there is a
Here it appears that when the relative isospin orientation ofather remarkable “coincidence” this time between the sym-
an instanton anti-instantofi-A) pair is most attractive, the metries of the monopole loop and the instanton. A single

V. CONCLUSIONS



55 MAGNETIC MONOPOLE LOOP FOR THE YANG-MILIS . .. 6323

loop “kinematically” breaks the Lorentz group needs not be viewed as a gauge-fixing prescription but rather
SU (2)XSUg(2) into a factor of coset spaces as a way to define magnetic degrees of freedom. We prefer
SU_(2)/UL(1)X SUR(2)/Ug(1) in the same sense that the the latter interpretatiof.

't Hooft—Polyakov monopole breaks the &Yisospin sym-

metry down to SI2)/U(1). ;\'hen, if we fix the isospin axis of 1. Active view of MA gauge and magnetic current

the instantor(anti-instanton and choose the MA gauge rela- . . . '
tive to 73, the loop is only reoriented by the rigkor left) In  the a%"’e form, ~the resultmg_ Abel!an . field
coset. This implies a correlation between the plane of th@ﬂ(x):Tr[T3A#(X)] (or more properly its derivatives

loop and the isospin orientation, which can be tested in typiy."hiCh depends on the choice on the non-Abelian background

cal background configurations of instantons generated in 4€'d: can have singularities leading to a nonzero |;nagnet|c
Monte Carlo simulation. In this way we can determine current. Introducing the ”Otft'mu(X)EQ(X)AM(X)Q (x)
whether or not our conjecture that these monopole loops ar@dM .(x)=(1/e)Q(x)d,Q'(x), the transformed field be-
important configurations for the full quantum theory is cor- COMes
rect.

In conclusion, although there are many more details worth

considering, there is a remarkable coincidence between th1ehiS splits the Abelian field into two components
form of an instanton and its monopole loop in the MA pro- 3 3 ' 3
Au(X)=A5(X)+M(x). The first termA} , for our problem,

jection. This is reflected in topological, symmetry, and sta | . . .

bility terms. This leads us to see the instanton in a new IighFomef from a”d|rect r°t2t'°” of the Instanton field. The sec-
as the “seed” for the formation of monopole loops. The ©nd “induced” term M, can contain monopoles as its
dynamical implications are much more difficult, but it ap- SOUrce when appropriate conditions are met as we demon-
pears that I-A interactions may play a crucial role and theStrate next. o

large “entropy” of monopole loops percolating between ~ The Abelian field strengtt,,=d,a,—d,a, is given by
near by instantons suggest a promising direction for future

AL(X)=A,(X)+ M ,(X). (A2)

research on electric confinement . —ij ! T
. f=(QF,QN;—iel Q| A, + E&” Q'
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APPENDIX: GAUGE COVARIANT FORMULATION _ N
OF THE ABELIAN PROJECTION wherek, = (1/4m)d,f,, andf,,= 3 €,,,0f 0
The usual way to study the MA gauge is to apply the o _ o
gauge transformation to the field, 2. Gauge-invariant view of MA projection
1 We now reformulate the MA projection in passive form.
A#(X)HAS(X)=Q(X)AM(X)QT(X)+ EQ(X)%QT(X)’ Let us begin by noting that the functional
(A1) 1 1oia2v Al _ipn2y44
G= Zj (AL +IA) (A, —IAL)d™X (AB)

and find that rotatioif (x) which satisfies a gauge condition.

Alternatively, one may introduce an auxiliary adjoint Higgs- j5 just the mass term in the broken phase of a2 Georgi-
like field = ¢ - 7, expressing the entire problem in a gauge-Glashow model. This suggests a change of variables from
invariant form. We refer to these two methods as “active” ()(x) to
and “passive,” respectively. In this appendix, we collect to-
gether basic formalism for each form. D(x)=0T(x) 730(x). (A7)

In the passive description, the MA gauge is cast in a
gauge-covariant form familiar to the Hig25] model, with
the entire formalism reexpressed exactly in the form used to *There is also a considerable literat{iz¥,28, which goes on to
construct the 't Hooft—Polyakov monopole. This covarianttry to construct an appropriate monopole condensate order param-
formulation both simplifies our analysis and emphasizes theter in the W1) sector. Our fieldD is not this object, since it, like
important physical point that the maximal Abelian projectionthe Higgs field, lives in the coset space.
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The functionalG now takes form of action for a Higgs The two independent PDE’s for the tangential components
field, now take the form

P2a+2d,¢d,a+2¢cotB(d,a)(,B)

1 1 - -
GIEJ d4x(§[DM(A)¢]2+V(¢Q) : (A8) o )
. =—2[¢(p-A)(3.8)—(B-AAL) (I, 9)], (AL5)
where® = ¢- 7, D ,¢?=4,¢*+ee**°A’ ¢°, and the poten-

tial $2B+23,03,8— 5 psin2B(d,a)?
V(%) =o(H?—1) (A9) =2[¢sinB(¢-A,)(3,a)—(a-AA,)(d,d)],

involves a Lagrange multiplies- in order to maintain the (A16)
constrainté- = 1. We also suggest a generalization of the
MA projection to include the standard quartic Higgs poten-
tial,

by projecting Eq(11) onto thea(x) and3(x) axes, respec-
tively. In addition there is a new equation for the radial
mode,
V(6% =i N>~ v?)?, (A10)

. _ o . ai¢=—(2[Sinﬁ(ﬂ-AM)(aﬂa)-F(a-Aﬂ)&MB]
with @ (x) now given by¢(x) - 7/| #(x)|. This more general
form we will refer to as the “Higgs MA projection.” Thus
the MA gauge is precisely the same as minimizing the action +
for a nondynamicalor auxiliary) Higgs-like field in a back-
ground Yang-Mills theory. The limihk —c at fixed VEV v
[Zliggsthlg :}e usual MAtpr_OJf_ec{lon_l._r;l_'hlfs IS tr;et_llmlt Wh'?h only functions ofu andv, Eq. (A15) is still satisfied auto-

99s masay fo infinity. This formulation corre matically. Now Eq.(A16) becomes
sponds to a passive description of a gauge transformation. In
the active description, rotatiof is applied directly to the 24,2
gauge field in Eq(3) so thaté—(0,0,1). Clearly, the pas- G2 B+2(dyhdyB+ f9u¢3uﬂ)—<w) $sin(2B)
sive and the active descriptions are equivalent: Each speci-
fies a gauge transformatidd up to the U1) subgroup. How- v2—u?| i
. o ) o =2f(x){ ¢[( )smzﬂ—SInZ,B

ever, the passive description is more “natural” singdives uv
in the coset space.

2.
V(¢ -3AL

] . (A17)

Under our ansatzx=¢—, with B(u,v) and ¢(u,v)

The _Abel_|an field strengtliA3) now takes a manifestly +[U(9u¢_u(9v¢]], (A18)

gauge-invariant form
f = F3,—iee?$3D ,¢"D ,¢°, (All)  and the radial equatiofA17) becomes
and the magnetic current is the well-known conserved topo- ) ) v2—u? )
logical current Iu¢=—11(x)|sin2p| — +4sir'3
1 abcy Ja, b, ¢ 2 =9
Ku(X)= g €upo€™” 004%9,0°0,4%  (A12) +2(ud,B—vd B) |+ V’(¢2)—§AM b.

The essential identity in deriving these expressions from our (A19)
earlier equations is?,LCI):i[QTM#Q,(D]. An alternative ) . ) )
form for f ,,, follows directly from Eq.(A4): Both analytical and numerical properties of these equations

o are discussed in the text. There appears to be remarkably
fﬂvz(yﬂAi_gMAi_ ieeabc&aa#@a,,(}sc. (A13) little dependence of our monopole loop solution Jorirom
A =0 (the BPS limi} to A = (the standard MA projection
This approach to MA projection not only provides a gauge-
invariant treatment, but also allows a topological interpreta- 4. Abelian-projected theory
tion for the possible presence of magnetic sources. For ex- _ ) ) ) )
ample, as in the case of the 't Hooft—Polyakov monopole, . In the MA gauge, one is left with an intermediate descrip-
the presence of a monopole charge can be understood to §8n 0f @ U1) gauge theory,
due to a nontrivial homotopil,(SU(2)/U(1)=Z. 1
L(a,.A;)= Zfiﬁ(dMA,f)(dﬂA;)
3. Higgs MA projection for instantons
For general reference to our analysis, we finally give the +eX(ALA, —AJAALA,, (A20)
full set of differential equations for the Higgs MA projection,
interacting exclusively through charged vectoks =A
D#(A)2¢—V¢,V( ¢)=0. (A14) iiAfL. The U1)-covariant derivative isl,,=d,+iea,.

1
o
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In addition to the standard Wilson loopW(C) To understand the role that Abelian dominance might play
=TrPeexp(fdx,A,), one may introduce the Abelian Wil- in the continuum theory, it is useful to look at the very in-
son loop, teresting form of the Wilson loop suggested by Diakonov

and Petro\{30]:

: (A21)

WAB(C)zeX[<iJ dx,a, A
W(C):f De(x)

1 A s
Xexp{i Ef dx,¢-A,

xex;{ f da'M,,eabc(Aba&M(;ﬁb&,,;bc}. (A23)

which in turn can be split up into “photon” and “mono-
pole” factors

WAB(C):ex;{i f dx, A3

Xex;{mf j A0, €%, 4°9,0° . A comparison with the Abelian Wilson loop in the MA
gauge shows that this haxactlythe same form with the
(A22) o
additional step that one must average over all gauge trans-
The second integral is taken over any surface whose boundormation in the SW2)/U(1) coset. Consequently, Abelian
ary is given by the loogC. The near “saturation” of the dominance is the statement that in the true quantum vacuum,
non-Abelian string tension by the Abelian part in the MA the contributions to thep average is approximated by the
gauge,oag=0.927, and the Abelian part by the monopole MA projection. Thus one strategy to proving confinement is
contribution, o menopole=0.950 4 , Observed in lattice simula- to first establish Abelian dominan¢er more precisely the
tions [29], is referred to as Abelian dominance. If this sur- inequality W(C)<W"B(C) for large loop$ and then to dem-
vives the continuum limit, this may provide the dynamical onstrate that monopole condensation occurs forcing an area

link between monopole configuration and confinement.

law for the Abelian loop.
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