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We present new exact solutions of the low-energy-effective-action string equations with both dilatah
axion H fields nonzero. The background universe is Kantowski-Sachs-type. We consider the possibility of a
pseudoscalar axion field [H=e?(dh)*] that can be either time or space dependent. The case of a time-
dependent reduces to that of a stiff perfect-fluid cosmology. For a space-depefdémere is just one
nonzero time-space-space component of the axion fieldnd this corresponds to a distinguished direction in
space which prevents the models from isotropizing. Also, in the latter case, both the axidh fiettits tensor
potentialB (H=dB) are dependent on time and space, yet the energy-momentum tensor remains time depen-
dent as required by the homogeneity of the cosmological mp86b56-282197)02302-3

PACS numbg(s): 98.80.Hw, 04.20.Jb, 04.56h, 11.25.Mj

[. INTRODUCTION type spacetimes, assuming time dependence of the tensor
potential B as well in the orthonormal-frame formalism.

The motion of the bosonic string in background fields 'SOther papers about the evolution of the axion field have also

governed by the action for the nonlinear model [1,2].
: ! appeared14,15.
Mueller [3] has solved both zeroth and first-order inverse In this paper we will consider a spatially homogeneous

string tensiona’ equations for multidimensional Bianchi | packground spacetime of Kantowski-Sachs-type. This is the
cosmological model without the antisymmetric axion field. oy spatially homogeneous universe that is not included in
The isotropic cosmological backgrounds without axion havehe Bianchi classification. It falls outside this classification of
been extensively studied by Gasperini and Venez[drd],  models with three-dimensional isometry groups because it
and special attention has been paid to the pre-Big-Bang sgossesses a four-dimensional group of motions with no sim-
lutions in relation to scale-factor duality. The homogeneously transitive three-dimensional subgroup. We consider both
axion-dilaton cosmology gives rise to the questi@ of  time-dependent and space-dependent pseudoscalar axion
whether the antisymmetric three-index axion field strengthield h (cf. the Appendix. In the former case we have effec-
Hapyr (a,8,7y=0,1,2,3), or its antisymmetric two-index tively another scalar fieldor equivalently, a stiff perfect-
tensor potentiaBg, (H,z,=6d;,Bg,;) should be homoge- fluid) cosmology. In the latter case we produce a model
neous. By analogy with the Einstein-Maxwell equations,which evolves like that given by Copelamd al. [9] for Bi-
most investigators have considered an homogenéus-  anchi | models.
dependent axion field strengthH [8-12], but Copeland The field equations will describe three different aniso-
et al.[9] assumed that it was the potentialwhich should be  tropic 3+1 dimensional spacetimes. Those with zero and
homogeneous. Actually, because of the antisymmetry of th@egative curvature are just axisymmetric Bianchi type | and
axion field, one has either of the two possibilities: the com-|I universes. The positive curvature models constitute the
ponentsH;;, (i,j=1,2,3), vanish if the potentiaB;; is  Kantowski-Sachs modelffirst found by Kompanyeets and
space dependent and the componehtg vanish if the po-  Chernov[16]). They are closed anisotropic universes. In the
tential B;; is time dependent. Copelard al. [9] framed the  special case where they become isotropic, they reduce to the
problem in terms of the dual pseudoscalar axion field closed Friedmann-Robertson-Walker universes.
[H=e?(dh)*], (where * is the spacetime dyalhich was We give solutions for models with all curvatures. For a
taken to be time or space dependent, respecfivéley con-  time-dependent pseudoscalar axion fieldwe give a para-
cluded that for time-dependent antisymmetric tensor potenmetric solution of the low-energy-effective-action equations
tial B;; there exists just one nonzero component of the axiodor the system containing both dilaton and axion in Sec. II.
field, Hg;; ,i,j=1,2,3, and this gives rise to Bianchi | uni- We also give an explicit special solution in terms of the
verses which cannot isotropize at late times. Similarly, Barcosmic time when the axion field is absent in Sec. Ill. Fol-
row and Kunzd13] have classified the degrees of freedomlowing the discussion of Copelaret al. [9] in Sec. IV, we
available to the antisymmetric field strendthin all Bianchi  examine whether it is possible to employ a time-independent
pseudoscalar axion field in Kantowski-Sachs geometries
and, if so, which of its components are allowed to be non-
*Electronic address: J.D.Barrow@sussex.ac.uk zero. In the Appendix we also discuss some relations be-
"Electronic address: mpd@wmf.univ.szczecin.pl tween our work and these earlier studies.
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Il. LOW-ENERGY-EFFECTIVE-ACTION EQUATIONS v

AND SOLUTIONS WITH TIME-DEPENDENT V,V24=V.V3¢=—g, (2.13
PSEUDOSCALAR AXION FIELD Y

The low-energy-effective-action field equations are given VodVOh= 2. (2.19
by [12]
For the torsion fieldH ,z,, we assume the simple ansatz,
R,+V, V'¢— 7 H,asH vaf=, (2.1)  similar to that of Batakis and KehagifB0] and Mimaso and
Wands[11], thatH takes the form

Hi2s=AS(6), (2.19

7¢‘ — mray —
Iule gH®™)=0, 2.3 whereA=const and the rest of the components are taken to
where is the dilaton fieldH ,, ;= 64;,B, is the strength be zero. .This ansa}tz corresponds to a space—deper_wdent anti-
of the antisymmetric tensor fieB,,,= —B,,, is its antisym- symmetric potential B,,,=B,,,(r,6,/) or to a ftime-

metric tensor potential. We choose the metric of spacetime t?epende_nt pseudoscalar axion filftf. the Appendix—Eq.
be of Kantowski-Sachs form, witf1.7] A5)]. It is interesting to note that the antisymmetric tensor

potential components for EQq.2.15 are given by

aBy
R— V#d)V“qH— ZVMV'U‘(ﬁ— %ZHM,,BH“V'B= 0, (2.2

ds?=dt?—X2(t)dr2—Y2(t)dQ2, (2.4) Bi,=Aysing, Bys=Arsing, By;=—Acos? for k=+1;
Bi>=Aysinhg, B,z=Arsinhg, B;;=Acosly for k=—1 and
where the angular metric is Bis=Ay,Bys=Ar,B3;=A6 for k=0. With the choicg2.15

the field equation$2.1) become
dQ2=d#?+ S?(6)dy?,

X Y .
sing for k=+1, x T2y ~¢=0. (2.18
S(6)=4 ¢ for k=0, (2.5 . :
: X XY X 1 A?
sinhd for k=—1, R, S S
X XY X2y O (2.17

andX andY are the expansion scale factors. We shall con-
sider models of all three curvatures in the same analysis. k+Y¥2 Y XY .Y 1 A?

Strictly, only the k=+1 models fall outside the Bianchi v vikvEvESE Cvial ltvy tv7 i
classification, but we shall refer to them all as Kantowski- Y YoXy Yo2xXy

Sachs models for simplicity. The nonzero Ricci tensor com-he sum of Eqs(2.16 and(2.17) added to twice Eq(2.18
ponents are

0. (2.19

gives
XV L S o
~Ry=5 +2y, 2.6 Xpal K XY o (X, I)'
X Y SR A A S A A SRR v
X XY 3 A2
l_— _—— —_ — =
e R k+Y2+ {(+ X3 o8 The field equation2.2) reads
B | 2)"< Y_ kY 4XY+2<'2> $>+2 X+2Y ¢
and the scalar curvature is X Yy Y? XY X 7Y
X Y k+vY? +1—A2 =0 (2.20
—R=20 +4+2— 5 +4y < 2X%y4 :
R 2X+4Y+2 v +4XY. (2.9

. . . . _so from the sum of Eqg2.19 and(2.20 we have
Since the metric is spatially homogeneous, the dilaton field

can only depend on time and we have L X v\, A?
¢—¢2+ —+2— (ﬁ—ﬂ:O. (22])
v v T X 7Y XY
V.V'¢=¢"+T" ¢*, (2.10
so At this stage we introduce a new time coordinateia rela-
tion [which is proportional to the scalar field Eq. (91) of
VoVoh= o, (2.11 [11]]
5 dt=XY?e %dr, (2.22
1,
ViVie=5¢, (212 and then Eq(2.21) becomes
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¢ . —A% 2¢=0, (2.23
which solves a$cf. also Eqg.(100 of [11] ]
e?=cosher+ \1— (A% a?)sinha T, (2.24)
with a constant ¢?>A?). If we turn off theH ,,, field, the
solution of (2.24) is simply
d(r)=arty, (2.25

with vy a constant, which we may set to zero without loss of

generality. A useful relation, implied by EQ.24), is

b .+ p5=a’. (2.26
Using the time coordinate.22), equation$2.16—(2.18 be-
come
ks 2 Yoo 2Y’ M 2 2 2Y
77+ 7T—7—+—+¢ SLINT, B
- d),TT_ ¢,27: 0, (227)
Xo) 1 =0 2.2
Y T_§¢,TT_ ' ( . 8)
Y 1
L I 2y2a—2¢—
( Y) ] 2¢>,TT+|<X Y<e 0. (2.29

The equation$2.28 and(2.29 can be rewritten as

(InX?e™ %) .= (2.30
(2.3D

From, Eq.(2.20, we see that the constraint equati@16
can be rewritten as

(InY?2e™?) _ +2kX?Y?e 2¢=0.

|<+\'/2 XY X Y| 1 A?
_ ¢2 ¢ 42— | —— ——=
Rz xv 2 Y] 4 Xqy4T T
(2.32

so, in terms of the time coordinatg.22),

3 (InX2e~?) (InY?e~?) +(InY) (InY—¢) ,
+kX?Y?%e 2=1 A%2e 29, (2.33
The solution of Eq(2.30 is
X2%e™ ?=X,eP", (2.39

with X, andp constants. Then, from Eq&.24) and(2.34),
for A#0, we have

X(7)= \/X—oe(llz)pT\/COShXT‘f' V1- (A% a?)sinhar,
(2.35

or, for A=0,

X(7)=Xoe APt (2.39

The solution of Eq(2.31) for the scale factoly is given by

6.00

4.00

bt

2.00

S T Y Y N N N T YOO S S T Y S Y S O WY S A N A

0.00 T T T T T 7T T T T T T v T T T T 77
-6.00 -2.00 2.00 6.00

FIG. 1. The plots of the scale factdr [Eq. (2.35] in terms of
the parametric time- defined by Eq(2.22. The plots do not de-
pend on the spatial curvature indkexDifferent shapes of the plots
depend on the values of the constamts 1 andp=*1.

Y(7)= _1 e~ (112)p7
0

X \cosher+\1— (A% a?)sinhaM(7), (2.37)
whereM (7) = X2Y?exp(—2¢) satisfies
(InM) ,,+2kM=0, (2.39
hence,
1
=coshBr+ \/1—(k/,82)sinh(37-, (2.39

VM(7)

and 8?>k. The constraint equatiof2.33 may be now re-
written in terms ofM as

2

L (M) em= 2 2.4
2\ | TkM= (a +p9), (2.40

which gives the condition
B?=1(a?+p?). (2.4

The solutions for the two scale factoes and a, in the
Einstein frame, which relate via conformal transformation
(3.18—(3.20 to ourX andY, in the string Einstein frame are
given in the paper by Mimso and Wand§11].

Although 7 is a parametric time related to the cosmic time
by Eq.(2.22, we give some plots of the scale factotsand
Y [Egs.(2.35 and(2.37)] and the dilatong [Eq. (2.24] in
Figs. 1-3. Different plots are given for different values of
the constantgr andp, which reflects the string duality sym-
metry here. As folY we give just the plot for curvature index
k= +1. Note that the value of the constahtis constrained
by Eg. (2.41) and thata and p do not have to be positive.
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40.00 1 Do
. Y(7)= —=e MNP 3.3
1 a>o0 k = +1
30.00_2 P>o whereM(7), the solution of Eq(2.38), is given by
] : z Z Beosh Y(Br+6) for k=+1,
] M=1{ expgB7+68) for k=0, (3.9
P~ 20.00 3 a>o Y
] p Lo Bsinh ~(Br+6) for k=—1,
3 whereé is constant, with the constraint given by Eg.40.
‘0 00_3 From Eq.(2.22 and (3.1)—(3.3), we find that the time
. a< o . . .
. parameter in the string frame is
1PpP<o
1 1 —~
] t(r)= —f e (WAl 2q 7, (3.5
0-00 LLUSLIN N 10 A I O I N N O B LASLANLURLIN DL NLINE N I N B D B B | X
-8.00 -4.00 0.00 4.00 8.00 0
T

FIG. 2. The plots of the scale factdt[Eq. (2.37)] in terms of
the parametric time- for spatial curvature indek=+1. The plots
depend just on the two constants- +5 andp= =1 since the third
constantg is constrained by Eq2.47).

Also note that despitX and ¢, the plots ofY(7) are time

asymmetric in7. This refers to the string duality which is
more sophisticated for homogeneous models as it has been

shown for Bianchi | models if9].

Ill. DEPARAMETRIZED SOLUTIONS FOR VANISHING
AXION FIELD

From the results of Sec. Il, we see that without the axion

field (A=0) the solutions forp, X, andY reduce to

p(1)=ar, 3.1
X(71)=XeM2atP, 3.2
3.00 3
. \
. \
- \
] \
] \
2.00 4 \\a <o a> o
] \
i \
& 4 A\
. \
] \
i \ /
1.00 - \ /
] \ /
- \ /
] \ y
] \ /
- \ /
] \ /
0.00 IIIIIIIIII!IIIIIIIIIIlIIIIlI/IIIIllilII
-4.00 9/0w 4.00
> ~

T

FIG. 3. The plots of the dilatow [Eq. (2.24)] in terms of the
parametric timer for different values ofa=*1.

Hence, this relation is integrable fée# 0, provideda=p
[that is, from Eq.(2.41), if B2=a?/2]. In this case we have

2 o
i—tan}‘( t—7+ 5) , k=41,

a? @ \/E
t _
72| 2 [ a )
+7C0t +E’T+5 , k=-1
(3.6

For k=0 it is always integratable and gives

t(7)= iE‘XF(—S7'—25),

s 3.7

where
s=—3(a—p+4p). (3.9

After deparametrization, Eq$3.1)—(3.3) provide a simple

solution of Eqs(2.16—(2.18 for A=0 and¢=X/X. When
k#0, it is given by

N2
/Ny2—t
X(t):(kL , 3.9
a/ﬁ-l—t
Y(t)= Vk(a?2—1?), (3.10
a/\/z_t 12
t)=In| kK——— , 3.1
é(t) ( alﬁﬂ) (3.1
where the time coordinate has the ranges
a2
Osts7 for k=+1, (3.12
a,2
t>7 for k=—1. (3.13

The volume expansion is given by
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{

FIG. 5. The plot of the scale factdf(t) for an exact Kantowski-
Sachs low-energy-effective-action modé.10 (a==*1). The
qualitative volume evolutiort3.14) has behavior of the same form.

a/\/z—t

a/\/§+t

(3.14 The calculations for thé&«=0 (Bianchi |) case have already

FIG. 4. The plot of the scale factdf(t) for an exact Kantowski-
Sachs low-energy-effective-action mod@.9). We takea==*1
and the ranges df are given by Eqs(3.12 and(3.13.

(Z+1)1\2
Kl = —t
<\/§ H

and its evolution is qualitatively the same as that of the scalgeen given ir{9].

122

(V2-1)1\2
2y dt. (3.20

V2

V(t)=XY?=

d"t‘=e—¢2dt=(k

factor Y(t).
For k=0 we have IV. SOLUTIONS WITH TIME-INDEPENDENT
PSEUDOSCALAR AXION FIELD
= (atp)/(a—p+4p) . . .
X(t) = yXo(XoSt) : (3.19 In this section we consider the space-dependent pseudos-
calar axion fieldh. This requirement, however, does not
1 strictly correspond to the condition that the antisymmetric
Y(t):_(Xost)(a7p+2ﬁ)/(a7p+4ﬂ), (316) y ’ p . . " Yy :
Xo tensor field strengtH,,, and its antisymmetric potential
t 2% XSt 3.1
= . . 3.00
) a—pt4ap N(XosY (.17 1 , i
] I
. . . I
The plots of X(t),Y(t) and ¢(t), for k=1 are given in - I
Figs. 4—6. It is interesting to note that the scale factors and 1 I
the dilaton remain the same after the chamge —« and 1 w5 /’ N o <
t— —t which refers to the string duality symmetry herg. 1.00 7 / S ?

For k= +1, the universe starts at a cigar singularity with ] / S~
X=0,Y=0, and terminates at a point s_ingularity with & 1 x=_4 k ’+ ; k=1
X=Y=0 [18]. For k=—1 the universe either starts at e /
t=a?/2 with a point singularity with the ensuing volume ] = ~. /’
expansion going to infinitywith asymptotic value oX=1 =1.00] N
for t—o0), or it starts with infinite volumdwith X taken to ] A
be equal to one at minus infinjtyand collapses to a cigar : ‘\ ,’
singularity. . Y

In order to develop these solutions in the Einstein frame, i i
we need to change the scale fact¥randY, together with —8-093 FYSARRARRR P
the time coordinate, to ' ~1.00 . 1.00 3.00

X=g~ 92
X=e X, (318 FIG. 6. The plot of the dilaton fieldg(t) for an exact

. Kantowski-Sachs  low-energy-effective-action  mode(3.1])
Y=g %2y, (3.19 (a==1).
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B,, are space dependent as was the case in the Bianchi |

Y2
calculations of Copelandt al.[9] and the Bianchi-type uni- H023:D9¢YS( 0)=Y*S*(9)H*? 4.9
verses studied by Barrow and KunZ&3]. If we have

B, =B,.,(1), then because of the antisymmetry where D is constant. This time-integrability condition

Hijk:0 and Ho”;&o (41) 81H023:O iS fulﬂlled and
As we will show later, this is not the case in our formulation H2—6D2£ a1
and it arises from the fact that we do not use orthonormal N X2’ (4.10

frames. If we consider a space-dependent pseudoscalar axion

field, h=lr21§r,01,21é),(;hen relation(Al) of the Appendix re-  which depends only on the time coordinate, as required.
quiresH**= €'#*&%95h=0 and only theHg; components Thus, Hy,:#0 provides the only consistent choice. This
of the axion fieldH can be nonzerda similar situation to  paturally gives the space dependence of the tensor potential

that considered in Ref$9,13). B becauseH 5= 99B,3 (due to the gauge transformation, we
There are some conditions which must be satisfied if thgan eliminate all the componentsBy [9]), so

low-energy-effective-action equatioi®.1)—(2.3) are to ad-  p,,—ps(g) [Y2X "~ le?dt andB,,=B;5= 0. This also shows
mit the axion field into the Kantowski-Sachs geometry. Onenat H,,, component of the axion field must vanish
is that the off-diagonal components f,,,H"" in Eq. [Hapo= 33B15=0, Hayz;=doB13=0, Hyp5=d;1Boy(t,8)=0].
(2.2) should vanish and we have the condition The final conclusion is that our ansa#.9) is correct.

Using this choice, the field equatiof.1)—(2.2) become

9"9™H omHjom=0 (i #],no sum, (4.2
. \ v 2:2¢
which means that only one dfly;5,Hqy3, Or Hp3 may be f I_ S D“e
nonzero. X +2Y ¢ 2X2 (4.11
Suppose we choodd,,#0. From the equation of mo-
tion (2.3), we obtain % +2>-( v X Y »
Bet XAy %0 412
H012=2—, (43)
XY=S(0)

| _ k+¥2 ¥ XY .Y D%
with B constant, an®(6) given by Eq.(2.5), so -

Yty NS axe 413
BXe’ , .
Hoio=— W (4.9 The sum of Eq.(4.11) and (4.12 together with twice Eq.
(4.13 gives
One can easily check that the integrability condition is ful- . . ] o ] )
filled, sincedzHq,=0. However, Eq(2.1) gives 2X +4Y +2k+ & +4X Y ¢ (X +2Y) 5
A4t o —p—| o+ 22
i 2e2¢Y2 X Y Y XY X 7Y
— VN —
H =HM,,>\H’“ =—6B % (4.5 _§D262¢_ .14
2 X2 '
and there is explicit dependence on the spatial coordinate
6, which means that the ansdtiy,,# 0 is inconsistent with gt Eq.(2.2) is
the geometries under consideration.
The next possibility iHy;57# 0. This means that 25( 49 2k+Y2 \ i
ce B SR A 2 S A
HOB=_—— (4.6)
and +2 24‘27 (i)—E_Q_X =0, (4.19
Hois= Ce?XS(6) (4.7 so from the sum of Eqg4.14 and(4.15, we have
with C constant. Then e % Y. D2e2¢_0 »
2c2e2¢ ¢¢ X Y¢ XZ_' (@
= Y2 y (48)

Using the time coordinaté.22), Eq. (4.16 becomes
which does depend just on time. However, in this case we
see that the integrability conditiafH ;5= 0 is not fulfilled ¢ ., +D?Y*=0. (4.17
and so the choicely;3# 0 is also impossible.
The last possibility is given by Equations(4.11)—(4.13 now become
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X, T [9] [compare their Eq92.45—(2.48 for a;=a,]. The axi-
+2¢ ; 7+27) symmetric limit in[9] is given by taking their constamtto
be equal to zero in their Eq&.46) and(2.47) or C;=C, in
3 their Eq.(2.36.
~3 D ¢,ZT:O, (4.18 Some special solutions for the~ 0 cases can be given by
solving Egs. 4.17 folY; that is, by taking

Y,T 2Y,T Y,’T+2 T
Y/ “yly "°x

T

X
AT 1
( X ) -o (419 V=S (=0, (4.33
Y, 1 and substituting into Eq4.20, to obtain
(7') —§¢,T,+kx2Y2e—2¢:o, (4.20 J 1420
T {In[(_¢,TT)1/2D71e7¢]},TT+2kD71
and Eqgs.(4.19 and(4.20 can be rewritten as (—¢p ) YVe2¢(nt2rizs— (4.39
(InX) ,,=0, (4.2)  we now seek solutions of the form
(InY2e™?) _ +2kX?Y?e 2¢=0. (4.22 d(7)=a’InT+ BT+e, (4.39
The solution of Eq(4.2)) is with a?,8, ande constants. From the field equatio@s17)—
(4.20, we have
X(7)=exp(r7+s) (4.23
. o ] X(7)=exprr+s), (4.36
with r ands constants. Fok=0 it is also possible to solve
Eq. (4.22 to obtain B(1)=LinT+rrte, (4.37)
Y(r)=exp{3[(7)+mr+n]} (4.24 Y(r)=+2 Vip-12.-112 (4.38
with m and n constants. Using Eq$4.23—(4.24 we may with a constraint
solve Eqgs(4.17—(4.20 for Y and ¢ to give
4k
b 2(e—s) _
v( T)=21/4\/%(COSH)\/§T)1/2, (4.25 ¢ “3Dy2’ 439

_ which, becauseD>0, means we take the plus sign for
$(7)= po—m7—Incostb\27 420 |~ 41 and the minus sign fdt=—1 universes. Using Eq.

with ¢, constant, and (2.22 and Eqgs(4.36—(4.38, we write

b2=m(m+2r). (4.27) t(r)=FD y2es ¢ 12 (4.40

Using Eq.(2.22 we have After deparametrization, our solutioit4.36—(4.38 give

_ Ur+m) r
7(t)=A+Int , (4.28 X(t)MeX[{t—zﬂLS : (4.41)
where

Y(t)et, 4.4

Al 1 D(r+m) 4.2 Y e
=——/1n o2 —s— ¢y |- (4.29 const

(ﬁ(t)ocmt‘f' —tz— (443)

Finally, the solution of Eqs(4.17—(4.20 in terms of the

cosmic timet in the string frame is given by V. DISCUSSION

—yr!
X()=trhrem, (4.30 In this paper we have considered the low-energy-

1 effective-action string equations for a Kantowski-Sachs
Y(t)=21/4\/E<totW+—t‘W) (4.31) background spacetime. We have included the full bosonic
D to ' spectrum of fields, with the gravitay, ,, dilaton ¢, and the
axionH. We consider the two forms of ansatz for the axion.
In terms of the pseudoscalar axion fiéldthey correspond to
it depending on either the time or space coordinates alone.
For the time-dependent cades h(t), we found an exact
wheret,=exp\2A andw="b+/2/(r +m) are constants. parametric solution of the field equations given in Sec. Il. In
This is an axisymmetridLRS) subcase of the Bianchi such a case the axion field behaves effectively as a stiff per-
type | axion-dilaton solution first given by Copelamtal. fect fluid (pressure-density distributed homogeneously

-1
e‘b(‘):ematm’(”m)(totWJr titw) . (432
0
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over space. These solutions were also discussed in the con- . 4
text of the scalar-tensor cosmologies by using slightly differ- h= —ALyE (A5)

ent parametrization ipl1].
We also find that, for vanishing axiod=0, there is @ go from Eq.(A1), we have

deparametrized exact solution fgr=X/X. We discuss this
solution in Sec. lll. It appears to be the most interesting 123 A
Kantowski-Sachs solution in which to study the duality prob- H™=— X2Y4S(6)’
lem, which we shall address to a separate paper.

For the spatially dependent casesh(r,6,4), we find  or
that there is only one possible form for the torsion field in
spatially homogeneous closed universes of Kantowski- Hi2s=AS(6), (A7)
Sachs-type. Its 3-form strength can have just one nonzero : i i
componentH,,s, which distributes the field along the two @S required by Eq(2.5). With the H field chosen as above,
spatial directions on the two-sphe®. This component de- the equation of motlor(2.3)_ is satisfied. There is also a
pends both on time and space and leads to space and tirtfévial solution of Eq.(A4), h=0, but it corresponds to a
dependence of the only nonzero component of the tensdronstant torsion field.
potential, B,3=B,4(t,6). This is expected because we are If instead we assume that thefield cannot depend on
working in coordinate frames rather than in orthonormaltime at all, and the equation of motigA3) reads
frames of Refs[10,13. In effect, there is an anisotropic
stress in the universe. For such a dilaton-axion anisotropic *d,h+T'1,d’h=0. (A8)
cosmology, we write down the field equations and find some . i i
new solutions. In the zero-curvature case we recover the axl-0" the Kantowski-Sachs metric, E@.4), this reads
symmetric Bianchi I(LRS) solutions given if9]. These re- 1 1 1 1
sults provide, in particular, a new type of closed universe in Fﬁirw Wathr Smer—d2h+ WC(Q)(;Zh:O,

(AB)

. 2Q2
string cosmology. Y“S°(0)
(A9)
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cothd for k=-—1,

However, from the vanishing of the off-diagonal components
of the energy-momentum tensor, which is the necessary con-

APPENDIX: THREE-INDEX AXION FIELD dition to match homogeneous Kantowski-Sachs geometry
AND PSEUDOSCALAR AXION FIELD NOTATIONS with the axion field, we have

In this appendix we connect our notation for the three-
index axion fieldH to that of[9] which uses the pseudoscalar
axion fieldh. Following [9], we define

e?¢gighah=0, i#j(nosumoveri and j).
(A11)

This means that only one of the thrégh may be nonzero.

va_ n¢ pvaf
HE eve" " h . (AL) The solutions of the equation of moti@A9) which satisfy
and the condition(A11) are
41 ; d.h=D=const, d,h=d;h=0, (A12)
eHrab= 8t 6765 857 . (A2)
J—g e gsh=B=const, d,h=a,h=0, (A13)
The equation of motion for thé field is obtained via the C
integrability conditions as drh= S0) dh=4d3h=0 (A14)
VAV ,h+V#$V ,h=0. (A3)

with C constant an@®(6) given by Eq.(2.5). From Eq.(Al),
Notice that for the antisymmetric tensor potential, we see that these correspond to the components of the axion
B,.=B,.(X), theh field can only depend on time, and Eq. field H given by Eg.(4.9) and (4.3 for Egs. (A12) and

(A3) reads (A13), respectively, while the situation for EGA14) is more
complicated. This is because from the definitiohl) we

D G A T have, for Eq.(A14),

h+ Y+27 h+ $h=0, (A4)

@
H013— Ce

which integrates to give XY23(6)’ (A15)
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which differs in the denominator from E@4.6). With this Ho2a= 9oB3# 0 (A19)
choice, the axion equation of motidg.3) reads
and then, bearing in mind E@.9), it follows that the anti-

o L) =0 (A16) symmetric tensor fielq poteljtieBW must depend both on
S(0) time and space coordinate, i.e.,
and is also fulfilled. However, we find B, =B,.(t,6) (A20)
2¢
H2:H013|-|013:_232__ (A17)  in a Kantowski-Sachs model. This is acceptable because the
Y=S%(0) only quantity which should be homogeneo(depending

This means thaH depends ord and the ansatzAl4) is only on time for homogen_eous_ geometry is the energy-
momentum tensor expressible in terms of axidnor the

inappropriate for a spatially homogeneous cosmology—a re-

sult which has been already discussed in Sec. IV. The only” >~ = . . . PR
possible solution of Eq(A9) that remains isih=C=0. hich is the case for our choid@18). This difference ap-

which is a trivial solution with constant axion. This means PS2'> here_because we have worked in coordinate frames
that there is only one consistent choice of the components cgf';\ther than in orthonprmal frames.of Rdth,lS]. queland .
the axion fieldd. and this is et aI..[9] used coor_dmgte frames in their calculations of B|—.
' anchi | model, but it did not really matter because the basis
Hops# 0. (a18)  forms in type I are just*=dx",a?=dx?,0*=dx’, and do
not involve any spatial dependence. One could of course

However, by the definition of axion field strength, this im- elaborate the problem in orthonormal franj&8] coming to
plies that the same conclusion as in the coordinate frames.
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