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We present new exact solutions of the low-energy-effective-action string equations with both dilatonf and
axionH fields nonzero. The background universe is Kantowski-Sachs-type. We consider the possibility of a
pseudoscalar axion fieldh @H5ef(dh)* # that can be either time or space dependent. The case of a time-
dependenth reduces to that of a stiff perfect-fluid cosmology. For a space-dependenth there is just one
nonzero time-space-space component of the axion fieldH, and this corresponds to a distinguished direction in
space which prevents the models from isotropizing. Also, in the latter case, both the axion fieldH and its tensor
potentialB (H5dB) are dependent on time and space, yet the energy-momentum tensor remains time depen-
dent as required by the homogeneity of the cosmological model.@S0556-2821~97!02302-3#

PACS number~s!: 98.80.Hw, 04.20.Jb, 04.50.1h, 11.25.Mj

I. INTRODUCTION

The motion of the bosonic string in background fields is
governed by the action for the nonlinears model @1,2#.
Mueller @3# has solved both zeroth and first-order inverse
string tensiona8 equations for multidimensional Bianchi I
cosmological model without the antisymmetric axion field.
The isotropic cosmological backgrounds without axion have
been extensively studied by Gasperini and Veneziano@4–7#,
and special attention has been paid to the pre-Big-Bang so-
lutions in relation to scale-factor duality. The homogeneous
axion-dilaton cosmology gives rise to the question@9# of
whether the antisymmetric three-index axion field strength
Habg , (a,b,g50,1,2,3), or its antisymmetric two-index
tensor potentialBbg (Habg56] [aBbg] ) should be homoge-
neous. By analogy with the Einstein-Maxwell equations,
most investigators have considered an homogeneous~time-
dependent! axion field strengthH @8–12#, but Copeland
et al. @9# assumed that it was the potentialB which should be
homogeneous. Actually, because of the antisymmetry of the
axion field, one has either of the two possibilities: the com-
ponentsHoi j , (i , j51,2,3), vanish if the potentialBi j is
space dependent and the componentsHi jk vanish if the po-
tentialBi j is time dependent. Copelandet al. @9# framed the
problem in terms of the dual pseudoscalar axion fieldh
@H5ef(dh)* ], ~where * is the spacetime dual! which was
taken to be time or space dependent, respectively#. They con-
cluded that for time-dependent antisymmetric tensor poten-
tial Bi j there exists just one nonzero component of the axion
field, H0i j ,i , j51,2,3, and this gives rise to Bianchi I uni-
verses which cannot isotropize at late times. Similarly, Bar-
row and Kunze@13# have classified the degrees of freedom
available to the antisymmetric field strengthH in all Bianchi

type spacetimes, assuming time dependence of the tensor
potential B as well in the orthonormal-frame formalism.
Other papers about the evolution of the axion field have also
appeared@14,15#.

In this paper we will consider a spatially homogeneous
background spacetime of Kantowski-Sachs-type. This is the
only spatially homogeneous universe that is not included in
the Bianchi classification. It falls outside this classification of
models with three-dimensional isometry groups because it
possesses a four-dimensional group of motions with no sim-
ply transitive three-dimensional subgroup. We consider both
time-dependent and space-dependent pseudoscalar axion
field h ~cf. the Appendix!. In the former case we have effec-
tively another scalar field~or equivalently, a stiff perfect-
fluid! cosmology. In the latter case we produce a model
which evolves like that given by Copelandet al. @9# for Bi-
anchi I models.

The field equations will describe three different aniso-
tropic 311 dimensional spacetimes. Those with zero and
negative curvature are just axisymmetric Bianchi type I and
III universes. The positive curvature models constitute the
Kantowski-Sachs models~first found by Kompanyeets and
Chernov@16#!. They are closed anisotropic universes. In the
special case where they become isotropic, they reduce to the
closed Friedmann-Robertson-Walker universes.

We give solutions for models with all curvatures. For a
time-dependent pseudoscalar axion fieldh, we give a para-
metric solution of the low-energy-effective-action equations
for the system containing both dilaton and axion in Sec. II.
We also give an explicit special solution in terms of the
cosmic time when the axion field is absent in Sec. III. Fol-
lowing the discussion of Copelandet al. @9# in Sec. IV, we
examine whether it is possible to employ a time-independent
pseudoscalar axion fieldh in Kantowski-Sachs geometries
and, if so, which of its components are allowed to be non-
zero. In the Appendix we also discuss some relations be-
tween our work and these earlier studies.
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II. LOW-ENERGY-EFFECTIVE-ACTION EQUATIONS
AND SOLUTIONS WITH TIME-DEPENDENT

PSEUDOSCALAR AXION FIELD

The low-energy-effective-action field equations are given
by @12#

Rm
n 1¹m¹nf2 1

4 HmabH
nab50, ~2.1!

R2¹mf¹mf12¹m¹mf2 1
12HmnbH

mnb50, ~2.2!

]m~e2fA2gHmna!50, ~2.3!

wheref is the dilaton field,Hmnb56] [mBnb] is the strength
of the antisymmetric tensor fieldBmn52Bnm is its antisym-
metric tensor potential. We choose the metric of spacetime to
be of Kantowski-Sachs form, with@17#

ds25dt22X2~ t !dr22Y2~ t !dVk
2 , ~2.4!

where the angular metric is

dVk
25du21S2~u!dc2,

S~u!5H sinu for k511,

u for k50,

sinhu for k521,

~2.5!

andX andY are the expansion scale factors. We shall con-
sider models of all three curvatures in the same analysis.
Strictly, only the k511 models fall outside the Bianchi
classification, but we shall refer to them all as Kantowski-
Sachs models for simplicity. The nonzero Ricci tensor com-
ponents are
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and the scalar curvature is
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Y
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Since the metric is spatially homogeneous, the dilaton field
can only depend on time and we have

¹m¹nf5f ,m
,n 1Gmr

n f ,r, ~2.10!

so

¹0¹
0f5f̈, ~2.11!

¹1¹
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Ẋ

X
ḟ, ~2.12!

¹2¹
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3f5
Ẏ

Y
ḟ, ~2.13!

¹0f¹0f5ḟ2. ~2.14!

For the torsion field,Habg , we assume the simple ansatz,
similar to that of Batakis and Kehagias@10# and Mimóso and
Wands@11#, thatHabg takes the form

H1235AS~u!, ~2.15!

whereA5const and the rest of the components are taken to
be zero. This ansatz corresponds to a space-dependent anti-
symmetric potential Bmn5Bmn(r ,u,c) or to a time-
dependent pseudoscalar axion fieldh @cf. the Appendix—Eq.
~A5!#. It is interesting to note that the antisymmetric tensor
potential components for Eq.~2.15! are given by
B125Acsinu, B235Arsinu, B3152Acosu for k511;
B125Acsinhu, B235Arsinhu, B315Acoshu for k521 and
B125Ac,B235Ar,B315Au for k50. With the choice~2.15!
the field equations~2.1! become
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2f̈50, ~2.16!
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X2Y4 50, ~2.17!
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X2Y4 50. ~2.18!

The sum of Eqs.~2.16! and~2.17! added to twice Eq.~2.18!
gives
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The field equation~2.2! reads
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12f̈2ḟ212S Ẋ
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A2

X2Y4 50, ~2.20!

so from the sum of Eqs.~2.19! and ~2.20! we have

f̈2ḟ21S Ẋ
X

12
Ẏ

Y
D ḟ2

A2

X2Y4 50. ~2.21!

At this stage we introduce a new time coordinatet via rela-
tion @which is proportional to the scalar fieldx Eq. ~91! of
@11# #

dt5XY2e2fdt, ~2.22!

and then Eq.~2.21! becomes
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f ,tt2A2e22f50, ~2.23!

which solves as@cf. also Eq.~100! of @11# #

ef5coshat1A12~A2/a2!sinhat, ~2.24!

with a constant (a2.A2). If we turn off theHmnr field, the
solution of ~2.24! is simply

f~t!5at1g, ~2.25!

with g a constant, which we may set to zero without loss of
generality. A useful relation, implied by Eq.~2.24!, is

f ,tt1f ,t
2 5a2. ~2.26!

Using the time coordinate~2.22!, equations~2.16!–~2.18! be-
come

SX,t

X D
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12SY,t

Y D
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22
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Y SY,t

Y
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2f ,tt2f ,t

2 50, ~2.27!

SX,t

X D
,t

2
1

2
f ,tt50, ~2.28!
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Y D
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2
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2
f ,tt1kX2Y2e22f50. ~2.29!

The equations~2.28! and ~2.29! can be rewritten as

~ lnX2e2f! ,tt50, ~2.30!

~ lnY2e2f! ,tt12kX2Y2e22f50. ~2.31!

From, Eq.~2.20!, we see that the constraint equation~2.16!
can be rewritten as

k1Ẏ2

Y2 12
Ẋ

X

Ẏ

Y
1
1

2
ḟ22ḟS Ẋ

X
12

Ẏ

Y
D 2

1

4

A2

X2Y4 50,

~2.32!

so, in terms of the time coordinate~2.22!,

1
2 ~ lnX2e2f! ,t~ lnY

2e2f! ,t1~ lnY! ,t~ lnY2f! ,t

1kX2Y2e22f5 1
4 A

2e22f. ~2.33!

The solution of Eq.~2.30! is

X2e2f5X0e
pt, ~2.34!

with X0 andp constants. Then, from Eqs.~2.24! and~2.34!,
for AÞ0, we have

X~t!5AX0e
~1/2!ptAcoshat1A12~A2/a2!sinhat,

~2.35!

or, for A50,

X~t!5AX0e
1/2~p1a!t. ~2.36!

The solution of Eq.~2.31! for the scale factorY is given by

Y~t!5
1

AX0

e2~1/2!pt

3Acoshat1A12~A2/a2!sinhatAM ~t!, ~2.37!

whereM (t)5X2Y2exp(22f) satisfies

~ lnM ! ,tt12kM50, ~2.38!

hence,

1

AM ~t!
5coshbt1A12~k/b2!sinhbt, ~2.39!

andb2.k. The constraint equation~2.33! may be now re-
written in terms ofM as

1

4 SM ,t

M D 21kM5
1

4
~a21p2!, ~2.40!

which gives the condition

b25 1
4 ~a21p2!. ~2.41!

The solutions for the two scale factorsã1 and ã2 in the
Einstein frame, which relate via conformal transformation
~3.18!–~3.20! to ourX andY, in the string Einstein frame are
given in the paper by Mimo´so and Wands@11#.

Althought is a parametric time related to the cosmic time
by Eq. ~2.22!, we give some plots of the scale factorsX and
Y @Eqs.~2.35! and ~2.37!# and the dilatonf @Eq. ~2.24!# in
Figs. 1–3. Different plots are given for different values of
the constantsa andp, which reflects the string duality sym-
metry here. As forY we give just the plot for curvature index
k511. Note that the value of the constantb is constrained
by Eq. ~2.41! and thata and p do not have to be positive.

FIG. 1. The plots of the scale factorX @Eq. ~2.35!# in terms of
the parametric timet defined by Eq.~2.22!. The plots do not de-
pend on the spatial curvature indexk. Different shapes of the plots
depend on the values of the constantsa561 andp561.
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Also note that despiteX andf, the plots ofY(t) are time
asymmetric int. This refers to the string duality which is
more sophisticated for homogeneous models as it has been
shown for Bianchi I models in@9#.

III. DEPARAMETRIZED SOLUTIONS FOR VANISHING
AXION FIELD

From the results of Sec. II, we see that without the axion
field (A50) the solutions forf, X, andY reduce to

f~t!5at, ~3.1!

X~t!5AX0e
~1/2!~a1p!t, ~3.2!

Y~t!5
1

AX0

e~1/2!~a2p!tM̃ , ~3.3!

whereM̃ (t), the solution of Eq.~2.38!, is given by

M̃5H bcosh21~bt1d! for k511,

exp~bt1d! for k50,

bsinh21~bt1d! for k521,

~3.4!

whered is constant, with the constraint given by Eq.~2.40!.
From Eq. ~2.22! and ~3.1!–~3.3!, we find that the time

parameter in the string frame is

t~t!5
1

AX0
E e2~1/2!~a2p!tM̃2dt. ~3.5!

Hence, this relation is integrable forkÞ0, provideda5p
@that is, from Eq.~2.41!, if b25a2/2#. In this case we have

t~t!5
a2

2AX0 5 6
A2
a
tanhS 6

a

A2
t1d D , k511,

7
A2
a
cothS 7

a

A2
t1d D , k521.

~3.6!

For k50 it is always integratable and gives

t~t!5
1

X0s
exp~2st22d!, ~3.7!

where

s52 1
2 ~a2p14b!. ~3.8!

After deparametrization, Eqs.~3.1!–~3.3! provide a simple
solution of Eqs.~2.16!–~2.18! for A50 andḟ5Ẋ/X. When
kÞ0, it is given by

X~ t !5S ka/A22t

a/A21t
D 1/A2, ~3.9!

Y~ t !5Ak~a2/22t2!, ~3.10!

f~ t !5 lnS ka/A22t

a/A21t
D 1/A2, ~3.11!

where the time coordinate has the ranges

0<t<
a2

2
for k511, ~3.12!

t>
a2

2
for k521. ~3.13!

The volume expansion is given by

FIG. 2. The plots of the scale factorY @Eq. ~2.37!# in terms of
the parametric timet for spatial curvature indexk511. The plots
depend just on the two constantsa565 andp561 since the third
constantb is constrained by Eq.~2.41!.

FIG. 3. The plots of the dilatonf @Eq. ~2.24!# in terms of the
parametric timet for different values ofa561.
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V~ t !5XY25FkS a

A2
2t D G ~A211!/A2S a

A2
1t D ~A221!/A2

,

~3.14!

and its evolution is qualitatively the same as that of the scale
factorY(t).

For k50 we have

X~ t !5AX0~X0st!
~a1p!/~a2p14b!, ~3.15!

Y~ t !5
1

X0
~X0st!

~a2p12b!/~a2p14b!, ~3.16!

f~ t !5
2a

a2p14b
ln~X0st!. ~3.17!

The plots ofX(t),Y(t) and f(t), for k561 are given in
Figs. 4–6. It is interesting to note that the scale factors and
the dilaton remain the same after the changea→2a and
t→2t which refers to the string duality symmetry here@4#.

For k511, the universe starts at a cigar singularity with
X5`,Y50, and terminates at a point singularity with
X5Y50 @18#. For k521 the universe either starts at
t5a2/2 with a point singularity with the ensuing volume
expansion going to infinity~with asymptotic value ofX51
for t→`), or it starts with infinite volume~with X taken to
be equal to one at minus infinity! and collapses to a cigar
singularity.

In order to develop these solutions in the Einstein frame,
we need to change the scale factorsX andY, together with
the time coordinate, to

X̃5e2f/2X, ~3.18!

Ỹ5e2f/2Y, ~3.19!

dt̃5e2f2dt5S ka/A22t

a/A21t
D 1/2A2dt. ~3.20!

The calculations for thek50 ~Bianchi I! case have already
been given in@9#.

IV. SOLUTIONS WITH TIME-INDEPENDENT
PSEUDOSCALAR AXION FIELD

In this section we consider the space-dependent pseudos-
calar axion fieldh. This requirement, however, does not
strictly correspond to the condition that the antisymmetric
tensor field strengthHmna and its antisymmetric potential

FIG. 4. The plot of the scale factorX(t) for an exact Kantowski-
Sachs low-energy-effective-action model~3.9!. We takea561
and the ranges oft are given by Eqs.~3.12! and ~3.13!.

FIG. 5. The plot of the scale factorY(t) for an exact Kantowski-
Sachs low-energy-effective-action model~3.10! (a561). The
qualitative volume evolution~3.14! has behavior of the same form.

FIG. 6. The plot of the dilaton fieldf(t) for an exact
Kantowski-Sachs low-energy-effective-action model~3.11!
(a561).
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Bmn are space dependent as was the case in the Bianchi I
calculations of Copelandet al. @9# and the Bianchi-type uni-
verses studied by Barrow and Kunze@13#. If we have
Bmn5Bmn(t), then because of the antisymmetry

Hi jk50 and Hoi jÞ0. ~4.1!

As we will show later, this is not the case in our formulation
and it arises from the fact that we do not use orthonormal
frames. If we consider a space-dependent pseudoscalar axion
field, h5h(r ,u,c), then relation~A1! of the Appendix re-
quiresH1235e1230ef]0h50 and only theH0i j components
of the axion fieldH can be nonzero~a similar situation to
that considered in Refs.@9,13#!.

There are some conditions which must be satisfied if the
low-energy-effective-action equations~2.1!–~2.3! are to ad-
mit the axion field into the Kantowski-Sachs geometry. One
is that the off-diagonal components ofHmlsH

nls in Eq.
~2.2! should vanish and we have the condition

gj j gmmHiomH jom50 ~ iÞ j ,no sum!, ~4.2!

which means that only one ofH012,H023, or H013 may be
nonzero.

Suppose we chooseH012Þ0. From the equation of mo-
tion ~2.3!, we obtain

H0125
Bef

XY2S~u!
, ~4.3!

with B constant, andS(u) given by Eq.~2.5!, so

H01252
BXef

S~u!
. ~4.4!

One can easily check that the integrability condition is ful-
filled, since]3H01250. However, Eq.~2.1! gives

H2[HmnlH
mnl526B2

e2fY2

S2~u!
~4.5!

and there is explicit dependence on the spatial coordinate
u, which means that the ansatzH012Þ0 is inconsistent with
the geometries under consideration.

The next possibility isH013Þ0. This means that

H0135
Cef

XY2S~u!
~4.6!

and

H0135CefXS~u! ~4.7!

with C constant. Then

H25
C2e2f

Y2 , ~4.8!

which does depend just on time. However, in this case we
see that the integrability condition]2H01350 is not fulfilled
and so the choiceH013Þ0 is also impossible.

The last possibility is given by

H0235Def
Y2

X
S~u!5Y4S2~u!H023, ~4.9!

where D is constant. This time-integrability condition
]1H02350 is fulfilled and

H256D2
e2f

X2 , ~4.10!

which depends only on the time coordinate, as required.
Thus, H023Þ0 provides the only consistent choice. This
naturally gives the space dependence of the tensor potential
B becauseH0235]0B23 ~due to the gauge transformation, we
can eliminate all the componentsB0i @9#!, so
B235DS(u)*Y2X21efdt andB125B1350. This also shows
that H123 component of the axion field must vanish
@H3125]3B1250, H2315]2B1350, H1235]1B23(t,u)50#.
The final conclusion is that our ansatz~4.9! is correct.

Using this choice, the field equations~2.1!–~2.2! become

Ẍ

X
12

Ÿ

Y
2f̈52

D2e2f

2X2 , ~4.11!

Ẍ

X
12

Ẋ

X

Ẏ

Y
2ḟ

Ẋ

X
50, ~4.12!

k1Ẏ2

Y2 1
Ÿ

Y
1
Ẋ

X

Ẏ

Y
2ḟ

Ẏ

Y
52

D2e2f

2X2 . ~4.13!

The sum of Eq.~4.11! and ~4.12! together with twice Eq.
~4.13! gives

2
Ẍ

X
14

Ÿ

Y
12

k1Ẏ2

Y2 14
Ẋ

X

Ẏ

Y
2f̈2S Ẋ

X
12

Ẏ

Y
D ḟ

2
3

2

D2e2f

X2 50. ~4.14!

But Eq. ~2.2! is

22
Ẍ

X
24

Ÿ

Y
22

k1Ẏ2

Y2 24
Ẋ

X

Ẏ

Y
12f̈2ḟ2

12S Ẋ
X

12
Ẏ

Y
D ḟ2

1

2

D2e2f

X2 50, ~4.15!

so from the sum of Eqs.~4.14! and ~4.15!, we have

f̈2ḟ21S Ẋ
X

12
Ẏ

Y
D ḟ2

D2e2f

X2 50. ~4.16!

Using the time coordinate~2.22!, Eq. ~4.16! becomes

f ,tt1D2Y450. ~4.17!

Equations~4.11!–~4.13! now become
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SX,t

X D
,t

12SY,t

Y D
,t

22
Y,t

Y SY,t

Y
12

X,t

X D12f ,tSX,t

X
12

Y,t

Y D
2
3

2
f ,tt2f ,t

2 50, ~4.18!

SX,t

X D
,t

50, ~4.19!

SY,t

Y D
,t

2
1

2
f ,tt1kX2Y2e22f50, ~4.20!

and Eqs.~4.19! and ~4.20! can be rewritten as

~ lnX! ,tt50, ~4.21!

~ lnY2e2f! ,tt12kX2Y2e22f50. ~4.22!

The solution of Eq.~4.21! is

X~t!5exp~r t1s! ~4.23!

with r ands constants. Fork50 it is also possible to solve
Eq. ~4.22! to obtain

Y~t!5exp$ 1
2 @f~t!1mt1n#% ~4.24!

with m and n constants. Using Eqs.~4.23!–~4.24! we may
solve Eqs.~4.17!–~4.20! for Y andf to give

Y~t!521/4Ab

D
~coshbA2t!21/2, ~4.25!

f~t!5f02mt2 lncoshbA2t ~4.26!

with f0 constant, and

b25m~m12r !. ~4.27!

Using Eq.~2.22! we have

t~ t !5A1 lnt1/~r1m!, ~4.28!

where

A5
1

r1m S lnD~r1m!

bA2
2s2f0D . ~4.29!

Finally, the solution of Eqs.~4.17!–~4.20! in terms of the
cosmic timet in the string frame is given by

X~ t !5t r /~r1m!, ~4.30!

Y~ t !521/4Ab

DS t0tw1
1

t0
t2wD 21/2

, ~4.31!

ef~ t !5e2mat2m/~r1m!S t0tw1
1

t0
t2wD 21

, ~4.32!

wheret05expbA2A andw5bA2/(r1m) are constants.
This is an axisymmetric~LRS! subcase of the Bianchi

type I axion-dilaton solution first given by Copelandet al.

@9# @compare their Eqs.~2.45!–~2.48! for a15a2#. The axi-
symmetric limit in @9# is given by taking their constantr to
be equal to zero in their Eqs.~2.46! and~2.47! or C15C2 in
their Eq.~2.36!.

Some special solutions for thekÞ0 cases can be given by
solving Eqs. 4.17 forY; that is, by taking

Y25
1

D
~2f ,tt!

1/2, ~4.33!

and substituting into Eq.~4.20!, to obtain

$ ln@~2f ,tt!
1/2D21e2f#% ,tt12kD21

~2f ,tt!
1/2e22f~t!12r t12s50. ~4.34!

We now seek solutions of the form

f~t!5a2lnt1bt1e, ~4.35!

with a2,b, ande constants. From the field equations~4.17!–
~4.20!, we have

X~t!5exp~r t1s!, ~4.36!

f~t!5 1
2 lnt1r t1e, ~4.37!

Y~t!56221/4D21/2t21/2, ~4.38!

with a constraint

e2~e2s!56
4k

3DA2
, ~4.39!

which, becauseD.0, means we take the plus sign for
k511 and the minus sign fork521 universes. Using Eq.
~2.22! and Eqs.~4.36!–~4.38!, we write

t~t!57D21A2es2et21/2. ~4.40!

After deparametrization, our solutions~4.36!–~4.38! give

X~ t !}expS rt2 1sD , ~4.41!

Y~ t !}t, ~4.42!

f~ t !} lnt1
const

t2
. ~4.43!

V. DISCUSSION

In this paper we have considered the low-energy-
effective-action string equations for a Kantowski-Sachs
background spacetime. We have included the full bosonic
spectrum of fields, with the gravitongmn , dilatonf, and the
axionH. We consider the two forms of ansatz for the axion.
In terms of the pseudoscalar axion fieldh, they correspond to
it depending on either the time or space coordinates alone.

For the time-dependent case,h5h(t), we found an exact
parametric solution of the field equations given in Sec. II. In
such a case the axion field behaves effectively as a stiff per-
fect fluid ~pressure5density! distributed homogeneously
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over space. These solutions were also discussed in the con-
text of the scalar-tensor cosmologies by using slightly differ-
ent parametrization in@11#.

We also find that, for vanishing axionH50, there is a
deparametrized exact solution forḟ5Ẋ/X. We discuss this
solution in Sec. III. It appears to be the most interesting
Kantowski-Sachs solution in which to study the duality prob-
lem, which we shall address to a separate paper.

For the spatially dependent case,h5h(r ,u,c), we find
that there is only one possible form for the torsion field in
spatially homogeneous closed universes of Kantowski-
Sachs-type. Its 3-form strength can have just one nonzero
component,H023, which distributes the field along the two
spatial directions on the two-sphereS2. This component de-
pends both on time and space and leads to space and time
dependence of the only nonzero component of the tensor
potential,B235B23(t,u). This is expected because we are
working in coordinate frames rather than in orthonormal
frames of Refs.@10,13#. In effect, there is an anisotropic
stress in the universe. For such a dilaton-axion anisotropic
cosmology, we write down the field equations and find some
new solutions. In the zero-curvature case we recover the axi-
symmetric Bianchi I~LRS! solutions given in@9#. These re-
sults provide, in particular, a new type of closed universe in
string cosmology.
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APPENDIX: THREE-INDEX AXION FIELD
AND PSEUDOSCALAR AXION FIELD NOTATIONS

In this appendix we connect our notation for the three-
index axion fieldH to that of@9# which uses the pseudoscalar
axion fieldh. Following @9#, we define

Hmna5efemnabh,b . ~A1!

and

emnab5
4!

A2g
d [0

m d1
nd2

ad3]
b . ~A2!

The equation of motion for theh field is obtained via the
integrability conditions as

¹m¹mh1¹mf¹mh50. ~A3!

Notice that for the antisymmetric tensor potential,
Bmn5Bmn(x), theh field can only depend on time, and Eq.
~A3! reads

ḧ1S Ẋ
X

12
Ẏ

Y
D ḣ1ḟḣ50, ~A4!

which integrates to give

ḣ52A
e2f

XY2
. ~A5!

So, from Eq.~A1!, we have

H12352
A

X2Y4S~u!
, ~A6!

or

H1235AS~u!, ~A7!

as required by Eq.~2.5!. With theH field chosen as above,
the equation of motion~2.3! is satisfied. There is also a
trivial solution of Eq. ~A4!, ḣ50, but it corresponds to a
constant torsion field.

If instead we assume that theh field cannot depend on
time at all, and the equation of motion~A3! reads

]m]mh1Grm
m ]rh50. ~A8!

For the Kantowski-Sachs metric, Eq.~2.4!, this reads

1

X2 ]1
2h1

1

Y2 ]2
2h1

1

Y2S2~u!
]3
2h1

1

Y2C~u!]2h50,

~A9!

where

C~u!5H cotu for k511,

0 for k50,

cothu for k521,

~A10!

However, from the vanishing of the off-diagonal components
of the energy-momentum tensor, which is the necessary con-
dition to match homogeneous Kantowski-Sachs geometry
with the axion field, we have

e2fgjk] ih]kh50, iÞ j ~no sum over i and j !.
~A11!

This means that only one of the three] ih may be nonzero.
The solutions of the equation of motion~A9! which satisfy
the condition~A11! are

]1h5D5const, ]2h5]3h50, ~A12!

]3h5B5const, ]1h5]2h50, ~A13!

]2h5
C

S~u!
, ]1h5]3h50 ~A14!

with C constant andS(u) given by Eq.~2.5!. From Eq.~A1!,
we see that these correspond to the components of the axion
field H given by Eq. ~4.9! and ~4.3! for Eqs. ~A12! and
~A13!, respectively, while the situation for Eq.~A14! is more
complicated. This is because from the definition~A1! we
have, for Eq.~A14!,

H0135
Cef

XY2S~u!
, ~A15!
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which differs in the denominator from Eq.~4.6!. With this
choice, the axion equation of motion~2.3! reads

]0S C

S~u! D50 ~A16!

and is also fulfilled. However, we find

H25H013H
0135

e2f

Y2S2~u!
. ~A17!

This means thatH depends onu and the ansatz~A14! is
inappropriate for a spatially homogeneous cosmology—a re-
sult which has been already discussed in Sec. IV. The only
possible solution of Eq.~A9! that remains is]2h5C50,
which is a trivial solution with constant axion. This means
that there is only one consistent choice of the components of
the axion fieldH, and this is

H023Þ0. ~A18!

However, by the definition of axion field strength, this im-
plies that

H0235]0B23Þ0 ~A19!

and then, bearing in mind Eq.~4.9!, it follows that the anti-
symmetric tensor field potentialBmn must depend both on
time and space coordinate, i.e.,

Bmn5Bmn~ t,u! ~A20!

in a Kantowski-Sachs model. This is acceptable because the
only quantity which should be homogeneous~depending
only on time! for homogeneous geometry is the energy-
momentum tensor expressible in terms of axionH or the
pseudoscalar axion fieldh @cf. Eqs. ~2.1!, ~2.2!, and @9# #
which is the case for our choice~A18!. This difference ap-
pears here because we have worked in coordinate frames
rather than in orthonormal frames of Refs.@10,13#. Copeland
et al. @9# used coordinate frames in their calculations of Bi-
anchi I model, but it did not really matter because the basis
forms in type I are justs15dx1,s25dx2,s35dx3, and do
not involve any spatial dependence. One could of course
elaborate the problem in orthonormal frames@19# coming to
the same conclusion as in the coordinate frames.
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