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We demonstrate how a Lorentz-covariant formulation of the chiralp-form model inD52(p11) containing
infinitely many auxiliary fields is related to a Lorentz-covariant formulation with only one auxiliary scalar field
entering a chiralp-form action in a nonpolynomial way. The latter can be regarded as a consistent Lorentz-
covariant truncation of the former. We make the Hamiltonian analysis of the model based on the nonpolyno-
mial action and show that the Dirac constraints have a simple form and are all first class. In contrast with the
Siegel model the constraints are not the square of second-class constraints. The canonical Hamiltonian is
quadratic and determines the energy of a single chiralp-form. In the case ofD52 chiral scalars the constraint
can be improved by use of a ‘‘twisting’’ procedure~without the loss of the property to be first class! in such
a way that the central charge of the quantum constraint algebra is zero. This points to the possible absence of
an anomaly in an appropriate quantum version of the model.@S0556-2821~97!03708-9#

PACS number~s!: 11.15.2q, 11.10.Kk

I. INTRODUCTION

Chiral p-forms, i.e., antisymmetric boson fields with self-
dual (p11)-form field strengths, form integral part and play
an important role in many theoretical models such asD56
and type IIBD510 supergravity, heterotic strings@1#, and
M -theory five-branes~@2–5# and references therein!. A par-
ticular feature of these fields is that, since the self-duality
condition implies the fulfillment of first-order equations of
motion, which puts the theory on the mass shell, there is a
problem of construction manifestly Lorentz-invariant actions
for the chiralp-forms @6# and, as a consequence, a problem
of quantizing such fields. The analogous problems exist in
manifestly electric-magnetic duality formulation ofD54
Maxwell theory@7#, where the Maxwell field can be consid-
ered as a complex chiral two-form.

Nonmanifestly covariant actions were proposed for
D52 chiral scalars in@8#, for D54 duality symmetric Max-
well fields in @9,10#, for D52(p11) chiralp-forms in @11#,
and for duality symmetric fields in space-time of any dimen-
sion in @12#. All of these actions lead to second-class con-
straints on the chiral boson phase space, which complicates
the quantization procedure.

In @13# a D52(p11) Lorentz-invariant action for chiral
p-forms was constructed by squaring the second-class con-
straints and introducing first-class constraints thus obtained
into the action with Lagrange multipliers. However, though
the Lagrange multipliers do not contribute to the equations of
motion of this model, it is not clear whether inD.2
(p.1) there is enough local symmetry to completely gauge
them away@13#. At the same time, even inD52 the Siegel
action for chiral scalars is not easy to quantize~in particular
because of an anomaly problem! and an extensive literature

has been devoted to studying this point~see, for example,
@14#!.

Another covariant~Hamiltonian! formulation was pro-
posed forD52 chiral scalars by McClain, Wu, and Yu@15#
~see also@16#! and generalized to the case of higher order
chiral p-forms in @17,18#. The construction is based on a
procedure of converting the second-class constraints into
first-class ones by introducing auxiliary fields@19#. In the
case at hand, this required an infinite set of auxiliary
(p11)-forms. By use of a Legendre transformation it is pos-
sible to write down a manifestly Lorentz-invariant form of
the chiral boson actions@20#. The chiral scalar and free Max-
well theory were consistently quantized in such a formula-
tion, respectively, in@15# and @17#.

It is of interest and somehow indicative that for a chiral
four-form in ten dimensions the Lorentz-covariant formula-
tion of @15–18,20# was, actually independently, derived from
type IIB closed superstring field theory in@21,22#.

The infinite set of auxiliary fields in the chiral boson mod-
els requires caution to deal with when one studies equations
of motion, makes Hamiltonian analysis, imposes admissible
gauge-fixing conditions, and quantizes the models@15–22#,
since, in particular, this infinite set corresponds to the infinite
number of local symmetries and first-class constraints which
cause problems with choosing the right regularization proce-
dure. For instance, in@15# a strong group-theoretical argu-
ment based on the existence of a symmetry of the quantum
theory was used to justify the regularization which leads to
the correct partition function of the chiral scalar.

Note also that a direct cutting of the infinite series of
fields at a number ofN results in an action which does not
describe a single chiralp-form @20#.

An alternative Lorentz-invariant action for chiral
p-forms was proposed in@23–25#. This formulation involves
finite number of auxiliary fields and, as a consequence, a
finite number of local symmetries being sufficient to gauge
these fields away. Upon an appropriate gauge fixing one gets
nonmanifestly covariant models of Refs.@8,11,12,5#. The ad-
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vantage of the covariant approach is that one should not
bother about proving Lorentz invariance which may be
rather cumbersome@11,12,5#.

A minimal version of this covariant formulation contains
~in space-time of any even dimension1! only one scalar aux-
iliary field entering the action in a nonpolynomial way. In the
case ofD54 Maxwell theory this scalar field was assumed
to be of an axion nature@24#.

The purpose of the present paper is, on the one hand, to
show how the McClain-Wu-Yu approach and the approach
of Refs.@23–25# relate to each other, and, on the other hand,
to make the Hamiltonian analysis of the nonpolynomial ver-
sion and to demonstrate that in spite of the nonpolynomiality
the structure of the constraints~which all belong to the first
class! is rather simple, the canonical Hamiltonian is qua-
dratic and describes the energy of a single chiralp-form
boson. In the case of a chiral scalar inD52 the form of the
first-class constraint allows improvement by ‘‘twisting’’ its
auxiliary field term, which at the quantum level allows the
central charge of the constraint algebra to be zero. This
points to possible absence of anomaly in a quantum version
of the model.

The paper is organized as follows. In Sec. II we review
the Lorentz-invariant chiral form actions of Refs.@15–22#
and@23–25# and demonstrate a relationship between them by
either trying to get rid of the nonpolynomiality and eliminate
the scalar auxiliary field at the expense of introducing auxil-
iary (p11)-forms or, vice versa, by a consistent truncation
of the McClain-Wu-Yu infinite tail with putting on its end
the auxiliary scalar field. In Sec. III we analyze the classical
Hamiltonian structure of the chiral form model with the
single auxiliary scalar and, in theD52 case, discuss the
problem of quantum anomaly of local symmetry of the
model.

In the Conclusion~Sec. IV! open problems and prospec-
tives are discussed.

To simplify notation and convention we considerD52
chiral scalars andD56 chiral two-forms. However, upon
fitting numerical coefficients one can straightforwardly gen-
eralize all the expressions obtained to the generic case of
chiral p-forms. We use almost positive signature of space-
time, i.e., (2,1, . . . ,1). Latin letters stand for space-time
indices (l ,m,n, . . .50,1, . . . ,D21) and Greek letters are
spacial indices running from 1 toD21.

II. RELATIONSHIP BETWEEN LORENTZ-INVARIANT
CHIRAL FORM ACTIONS

A. The infinite series action

In a reduced form considered in@16,22# @where part of an
infinite number of auxiliary fields was eliminated by gauge
fixing an infinite number of local symmetries~see the first
paper of Ref.@22# for details!#, the chiral boson action of
@15–20# in D56 looks as

S5E d6xF2
1

6
FpqrF

pqr1L~1!
pqrFpqr

2 (
n50

`

~21!nL~n11!
pqr L~n12!pqrG , ~1!

where Fpqr5] [pAqr] , and L (n11)pqr5@(21)n/
3!]«pqrlmnL (n11)

lmn form an infinite set of~anti-!self-dual aux-
iliary three-form fields. The action~1! describes a single
physical chiral two-formAmn satisfying the self-duality con-
dition

Flmn[Flmn2
1

3!
« lmnpqrF

pqr50. ~2!

To arrive at Eq.~2!, one should make an assumption that
allowables are only those solutions to the equations of mo-
tion derived from Eq.~1! which contain only a finite number
of nonzero fieldsL (n11) . This restriction, though it looks
somewhat artificial, ensures the energy of the model to be
well defined. Note that one cannot make such a truncation
and eliminate all fields withn greater than a given number
N directly in the action since this results in a model which
does not describe a single chiral field, but an ordinary~chiral
plus antichiral! antisymmetric gauge field, or a pair of chiral
forms depending on the parity ofN. The reader may find a
detailed analysis of the model in@18,20,22#.

B. Chiral form action with a finite number of auxiliary fields

The Lorentz-invariant self-dual action of Refs.@23–25#
have the following form inD56:

S5E d6xF2
1

6
FlmnF

lmn1
1

2~uqu
q!
umFmnlFnlrur

2«mnpqrsum]nLpqrsG . ~3!

Equation~3! contains the anti-self-dual three-formFmnl de-
fined in Eq. ~2! ~whose turning to zero on the mass shell
results in the self-duality ofFlmn); an auxiliary vector field
um(x) and a four-form fieldL lmnp .

The action~3! is invariant under the local transformations

dAmn5] [mfn]~x!, dL lmnp5] [ lfmnp]~x! ~4!

~which are the ordinary gauge symmetries of massless anti-
symmetric fields!,

dAmn5
1

2
u[mwn]~x!, dL lmnp5

1

u2
w [ lumFnp]quq, ~5!

dum50

~whereu25uaua2u0u0), and

dum5]mw~x!, dAmn5
w~x!

2u2
Fmnpu

p, ~6!

dLmnpq52
w~x!

~u2!2
urFr [mnFpq]sus.

1Remember that ifp is odd the chiral form is complex in
D52(p11).
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Note that the transformations~4! and ~5! are finite-step
reducible, which is harmless. For instance, if in Eqs.~5!,
wm5f(x)um then the variations ofAmn andLmnpqare zero.

The equation of motion ofLmnpq reads

dS

dL
⇒] [mun]50. ~7!

Its general solution is

um5]ma~x!, ~8!

with a(x) being a scalar field. Under Eqs.~6!, a(x) trans-
forms as a Goldstone field@da(x)5w(x)# and can be com-
pletely gauge fixed. Thus,um is an auxiliary field. When one
takes um to be a unit timelike vector~for instance,
um5dm

0 ), the model loses manifest Lorentz invariance and
reduces to the noncovariant model of Refs.@8,11,12#. If, in-
stead, one chooses a spacelike gaugeum5dm

5 , the action~3!
reproduces the free chiral field formulation of Ref.@5#.

We should note that because of the presence of the norm
of um in the denominator in the action~3!, the gauge-fixing
condition um50 @a(x)5const# ~or, more generally,
umu

m50) cannot be applied directly and in this sense is
inadmissible. So, in what follows we shall require
umu

mÞ0. This situation is analogous to that in gravity,
where one requires the existence of the inverse space-time
metric. However, in principle, one can arrange a consistent
limit of um→0 with an appropriate simultaneous limit of
other fields in such a way that the physical contents of the
model are the same as at other gauge points.2

The equation of motion ofAmn is

e lmnpqr]nS 1u2upFqrsusD50. ~9!

Its general solution has the form@when Eq.~7! is taken into
account#

Flmnu
n5u2] [ lFm]1un~]nF [ l !um]1u[ l~]m]Fn!u

n,
~10!

whereFm(x) is an arbitrary vector function. One can check
that the right-hand side~RHS! of Eq. ~10! has the same form
as the transformation ofFqrsus under Eqs.~5!, thus one can
use this symmetry to gauge fix the RHS of Eq.~10! to zero.
As a result, because of the anti-self-duality, the wholeFlmn
becomes equal to zero and we get the self-duality ofFlmn ,
Eq. ~2! @12,23–25#. In this gauge the equation of motion of
um reduces to

dS

du
⇒«mnpqrs]nLpqrs50, ~11!

from which, in view of the local symmetry~4!, it follows that
Lmnpq has only pure gauge degrees of freedom.

Thus, the model based on action~3! indeed describes the
classical dynamics of a single chiral two-form fieldAmn .

We can simplify this action by substitutingum with its
expression in terms ofa(x), Eq. ~8!. Then Eq.~3! takes the
form which contains only one auxiliary scalar fielda(x):

S5E d6xF2
1

6
FlmnF

lmn1
1

2~]qa]qa!

3]ma~x!FmnlFnlr] ra~x!G . ~12!

This action possesses the same symmetries as Eq.~3! with
only difference that nowum5]ma, andL lmnp is absent from
Eqs.~4!–~6!. Notice that the variation of the action~12! over
a(x) is identically zero on the solutions~10! of Eq. ~9!. It is
simply Eq.~9! multiplied by (1/u2)Flm fu

f and, hence, does
not produce new field equations. This reflects the presence of
the local symmetry~6!.

C. Passing from one action to another

Now, let us try to relate action~12! to the action~1!
containing infinite number of auxiliary fields. For this we
should first get rid of the nonpolynomiality of Eq.~12! or Eq.
~3! by introducing new auxiliary three-form fields in an ap-
propriate way.3 We write

S5E d6x@2 1
6FlmnF

lmn1L̂~1!mnlFmnl2 1
2 L̂~1!lmnL̂~1!

lmn

1L̂~2!
lmn~L̂~1!lmn2L̂~0!lmp]

pa]na!#. ~13!

One can directly check that upon eliminating the auxiliary
fields L̂ by solving their algebraic equations of motion one
returns back to the action~12!.

We can make another step and replace the term
L̂ (0)lmp]

pa]na in Eq. ~13! with an arbitrary three-form
L (3)mnl and, for not spoiling the model, add to the action one
more term of the form

E dx6L̂~4!
lmn~L̂~3!lmn2L̂~0!lmp]

pa]na!.

Introducing more and more auxiliary three-forms we can
make any numberN of steps of this kind and push the term
containinga(x) as far from the beginning of the series under
construction as we like:

S5E d6xF2
1

6
FlmnF

lmn1L̂~1!mnlFmnl2
1

2
L̂~1!lmnL̂~1!

lmn

1 (
n50

2N21

~21!nL̂~n11!
pqr L̂~n12!pqr

1L̂~2N12!
lmn ~L̂~2N11!lmn2L̂~0!lmp]

pa]na!G . ~14!

2The problem of an admissible gauge choice also exists for the
infinitely many-field actions@22#. There it is caused by a require-
ment of convergency of infinite series. It might happen that such
‘‘critical’’ gauge points in both approaches have a unique nature.

3Another way to eliminate nonpolynomiality is to considerum to
be a unit-norm harmoniclike variable, i.e., to impose the constraint
u2521. Such a version of the model was discussed in@23,24#.
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At N→`, we get exactly the action~1! upon splitting
L̂ (n11)pqr (n50, . . . ,2N11) into self-dual and anti-self-
dual parts and redefining them in an appropriate way.

On the other hand, if we start from the action~1! with the
infinite number of fields, the procedure considered above
prompts how one can consistently truncate the infinite series
without spoiling the physical contents of the model at least at
the classical level. The prescription is as follows: if in Eq.~1!
one wants to put to zero allL (n11) with n.N8, then one
should replace the sum of the self-dual and anti-self-dual
form L (N8) lmn1L (N811)lmn with a term of the form
]paL̂ (0)p[ lm]n]a ~whereL̂0 is an arbitrary three-form!.

Thus, the chiral form action with infinite number of aux-
iliary fields is related to the action~12! through the consis-
tent truncation of the infinite tail of the former. The trunca-
tion leads to a reconstruction of symmetries in the model
which become of the type written in Eqs.~4!–~6!.

III. HAMILTONIAN ANALYSIS OF THE
NONPOLYNOMIAL ACTION

The Hamiltonian structure which follows from the chiral
form action with infinite number of fields was discussed in
detail in @15,18,20# and we refer the reader to these papers.

Below, we shall make the Hamiltonian analysis of models
based on action~12!. As an instructive example, we start
with the action for a chiral boson inD52 and compare its
Hamiltonian structure with other versions@13,15,16# of the
chiral boson model.

A. D52 chiral bosons

Action ~12! takes the form@25#

S5E d2x
1

2 F]1f]2f2
]1a

]2a
~]2f!2G , ~15!

where]6[]06]1.
And the action-invariance transformations~4!–~6! reduce

to

da5w, df5
w

]2a
]2f. ~16!

The essential difference of the action~15! from the Siegel
model @13# is that the second term in Eq.~15! contains de-
rivatives of the scalar fielda(x) and not an arbitrary
Lagrange multiplierl11(x) as in the Siegel case.

The canonical momenta of the fieldsf(x) anda(x) are

Pf5
dL

dḟ
5ḟ2

]1a

]2a
]2f5f822a8

]2f

]2a
, ~17!

Pa5
dL

dȧ
5a8S ]2f

]2a
D 2, ~18!

where the ‘‘dot’’ and ‘‘prime’’ denote time and spatial de-
rivative, respectively.

From Eqs.~17! and ~18! we get the primary constraint

C[
1

4
~Pf2f8!22Paa8[

1

4
~Pf2f8!22

1

4
~Pa1a8!2

1
1

4
~Pa2a8!250. ~19!

The canonical Hamiltonian of the model has the form

H05
1

2E dx1~Pf1f8!2. ~20!

It does not contain the fielda(x) and describes the energy of
a single chiral boson mode.

The constraint~19! strongly commutes withH0 under the
equal-time Poisson brackets

$Pf~x!,f~y!%5d~x2y!, $Pa~x!,a~y!%5d~x2y!.
~21!

Hence, there are no secondary constraints in the model, and
one can check that Eq.~19! is the first-class constraint asso-
ciated with the symmetry transformations~16!. The Poisson
brackets ofC(x) have the properties of a classical Virasoro
stress tensor:

$C~x!,C~y!%52d~x2y!C8~y!12]xd~x2y!C~y!.
~22!

In contrast with the Siegel model@13# where the con-
straint is

~Pf2f8!250, ~23!

the first-class constraint~19! is not the square of a second-
class constraint.

If we partially fix the gauge under the transformations~6!
~i.e., underda5w) by imposing the gauge condition

C25Pa2a850, ~24!

we again find a relation of the present model with the
McClain-Wu-Yu approach.

Indeed, the constraintC2 is of the second class
@$C2 ,C2%52d8(x2y)#. And with taking it into account in
Eq. ~19! we can split the latter into the product of two mul-
tipliers

C5
1

4
~Pf2f82Pa2a8!~Pf2f81Pa1a8!50,

~25!

either of which can be taken as independent constraint~since
constraints are always defined up to a field-dependent fac-
tor!. For instance, let us take

C15
1

2
~Pf2f81Pa1a8!50. ~26!

This constraint is still first class and strongly commutes with
itself and Eq.~24! under the classical Poisson brackets~21!.

If now one would like to convert the second-class con-
straint into a first-class one by use of the standard conversion
procedure@19#, which implies introducing new auxiliary
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fields, one arrives at the model with an infinite set of first-
class constraints for an infinite set of fields considered in
detail in @15#.

Let us discuss prospectives for a consistent quantization
of the model based on action~15!. One of the problems one
should address is the problem of gauge symmetry anomalies.
The indication that an anomaly might exist is the appearance
of a nonzero central charge in the quantum commutator of
constraints which are classically first class.

In our case the quantum commutator acquires the central
chargec53 because of the sum of three Virasoro-like terms
in Eq. ~19!.

Remember that in the Siegel model@13# the central
charge is equal to 1, and to cancel the anomaly the authors of
@14# proposed to improve Eq.~23! by adding to it the total
derivative term ]1

2f(x) with an appropriate coefficient.
Though this way one can cancel the quantum anomaly, the
model looses the gauge symmetry at the classical level since
classically the new constraint is not first class anymore.

In our case things differ because of the presence in Eq.
~19! of a b-c ghostlike term containing the auxiliary field
a(x). Without spoiling the property of the constraint~19! to
be first class, we can add to it the total derivative term
l]1(Paa) ~wherel is an arbitrary constant! and to get an
improved constraint in the form

C~l!5
1

4
~Pf2f8!22Paa81l]1~Paa!

5
1

4
~Pf2f8!22~12l!Paa81lPa8a50. ~27!

This procedure is akin to ghost ‘‘twisting’’ commonly used
in conformal field and string theory. The contribution of the
terms containinga(x) to the quantum central charge is
2(6l226l11) @26#. So, the central charge appearing in the
RHS of the quantum commutator of Eq.~27! is

c5112~6l226l11!. ~28!

It vanishes atl5 1
2 .

Thus, we can assume that, due to operator ordering, the
quantum theory can be reconstructed in such a way that the
central charge of the quantum constraint@containing a con-
tribution from ghosts~if any!# is equal to zero, and the
anomaly associated with the local symmetry of the model
does not arise. We hope to carry out detailed study of this
point in future work.

B. Chiral two-forms in D56

Let us analyze from the Hamiltonian point of view the
model based on action~3!. ~To simplify a bit, the form of
expressions we shall denote]ma(x)[um.) The canonical
momenta ofAmn anda(x) are

PA0a
50,

PAab5
1

6
«abgdrFgdr12

~ug!2

u2
F0ab

2
u0
u2
ug«abgdrF0dr2

2

u2
u[bF0a]gug , ~29!

Pa~x!52
u0

~u2!2
~ug!2~F0ab!22

~u0!
21~ug!2

2~u2!2

3ug«abgdrF0bgF0dr24
u0

~u2!2
~F0abub!2.

~30!

Remember thata,b, . . .51, . . . ,5, «abgdr[«0abgdr ,

u25ugug2u0u0, andFabg5 1
2«abgdrF0dr are the compo-

nents of the anti-self-dual tensorFlmn defined in Eq.~2!.
The canonical Poisson brackets are

$PA0a ,A0b%5dabd~5!~x2y!,

$PAab ,Agd%5da[gdd]bd~5!~x2y!, ~31!

$Pa~x!,a~y!%5d~5!~x2y!.

The parts of the momenta corresponding to the self-dual and
anti-self-dual part ofAab are

Pab
1 5PAab1

1

6
«abgdrFgdr ,

Pab5PAab2
1

6
«abgdrFgdr . ~32!

Note that$P1,P%50.
After some algebraic manipulations, one gets the primary

constraints:

PA0a50, ~33!

Pab]ba~x!50, ~34!

1

8
«abgdrPabPgd]ra~x!1Pa@]ga~x!#250. ~35!

The constraints are first class and correspond to the local
symmetries~4!–~6!, respectively.

The canonical Hamiltonian is

H05E dx5F14 ~Pab
1 !222PAab]aA0bG . ~36!

CommutingH0 with Eq. ~33!, we get the secondary con-
straint, which is also first class and corresponds to the Gauss
law for the gauge fieldAmn

]aPAab50. ~37!

All other constraints strongly commute with the Hamil-
tonian. Thus, as in theD52 case, there are no second-class
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constraints in the model, and the constraint~35! is not the
square of a second-class constraint.

If we fix a Lorentz-noncovariant~timelike! gauge
ug5]ga50, the definitions~29! and ~30! of the momenta
imply that the constraints~34! and ~35! consistently reduce
to

Pab50, Pa50, ~38!

where the first constraint belongs to the second class. More
precisely, it is a mixture of first- and second-class constraints
@11,20#. In this gauge we recover the noncovariant chiral
form model of Refs.@11,12#.

IV. CONCLUSION

We have demonstrated how the Lorentz-covariant formu-
lation of the chiralp-form model containing infinitely many
auxiliary fields is related to the Lorentz-covariant formula-
tion with only one auxiliary field entering the chiralp-form
action in a nonpolynomial way. The latter can be regarded as
a consistent Lorentz-covariant truncation of the former.

The Hamiltonian analysis of the model based on the non-
polynomial action has shown that in spite of nonpolynomi-
ality, the Dirac constraints have a simple form and are all
first class. In contrast with the Siegel model, the constraints
are not the square of second-class constraints. The canonical
Hamiltonian is quadratic and describes a single chiral
p-form.

We have seen that in the case ofD52 chiral scalars the
constraint can be improved by use of ‘‘twisting’’ procedure
~without the loss of the property to be first class! in such a
way that the central charge of the quantum constraint algebra
is zero. This points to the possible absence of anomaly asso-
ciated with the local symmetry of the classical theory in an

appropriate quantum version. To justify this conjecture one
should carry out the quantization of the chiral form model in
the formulation considered above, which is a goal still to be
reached.

The chiralp-form action~12! allows coupling to gravity
in the natural covariant way@23–25#. Thus, the long-
standing problem of gravitational anomaly caused by chiral
forms might also be studied in this formulation.

The nonpolynomial version can be supersymmetrized
@23–25#. In D52 case anN51/2 superfield formulation of
one scalar and one spinor chiral field exists@25#, while in
D54 only a componentN51 supersymmetric version of
duality symmetric Maxwell theory is known yet@12,24#. Re-
cently, Berkovits@22# proposed superfield formulation for
duality-symmetric super-Maxwell theory in the version with
infinitely many fields. In view of the relationship considered
above it would be of interest to truncate his supersymmetric
model to a superfield version of the action~3! or ~12!.

Another interesting problem is to consider interaction of
chiral forms with other fields and between themselves
@9,7,22,5# with the aim, for instance, to construct complete
actions forp-branes which have chiral form fields in their
world volumes, such as theM -theory five-brane@3–5#. Our
manifestly Lorentz-covariant approach might be useful in
making progress in this direction.

We hope to address some of these problems in the future.
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