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We demonstrate how a Lorentz-covariant formulation of the clirflrm model inD=2(p+ 1) containing
infinitely many auxiliary fields is related to a Lorentz-covariant formulation with only one auxiliary scalar field
entering a chirap-form action in a nonpolynomial way. The latter can be regarded as a consistent Lorentz-
covariant truncation of the former. We make the Hamiltonian analysis of the model based on the nonpolyno-
mial action and show that the Dirac constraints have a simple form and are all first class. In contrast with the
Siegel model the constraints are not the square of second-class constraints. The canonical Hamiltonian is
guadratic and determines the energy of a single cpifalrm. In the case ob =2 chiral scalars the constraint
can be improved by use of a “twisting” procedufeithout the loss of the property to be first clags such
a way that the central charge of the quantum constraint algebra is zero. This points to the possible absence of
an anomaly in an appropriate quantum version of the m¢&8€556-282(97)03708-9

PACS numbeps): 11.15-q, 11.10.Kk

I. INTRODUCTION has been devoted to studying this poiaee, for example,
[14]).

Chiral p-forms, i.e., antisymmetric boson fields with self-  Another covariant(Hamiltonian formulation was pro-
dual (p+ 1)-form field strengths, form integral part and play posed forD=2 chiral scalars by McClain, Wu, and Yd5]
an important role in many theoretical models suctDas6  (see alsq16]) and generalized to the case of higher order
and type IIBD =10 supergravity, heterotic stringa], and  chiral p-forms in [17,18. The construction is based on a
M-theory five-brane§[2—5] and references ther@inA par- procedure of converting the second-class constraints into
ticular feature of these fields is that, since the self-dualityfist-class ones by introducing auxiliary fields9]. In the
condition implies the fulfillment of first-order equations of ¢@s€ at hand, this required an infinite set of auxiliary
motion, which puts the theory on the mass shell, there is 4P T 1)-forms. By use of a Legendre transformation it is pos-

problem of construction manifestly Lorentz-invariant actionsSlble tp write down'a manifestly I'_orentz—lnvarlant form of
for the chiralp-forms[6] and, as a consequence, a problemthe chiral boson actiori0]. The chiral scalar and free Max-

of quantizing such fields. The analogous problems exist iri’ivoerl]I trzesggc:i\\//eerli ﬁ%rissas;enndtl[yl%uantaed in such a formula-

manifestly electric-magnetic duality formulation =4 It is of interest and somehow indicative that for a chiral

Maxwell theory[7], Whgre the Maxwell field can be consid- four-form in ten dimensions the Lorentz-covariant formula-
ered as a complex chiral two-form. tion of [15—18,2Q was, actually independently, derived from
Nonmamfestly c_ovarlant actions were proposed fortype IIB closed superstring field theory ja1,22.
D=2 chiral scalars i8], for D=4 duality symmetric Max- The infinite set of auxiliary fields in the chiral boson mod-
well fields in[9,10], for D=2(p+1) chiralp-forms in[11],  els requires caution to deal with when one studies equations
and for duality symmetric fields in space-time of any dimen-of motion, makes Hamiltonian analysis, imposes admissible
sion in[12]. All of these actions lead to second-class con-gauge-fixing conditions, and quantizes the modés—23,
straints on the chiral boson phase space, which complicatesnce, in particular, this infinite set corresponds to the infinite
the quantization procedure. number of local symmetries and first-class constraints which
In [13] aD=2(p+1) Lorentz-invariant action for chiral cause problems with choosing the right regularization proce-
p-forms was constructed by squaring the second-class comture. For instance, ifil5] a strong group-theoretical argu-
straints and introducing first-class constraints thus obtainechent based on the existence of a symmetry of the quantum
into the action with Lagrange multipliers. However, thoughtheory was used to justify the regularization which leads to
the Lagrange multipliers do not contribute to the equations othe correct partition function of the chiral scalar.
motion of this model, it is not clear whether iB>2 Note also that a direct cutting of the infinite series of
(p>1) there is enough local symmetry to completely gaugedfields at a number oN results in an action which does not
them away[13]. At the same time, even iD=2 the Siegel describe a single chirgl-form [20].
action for chiral scalars is not easy to quantireparticular An alternative Lorentz-invariant action for chiral
because of an anomaly problemnd an extensive literature p-forms was proposed if23—25. This formulation involves
finite number of auxiliary fields and, as a consequence, a
finite number of local symmetries being sufficient to gauge
*On leave from Kharkov Institute of Physics and Technology,these fields away. Upon an appropriate gauge fixing one gets
Kharkov 310 108, Ukraine. nonmanifestly covariant models of Ref8,11,12,3. The ad-
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vantage of the covariant approach is that one should not 1

bother about proving Lorentz invariance which may be Szf d®x| — équerqu AL Fogr

rather cumbersomgl1,12,5.

A minimal version of this covariant formulation contains o

.(i_n spgce-time gf any even dilmens}t))rmnly one scalar aux- — Z (=D"ALE 1) A (n+2)pgr |- D

iliary field entering the action in a nonpolynomial way. In the n=0

f:f)i (())ffDa=n4a Moa;(lezll :rgf]ry this scalar field was assumed,; oo Foar=pAqr » and Ans ipar=[(—1)"
Xl Urg=2l. 311 parimnA (n1) form an infinite set ofanti-self-dual aux-

The purpose of the present paper is, on the one hand, 'iﬁary three-form fields. The actioril) describes a single

show how the McClain-Wu-Yu approach and the approactyy, jca chiral two-forma,, satisfying the self-duality con-
of Refs.[23-24 relate to each other, and, on the other hand jition

to make the Hamiltonian analysis of the nonpolynomial ver-

sion and to demonstrate that in spite of the nonpolynomiality — 1

the structure of the constrainte/hich all belong to the first =Fimn— 31 Elmnpgr
clasg is rather simple, the canonical Hamiltonian is qua-

dratic and describes the energy of a single chiggdbrm  To arrive at Eq.(2), one should make an assumption that
boson. In the case of a chiral scalarDr=2 the form of the allowables are only those solutions to the equations of mo-
first-class constraint allows improvement by “twisting” its tion derived from Eq(1) which contain only a finite number
auxiliary field term, which at the quantum level allows the Of nonzero fieldsA 4. This restriction, though it looks
central charge of the constraint algebra to be zero. Thi§omewhat artificial, ensures the energy of the model to be

points to possible absence of anomaly in a quantum versiof€!l defined. Note that one cannot make such a truncation
of the model. and eliminate all fields witm greater than a given number

The paper is organized as follows. In Sec. Il we review directly in th_e actiqn since_this_ results in a m_odel_which
the Lorentz-invariant chiral form actions of Refd5-27 does no_t dgscrlbe.a single _chlral f'eld.’ but an Ord'.'{amal.
and[23-24 and demonstrate a relationship between them b ;g;srgécphéﬂiﬁgt'(fzr?&e;gﬁig/a&ge.l_];'gdrégg:rpne:gyoiiﬁzlrsl
either trying to_get ru_:l of the nonpolynomlal_lty and e_Ilmlnat_e detailed analysis of the model [18,20,22.
the scalar auxiliary field at the expense of introducing auxil-
iary (p+1)-forms or, vice versa, by a consistent truncation
of the McClain-Wu-Yu infinite tail with putting on its end
the auxiliary scalar field. In Sec. Il we analyze the classical The Lorentz-invariant self-dual action of Re{23-25
Hamiltonian structure of the chiral form model with the have the following form inD =6:
single auxiliary scalar and, in thB=2 case, discuss the

FPI"=0. 2

B. Chiral form action with a finite number of auxiliary fields

roblem of quantum anomaly of local symmetry of the = 6 _E Imn m Ir
p q y Yy y S= | d° FimnF ™"+ U FnFM U
g Imn 2(U uq) mnl r
model. q
In the ConclusionSec. IV) open problems and prospec-
tives are discussed. —eMMPAY I A pgrs|- 3

To simplify notation and convention we consider=2

chiral scalars and>=6 chiral two-forms. However, upon Equation(3) contains the anti-self-dual three-forfj,,, de-
fitting numerical coefficients one can straightforwardly gen-fined in Eq.(2) (whose turning to zero on the mass shell
eralize all the expressions obtained to the generic case @ésults in the self-duality oF ,,); an auxiliary vector field
chiral p-forms. We use almost positive signature of spaceu,(x) and a four-form fieldA ..

time, i.e., (—,+, ...,+). Latin letters stand for space-time  The action(3) is invariant under the local transformations
indices (,m,n, ...=0,1,...,D—1) and Greek letters are
spacial indices running from 1 9 —1. OAmn=Im®n(X),  OAimnp= 1 Pmng (X) 4)

(which are the ordinary gauge symmetries of massless anti-

symmetric fieldy,
Il. RELATIONSHIP BETWEEN LORENTZ-INVARIANT

CHIRAL FORM ACTIONS 1 1
o ) ) 5Amn:§u[m¢n](x)7 5Almnp:?‘P[lum~7:np]quqa 5
A. The infinite series action
In a reduced form considered [ii6,22 [where part of an Su,=0
infinite number of auxiliary fields was eliminated by gauge
fixing an infinite number of local symmetri@see the first (Whereu?=u,u,—UgU,), and
paper of Ref[22] for detailg], the chiral boson action of

_20inD= ®(X)
[15-2Q in D=6 looks as SUm=dm@(X), 5Amn:_2'2u }‘mnpup’ (6)

'Remember that ifp is odd the chiral form is complex in _ e(x)
D=2(p+1). 5Amnpq_ - (u2)2ur‘7:r[mrr7:pq]sus-
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Note that the transformationg) and (5) are finite-step
reducible, which is harmless. For instance, if in E¢S),
em= ¢(X)up, then the variations of,, and A, ,q are zero.

The equation of motion oA 4 reads

S
3Xf$ﬂﬂ$h]:o. (7)
Its general solution is
U= dma(X), (8)

with a(x) being a scalar field. Under Eg&5), a(x) trans-
forms as a Goldstone fieldsa(x) = ¢(x)] and can be com-
pletely gauge fixed. Thusy, is an auxiliary field. When one
takes u,, to be a unit timelike vector(for instance,
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Thus, the model based on acti(®) indeed describes the
classical dynamics of a single chiral two-form fiedg, .
We can simplify this action by substituting,,, with its
expression in terms ad(x), Eq. (8). Then Eq.(3) takes the
form which contains only one auxiliary scalar fiedgx):

S= J dbx

X dMa(X) Fym M 0ra(X)

1 Imn
- gFlmnF +

2(dqada)

. (12

This action possesses the same symmetries as3Eavith
only difference that nowl,= dna, andAy,,, is absent from
Eqgs.(4)—(6). Notice that the variation of the actidf2) over
a(x) is identically zero on the solution40) of Eq. (9). It is

Un=483), the model loses manifest Lorentz invariance andsimply Eq.(9) multiplied by (102)Fm;u’ and, hence, does

reduces to the noncovariant model of R¢&11,17. If, in-
stead, one chooses a spacelike gayge a\?n the action(3)
reproduces the free chiral field formulation of RE5].

We should note that because of the presence of the norm

of u,, in the denominator in the actiof3), the gauge-fixing
condition u,=0 [a(x)=consi (or, more generally,

unu™=0) cannot be applied directly and in this sense is

not produce new field equations. This reflects the presence of
the local symmetry(6).

C. Passing from one action to another

Now, let us try to relate actiorfl?2) to the action(1)
containing infinite number of auxiliary fields. For this we

inadmissible. So, in what follows we shall require should first get rid of the nonpolynomiality of E(1L.2) or Eq.

unu™#0. This situation is analogous to that in gravity,
where one requires the existence of the inverse space-tinf¥
metric. However, in principle, one can arrange a consistent

limit of u,—0 with an appropriate simultaneous limit of

other fields in such a way that the physical contents of the

model are the same as at other gauge pdints.
The equation of motion oA, is

9

1
e'm”pqran(?up]—'qrsus> =0.
Its general solution has the forfwwhen Eq.(7) is taken into

account

Fionn" =029, Dy + U9, P ) Uy + U (9 @) U", 10

where® ,(x) is an arbitrary vector function. One can check

that the right-hand sidéRHS) of Eq. (10) has the same form
as the transformation af,su° under Egs(5), thus one can
use this symmetry to gauge fix the RHS of Ef0) to zero.
As a result, because of the anti-self-duality, the whgjg,
becomes equal to zero and we get the self-dualit¥ gf, ,
Eqg. (2) [12,23-25. In this gauge the equation of motion of
Uy, reduces to

oS

%:smnpqm&n‘/\pqrs: 0, (11

from which, in view of the local symmetrig), it follows that
Amnpg has only pure gauge degrees of freedom.

(3) by introducing new auxiliary three-form fields in an ap-
opriate way’ We write

A A Al
S:f dax[_%FlmnFlmn"_A(l)mnlfmnl_%A(l)lmnA(T)n

+Al(g])n([\(l)lmn_A(O)Impapaana)]- (13

One can directly check that upon eliminating the auxiliary
fields A by solving their algebraic equations of motion one
returns back to the actiofi2).

We can make another step and replace the term
f\(oﬂmpapaana in Eqg. (13) with an arbitrary three-form
A (3ymni @nd, for not spoiling the model, add to the action one
more term of the form

N ~ ~
J' dXGA(rA?)n(A(B)Imn_ A(O)Imp&paana)-

Introducing more and more auxiliary three-forms we can
make any numbeN of steps of this kind and push the term
containinga(x) as far from the beginning of the series under
construction as we like:

S= f d®x

2N-1

+ 2>

=0

1 Imn__ A nl 1. A Imn
- gFlmnF "'A(l)mnlfm - EA(l)ImnA(l)

(_ 1)nAFr$4r-1)A(n+2)pqr

< - N
+ AN+ 2) (A ant 1imn— A oyimpdPadnd) |. (14

The problem of an admissible gauge choice also exists for thé

infinitely many-field actiong22]. There it is caused by a require-

3Another way to eliminate nonpolynomiality is to considgy to

ment of convergency of infinite series. It might happen that suchbe a unit-norm harmoniclike variable, i.e., to impose the constraint

“critical” gauge points in both approaches have a unique nature.

u?=—1. Such a version of the model was discussef2®24).
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At N—w, we get exactly the actiorfl) upon splitting 1 1 1
- i i C=—(P _ /)Z_P a/:_(P _ 1)2__(P +ar)2
Anr1)pgr (n=0,...,N+1) into self-dual and anti-self- Ta\Te ¢ a® T \Te ¢ 4\ a
dual parts and redefining them in an appropriate way.

On the other hand, if we start from the actid with the +£ P —a')?=0 19
infinite number of fields, the procedure considered above 4( a—a’)"=0. (19

prompts how one can consistently truncate the infinite series
without spoiling the physical contents of the model at least at The canonical Hamiltonian of the model has the form
the classical level. The prescription is as follows: if in E. 1
one wants to put to zero al\(,, ;) with n>N’, then one H :_f YUP .+ b2 2
should replace the sum of the self-dual and anti-self-dual 02 dX(Py+ ¢)% (20
form Aniyimnt A +1)mn With a term of the form
dPal ypmdn@ (WhereA is an arbitrary three-forin

Thus, the chiral form action with infinite number of aux-
iliary fields is related to the actiofiL2) through the consis-
tent truncation of the infinite tail of the former. The trunca-
tion leads to a reconstruction of symmetries in the model [P4(X), d(Y)}=8x=y), {Pa(x),a(y)}=38(x—y).

It does not contain the field(x) and describes the energy of
a single chiral boson mode.

The constraint19) strongly commutes withl, under the
equal-time Poisson brackets

which become of the type written in Eq&l)—(6). (21)
1. HAMILTONIAN ANALYSIS OF THE Hence, there are no secondary constraints in the model, and
NONPOLYNOMIAL ACTION one can check that E@19) is the first-class constraint asso-

ciated with the symmetry transformatio(ts6). The Poisson
The Hamiltonian structure which follows from the chiral brackets ofC(x) have the properties of a classical Virasoro
form action with infinite number of fields was discussed instress tensor:
detail in[15,18,2Q and we refer the reader to these papers.
Below, we shall make the Hamiltonian analysis of models  {C(x),C(y)}=—38(Xx—Yy)C'(y)+2d,6(x—y)C(y).

based on actiorf12). As an instructive example, we start (22
with the action for a chiral boson iB=2 and compare its i i
Hamiltonian structure with other versiofi$3,15,14 of the In contrast with the Siegel mod¢lL3] where the con-
chiral boson model. straint Is
_ (Py—¢')?=0, (23)
A. D=2 chiral bosons
Action (12) takes the forn{25] the first-class constraintl9) is not the square of a second-
class constraint.
1 a. If we partially fix the gauge under the transformatig6s
S:f deE I+ $d-¢p———(d- #)?|, (19  (i.e., undersa= ¢) by imposing the gauge condition

C,=P,—a’'=0, (24
whered.=dy*d;.
And the action-invariance transformatio@®—(6) reduce  we again find a relation of the present model with the
to McClain-Wu-Yu approach.
Indeed, the constraintC, is of the second class

o) [{C,,C,o}=26"(x—Yy)]. And with taking it into account in
da=g¢, Op=-—0d 9. (16 Eq.(19 we can split the latter into the product of two mul-
tipliers

The essential difference of the actitib) from the Siegel 1
model[13] is that the second term in E¢L5) contains de- C=—(Py—¢'—P,—a')(P,—¢'+P,+a’)=0,
rivatives of the scalar fielda(x) and not an arbitrary 4
Lagrange multiplien , ;. (x) as in the Siegel case.

The canonical momenta of the fieldgx) anda(x) are

(29

either of which can be taken as independent constfainte
constraints are always defined up to a field-dependent fac-

oL . d,a , ,0-¢ tor). For instance, let us take
Pi=sg =t sal-¢=¢ 2 5 (4D .
C1=§(P¢—¢’+Pa+a')=0- (26)
sL a_¢\?
Pa:_': a'l — ) (18) . [ i i
éa Jd_a This constraint is still first class and strongly commutes with

itself and Eq.(24) under the classical Poisson bracke$).
where the “dot” and “prime” denote time and spatial de- If now one would like to convert the second-class con-
rivative, respectively. straint into a first-class one by use of the standard conversion
From Eqgs.(17) and (18) we get the primary constraint ~ procedure[19], which implies introducing new auxiliary
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fields, one arrives at the model with an infinite set of first-
class constraints for an infinite set of fields considered in
detail in[15]. 1 (u,)?
Let us discuss prospectives for a consistent quantization PAaﬁ=gsaﬁygpF75p+ 2u—72}"0aﬁ
of the model based on actiqt5). One of the problems one
should address is the problem of gauge symmetry anomalies. Ug
The indication that an anomaly might exist is the appearance ~ 2 apyonT o5~ (2 UsT0al My (29
of a nonzero central charge in the quantum commutator of
constraints which are classically first class. Uo (u0)2+(u7)2
In our case the quantum commutator acquires the central Pa(x):2W(uy)2(anﬁ)2_ T209%
chargec=3 because of the sum of three Virasoro-like terms
in Eq. (19). Ug 2
Remember that in the Siegel modgl3] the central Xu78a3759f057]:°5p_4w(7:0aﬁu3) '
charge is equal to 1, and to cancel the anomaly the authors of (30
[14] proposed to improve Eq23) by adding to it the total

derivative term afq,’)(x) with an appropriate coefficient. Remember thate,B, ...=1,....5, €apy5p=E0apysp
Though this way one can cancel the quantum anomaly, th82=uyuy—uouo, and faﬁy=%8a5y,spfosp are the compo-

model looses the gauge symmetry at the classical level singe, .+« "o the anti-self-dual tensdk, . defined in Eq(2).
classically the new constraint is not first class anymore. The canonical Poisson brackets are

In our case things differ because of the presence in Eq.

PAO = O,

a

(19) of a b-c ghostlike term containing the auxiliary field {Paoa Aopt= 8450 (x—y),

a(x). Without spoiling the property of the constraifit9) to

be first class, we can add to it the total derivative term {Paug Ayt = 841,050 (X—Y), (31)
N3 (Paa) (where is an arbitrary constaptand to get an

improved constraint in the form {Pa(x),a(y)}= 6" (x~-y).

The parts of the momenta corresponding to the self-dual and
anti-self-dual part oA, ; are

1

Con=7(Py=d")°=Psa’ +1d1(Paa) L
+

1 M p=Paapt gsaﬂyﬁprﬁp'

=2 (Py- ¢')?=(1-\)Pa’ +\PLa=0. (27

1
Haﬁ: PAa,B_ gsaﬁ'yﬁprﬁp . (32)

This procedure is akin to ghost “twisting” commonly used +T—

in conformal field and string theory. The contribution of the Note that{ll 1} =0.
terms containinga(x) to the quantum central charge is
2(6M%>—6)+1) [26]. So, the central charge appearing in the
RHS of the quantum commutator of E®7) is Paoa=0, (33

After some algebraic manipulations, one gets the primary
constraints:

M,p05a(X) =0, (34
c=1+2(6\>—6N+1). (29
1
gsaﬁyﬁpnaﬁnwapa(xﬁPa[aya(x)]zzo. (35)
It vanishes ah = 3.
Thus, we can assume that, due to operator ordering, the The constraints are first class and correspond to the local
quantum theory can be reconstructed in such a way that thieymmetries4)—(6), respectively.

central charge of the quantum constrdicontaining a con- The canonical Hamiltonian is

tribution from ghosts(if any)] is equal to zero, and the 1

anomaly associated with the local symmetry of the model Ho:f dx®| 7 (11 )= 2P a9 Pop - (36)
does not arise. We hope to carry out detailed study of this 4

oint in future work.
P CommutingH, with Eg. (33), we get the secondary con-

straint, which is also first class and corresponds to the Gauss

B. Chiral two-forms in D=6 law for the gauge fielthn,
Let us analyze from the Hamiltonian point of view the 4P pap=0. (37
model based on actiof8). (To simplify a bit, the form of
expressions we shall denotg,a(x)=u,.) The canonical All other constraints strongly commute with the Hamil-

momenta ofA,,, anda(x) are tonian. Thus, as in thB=2 case, there are no second-class
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constraints in the model, and the constrdi®%) is not the appropriate quantum version. To justify this conjecture one
square of a second-class constraint. should carry out the quantization of the chiral form model in

If we fix a Lorentz-noncovariant(timelike) gauge the formulation considered above, which is a goal still to be
u,=d,a=0, the definitions(29) and (30) of the momenta reached.

imply that the constraint$34) and (35) consistently reduce ~ The chiralp-form action(12) allows coupling to gravity
to in the natural covariant way23-25. Thus, the long-

standing problem of gravitational anomaly caused by chiral
IT,z=0, P,=0, (38 forms might also be studied in this formulation.

i . The nonpolynomial version can be supersymmetrized
where the first constraint belongs to the second class. Mo 3-25. In D=2 case alN=1/2 superfield formulation of

precisely, it is a mixture of first- and second-class constraint
[11,20. In this gauge we recover the noncovariant chiral
form model of Refs[11,12.

one scalar and one spinor chiral field exig2s], while in
D=4 only a componenN=1 supersymmetric version of
duality symmetric Maxwell theory is known ygi2,24]. Re-
cently, Berkovits[22] proposed superfield formulation for
IV. CONCLUSION duality-symmetric super-Maxwell theory in the version with

We have demonstrated how the Lorentz-covariant formulnfinitely many fields. In view of the relationship considered

lation of the chiralp-form model containing infinitely many above it would be of interest to truncate his supersymmetric

auxiliary fields is related to the Lorentz-covariant formula- model to a ;uperfie;ld version Of. the acti@) or (12)' .
tion with only one auxiliary field entering the chirpHorm Another interesting problem is to consider interaction of

action in a nonpolynomial way. The latter can be regarded hiral form_s with (_)ther fl_elds and between themselves
a consistent Lorentz-covariant truncation of the former. 9’7'22'5 with the aim, for mstancez to constr.uct cc')mple.te

The Hamiltonian analysis of the model based on the nonactions forp-branes which have ch|r_al form fields in their
polynomial action has shown that in spite of nonpolynomi-orld volumes, such as thid-theory five-brang3-5|. Our
ality, the Dirac constraints have a simple form and are alffanifestly Lorentz-covariant approach might be useful in
first class. In contrast with the Siegel model, the constraint:gnaklng progress in this direction. .
are not the square of second-class constraints. The canonical V& hope to address some of these problems in the future.
E_?(r)r;lrlrt]oman is quadratic and describes a single chiral ACKNOWLEDGMENTS
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