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The hot baryon violation rate is O(a2T%)
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The rate per unit volume for anomalous electroweak baryon number violation at high temperatures, in the
symmetric phase, has been estimated in the literature ®(bd T*) based on simple scaling arguments. We
argue that damping effects in the plasma suppress the rate by an extra pow;etocgiveO(a‘?vT“). We show
how to understand this effect in a variety of ways ranging from an effective description of the long-distance
modes responsible for baryon number violation to a microscopic picture of the short-distance modes respon-
sible for damping. In particular, we resolve an old controversy as to whether damping effects are relevant.
Finally, we argue that similar damping effects should occur in numerical simulations of the rate in classical
thermal field theory on a spatial lattice, and we point out a potential problem with simulations in the literature
that have not found such an effef80556-282197)00910-7

PACS numbgs): 11.10.Wx, 11.30.Fs, 12.38.Mh

[. INTRODUCTION their synthesis in this discussion of the baryon number vio-
lation rate is original.
Anomalous baryon numbeBj violation in the hot, sym- In the remainder of this Introduction we briefly review the

metric phaskof electroweak theory occurs through the cre-conventional picture of anomalous transitions in the symmet-
ation of nonperturbative, nearly static, magnetic configurafic phase and the standard estimate of the rate. Then we give
tions with spatial extent of ordergfT) "%, whereg is the @ quick but formal estimate of the effects of damping that
electroweak S(2) coupling.(This is reviewed below.It has ~ closely follows the broken-phase discussion of damping in
been widely assumed thgfT must then be the only scale Ref:[3] _ .

relevant to the problem, so that the baryon number violation , The body of the paper is devoted to providing a number
rate per unit volume, by dimensional analysis, must pePf different ways to gnderstand the physms underlying this
0((g2T)%). We shall argue that damping effects in the result. Section Il begins with an analysis of the power spec-

) . o rum of gauge field fluctuations based on the fluctuation-
plasma cause the inverse time scale for transitions throug

. . . issipation theorem and argues that it is fluctuations with
these configurations to be ordgfT instead ofO(g?T), and, P 9

) : frequency of ordeg*T and spatial extentg?T) * which
21\3(~4 — 514
therefore, the rate ©((g°T)*(g"T))=O(«,,T"). In particu- have sufficiently large amplitude to generate nonperturbative

lar, we show that physics associated with inverse time angansitions. In particular, fluctuations with frequency of order
distance scales simultaneoug?T) is perturbativein the  ¢2T are shown to be perturbatively small. We then analyze
hot plasma and so cannot be responsible for the nonpertufhe same frequency and spatial domains in the context of
bative physics oB violation. real-time, finite-temperature, diagrammatic perturbation
The possible importance of damping effects was pointedheory. We show that, provided self-energies are resummed
out many years ago in Ref3] in the context ofB violation  into propagators, the diagrammatic expansion is completely
in the symmetry-broken phase of the theory. The effect wasinder control when all internal frequencies are of order
controversial, and another analysis of the problg4)  g2T (or large) and that the perturbative expansion breaks
claimed that damping plays no role. In the intervening yearsdown only for frequencies as small g&T. The breakdown
many people have privately expressed the concern thaé due to the nonlinear interactions of low-frequency, low-
damping might affect the symmetric phase rate, and wenomentum components of the non-Abelian magnetic field.
make no claim to be the only, or even the first, people toThen, in Sec. Ill we sketch the microphysical origin of
think of it. The purpose of this paper is simply to resolve thedamping and turn to one of the traditional methods of under-
controversy, elucidate the physics involved, and put in prinistanding the transition rate: by computing the rate at which
the result that the rate ®(ag,T*). Many of the individual the system crosses the “ridge” separating classically in-
parts of this paper will be reviews of various aspects of therequivalent vacua. We show that a singlet transition from
mal physics already familiar to some readers, but we believéne neighborhood of one valley to the next actually involves
O(1/g?) back-and-forth crossings of this ridge, and so stan-
dard methods which count individual ridge crossings over-
IHere and throughout, we use the term “symmetric phase”count the true rate by a factor ofgt/—precisely the suppres-
loosely since, depending on the details of the Higgs sector, thersion due to damping. In the final section, we discuss how
may not be any sharp boundary between the symmetric andamping effects should also play a role in the topological
“symmetry-broken” phases of the theorjl,2]. By symmetric  transition rate for classical thermal field theory on a spatial
phase we shall mean temperatures high enough that the magnetlattice. This appears inconsistent with the results of humeri-
correlation length i0(1/gT) and determined by nonperturbative cal simulationg5], which show no sign of damping effects.
dynamics. We discuss why the simulations done so far may fail to mea-

0556-2821/97/54.0)/626410)/$10.00 55 6264 © 1997 The American Physical Society



55 THE HOT BARYON VIOLATION RATE IS O(a5T%) 6265
g° ~
AB =— 4 : :
OCANCS mzfd Xtr FF (1 1)

That said, we shall now ignore the fermions and, for simplic-

ity, focus on the rate for topological transitions in the pure
bosonic theory. And since we are interested in the symmetric
phase of the theory, we shall generally ignore the Higgs sec-

tor as well and focus on pure $2) gauge theory.

z Topological transitions can occur at a significant rate if
Nes=-1 Nes =0 Necs=1 Ncs =2 thermal fluctuations have enough energy to get over the top
v A=0 A=uvu~! v of the energy barrier separating neighboring vacua. The most
important parameter determining the energy of the barrier is

FIG. 1. A schematic representation of theosoni¢ potential  the spatial extenR of the configurations depicted in Fig. 1.

energy along a particular directigrabeledz) in field space, corre- In order to generate an order 1 change in Chern-Simons

sponding to topologically nontrivial transitions between vacua. ~ humber (or baryon number Eq. (1.1) plus dimensional
analysis implies that a gauge field of spatial extBninust

sure the true topological transition rate. have a field strengthof order @R?) 1. Consequently, the
This multiplicity of approaches is not intended to be aenergy of these configurations on the potential energy barrier
case of several poor arguments “substituting” for one goodyjj pe O((g?R) 1), while the gauge field amplitude itself
one. We believe thaany oneof the viewpoints discussed (smoothed over the scaR) is O((gR) b).
below provides compelling evidence that thermal damping is 5o a more representative picture of the configuration
responsible for suppressing the high-temperature eleGpace is provided by Fig.(®: The energy barrier is not a
troweak baryon violation rate by one poweraj relative o sjngle point but a ridge which becomes arbitrarily low if
the naive ordew,,T* estimate. Our goal is simply to exam- arbitrarily large configurations are used to cross it. The
ine the phenomena from multiple perspectives and undersmallestR for which nonperturbative thermal transitions

energy

stand the connections between them. through such configurations are not significantly Boltzmann
. . suppressed iR~ 1/g°T. For the same reason, this is also the
A. Review of the standard picture spatial scale where perturbation theory breaks down in the

Figure 1 is the standard visual aid for thinking abouthot plasma.
anomalous transitions. Consider the theory in Hamiltonian R~1/g°T is in fact the dominant spatial scale for topo-
formalism or inA,=0 gauge, where the degrees of freedomlogical transitions. One argument is entropy: There are fewer
are A(x) and the conjugate momenta are Ways to Cross the barrier with larger configurations than
E(x) = — JA(X)/dt. The horizontal axis represents one par_smaller ones. Another argument is.due to magnetic confine-
ticular direction in the infinite-dimensional space of gaugement in the hot plasma. Ignoie= — A at the energy barrier
configurations A(x). The minima represent the vacuum for the moment, so that the configuration is purely magnetic.
A=0 and large gauge transformations of it, labeled by theirThough static non-Abelian electric forces are no longer con-
Chern-Simons numbe¥cs. The vertical axis represents the fining at high temperature, static magnetic forces®afte
potential energy of the configuratiorsWhenever a transi- confinement scale is just the spatial scale of nonperturbative
tion is made from the neighborhood of one minimum to an-physics, 19°T.

other (which we call atopological transitior), the elec- Now consider the transition rate. Suppose that a configu-
troweak anomaly causes baryon number to be violdted  ration of sizeR on the energy barrier ridge of Fig(& is
an amount proportional tANcg: produced in the plasma. What would be the time scale for its

decay? The unstable modes of the configuration will be as-

2More precisely, the nonfermionic contribution to the potential
energy. When a transition is made, there will also be the perturba- “4Except in the immediate vicinity of the electroweak phase tran-
tive energy cost of the fermions created by that transition. sition (or crossovey;, fermions or Higgs fields merely provide addi-

3There are also other directions in configuration space alondional “hard” thermal excitations in the symmetric phase and do
which Nqg changes that have nothing to do with the vacuum struc-not affect any of the following discussion in a substantive fashion.
ture of the theory and exist even in(1) theories. These directions SWe are using the conventional gauge field normalization in
are not ultimately relevant to baryon number violation. To make thewhich no factor of 1g? multiplies the kinetic terms in the action
issue more precise, imagine starting with a cold system with somand perturbative fluctuations are of order 1 in amplitude.
baryon number, heating it up for a time to make anomalous transi- 5The standard way to see this is to consider the expectation of
tions possible, and then quickly cooling it. The system will cool very largespatial Wilson loops at high temperature. These can be
into the nearest vacuum state shown in Fig. 1. So the net change &valuated in the Euclidean formulation of finite-temperature gauge
baryon number in this example depends on whether the system hétseory, where Euclidean time has a very small perdt high
made a transition from the neighborhood of one vacuum state to theemperature. By dimensional reductipfi, this is equivalent to un-
next, not simply on whether Chern-Simon number has temporarilyderstanding the behavior of large Wilson loops in three-dimensional
changed due to an excursion in some irrelevant direction.[&ee Euclidean theory. But three-dimensional @UJgauge theory is con-
for a more detailed discussion. fining.
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FIG. 3. The soft-mode self-energy generated by forward scatter-
ing off of hard modes. The external hard lines are on shell.

classical vacua is the exceptional hypersurface which does
not flow to a vacuum configuration. We shall return to this
picture of the ridges in detail later, when we take up the old
controversy about whether damping can affect the transition
rate.

B. Quick estimate of damping

Consider again the decay of a configurati{x) of size
1/g°T on the energy barrier. As the system passes through
Ay, one may analyze the motion by linearizing the equation
of motion. ExpandingA(x,t)=Ay(x)+ §A(x,t), the equa-
tions have the form

92 SA(X)=J(x) —K? SA(X)+O(sA?) , (1.2

whereJ is the gradient of the potential along the ridge and

K2 is the potential energy curvature operator with a negative
eigenvalue— «? of order (@2T)? corresponding to decay
away from the ridge. For the moment, let us focus on that
one eigenmode, reducing our equation to

(b) o 02 5A=rK? SA+O(6A?) . 1.3
The solution to this equation grows exponentially on a time

FIG. 2. The same as Fig. 1 but supplemented by an extra dimen-

2
sion of configuration space correspondingdpspatial sizeR of the scale of 1¢ T . . . . .
configurations andb) some other generic directiop, such as a Now consider the interaction of this decay with typical
particular mode of momentum T. thermal excitations of the plasma. The transition rate in-

volves physics at soft energigéT that are small compared

sociated with momenta of orderRU/ If the configuration O the hard energies of typical particles in the system. The
were decaying at zero temperature, the time scale for decaj/mplest way to analyze the problem is to consider an effec-
would then beD(1/R). So the standard estimate is that theretive theory for the soft modes of the theory, where the phys-
is one unsuppressed transition per voluRE per timeR, ics of the hard modes has been mtegrgted out.. In thel context
giving the ratd”~R ™4~ (g2T)%. As we shall see, the flaw in of Eq. (1.3, we need to know the effectivesp)? interaction
this estimate is that the configuration is not decaying at zerg€nerated by integrating out the hard modes. The soft-mode
temperature but instead in interacting with the other excitegelf-energy generated by the hard modes is dominated by the
modes of the plasma. processes s_how_n in Fig. 3 and is known as the hard thermal
We should emphasize that the picture of Fig)ds still  100p approximation to the se_:lf-eneréy. _
incomplete because we have shown only two degrees of free- There is a reasonably simple formula for the resulting
dom in configuration space. There are an infinite number of€lf-energyll(w,p) in the limit w,p<T [9], but for our
other degrees of freedom in which the potential turns up s®urposes it will only be important to know its qualitative
that, for fixedR, the energy barrier looks like a saddle asbehavior in terms of the ratig= w/p:
depicted in Fig. ). The energy ridges discussed before are :
really hypersurfaces through configuration space, separating _ g°TLO(1)~i0(n)], »<1,
valleys that contain the different vacua. One can formally - g°T?0(1), =1,
define these hypersurfaces as follow$ For each configu-
ration A(x), follow the steepest descent path away from it in
the infinite-dimensional analogue of Fig. 2—that is, follow “The hard thermal loop approximation also generates corrections
(minug the gradient of the potential energy. For generic con-o cubic and higher couplings of multiple soft partic[@. These
figurations, one will eventually approach one of the classicalill be needed in a complete quantitative analysis, but they do not
vacua. The barrier ridge hypersurface which separates thaffect any of our simple estimates.
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Qhard Q-P hard IIl. SOME ALTERNATIVE VIEWS
% /;999) A. Analysis in terms of spectral density
66?6-@-60-\ Qrphard - Qhard \9””% We now consider another formal way to see that
(6666/' \”:’z@ w~g*T is the appropriate frequency scale for topological

transitions. Start by considering the power spectrum
palw,p) of gauge-field fluctuationé\(w,p) in the plasma:

P soft P soft

FIG. 4. Absorption or emission of soft modes by hard modes<Ai(w p)* Aj(w, p'))
when w<p, contributing to Inl. ’ '

TO(2)—i0(n)], 7l =pl(@p)(2m)*s(w-w)(p-p) . (21
' " (1.4b

| g?T?0(0), 7=1, This may be related to the retarded propagator

wherell, andIl; are the longitudinal and transverse parts of iD'FJ{(t—t’,x—x’)=([A‘(t,x)* ,Aj(t’,x’)])a(t—t’)

the (retarded one-loop self-energy. To distinguish them, it is A BHE A € Alrer o
convenient to momentarily switch to covariant gatigather =Z " Tre” PPLAN(L )", AN, x7)]
than A;=0 gauge, where the longitudinal and transverse X O(t—t") 2.2
projection operators are

by the fluctuation-dissipation theorém

57
Pi=— — ghO— - . (15
=Rl 9 e |9 e A8 (e = —2(n, + 1)ImDg(w.p)

1
(w+ie)’—p°—Il(w,p)]
2.3

o pp =
pli=si— % , (1.5b 2(n,+1)Im

whereP#=(w,p) andP; has only spatial components. The S0 ] o )

O(g?T?) behavior ofII, (0,p) reflects the Debye screening Wheren,=1/(e”“—1) is the Bose distribution function.

of static electric fields at distances ofyTl. The vanishing of Now, using this relation, consider which frequencies of

I1(0,p) reflects the absence of similar screening for static® Will have enough power to generate topological transi-

magnetic fields. Th©(g2T?2) behavior of botdl(w,0) and  tions. As reviewed in Sec. |, this requires fields with spatial

’ 2 . .

I, (w,0) reflects theO(gT) mass gap for propagating €x€ntR~1/g°T and amplitudeA~1/gR~gT. Consider the

plasma waves. right-hand side of Eq(2.3) and use the hard thermal loop
The imaginary part ofl; arises from absorption or emis- @Pproximation(1.4) for IT in

sion due to scattering off hard particles in the thermal bath,

as depicted in Fig. 4. By kinematics, these processes occur IMD(w,p) = ImII

only whenw<p. Now modify Eq.(1.3) to include the self- R (w?—p?—Rel)?+ (ImIl)?

energy(and Fourier transform to frequency space — 8(w?—0(g2T?). 2.0

2 SA=T 2
0 oA=Lk~ Tl(w)]A . (1.6 The last term corresponds to propagating plasma wHves.

For p~g?T, the integrated power given by the right-hand

. — — 2 - B oy
Given thatx~p—g-T, the self-energyll(w) will stabilize aﬁi&ie of Eqg.(2.3) from all frequencies of ordew is of order

the unstable mode unless we focus on transverse modes
take »<<1. We may then approximate 12T | w~gT |
M~ig?T2y~iwT, (1.7 wpp~1{ lw 9'Tsw=<p, (2.5
wlg®T?, w=g*T.
so that the solution to the linearized EG.6) is
., For w<gT, it is dominated by transverse fluctuations. A
w~ig"T . (1.8 schematic plot of the powgra(w) is shown in Fig. 5. From

The decay time is therefore of ordemdT, or 1/g? slower

than assumed in the standard nondissipative estimate. %The theorem follows from inserting a complete set of energy
eigenstates in Eq2.2), Fourier transforming, and then taking the
imaginary part. See, for example, Sec. 31 of R&€].

8For Ay=0 gauge P, of Eq. (1.5a is restricted to spatial indices 9t is only a & function in the leading-order approximation to

and is then— Pf)/P2 times the projection operatd? = p'p!/|p|?. IT. The smearing of thé function by the plasmon width, and other

There is a compensating factor 6fP?/P3 in the longitudinal piece  features of the spectrum such as the two-plasmon cut, will not be

of the free propagator in A;=0 gauge: iD© important for the order-of-magnitude power estimates we make be-

=P [ Pr—(PYPYP.]. low.
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FIG. 6. Adding a loopl@— (b) to a Feynman diagrantc) rep-
resents the thermal contribution to the new loop, corresponding to
Y forward scattering off a particle in the thermal bath.

]
g?p  ~9T
Fig. 6(c), wheré? p,~n,ImDg. Integrating over frequen-
H 2

FIG. 5. A schematic plot of the power,(w) of gauge field Ci€S of orderw_and momenta of ordgp~g-T, the cost of
fluctuations withp~g?T. The s-function spike atw~gT corre-  adding a loop is of order
sponds to propagating plasmons. T

. . . (gp)?Xp~*xp’w — ImDg

Eq. (2.1, the power in a particular soft mode with w
R~ 1/g°T, and frequency of ordew, will produce fluctua-
tions with amplitude 9*Tlw , ¢*T=<=w=p,

~g*T?lmDg~ 4 4 (2.7
ng, ngT' w/g T, w=(g T.
A~(p2wpn)t?~{ V1w, g'T=w=<p, (2.6 So the loop expansion parameter is of order 1dorg*T
g NoT, w=g'T. but is perturbatively smallQ(g?), for w~g°T.
Hence, nonperturbative amplitudds- 1/gR~gT are gener- C. Interacting magnetic fields

ated whenw~g*T. In contrast, for frequencies of order

g°T (or greatey, the amplitude of gauge fields is only th
A~g®T~1/R and hence perturbative. Thus, we see that fluc-
tuations associated with the traditional inverse time scal
w~g>T assumed foB violation do not, in fact, have enough
power to generate nonperturbative fluctuations

Instead of considering Feynman diagrams in the effective
eory(in which the self-energy has been resumimag can

et some insight into the origin of the transition time scale by
ecasting the above argument in terms of diagrams in the
X original, microscopic theory. The key to the estimates above
N t&€yas the behavior of Iii;, which arises from the interac-

1
plasma: tions shown in Fig. 4. The origin of the dominant contribu-

In Sec. Ill, we shall see how to get this same power specgy, arising from multiple interactions of the form of Fig.
trum by considering the microphysical details of the behav—6(c) is interactions such as those shown in Fig. 7. The

lor of the hard degrees of fr.ee<.jom,.and we will translate thestraight lines represent hard thermal particles; the wavy lines
power spectrum into a qualitative discussion of what the acfepresent virtual magnetic quanta witw,p)~ (g*T,g2T)
tual real-time trajectories of the soft degrees of freedom loo‘fhat are absorbed or emitted ' '

like. The cost to therate of adding a new interaction with a
_ _ new hard particle isg~%)? for new propagators gp)? for a
B. Estimate from Feynman diagrams new soft vertex, ¢T)2 for a new hard vertex, order 1 for

A pictorial way to represent the previous argument is tohard particle Bose or Fermi factors, and
ask when diagrammatic perturbation theory breaks down in 43q d%a’
the effective theory of the soft modes, since we need non- a7q a9
perturbative effects for a topological transition. For simplic- ~ 2wq 20q
ity, let us focus on transverse modes with<p, for which (2.9
one can ignore RHé&. Consider adding a loop to a Feynman i ) .
diagram, as shown in Fig. 6, and consider the thermal confor Phase space. The total cost, by this estimate, is
tribution to that loop, shown in Fig.(6). The cost of adding
the loop is order gp)? from the new verticesp ™ * from the
two new uncut propagators, ardfp dwpa(w,p) for the
phase space probability of finding the new soft particle in

0(la—a'|=p) 0(|wg— g | <)~ Twp?

(p_4)2><(gp)2><(gT)2><O(1)><Twp2~g%_ 2.9

12For those who like to start with the Euclidean formulation of
To be more accurate, E(R.6) describes theypical magnitude  finite-temperature diagrams, this is derived by starting with the dia-
of fluctuations. It is possible for there to be large but very raregram of Fig. @b) where the self-energl has been resummed into
fluctuations of frequency?T, far out on tail of the probability the gauge propagators. Using the standard contour trick for the
distribution. But the likelihood of a fluctuation being abnormally Euclidean frequency integral, one picks up contributions from the
large (by a power of 19) is exponentially suppressed and makes aplasmon pole and a cut corresponding toDIg=0. This is the
negligible contribution to the topological transition rate. origin of thep, factor in the phase space probability.



55 THE HOT BARYON VIOLATION RATE IS O(a5T%) 6269

where quantum mechanics enters to cut off the ultraviolet
catastrophe of classical thermal statistical mechanisc-
W 999 ond, though we shall consider all the hard modes of the
033&99 theory, we shall only focus on the one soft ma&{&) that is
S responsible for the decay of any particular configuration on
%= the barrier. So we shall restriéA(t,x) =A(t,x) — Ay(X) to
N Qévbb\ :
@0\ @6 %0\0\0\0 SA(t,X) ~ SAgor a(X) + fhardd3q5A(t,q) e'dx (3.1
e E
666 ‘ g /‘}\‘\ where the amplitude cd(x) is normalized to order 1 near its
/4}\\ center. Finally, imagine putting the system in a box so that
we can discretize the degrees of freedom. Rather than study-

ing gauge theory directly, we shall begin by reviewing the

derivation of damping for soft modes in a generic theory
FIG. 7. A microphysical picture of the important interactions for with cubic interactions:

topological transitions.

aqd is ind_eecD(l) fOI‘. w~g*T. For largerw, where this IBH:%pg_}_%KZZZ_i_Z (|pyi|2+Qi2|yi|2)+ZZ yEGY; -
microscopic perturbation theory appears to go completely [ ij
wild, one must consider the effect of resumming the effects (3.2
of ImII into the soft propagators and return to our previous
estimates. The advantage to having considered Fig. 7 is sintdere z represents the soft mode) the hard modes,
ply that it gives us a physical picture for the origin of topo- K>~ —(g2T)? the curvature of the potential energy for the
logical transitions in the plasma. The soft, virtual lines emit-unstable soft modébut we could also consider stable soft
ted from the hard particles simply correspond to the low-modes withK?~ + (g2T)?], Q; the hard frequencies of order
frequency and low-momentum components of the magneti@, andg the soft-hard-hard part of the three-vector coupling.
fields produced by the movement of those particles. These The basic approximation is to realize that, provided the
are not propagating electromagnetic waves but simply theoupling G is perturbative, the motion of the many hard
magnetic fields carried by all moving charged particles. To-modes is not much affected by the motion of the soft mode.
pological transitions are then created by the nonlinear interTo first approximation, theft
actions of these fields.

yi:aiefiﬂit s (33)

I1l. MICROPHYSICAL PICTURE

OF BARRIER CROSSING where «; are random phases and thermally distributed ran-

The normal approach used to calculate the topologicaflom amplitudes:
transition rate in the symmetry-broken phase, and to estimate
it in the symmetric phase, is based on calculating the rate, in
equilibrium, at which the system crosses the energy barrier
hypersurface separating the classical vai4]. If one as-

sumes that each such crossing is associated with a net tra\ﬂhich is the equipartition theorem with our normalizations

tsri]tion qfrt_]fl;e sgstszfrom:rf:e ng}ightmrhgod .Of one V‘?‘C““”t‘ tc.g;.Z). [With continuum normalizations, the quantity corre-
€ neighbornood of another, then e barrier Crossing rate \g, iy 16 ();) would be the classical limiT/Q; of the

a good measure of the topological transition rate. ImplicitIyBOse distributiom(€,).] Now consider the e ;
: ) . ; i) guation of mo-
making this assumption, Rd#] claimed to show that damp- tion for the mode of interest:

ing has no effect on topological transition rates, in contradic-
tion to the claims of Ref[3]. In this section, we resolve this oo .
dilemma by showing that the assumed equality of the barrier z+KZ=—y*gy . 3.9
crossing and net topological transition rates fails if one stud-

ies the full, short-distance theory. The difference in the rated he leading approximatio8.3) produces an effectively ran-
will turn out to be precisely the suppressiarig?T~g2 we  dom force termé(t) on the right-hand side:

have argued arises from damping.

1
<ai*aj>5f(9i)5ij:§ Sij » (3.9

A. Review of the microscopic origin of damping
and the Langevin equation

g(t):_; a’ikgijaj e_i(ﬂj_ﬂm . (36)

Since the purpose of this paper is pedagogy and not ex-
cruciating details of formalism, we shall make some simpli-
fications in order to elucidate the physics involved. First, we *The simple time evolutioti3.3) is to be understood as approxi-
shall treat all the modes as classical and simply assume thergating the hard modes on time scales less than their thermalization
is an ultraviolet cutoff at momenta of ordér (which is time.
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Using Eq.(3.4), the time correlation of this forcef [—w?+K2+1(w)]z=¢&(w) , (3.13

(EOEt+AD) =S HQ)HQ,) |G, e i@-ans Where
]

(3.7 (w)=2, f(Q)
i]

The force&(t) is therefore a source of colored noise for the
evolution of the soft mode, and the power spectrum of thahis is just the discretized version of the soft-mode self-
noise is given by the Fourier transform of E8.7): energy of Fig. 3.

The purpose of this review has been to show that the
effective equation of motior{1.6), which we first used to
argue that the decay time ®(1/g*T), should more accu-
rately be a Langevin equation of the form

|Gy |2
(0+Qi+ie)?- 07

(3.19

<§<w>§<w'>>=2w5<w—w'>i21_ f(Q)F(Q)) G2

X2775(Qj_9i_0)) . (38)
[~ 0+ K?+11(w)]Asor= £() | (3.19
The square matrix element just represents the process of Fig.
4 and, if one returns to continuum language, the power spesvhereé(w) is a random force witlj¢)=0 and power spec-

trum turns out to be simply trum (3.9). For a stable soft modek¢>0), the decay of the
mode due to the imaginary part of the w) SA term and the
(§(w,p)é(w’,p")) excitation of the mode by the random force term balance
each other to maintain thermal equilibrium of the soft mode.
=—478(0—0")P(p—p')N(w)IM(w) . (3.9 Now (dropping the subscript “soft) consider the solu-

So far we have reviewed the origin of an effectively ran-tlon
dom force term in the equation of motion for soft modas SA(t)= 5A_(t)+AA(t) , (3.16
term that we did not discuss in our quick analysis of Sgc. | o
To see the origin of damping, one must consider the perturwhere SA(t) is the solution to the homogeneous equation
bative effect of the soft mode on the motion of the hardthat we origina”y considered in Sec. | armA(t) are the
modes. The equations of motion for theare fluctuations induced by:

é(w)
-0’ +K°+1(w)

yi+Qly = —Z(t)Zj Giy;- (3.10 AA(w)= (3.17)

The perturbation to the solution is easily obtained by usingComputing the power spectrum &fA using Eq.(3.9), one
the free solution(3.3) for y on the right-hand side and then recovers our earlier result of Eq2.3) for the powerp,,
Fourier transforming: projected onto the soft mode under consideration.

Vi(w)=a278(w— Q)+ 1 B. What does the decay look like?
1 1 1

(w+ie)™— 0 Let us now return to our characterizatig@.5) of the

power of the fluctuations i integrated over frequencies of
XY 2(0—Q))Gja;+0(2?) , (3.1)  order w. We would now like to investigate how much the
) relevant soft-mode oscillatioA A(t) wiggles in time so that
W can assess whether the barrier is crossed once or multiple
fimes per net transition.
First, how many times does the motion &A(t) change

where we have used the retarded solution for the response
y; to x. Putting this solution into the soft-mode equatiGrb)

now gives direction per unit time? This is equivalent to asking about the
o L2 . otQi-Q) fluctuations inAA(t). We can obtain the integrated power in
(-"+K%z= f(w)’LZ%I‘ GijGikai a w2- 07 A simply by multiplying (2.5) by w?:
+0(2%) . (3.12 T, w~gT,

Averaging the second term on the right-hand side over the

random amplitudeg; finally yields @1g°T?, w=g'T.

Unlike the power for the amplitud@& of fluctuations, the

LRigorously, the microcanonical problem involvemice ran-  Power forA is dominated by plasma oscillations~gT and
domly choosing they; and then evolving the system, whereas Eq. N0t by low frequenC|e&)~g‘_‘T. T_he time scale for the mo-
(3.4) implies averaging over an ensemble of choices for each ~ tion of AA(t) to Chf’;\nge direction is thereforegll. The
As long as the number of hard degrees of freedom that interact witpower in AA and AA can be summarized by considering
the soft mode is large, there is no essential difference between thetieree characteristic frequency scatgE, g°T, andg*T. The
two cases. results of Egs.(2.5 and (3.18 are summarized for these
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TABLE |. Amplitude of fluctuations inA(t) and A(t) corre-
sponding to three characteristic frequency scales.

® Al A
gT T o°1?
ng ng g4-|-2
9‘T gT gT?

scales in Table | and depicted schematically in Fig. 8. Re
member that the oscillationsA are superimposed on top of
the slow net motion of the homogeneous solutffior the
damped decay.

Now let us estimate how many times the system crosses

8A=0 during a topological transition. The time scale for the
net transition is .~ 1/g*T, over which8A changes magni-
tude by 6,eA~gT. During that time,5A(t) changes direc-
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C. Being more precise about the “barrier”

In the previous section, we implied that crossing
6Aso=0 many times during a transition implies that the
energy barrier hypersurface is crossed many times during a
transition. However Ay IS just the projection ofA—A,
onto the soft mode of interest, and the exact equation for the
energy barrier hypersurface is not really as simple as
SAsi=0. Perhaps, as the hard modes oscillate, dAg.
location of the barrier also oscillates. In order to confirm our
picture, we should check that the effect of hard modes of the
shape of the barrier is small enough not to affect our argu-
ment. We verify this in the Appendix.

IV. IMPLICATIONS FOR CLASSICAL LATTICE
THERMAL FIELD THEORY

The estimates of damping we have made have all been
based on continuum, quantum, thermal field theory, where

tions of orderg Tt~ 1/g° times due to plasma oscillations the effective ultraviolet cutoff for any thermal effects is
whose amplitude i©(g?T). The spectrum of fluctuations of O(T), since the distribution of particles with momerd is

the system may be rather complicated, but the total time th8oltzmann suppressed. One of the numerical testing grounds
system spends withi®(g?T) of SA=0 will be of order used in the literature for studying topological transition rates,
however, has beeclassicalthermal field theory on a spatial
lattice. In classical thermal field theory, modes of arbitrarily
high momenta are thermally excitéig@ading to the ultravio-
let catastrophe of the classical blackbody probleamd the
ultraviolet cutoff is the inverse lattice spaciray * rather

, o , thanT. As we shall argue below, this infinite growth in the
Dl.mng this time, the plasma fluctuations are 'afg‘? enough Qumber of relevant hard modes as-0 leads to infinitely
drive the system back and forth acrosf=0 with fre- 004 qamping of the transition rate in the continuum limit
quency gT. Thus, during one net transition, the system .assical thermal field theory.

crosses througldA=0 of order 1¢? times. Any calculation In the limit ,p<T, the usual continuum result for the

which simply computes the rate of barrier €rossing per unifaqinary part of the transverse self-enefdy from Figs. 3
time will overestimate the rate of net transitions by a factor, 474 is of the form

of 1/g°.

This analysis, combined with the previous Sec. Il A, con-
stitutes our “microphysical” picture of topological transi-
tions. The interplay between the full equations of motion for
the short- and long-distance degrees of freedom causes the
barrier to be crossed in the highly jittery fashion illustrated in

9°T 1

tnetm'\" T (3.19

d3q
mTT(0,p) g7 [ Srotnel MU= 1M

X 8(w|q|—p-0q)

i w [ * w
Fig. 8. ~g? Ef dagn,~g°T? o 4.0
0
AA(t) whereM,, is the vertex in the left-hand figure of Fig. 3. The
- g integral is dominated by the ultraviolet and cutoff by
g~T for the quantum case, shown above.
For classical field theory, the only difference is that
T
:;l Ng— — (4.2
Wq
and the ultraviolet cutoff is now the inverse lattice spacing
a1, so that the last step of E¢.1) now gives

1

1/gsT

ImI y(w,p)~g°Ta~ (w<p) . 4.3

FIG. 8. A schematic picture of the time evolution of the fluc- ) ) .
tuations AA(t) showing fluctuations of scales~gT, g?T, and ~Damping will therefore suppress the transition rate by an
g*T. Keep in mind, however, that there is really a spectrum of€Xtra factor ofaT compared to the quantum field theory

fluctuations betweem~gT and w~g*T whose amplitude grows case, so that the rate ®(a”aT®) and vanishes in the
asw decreases. a—0 limit.
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This result is in apparent contradiction with the numericalNow consider the contribution of this term in the right-hand
results of Ref[5], which claimed to findD(a*T*#) behavior  side of Eq.(4.4):
for the rate. Our result is suppressed by an additional factor
of O(aaT), which is one inverse power of the dimensionless t t
lattice couplingB. Referencd5] used values of3 ranging aSJOdtljodt2< ( J d*x EBBB)t (J d* EBBB)t
from 10 to 14, and so they should find a 40% violation of the ! 2(4 7
assumedO(a*T#) scaling of the rate. Such an effect is '

clearly inconsistent with their statistical errorsSee their  The correlation is dominated by the ultraviolet and will be

Fig. 3) i . ) quasilocal in space and time. So, in the large time limit, it
There is a possible problem, however, with the assumppacomes

tion that Ref.[5] is in fact measuring the topological transi-

tion rate. The problem stems from the subtleties of trying to

define topological winding number on the lattice. The idea in aBth dt’ d*x((EBBB)o( EBBB),/ )

Ref. [5] was to measure a lattice analogue of the square of

the topological winding: ~ B Ya *Vit~giT4Vit. (4.9

sured diffusion ratd” of O(a*T#). The moral is that purely
perturbative effects, having nothing to do with true topologi-

where it is now convenient to consider field strengths norcg| transitions, might obscure the true topological transition
malized so that the action B;,,/g°. Under the picture of rate, which we have argued @(«°aT®).

Fig. 1, the topological winding in pure gauge theory should
randomly diffuse away from zero, so that at large times Eq.
(4.4) behaves likel'Vt wherel is the transition rate. The

authors implement this procedure on the lattice by making a This work was supported by the U.S. Department of En-
lattice approximation to EF, which schematically has the ergy, Grant No. DE-FG06-91ER40614. We would like to

< ( ftdtf d3xtrFE> 2> —([ANcg(D)]?) (4.4) This lattice artifact therefore gives a contribution to the mea-
0
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whereU represents plaquettes perpendicular to the links the
electric fieldE lives on.(See Ref[5] for the detailed expres-
sion) The potential problem with this representation is that,
unlike the continuum expression foiFtF, the integral(i.e.,
lattice sum of J over space isota total time derivative. The As discussed in Sec. |, the barrier hypersurface is the
time integral of this lattice analogue #d3xtrFF does not  surface which(1) separates the vacua a(® maps into itself
just depend on the initial and final configurations but de-when the gradient of the potential is followed. In this appen-
pends on the path used to get from one to another. In paﬂiX, we want to focus on whether the hard modes have a
ticular, consider a path in time that starts from some configusignificant impact on the shape of the surface. Specifically,
ration near the vacuum, never makes any nonperturbativeonsider(a) one soft, unstable mode of interest, ail all
excursions from i{and so in particular never makes a topo-hard modes, as in the generic model of E§.2) with
logical transition, and finally ends up back at the initial con- K?=—«*<0. What is the equation of the barrier hypersur-
figuration. The lattice analogue of the left-hand side of Eqface in this subspace?
(4.4), (fdtd®xJ)2, would not be zero. Perturbative fluctua- We shall restrict attention to typical hard-mode ampli-
tions can therefore either increase or decrefde d®xJ  tudes in the thermal bath, i.ay;|~1/Q;. Second, we shall
without increasing the energy, and so there will be a purelyassume that the interactighbetween the soft mode and any
perturbative contribution to the diffusidn. individual hard mode is perturbative, as it indeed is hot
To estimate the size of this lattice artifact in the diffusion gauge theory. The translation of this condition to the generic
ratel", consider expanding E@4.5) in powers of the lattice model(3.2) is easily made by considering stable soft modes,
spacinga in lattice perturbation theory, remembering thatin which case{z| is typically Ll and our perturbative con-
U~e'2’®, The leadingE B term is a total time derivative dition isxygy<1, giving G<«Q*". , o
and does not cause problems. As an example of a subleading Under these conditions, our result for the ridge equation is
term, consider a term involving and three powers d:

APPENDIX: HARD-MODE EFFECTS
ON THE BARRIER SURFACE SHAPE

Gij
~ ~ z= F——— yi=Yy*Sy. Al
trFF—trFF+a*EBBB+ - - -. 4.6 ; Yoz g2 V=Y (A1)
This is easily checked as follows. First, it contains
15This point has also been observed by Afthjand Krasnitz and ~ (z,y,y*)=(0,0,0) as it should. Next, we must check that
will be addressed in a forthcoming publication. Similar suspicions

have also been raised by Moore and Tufbk] in the context of the VV(z,y*,y)=(— k%z+y* Gy,Q%y+2Gy,y* Q + zy* G)
asymmetric phase transition rate. (A2)
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lies in the tangent plane to the surfagethin our approxi- Comparing this to
mationg. On the surfacéAl),

VV(z,y*,y)=(y* Gy,Q%,y* Q?) . (A3) <§2>=§ f(QF(Q)|Gy? (A8)

The tangent plane to the surface is spanned by
shows that Eq(A7) is of order(§2> times the typical size of

d . o - Q~*(which isT~4). The continuum version is that the equa-
dy? @(y*.y).y*.¥)=((Sy)i.€.0) . (A4) tion for the barrier surface is
d “ SA=x(A 1)), A9
dy, @Y Y N=((9)1.08) (A5) XArard 1) (A9
I
where
and so
= (1,—Sy.—y*S) (A6) (=0, (x*)~T X&), (A10)

is normal to the surface. Equatiofs3) and (A6) then give and ¢ here is understood to be projected onto the soft mode.
n*.VV=0 as desired. Using Eq.(3.9 andp~g°T,

To count the number of barrier crossings in Sec. Ill, we
should really have studied the evolution of y* Sy rather _ _
than the evolution ok. We are now in a position to check (x~T 4p3f don,Imll(e)~T *p?xg*T*~(g"T)? .
whether this makes any difference by checking the amplitude (A11)
of the fluctuations iry* Sy. Using the leading-order behavior
(3.3 for they; and averaging over the amplitudes yields theThis O(g*T) magnitude of the fluctuations in the location of

equal time amplitude the surface is much smaller than the magnitgd& plasma
oscillations described in Sec. Ill. The shape of the surface
((y*Sy)d) = 2 HOBLODIEY 2. (A7) therefore has no effect on our previous discussion of crossing
] the barrier.
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