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The rate per unit volume for anomalous electroweak baryon number violation at high temperatures, in the
symmetric phase, has been estimated in the literature to beO(aw

4T4) based on simple scaling arguments. We
argue that damping effects in the plasma suppress the rate by an extra power ofaw to giveO(aw

5T4). We show
how to understand this effect in a variety of ways ranging from an effective description of the long-distance
modes responsible for baryon number violation to a microscopic picture of the short-distance modes respon-
sible for damping. In particular, we resolve an old controversy as to whether damping effects are relevant.
Finally, we argue that similar damping effects should occur in numerical simulations of the rate in classical
thermal field theory on a spatial lattice, and we point out a potential problem with simulations in the literature
that have not found such an effect.@S0556-2821~97!00910-7#

PACS number~s!: 11.10.Wx, 11.30.Fs, 12.38.Mh

I. INTRODUCTION

Anomalous baryon number (B) violation in the hot, sym-
metric phase1 of electroweak theory occurs through the cre-
ation of nonperturbative, nearly static, magnetic configura-
tions with spatial extent of order (g2T)21, whereg is the
electroweak SU~2! coupling.~This is reviewed below.! It has
been widely assumed thatg2T must then be the only scale
relevant to the problem, so that the baryon number violation
rate per unit volume, by dimensional analysis, must be
O„(g2T)4…. We shall argue that damping effects in the
plasma cause the inverse time scale for transitions through
these configurations to be orderg4T instead ofO(g2T), and,
therefore, the rate isO„(g2T)3(g4T)…5O(aw

5T4). In particu-
lar, we show that physics associated with inverse time and
distance scales simultaneouslyO(g2T) is perturbativein the
hot plasma and so cannot be responsible for the nonpertur-
bative physics ofB violation.

The possible importance of damping effects was pointed
out many years ago in Ref.@3# in the context ofB violation
in the symmetry-broken phase of the theory. The effect was
controversial, and another analysis of the problem@4#
claimed that damping plays no role. In the intervening years,
many people have privately expressed the concern that
damping might affect the symmetric phase rate, and we
make no claim to be the only, or even the first, people to
think of it. The purpose of this paper is simply to resolve the
controversy, elucidate the physics involved, and put in print
the result that the rate isO(aw

5T4). Many of the individual
parts of this paper will be reviews of various aspects of ther-
mal physics already familiar to some readers, but we believe

their synthesis in this discussion of the baryon number vio-
lation rate is original.

In the remainder of this Introduction we briefly review the
conventional picture of anomalous transitions in the symmet-
ric phase and the standard estimate of the rate. Then we give
a quick but formal estimate of the effects of damping that
closely follows the broken-phase discussion of damping in
Ref. @3#.

The body of the paper is devoted to providing a number
of different ways to understand the physics underlying this
result. Section II begins with an analysis of the power spec-
trum of gauge field fluctuations based on the fluctuation-
dissipation theorem and argues that it is fluctuations with
frequency of orderg4T and spatial extent (g2T)21 which
have sufficiently large amplitude to generate nonperturbative
transitions. In particular, fluctuations with frequency of order
g2T are shown to be perturbatively small. We then analyze
the same frequency and spatial domains in the context of
real-time, finite-temperature, diagrammatic perturbation
theory. We show that, provided self-energies are resummed
into propagators, the diagrammatic expansion is completely
under control when all internal frequencies are of order
g2T ~or larger! and that the perturbative expansion breaks
down only for frequencies as small asg4T. The breakdown
is due to the nonlinear interactions of low-frequency, low-
momentum components of the non-Abelian magnetic field.
Then, in Sec. III we sketch the microphysical origin of
damping and turn to one of the traditional methods of under-
standing the transition rate: by computing the rate at which
the system crosses the ‘‘ridge’’ separating classically in-
equivalent vacua. We show that a singlenet transition from
the neighborhood of one valley to the next actually involves
O(1/g2) back-and-forth crossings of this ridge, and so stan-
dard methods which count individual ridge crossings over-
count the true rate by a factor of 1/g2—precisely the suppres-
sion due to damping. In the final section, we discuss how
damping effects should also play a role in the topological
transition rate for classical thermal field theory on a spatial
lattice. This appears inconsistent with the results of numeri-
cal simulations@5#, which show no sign of damping effects.
We discuss why the simulations done so far may fail to mea-

1Here and throughout, we use the term ‘‘symmetric phase’’
loosely since, depending on the details of the Higgs sector, there
may not be any sharp boundary between the symmetric and
‘‘symmetry-broken’’ phases of the theory@1,2#. By symmetric
phase we shall mean temperatures high enough that the magnetic
correlation length isO(1/g2T) and determined by nonperturbative
dynamics.
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sure the true topological transition rate.
This multiplicity of approaches is not intended to be a

case of several poor arguments ‘‘substituting’’ for one good
one. We believe thatany oneof the viewpoints discussed
below provides compelling evidence that thermal damping is
responsible for suppressing the high-temperature elec-
troweak baryon violation rate by one power ofaw relative to
the naive orderaw

4T4 estimate. Our goal is simply to exam-
ine the phenomena from multiple perspectives and under-
stand the connections between them.

A. Review of the standard picture

Figure 1 is the standard visual aid for thinking about
anomalous transitions. Consider the theory in Hamiltonian
formalism or inA050 gauge, where the degrees of freedom
are A(x) and the conjugate momenta are
E(x)52]A(x)/]t. The horizontal axis represents one par-
ticular direction in the infinite-dimensional space of gauge
configurationsA(x). The minima represent the vacuum
A50 and large gauge transformations of it, labeled by their
Chern-Simons numberNCS. The vertical axis represents the
potential energy of the configurations.2 Whenever a transi-
tion is made from the neighborhood of one minimum to an-
other ~which we call a topological transition!, the elec-
troweak anomaly causes baryon number to be violated3 by
an amount proportional toDNCS:

DB}DNCS52
g2

16p2E d4xtr FF̃ . ~1.1!

That said, we shall now ignore the fermions and, for simplic-
ity, focus on the rate for topological transitions in the pure
bosonic theory. And since we are interested in the symmetric
phase of the theory, we shall generally ignore the Higgs sec-
tor as well and focus on pure SU~2! gauge theory.4

Topological transitions can occur at a significant rate if
thermal fluctuations have enough energy to get over the top
of the energy barrier separating neighboring vacua. The most
important parameter determining the energy of the barrier is
the spatial extentR of the configurations depicted in Fig. 1.
In order to generate an order 1 change in Chern-Simons
number ~or baryon number!, Eq. ~1.1! plus dimensional
analysis implies that a gauge field of spatial extentR must
have a field strength5 of order (gR2)21. Consequently, the
energy of these configurations on the potential energy barrier
will be O„(g2R)21

…, while the gauge field amplitude itself
~smoothed over the scaleR) is O„(gR)21

….
So a more representative picture of the configuration

space is provided by Fig. 2~a!: The energy barrier is not a
single point but a ridge which becomes arbitrarily low if
arbitrarily large configurations are used to cross it. The
smallestR for which nonperturbative thermal transitions
through such configurations are not significantly Boltzmann
suppressed isR;1/g2T. For the same reason, this is also the
spatial scale where perturbation theory breaks down in the
hot plasma.

R;1/g2T is in fact the dominant spatial scale for topo-
logical transitions. One argument is entropy: There are fewer
ways to cross the barrier with larger configurations than
smaller ones. Another argument is due to magnetic confine-
ment in the hot plasma. IgnoreE52Ȧ at the energy barrier
for the moment, so that the configuration is purely magnetic.
Though static non-Abelian electric forces are no longer con-
fining at high temperature, static magnetic forces are.6 The
confinement scale is just the spatial scale of nonperturbative
physics, 1/g2T.

Now consider the transition rate. Suppose that a configu-
ration of sizeR on the energy barrier ridge of Fig. 2~a! is
produced in the plasma. What would be the time scale for its
decay? The unstable modes of the configuration will be as-

2More precisely, the nonfermionic contribution to the potential
energy. When a transition is made, there will also be the perturba-
tive energy cost of the fermions created by that transition.
3There are also other directions in configuration space along

whichNCS changes that have nothing to do with the vacuum struc-
ture of the theory and exist even in U~1! theories. These directions
are not ultimately relevant to baryon number violation. To make the
issue more precise, imagine starting with a cold system with some
baryon number, heating it up for a time to make anomalous transi-
tions possible, and then quickly cooling it. The system will cool
into the nearest vacuum state shown in Fig. 1. So the net change in
baryon number in this example depends on whether the system has
made a transition from the neighborhood of one vacuum state to the
next, not simply on whether Chern-Simon number has temporarily
changed due to an excursion in some irrelevant direction. See@6#
for a more detailed discussion.

4Except in the immediate vicinity of the electroweak phase tran-
sition ~or crossover!, fermions or Higgs fields merely provide addi-
tional ‘‘hard’’ thermal excitations in the symmetric phase and do
not affect any of the following discussion in a substantive fashion.
5We are using the conventional gauge field normalization in

which no factor of 1/g2 multiplies the kinetic terms in the action
and perturbative fluctuations are of order 1 in amplitude.
6The standard way to see this is to consider the expectation of

very largespatialWilson loops at high temperature. These can be
evaluated in the Euclidean formulation of finite-temperature gauge
theory, where Euclidean time has a very small periodb at high
temperature. By dimensional reduction@7#, this is equivalent to un-
derstanding the behavior of large Wilson loops in three-dimensional
Euclidean theory. But three-dimensional SU~2! gauge theory is con-
fining.

FIG. 1. A schematic representation of the~bosonic! potential
energy along a particular direction~labeledz) in field space, corre-
sponding to topologically nontrivial transitions between vacua.
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sociated with momenta of order 1/R. If the configuration
were decaying at zero temperature, the time scale for decay
would then beO(1/R). So the standard estimate is that there
is one unsuppressed transition per volumeR3 per timeR,
giving the rateG;R24;(g2T)4. As we shall see, the flaw in
this estimate is that the configuration is not decaying at zero
temperature but instead in interacting with the other excited
modes of the plasma.

We should emphasize that the picture of Fig. 2~a! is still
incomplete because we have shown only two degrees of free-
dom in configuration space. There are an infinite number of
other degrees of freedom in which the potential turns up so
that, for fixedR, the energy barrier looks like a saddle as
depicted in Fig. 2~b!. The energy ridges discussed before are
really hypersurfaces through configuration space, separating
valleys that contain the different vacua. One can formally
define these hypersurfaces as follows@4#: For each configu-
rationA(x), follow the steepest descent path away from it in
the infinite-dimensional analogue of Fig. 2—that is, follow
~minus! the gradient of the potential energy. For generic con-
figurations, one will eventually approach one of the classical
vacua. The barrier ridge hypersurface which separates the

classical vacua is the exceptional hypersurface which does
not flow to a vacuum configuration. We shall return to this
picture of the ridges in detail later, when we take up the old
controversy about whether damping can affect the transition
rate.

B. Quick estimate of damping

Consider again the decay of a configurationAb(x) of size
1/g2T on the energy barrier. As the system passes through
Ab, one may analyze the motion by linearizing the equation
of motion. ExpandingA(x,t)5Ab(x)1dA(x,t), the equa-
tions have the form

] t
2 dA~x!5J~x!2K̂2 dA~x!1O~dA2! , ~1.2!

whereJ is the gradient of the potential along the ridge and
K̂2 is the potential energy curvature operator with a negative
eigenvalue2k2 of order (g2T)2 corresponding to decay
away from the ridge. For the moment, let us focus on that
one eigenmode, reducing our equation to

] t
2 dA5k2 dA1O~dA2! . ~1.3!

The solution to this equation grows exponentially on a time
scale of 1/g2T.

Now consider the interaction of this decay with typical
thermal excitations of the plasma. The transition rate in-
volves physics at soft energiesg2T that are small compared
to the hard energiesT of typical particles in the system. The
simplest way to analyze the problem is to consider an effec-
tive theory for the soft modes of the theory, where the phys-
ics of the hard modes has been integrated out. In the context
of Eq. ~1.3!, we need to know the effective (dA)2 interaction
generated by integrating out the hard modes. The soft-mode
self-energy generated by the hard modes is dominated by the
processes shown in Fig. 3 and is known as the hard thermal
loop approximation to the self-energy.7

There is a reasonably simple formula for the resulting
self-energyP(v,p) in the limit v,p!T @9#, but for our
purposes it will only be important to know its qualitative
behavior in terms of the ratioh[v/p:

PL5H g2T2@O~1!2 iO~h!#, h!1 ,

g2T2O~1!, h>1 ,
~1.4a!

7The hard thermal loop approximation also generates corrections
to cubic and higher couplings of multiple soft particles@8#. These
will be needed in a complete quantitative analysis, but they do not
affect any of our simple estimates.

FIG. 2. The same as Fig. 1 but supplemented by an extra dimen-
sion of configuration space corresponding to~a! spatial sizeR of the
configurations and~b! some other generic directiony, such as a
particular mode of momentum;T.

FIG. 3. The soft-mode self-energy generated by forward scatter-
ing off of hard modes. The external hard lines are on shell.
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PT5H g2T2@O~h2!2 iO~h!#, h!1 ,

g2T2O~1!, h>1 ,
~1.4b!

wherePL andPT are the longitudinal and transverse parts of
the ~retarded! one-loop self-energy. To distinguish them, it is
convenient to momentarily switch to covariant gauge8 ~rather
than A050 gauge!, where the longitudinal and transverse
projection operators are

PLmn52
P2

upu2S gm02
PmP0

P2 D S g0n2
P0Pn

P2 D , ~1.5a!

P T
i j5d i j2

pipj

upu2
, ~1.5b!

wherePm[(v,p) andPT has only spatial components. The
O(g2T2) behavior ofPL(0,p) reflects the Debye screening
of static electric fields at distances of 1/gT. The vanishing of
PT(0,p) reflects the absence of similar screening for static
magnetic fields. TheO(g2T2) behavior of bothPT(v,0) and
PL(v,0) reflects theO(gT) mass gap for propagating
plasma waves.

The imaginary part ofPT arises from absorption or emis-
sion due to scattering off hard particles in the thermal bath,
as depicted in Fig. 4. By kinematics, these processes occur
only whenv,p. Now modify Eq.~1.3! to include the self-
energy~and Fourier transform to frequency space!

2v2dA5@k22P~v!#dA . ~1.6!

Given thatk;p;g2T, the self-energyP(v) will stabilize
the unstable mode unless we focus on transverse modes and
takeh!1. We may then approximate

P; ig2T2h; ivT , ~1.7!

so that the solution to the linearized Eq.~1.6! is

v; ig4T . ~1.8!

The decay time is therefore of order 1/g4T, or 1/g2 slower
than assumed in the standard nondissipative estimate.

II. SOME ALTERNATIVE VIEWS

A. Analysis in terms of spectral density

We now consider another formal way to see that
v;g4T is the appropriate frequency scale for topological
transitions. Start by considering the power spectrum
rA(v,p) of gauge-field fluctuationsA(v,p) in the plasma:

^A i~v,p!*A j~v8,p8!&

[rA
i j ~v,p!~2p!4d~v2v8!d3~p2p8! . ~2.1!

This may be related to the retarded propagator

iDR
i j ~ t2t8,x2x8!5^@A i~ t,x!* ,A j~ t8,x8!#&u~ t2t8!

5Z21Tre2bH@A i~ t,x!* ,A j~ t8,x8!#

3u~ t2t8! ~2.2!

by the fluctuation-dissipation theorem9

rA~v,p!522~nv11!ImDR~v,p!

522~nv11!ImS 1

~v1 i e!22p22P~v,p! D ,

~2.3!

wherenv51/(ebv21) is the Bose distribution function.
Now, using this relation, consider which frequencies of

A will have enough power to generate topological transi-
tions. As reviewed in Sec. I, this requires fields with spatial
extentR;1/g2T and amplitudeA;1/gR;gT. Consider the
right-hand side of Eq.~2.3! and use the hard thermal loop
approximation~1.4! for P in

ImDR~v,p!5
ImP

~v22p22ReP!21~ ImP!2

2d„v22O~g2T2!…. ~2.4!

The last term corresponds to propagating plasma waves.10

For p;g2T, the integrated power given by the right-hand
side of Eq.~2.3! from all frequencies of orderv is of order

vrA;H 1/g2T , v;gT ,

1/v , g4T&v<p ,

v/g8T2 , v&g4T .

~2.5!

For v!gT, it is dominated by transverse fluctuations. A
schematic plot of the powerrA(v) is shown in Fig. 5. From

8ForA050 gauge,PL of Eq. ~1.5a! is restricted to spatial indices
and is then2P0

2/P2 times the projection operatorP̄L5pipj /upu2.
There is a compensating factor of2P2/P0

2 in the longitudinal piece
of the free propagator in A050 gauge: iD (0)

5P22@PT2(P2/P0
2)P̄L#.

9The theorem follows from inserting a complete set of energy
eigenstates in Eq.~2.2!, Fourier transforming, and then taking the
imaginary part. See, for example, Sec. 31 of Ref.@10#.
10It is only a d function in the leading-order approximation to

P. The smearing of thed function by the plasmon width, and other
features of the spectrum such as the two-plasmon cut, will not be
important for the order-of-magnitude power estimates we make be-
low.

FIG. 4. Absorption or emission of soft modes by hard modes
whenv,p, contributing to ImP.
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Eq. ~2.1!, the power in a particular soft mode with
R;1/g2T, and frequency of orderv, will produce fluctua-
tions with amplitude

A;~p3vrA!1/2;H g2T , v;gT ,

g3AT3/v , g4T&v<p ,

g21AvT , v&g4T .

~2.6!

Hence, nonperturbative amplitudesA;1/gR;gT are gener-
ated whenv;g4T. In contrast, for frequencies of order
g2T ~or greater!, the amplitude of gauge fields is only
A;g2T;1/R and hence perturbative. Thus, we see that fluc-
tuations associated with the traditional inverse time scale
v;g2T assumed forB violation do not, in fact, have enough
power to generate nonperturbative fluctuations in the
plasma.11

In Sec. III, we shall see how to get this same power spec-
trum by considering the microphysical details of the behav-
ior of the hard degrees of freedom, and we will translate the
power spectrum into a qualitative discussion of what the ac-
tual real-time trajectories of the soft degrees of freedom look
like.

B. Estimate from Feynman diagrams

A pictorial way to represent the previous argument is to
ask when diagrammatic perturbation theory breaks down in
the effective theory of the soft modes, since we need non-
perturbative effects for a topological transition. For simplic-
ity, let us focus on transverse modes withv!p, for which
one can ignore ReP. Consider adding a loop to a Feynman
diagram, as shown in Fig. 6, and consider the thermal con-
tribution to that loop, shown in Fig. 6~c!. The cost of adding
the loop is order (gp)2 from the new vertices,p24 from the
two new uncut propagators, andd3p dvrA(v,p) for the
phase space probability of finding the new soft particle in

Fig. 6~c!, where12 rA;nvImDR. Integrating over frequen-
cies of orderv and momenta of orderp;g2T, the cost of
adding a loop is of order

~gp!23p243p3v
T

v
ImDR

;g4T2ImDR;H g4T/v , g4T&v<p ,

v/g4T , v&g4T .
~2.7!

So the loop expansion parameter is of order 1 forv;g4T
but is perturbatively small,O(g2), for v;g2T.

C. Interacting magnetic fields

Instead of considering Feynman diagrams in the effective
theory~in which the self-energy has been resummed!, we can
get some insight into the origin of the transition time scale by
recasting the above argument in terms of diagrams in the
original, microscopic theory. The key to the estimates above
was the behavior of ImPT , which arises from the interac-
tions shown in Fig. 4. The origin of the dominant contribu-
tion arising from multiple interactions of the form of Fig.
6~c! is interactions such as those shown in Fig. 7. The
straight lines represent hard thermal particles; the wavy lines
represent virtual magnetic quanta with (v,p);(g4T,g2T)
that are absorbed or emitted.

The cost to therate of adding a new interaction with a
new hard particle is (p24)2 for new propagators, (gp)2 for a
new soft vertex, (gT)2 for a new hard vertex, order 1 for
hard particle Bose or Fermi factors, and

d3q

2vq

d3q8

2vq8
u~ uq2q8u&p!u~ uvq2vq8u&v!;Tvp2

~2.8!

for phase space. The total cost, by this estimate, is

~p24!23~gp!23~gT!23O~1!3Tvp2;
v

g4T
~2.9!

11To be more accurate, Eq.~2.6! describes thetypicalmagnitude
of fluctuations. It is possible for there to be large but very rare
fluctuations of frequencyg2T, far out on tail of the probability
distribution. But the likelihood of a fluctuation being abnormally
large~by a power of 1/g) is exponentially suppressed and makes a
negligible contribution to the topological transition rate.

12For those who like to start with the Euclidean formulation of
finite-temperature diagrams, this is derived by starting with the dia-
gram of Fig. 6~b! where the self-energyP has been resummed into
the gauge propagators. Using the standard contour trick for the
Euclidean frequency integral, one picks up contributions from the
plasmon pole and a cut corresponding to ImDR50. This is the
origin of therA factor in the phase space probability.

FIG. 5. A schematic plot of the powerrA(v) of gauge field
fluctuations withp;g2T. The d-function spike atv;gT corre-
sponds to propagating plasmons.

FIG. 6. Adding a loop~a!→~b! to a Feynman diagram.~c! rep-
resents the thermal contribution to the new loop, corresponding to
forward scattering off a particle in the thermal bath.
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and is indeedO(1) for v;g4T. For largerv, where this
microscopic perturbation theory appears to go completely
wild, one must consider the effect of resumming the effects
of ImP into the soft propagators and return to our previous
estimates. The advantage to having considered Fig. 7 is sim-
ply that it gives us a physical picture for the origin of topo-
logical transitions in the plasma. The soft, virtual lines emit-
ted from the hard particles simply correspond to the low-
frequency and low-momentum components of the magnetic
fields produced by the movement of those particles. These
are not propagating electromagnetic waves but simply the
magnetic fields carried by all moving charged particles. To-
pological transitions are then created by the nonlinear inter-
actions of these fields.

III. MICROPHYSICAL PICTURE
OF BARRIER CROSSING

The normal approach used to calculate the topological
transition rate in the symmetry-broken phase, and to estimate
it in the symmetric phase, is based on calculating the rate, in
equilibrium, at which the system crosses the energy barrier
hypersurface separating the classical vacua@3,4#. If one as-
sumes that each such crossing is associated with a net tran-
sition of the system from the neighborhood of one vacuum to
the neighborhood of another, then the barrier crossing rate is
a good measure of the topological transition rate. Implicitly
making this assumption, Ref.@4# claimed to show that damp-
ing has no effect on topological transition rates, in contradic-
tion to the claims of Ref.@3#. In this section, we resolve this
dilemma by showing that the assumed equality of the barrier
crossing and net topological transition rates fails if one stud-
ies the full, short-distance theory. The difference in the rates
will turn out to be precisely the suppressionv/g2T;g2 we
have argued arises from damping.

A. Review of the microscopic origin of damping
and the Langevin equation

Since the purpose of this paper is pedagogy and not ex-
cruciating details of formalism, we shall make some simpli-
fications in order to elucidate the physics involved. First, we
shall treat all the modes as classical and simply assume there
is an ultraviolet cutoff at momenta of orderT ~which is

where quantum mechanics enters to cut off the ultraviolet
catastrophe of classical thermal statistical mechanics!. Sec-
ond, though we shall consider all the hard modes of the
theory, we shall only focus on the one soft modea(x) that is
responsible for the decay of any particular configuration on
the barrier. So we shall restrictdA(t,x)5A(t,x)2Ab(x) to

dA~ t,x!;dAsoft a~x!1E
hard

d3qdA~ t,q! eiq•x , ~3.1!

where the amplitude ofa(x) is normalized to order 1 near its
center. Finally, imagine putting the system in a box so that
we can discretize the degrees of freedom. Rather than study-
ing gauge theory directly, we shall begin by reviewing the
derivation of damping for soft modes in a generic theory
with cubic interactions:

bH5
1

2
pz
21

1

2
K2z21(

i
~ upyiu

21V i
2uyi u2!1z(

i j
yi*Gi j y j .

~3.2!

Here z represents the soft mode,yi the hard modes,
K2;2(g2T)2 the curvature of the potential energy for the
unstable soft mode@but we could also consider stable soft
modes withK2;1(g2T)2#, V i the hard frequencies of order
T, andG the soft-hard-hard part of the three-vector coupling.

The basic approximation is to realize that, provided the
coupling G is perturbative, the motion of the many hard
modes is not much affected by the motion of the soft mode.
To first approximation, then,13

yi.a ie
2 iV i t , ~3.3!

wherea i are random phases and thermally distributed ran-
dom amplitudes:

^a i*a j&[ f ~V i !d i j5
1

V i
2 d i j , ~3.4!

which is the equipartition theorem with our normalizations
~3.2!. @With continuum normalizations, the quantity corre-
sponding tof (V i) would be the classical limitT/V i of the
Bose distributionn(V i).# Now consider the equation of mo-
tion for the mode of interest,z:

z̈1K2z52y*Gy . ~3.5!

The leading approximation~3.3! produces an effectively ran-
dom force termj(t) on the right-hand side:

j~ t !52(
i j

a i*Gi ja j e
2 i ~V j2V i !t . ~3.6!

13The simple time evolution~3.3! is to be understood as approxi-
mating the hard modes on time scales less than their thermalization
time.

FIG. 7. A microphysical picture of the important interactions for
topological transitions.
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Using Eq.~3.4!, the time correlation of this force is14

^j~ t !j~ t1Dt !&5(
i j

f ~V i ! f ~V j ! uGi j u2 e2 i ~V j2V i !Dt .

~3.7!

The forcej(t) is therefore a source of colored noise for the
evolution of the soft mode, and the power spectrum of that
noise is given by the Fourier transform of Eq.~3.7!:

^j~v!j~v8!&52pd~v2v8!(
i j

f ~V i ! f ~V j ! uGi j u2

32pd~V j2V i2v! . ~3.8!

The square matrix element just represents the process of Fig.
4 and, if one returns to continuum language, the power spec-
trum turns out to be simply

^j~v,p!j~v8,p8!&

524pd~v2v8!d3~p2p8!n~v!ImP~v! . ~3.9!

So far we have reviewed the origin of an effectively ran-
dom force term in the equation of motion for soft modes~a
term that we did not discuss in our quick analysis of Sec. I!.
To see the origin of damping, one must consider the pertur-
bative effect of the soft mode on the motion of the hard
modes. The equations of motion for theyi are

ÿi1V i
2yi52z~ t !(

j
Gi j y j . ~3.10!

The perturbation to the solution is easily obtained by using
the free solution~3.3! for y on the right-hand side and then
Fourier transforming:

yi~v!5a i2pd~v2V i !1
1

~v1 i e!22V i
2

3(
j
z~v2V j !Gi ja j1O~z2! , ~3.11!

where we have used the retarded solution for the response of
yi to x. Putting this solution into the soft-mode equation~3.5!
now gives

~2v21K2!z5j~v!12(
i jk
Gi jGjka i*ak

z~v1V i2Vk!

v22V j
2

1O~z2! . ~3.12!

Averaging the second term on the right-hand side over the
random amplitudesa i finally yields

@2v21K21P~v!#z.j~v! , ~3.13!

where

P~v!52(
i j

f ~V i !
uGi j u2

~v1V i1 i e!22V j
2 . ~3.14!

This is just the discretized version of the soft-mode self-
energy of Fig. 3.

The purpose of this review has been to show that the
effective equation of motion~1.6!, which we first used to
argue that the decay time isO(1/g4T), should more accu-
rately be a Langevin equation of the form

@2v21K21P~v!#dAsoft5j~v! , ~3.15!

wherej(v) is a random force witĥj&50 and power spec-
trum ~3.9!. For a stable soft mode (K2.0), the decay of the
mode due to the imaginary part of theP(v)dA term and the
excitation of the mode by the random force term balance
each other to maintain thermal equilibrium of the soft mode.

Now ~dropping the subscript ‘‘soft’’! consider the solu-
tion

dA~ t !5dĀ~ t !1DA~ t ! , ~3.16!

where dĀ(t) is the solution to the homogeneous equation
that we originally considered in Sec. I andDA(t) are the
fluctuations induced byj:

DA~v!5
j~v!

2v21K21P~v!
. ~3.17!

Computing the power spectrum ofDA using Eq.~3.9!, one
recovers our earlier result of Eq.~2.3! for the powerrA ,
projected onto the soft mode under consideration.

B. What does the decay look like?

Let us now return to our characterization~2.5! of the
power of the fluctuations inA integrated over frequencies of
orderv. We would now like to investigate how much the
relevant soft-mode oscillationDA(t) wiggles in time so that
we can assess whether the barrier is crossed once or multiple
times per net transition.

First, how many times does the motion ofDA(t) change
direction per unit time? This is equivalent to asking about the
fluctuations inDȦ(t). We can obtain the integrated power in
Ȧ simply by multiplying ~2.5! by v2:

vr Ȧ;H T , v;gT ,

v , g4T&v<p ,

v3/g8T2 , v&g4T .

~3.18!

Unlike the power for the amplitudeA of fluctuations, the
power forȦ is dominated by plasma oscillationsv;gT and
not by low frequenciesv;g4T. The time scale for the mo-
tion of DA(t) to change direction is therefore 1/gT. The
power in DA and DȦ can be summarized by considering
three characteristic frequency scalesgT, g2T, andg4T. The
results of Eqs.~2.5! and ~3.18! are summarized for these

14Rigorously, the microcanonical problem involvesonce ran-
domly choosing thea i and then evolving the system, whereas Eq.
~3.4! implies averaging over an ensemble of choices for eacha i .
As long as the number of hard degrees of freedom that interact with
the soft mode is large, there is no essential difference between these
two cases.
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scales in Table I and depicted schematically in Fig. 8. Re-
member that the oscillationsDA are superimposed on top of
the slow net motion of the homogeneous solutionĀ for the
damped decay.

Now let us estimate how many times the system crosses
dA50 during a topological transition. The time scale for the
net transition istnet;1/g4T, over whichdA changes magni-
tude bydnetA;gT. During that time,dA(t) changes direc-
tions of ordergTtnet;1/g3 times due to plasma oscillations
whose amplitude isO(g2T). The spectrum of fluctuations of
the system may be rather complicated, but the total time the
system spends withinO(g2T) of dA50 will be of order

tnet
g2T

dnetA
;

1

g3T
. ~3.19!

During this time, the plasma fluctuations are large enough to
drive the system back and forth acrossdA50 with fre-
quency gT. Thus, during one net transition, the system
crosses throughdA50 of order 1/g2 times. Any calculation
which simply computes the rate of barrier crossing per unit
time will overestimate the rate of net transitions by a factor
of 1/g2.

This analysis, combined with the previous Sec. III A, con-
stitutes our ‘‘microphysical’’ picture of topological transi-
tions. The interplay between the full equations of motion for
the short- and long-distance degrees of freedom causes the
barrier to be crossed in the highly jittery fashion illustrated in
Fig. 8.

C. Being more precise about the ‘‘barrier’’

In the previous section, we implied that crossing
dAsoft50 many times during a transition implies that the
energy barrier hypersurface is crossed many times during a
transition. However,dAsoft is just the projection ofA2Ab
onto the soft mode of interest, and the exact equation for the
energy barrier hypersurface is not really as simple as
dAsoft50. Perhaps, as the hard modes oscillate, thedAsoft
location of the barrier also oscillates. In order to confirm our
picture, we should check that the effect of hard modes of the
shape of the barrier is small enough not to affect our argu-
ment. We verify this in the Appendix.

IV. IMPLICATIONS FOR CLASSICAL LATTICE
THERMAL FIELD THEORY

The estimates of damping we have made have all been
based on continuum, quantum, thermal field theory, where
the effective ultraviolet cutoff for any thermal effects is
O(T), since the distribution of particles with momenta@T is
Boltzmann suppressed. One of the numerical testing grounds
used in the literature for studying topological transition rates,
however, has beenclassicalthermal field theory on a spatial
lattice. In classical thermal field theory, modes of arbitrarily
high momenta are thermally excited~leading to the ultravio-
let catastrophe of the classical blackbody problem!, and the
ultraviolet cutoff is the inverse lattice spacinga21 rather
thanT. As we shall argue below, this infinite growth in the
number of relevant hard modes asa→0 leads to infinitely
strong damping of the transition rate in the continuum limit
of classical thermal field theory.

In the limit v,p!T, the usual continuum result for the
imaginary part of the transverse self-energyPT from Figs. 3
and 4 is of the form

ImPT~v,p!;g2E d3q

2uqu
nq@ uMvu22uM2vu2#

3d~vuqu2p•q!

;g2
v

pE0
`

dqqnq;g2T2
v

p
, ~4.1!

whereMv is the vertex in the left-hand figure of Fig. 3. The
q integral is dominated by the ultraviolet and cutoff by
q;T for the quantum case, shown above.

For classical field theory, the only difference is that

nq→
T

vq
~4.2!

and the ultraviolet cutoff is now the inverse lattice spacing
a21, so that the last step of Eq.~4.1! now gives

ImPcl~v,p!;g2Ta21
v

p
~v!p! . ~4.3!

Damping will therefore suppress the transition rate by an
extra factor ofaT compared to the quantum field theory
case, so that the rate isO(a5aT5) and vanishes in the
a→0 limit.

FIG. 8. A schematic picture of the time evolution of the fluc-
tuationsDA(t) showing fluctuations of scalesv;gT, g2T, and
g4T. Keep in mind, however, that there is really a spectrum of
fluctuations betweenv;g2T andv;g4T whose amplitude grows
asv decreases.

TABLE I. Amplitude of fluctuations inA(t) and Ȧ(t) corre-
sponding to three characteristic frequency scales.

v uAu uȦu

gT g2T g3T2

g2T g2T g4T2

g4T gT g5T2
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This result is in apparent contradiction with the numerical
results of Ref.@5#, which claimed to findO(a4T4) behavior
for the rate. Our result is suppressed by an additional factor
of O(aaT), which is one inverse power of the dimensionless
lattice couplingb. Reference@5# used values ofb ranging
from 10 to 14, and so they should find a 40% violation of the
assumedO(a4T4) scaling of the rate. Such an effect is
clearly inconsistent with their statistical errors.~See their
Fig. 3.!

There is a possible problem, however, with the assump-
tion that Ref.@5# is in fact measuring the topological transi-
tion rate. The problem stems from the subtleties of trying to
define topological winding number on the lattice. The idea in
Ref. @5# was to measure a lattice analogue of the square of
the topological winding:

K S E
0

t

dtE d3xtrFF̃ D 2L 5^@DNCS~ t !#
2& , ~4.4!

where it is now convenient to consider field strengths nor-
malized so that the action isFmn

2 /g2. Under the picture of
Fig. 1, the topological winding in pure gauge theory should
randomly diffuse away from zero, so that at large times Eq.
~4.4! behaves likeGVt whereG is the transition rate. The
authors implement this procedure on the lattice by making a
lattice approximation to trFF̃, which schematically has the
form of the cross product

trFF̃→Ea3tr~Usa![J , ~4.5!

whereU represents plaquettes perpendicular to the links the
electric fieldE lives on.~See Ref.@5# for the detailed expres-
sion.! The potential problem with this representation is that,
unlike the continuum expression for trFF̃, the integral~i.e.,
lattice sum! of J over space isnota total time derivative. The
time integral of this lattice analogue to*d3xtrFF̃ does not
just depend on the initial and final configurations but de-
pends on the path used to get from one to another. In par-
ticular, consider a path in time that starts from some configu-
ration near the vacuum, never makes any nonperturbative
excursions from it~and so in particular never makes a topo-
logical transition!, and finally ends up back at the initial con-
figuration. The lattice analogue of the left-hand side of Eq.
~4.4!, (*dt d3xJ)2, would not be zero. Perturbative fluctua-
tions can therefore either increase or decrease*dt d3xJ
without increasing the energy, and so there will be a purely
perturbative contribution to the diffusion.15

To estimate the size of this lattice artifact in the diffusion
rateG, consider expanding Eq.~4.5! in powers of the lattice
spacinga in lattice perturbation theory, remembering that
U;eia

2B. The leadingE•B term is a total time derivative
and does not cause problems. As an example of a subleading
term, consider a term involvingE and three powers ofB:

trFF̃→trFF̃1a4EBBB1•••. ~4.6!

Now consider the contribution of this term in the right-hand
side of Eq.~4.4!:

a8E
0

t

dt1E
0

t

dt2K S E d3x EBBBD
t1

S E d3x EBBBD
t2
L .
~4.7!

The correlation is dominated by the ultraviolet and will be
quasilocal in space and time. So, in the large time limit, it
becomes

a8VtE dt8 d3x^~EBBB!0,0~EBBB! t8,x&

;b24a24Vt;g8T4Vt. ~4.8!

This lattice artifact therefore gives a contribution to the mea-
sured diffusion rateG of O(a4T4). The moral is that purely
perturbative effects, having nothing to do with true topologi-
cal transitions, might obscure the true topological transition
rate, which we have argued isO(a5aT5).
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APPENDIX: HARD-MODE EFFECTS
ON THE BARRIER SURFACE SHAPE

As discussed in Sec. I, the barrier hypersurface is the
surface which~1! separates the vacua and~2! maps into itself
when the gradient of the potential is followed. In this appen-
dix, we want to focus on whether the hard modes have a
significant impact on the shape of the surface. Specifically,
consider~a! one soft, unstable mode of interest, and~b! all
hard modes, as in the generic model of Eq.~3.2! with
K252k2,0. What is the equation of the barrier hypersur-
face in this subspace?

We shall restrict attention to typical hard-mode ampli-
tudes in the thermal bath, i.e.,uyi u;1/V i . Second, we shall
assume that the interactionG between the soft mode and any
individual hard mode is perturbative, as it indeed is hot
gauge theory. The translation of this condition to the generic
model~3.2! is easily made by considering stable soft modes,
in which caseuzu is typically 1/k and our perturbative con-
dition is xyGy!1, giving G!kV2.

Under these conditions, our result for the ridge equation is

z5(
i j

yi*
Gi j

V i
21V j

2 yj[y*Sy . ~A1!

This is easily checked as follows. First, it contains
(z,y,y* )5(0,0,0) as it should. Next, we must check that

¹V~z,y* ,y!5~2k2z1y*Gy,V2y1zGy,y*V1zy*G!
~A2!

15This point has also been observed by Ambjo”rn and Krasnitz and
will be addressed in a forthcoming publication. Similar suspicions
have also been raised by Moore and Turok@11# in the context of the
asymmetric phase transition rate.
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lies in the tangent plane to the surface~within our approxi-
mations!. On the surface~A1!,

¹V~z,y* ,y!.~y*Gy,V2y,y*V2! . ~A3!

The tangent plane to the surface is spanned by

d

dyi*
„z~y* ,y!,y* ,y…5„~Sy! i ,êi ,0… , ~A4!

d

dyi
„z~y* ,y!,y* ,y…5„~Sy! i ,0,êi… , ~A5!

and so

n5~1,2Sy,2y*S! ~A6!

is normal to the surface. Equations~A3! and ~A6! then give
n* •¹V.0 as desired.

To count the number of barrier crossings in Sec. III, we
should really have studied the evolution ofz2y*Sy rather
than the evolution ofz. We are now in a position to check
whether this makes any difference by checking the amplitude
of the fluctuations iny*Sy. Using the leading-order behavior
~3.3! for the yi and averaging over the amplitudes yields the
equal time amplitude

^~y*Sy!2&5(
i j

f ~V i ! f ~V j !uSi j u2 . ~A7!

Comparing this to

^j2&5(
i j

f ~V i ! f ~V j !uGi j u2 ~A8!

shows that Eq.~A7! is of order^j2& times the typical size of
V24 ~which isT24). The continuum version is that the equa-
tion for the barrier surface is

dA5x„Ahard~ t !…, ~A9!

where

^x&50, ^x2&;T24^j2&, ~A10!

andj here is understood to be projected onto the soft mode.
Using Eq.~3.9! andp;g2T,

^x2&;T24p3E dvnvImP~v!;T24p33g2T3;~g4T!2 .

~A11!

ThisO(g4T) magnitude of the fluctuations in the location of
the surface is much smaller than the magnitudeg2T plasma
oscillations described in Sec. III. The shape of the surface
therefore has no effect on our previous discussion of crossing
the barrier.
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