PHYSICAL REVIEW D VOLUME 55, NUMBER 10 15 MAY 1997

Bosonic thermal masses in supersymmetry
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Effective thermal masses of bosonic particles in a plasma play an important role in many different phenom-
ena. We compute them in general supersymmetric models at leading order. The origin of the different correc-
tions is explicitly shown for the formulas to be applicable when some particles decouple. The correct treatment
of Boltzmann decoupling in the presence of trilinear couplings and mass mixing is also discussed. As a
relevant example, we present results for the minimal supersymmetric standard model.
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[. INTRODUCTION stant. Transverse components have instead zero thermal
mass at leading order. For Abelian gauge bosons this is true
If supersymmetry is realized in nature, it would havealso to all orders, corresponding to the nonscreening of mag-
manifold and very important implications on the history of netic fields, but for non-Abelian gauge bosons a magnetic
the early Universe. In fact, much effort has been devoted téhass of ordeg®T is expected to appear nonperturbatively.
the study of supersymmetric cosmology and supersymmetrigupersymmetric particles in the plasma will have an influ-
solutions to old cosmological problems have been propose@ince on Debye massésee[4]). In this paper we will con-
(while new problems have also arisen; $&gfor a review sider only thermal masses at leading order so that magnetic
and referencesHowever, theweak scal® supersymmetric masses will be taken to be zero.
generalization of the standard mod&M) is not uniquely Let us turn now to scalar thermal masses. As pointed out
defined. First, the introduction of arbitrary soft by Kirzhnits and Linde[5], spontaneously broken symme-
supersymmetry-breaking parameters, to prevent the mass déies are generally restored at high temperatusese also
generacy between ordinary and supersymmetric par’[ic|e£§]). This can be understood in terms of the effective thermal
generates a lot of freedom; second, there are various optiorigass of the(Higgs) scalars driving the symmetry breaking.
related to the particle content and the gauge group definitiorf>onsider as a particularly relevant example the case of elec-
This limits the generality of the predictions that can be maddroweak gauge symmetry. Cafl the Higgs field responsible
although it still permits us to confront different classes offor the breaking. The one-loop approximation for the effec-
models and theoretical assumptions by examining their codive potential of¢, including the effects of finite tempera-
mological implications. ture, is of the form
At the high temperatures of the early Universe, supersym- 1 1
metric particles would be thermally pair created and would _ 2 o\ 2 21302 4
populatr()a the plasma. One of the ysi?nplest consequences of V(¢.T)= E(KT M) ¢"~ET(¢% +Z)\(T)¢ > @
this fact is that the effective thermal mass of a generic par-
ticle present in that plasma would change due to interactionghereE, «, and\(T) are some functions of the masses and
with supersymmetric ambient particles. It is obvious thatcouplings, easily calculable in a given model. For low tem-
knowledge of these effective thermal masses is fundamentgeratures the negative=0 mass squared dominates, favor-
to describe the behavior and properties of the plasma. Mordng the formation of a condensate, while at sufficiently high
over, it is well known that these quantities play a crucial roleT, the (leading order Higgs boson thermal mass
in many interesting aspects of the evolution of the early Uni-VkT~[coupling X T dominates over the negativ&=0
verse. mass, disfavoring a nonzero condensate. Furthermore, it is
In the case of gauge vector bosoisee, e.g.[2,3]) the clear that knowledge of the thermal mass for the Higgs
effective thermal mass for longitudinal components corre-bosons allows an estimate of the critical temperafw&the
sponds to the usual Debye mass, i.e., the inverse screenitignsition (r§~m2/;<). When the scalar potential allows for
length of electric potentials in the plasma. At leading order
(one loop in perturbation theorythe Debye mass is
mp~gT, whereg is the corresponding gauge coupling con- 20f course, a precise determination of the critical temperature
must take into account also the rest of the terms in @&y.and
higher order effectgfor example,m? also depends off, etc). In
we concentrate here on temperatures of that order, relevant, faonany cases, however, the simple analytical estirﬂ'%temzlx is
example, in studies of the electroweak phase transition. useful.
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different patterns of symmetry breakir(gs is the case if, probe our system at low scafe®(gT) compared to the
e.g.,m?<0 along different field directionsknowledge of the temperaturel. At this scale, an infinite number of diagrams
critical temperatures associated with the different directiongan give contributions of the same order and, to improve the
is crucial to determine the thermal history of the Universe. usual perturbative series, they need to be resummed. The
The order of these transitions is also related to the valueffective thermal masses provide then an IR cutoff taming
of thermal masses in a more indirect way. From @g.itis  the perturbative expansidrOne example is provided by the
clear that the presence of the nonanalytic cubic term causesbic term in the potential discussed previously. Its nonana-
the transition to be first order. In fact, the jump in the orderlytic behavior signals its infrared singular origin: It comes

parameter is from (bosonig zero Matsubara frequency modes. Note that
fermions do not cause infrared problems because they do not
&(T) 2E have zero Matsubara modes. In fact, at sufficiently high tem-
T—c: TTC) 2 peratureqor for distances much larger thanT}/ fermions

decouple from the effective three-dimensio(&D) theory at
[here T, is defined by the coexistence of two degenerateﬁnite T. For that reason we concgntrate here on bosons only.
vacua in Eq.(1)]. The quantity(2) is of the utmost impor- rolé);[ir;]e;ue;;((jrrsnfrlr?nievt\:?cezzeonetzggys ;tzzzzslo??rlses%SDp::}/ a
tance for the viability of electroweak baryogene€isr re- duced effective theory in the MSSFA2], analysis of charge-

view and references, see, e[d]). Now, the cubic term in ; o =
Eqg. (1) is a purely finite temperature effect and comes fromand color-b.reakmg m|n|m@§L3] at finite tgmperaturé14], :
nonrestoration of symmetries at very high temperature in

the interaction of the Higgs field with the static modes of . .
general supersymmetric mode[d5], inverse symmetry

different species of bosons in the plasifiermions do not preaking at some range of temperatufés, 17, different

contribute to this term because they do not have Statidetails of the spontaneous mechanism for electroweak baryo-
modes. In fact, each bosonic degree of freedom, Withgenesis{lS] et(F:) y

(T=0) field-dependent madd;(¢), contributes to the po- The aim of this paper is then to compute thermal masses

tential V(¢,T) a term for bosongscalars or gauge vectoris general softly broken
supersymmetric modelksSec. I). In Sec. Il A these masses
AV=— l[M?(¢)]3/2_ 3) are presented for temperatures much larger than all particle
12 ' masses. In that case all particles in the theory are thermally
produced and form part of the plasma. In Sec. IIB we
Beyond the one-loop approximation for the potential, everypresent the more complicated case in which the temperature
massM;(¢) in Eq. (3) should be substituted by the corre- is lower than the mass of some particles which decouple

sponding effective thermal mass, obtained from from the thermal plasma and then do not contribute to the
effective masses of other particles. Section Il applies these
ME ()= M7 () + ki T, (4)  results to the particular case of the MSSsbme of the re-

sults presented have already appeared in the literature

where the last piece comes from the interaction of the par£4’9'19_21)'

ticles with the surrounding plasma. Substituting E§.into

Eq.(3) resums an infinite series of highe_r order diagr_ams_, the || GENERAL SOETLY BROKEN SUPERSYMMETRIC

so-called daisies. The net effect of this resummation is to MODEL

screen the cubic term in Eql), effectively reducing thée

parameter and thus weakening the strength of the phase tran- Since Bose-Einstein and Fermi-Dirac distributions are dif-

sition. In the standard model, where the dominant contribuferent, the thermal bath is populated by different amounts of

tion to the cubic term in the potential comes from gaugeon-shell fermions and bosons. In that sense, in a supersym-

bosons, the screening of the longitudinal modes is very efmetry (SUSY) theory, temperature effects can invalidate

fective while it is zero at leading order for the transversevarious cancellations implied by the symmetry between fer-

modes. Then, daisy improvement of the effective potentiamions and bosonf22]. This observation is relevant in par-

leads to a reduction of the strength of the transitj@&  ticular for the computation of effective thermal masses.

roughly by a factor of 2/3. In the minimal supersymmetric  As is well known, only self-energy diagrams which are

standard mode(MSSM), if stops are light, they give the quadratically divergent af =0 contribute to the leading

dominant contribution to the cubic term in the Higgs poten-thermal masses. Typical diagrams that enter such calculation

tial (see[9] for the effect of Debye screening on the elec-are depicted in Fig. 1. Although the second diagram is not

troweak phase transition in the MS$kind the final strength quadratically divergent, it can give a contribution in the pres-

of the transition will be sensitive to the value of the top ence of Boltzmann decoupling and should be kept. Note that

squark thermal masses. for our purpose the external momentum can be set to zero. If
In addition to the effects explainedbosonig thermal fermion-boson cancellations were still operative at nonzero

mass corrections are very important because they represent

the starting point of a resummation of perturbation theory

[6,10]. This resummation is necessary to take care of the ®Here g stands for a typical gauge coupling or a Yukawa cou-

infrared problems that plague theories at finite temperature ifling. For power counting quartic scalar couplings areg?.

they contain massless bosons in the symmetric phase, e.g.0f course, there remains an infrared problem for transverse

Yang-Mills theories[11]. The problem appears when we gauge bosons, associated with physics at the sfdle
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simply taking derivatives from the one-loop finifeeffective

. ) o potential which reads
FIG. 1. Different types of diagrams contributing to thermal

masses and responsible for the indicafesymbols. V(¢)=Vo()+Vi(d)+Vi(),

temperature in the supersymmetric case, we would obtaiyhereV,(¢) is theT=0 one-loop correction and
zero thermal masses. However, it can be shown that fermi-

onic contributions come with an extra factor of-(/2). T4 ) )
More explicitly, if a bosonic integral gives V()= ﬁg NsJsLMs( )/ T<],
= 24T+ . . L . .
o= K(AZ+T5) ' with Jg=J, (J_) if the sth particle is a bosoffermion) with

where A2 is the T=0 quadratic divergence andT? the Ns degrees of freedortdefined negative for fermionsnd

associated finite temperature contribution to the thermal .
mass, the fermionic counterpart will be J+(y2):f dx xIn[1—(=)e Y.
- 0

——

1
he=— K( A?- ZTZ The behavior ofl . (m?/T?) is very simple in two limiting
cases. First of all, the expansion af (m?/T?) for large
Then, instead of a cancellation of thermal masses there is\alues ofm/T gives contributions that are exponentially sup-
reinforcement: pressed~e ™7, while the expansion for small values of

m/T gives the leading contributior®(T?):

3
|b+|f:_KT2+"'. T2 TZ
2 2 2
Vi~5 npMmg— -5 ngmg+ - - .
. . . T 24b§)n bTb 48fe%on i
Explicit examples of this effect can be found in the next
sections. Then, we will simply use a step approximation for the effec-
tive potential to compute the thermal mass corrections:

A. Thermal masses in the limitT>M )

T 1
VT:ﬂ_ > npmz6,— ZE nemz oy |, 6)

boson ‘ermion

As we will see, in the limit when the temperature is much
larger than any mass in the theory the contributions to the
various self-energies depend only on the gauge structure of
the theory and the dimensionless parameters of the superp@/here the sum runs over all mass eigenstates calculated in
tential W, which reads the theory at zero temperature ﬁrag,fz 1ifm,¢<TandO

if myp +>T. Of course this is a crude approximation but gives

1 1 the correct results in the two limiting cases of interest. Now
W= E'”“iiqbi ¢+ §Wi1k¢i bj bi- we study the limit in which the temperature is the largest
mass scale. In that caglg ;=1 for all bosons and fermions
Latin indicesi,j,k, ... will be used for scalar fields. The and we can forget the complications induced by soft break-
corresponding fermionic partners carry a tildel, ... . ing mass terms and supersymmetric massive parameters
Latin indicesa,b,c, ... are reserved for gauge bosons andPresent in the superpotential.

the tilded version for gauginos. Unless stated otherwise, a Setting then alb’s to 1 in Eq.(5) and using the fact that
sum over repeated indices is always implied.

The scalar potential is then Stivi 2(¢)53TrM\2,+TrM §—2TrM§=E nsm§(¢)
S
IW|[? 1
Vo(#)=2 | 7o +50al 4 T o>+ il =K —2g,D?TrT?,
1 1 with K a  field-independent  constant  and
+| 3Bijdidi g Aikdididc T H.C.. D?=—g.¢} T ¢;, e obtain
.. . ﬁ'] . . T2 T2 T2
The remaining soft breaking termare gaugino masses: Vi~ — EE nfmfz— 1_zgaDa-|—r-|—a+ ﬂK' (6)
f

5If the model contains matter fermions in the adjoint representa-
tion of some group, soft masses that mix them with the correspond-%To be precise one should defing,=6(27T—m,) and
ing gauginos can be written. However, these soft terms are genert;= 6(7T—my); however, for masses of the same order of the
cally absent in supergravity scenarios. temperature the step approximation is too rough.
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The constant term is irrelevant for our purposes andDhe 1, ) ) ,] 1, ) )
term vanishes if we further assumeYFr0 for any U1) Iy =5091T Es YS+Z Ye|=501T % Yals
gauge group present.

Then, up to a field-independent constant, we can write (12)
1
i Msyn =5 93T N+, to(Re)+ > to(R
V(i T)=— 1_62 nem? suN) =5 On ES: 2(Rs) EF: 2(Re)
1
T “Z@2Td N+ to(Ry) |, 13
:g[%; |Wik|2+4§a: 95% ¢}k(TaTa)ik¢k}- 29 EA 2(Ra) 13

7) where the indeXA runs over chiral supermultiplets.
We see explicitly that all possible self-energies depend
And from this, only on the gauge quantum numbers of the spectrum and on
the Yukawa coupling¥V;;, that appear in the superpotential.
In practice, at very high temperature the masses of the un-
kEJ Wikl\/\/rkl+4§ gg(TaTa)iJ . derlyingT=0 are irrelevant. In that case, the computation of
(8) the leading thermal corrections is simplified and they can be
derived directly from an exactly conformal supersymmetric
Writing (T2T?);;=C4(R)&;; and using a convenient basis theory.
for the fields¢; we get

V(¢ T)  T?
i —W_ )

) B. Thermal masses for generall

I =&, % , 9) The study of the case in which the scale of the tempera-
ture is not the dominant one is a bit more involved. The mass
] ] ) scales present in the theory, aside from possible nonzero
whlch gives the.thermal mass corrections for scalars. Th'%ackground fields, are the soft SUSY-breaking terms and the
diagonal correction should be added to fre 0 mass ma-  mgassive coefficients in the bilinear terms of the superpoten-
trix. The e|genvalues of thIS' thermally corrected matrix areii5| These scales can have very different values and there
the end point of our calculation. o always exists some range of temperatures in which decou-
The leading order thermal masses for longitudinal 9augdeing and mixing effects have to be taken into account.
bosons,IIy, get contributions from scalar, fermion, and * The obvious new effect is the Boltzmann decoupling of
gauge boson loops plus their supersymmetric partt®  particles with massn>T. Then, their contribution to the
that we can describe the chiral supermultiplet contributionghermal masses of other particles should be dropped. This
either asS+S or F+F; we use both below in the under- effect will be taken into account by writing every contribu-

; |wik||2+4§ 92Ca(R)

standing that nd- corresponds to angs): tion with the corresponding(27#T—m,) or 6(mT—m;)
5 5 _ that will take care of the decoupling in a step approximation.
My=00+ I+ + 11 + ) + 114 As long as field-background effects can be neglected, i.e.,

as long as no particle is decoupled because of a large
background-dependent mass, the thermal self-energies will
only mix particles with the same quantum numbers. The rea-
son for this is that leading thermal masses arise from qua-
where the last equality follows from supersymmetry as ex-dratically divergent diagrams that can already be drawn in
plained above. Now, the vector contribution is the T=0 unbroken theory. As an example considgs-B
mixing. One can certainly draw diagrams &0 that mix
those particles at one loop. However, when summing such
diagrams over complete $2) multiplets these contributions
cancel. At finiteT this is reflected in the nondiagonal self-
and, according to our rule, gaugino loops contribute half thissnergy

result. The contributions from scalars atahiral) fermions

are 1 2
M, 8, = 59192 Trs(0Y Ta) + 2Tre(0Y T) ],

3 3
= S +307+ 11y,

N
U(): Iy?=0,  SUN): Iy"==g{T% (10

1 1
H(VS>=§§ 9°t2(Ry) T?, Hﬁ/F):gEF: 9°ta(Re)T?, which gives zero when alp’s are 1. In a background that
(11) breaks SW2) X U(1) if some particle acquires a mass larger
than T its contribution toHWSLBL will drop and only then

with Tr(T3TP)=t,(R) 82". The contribution from sfermion will a nonzero contribution result. Here we will assume that
loops is twice that from fermion loops. Higgsino loops, onbackground masses are always smaller than the temperature
the other hand, give only a half of the Higgs contribution. (which is usually the case in most applications of intgrest
Also note that the contribution from nonchiral fermions that we will not encounter this complication. In that case one
would be twice larger than that from chiral ones. can compute thermal masses at zero backgrdoodections

The final result is then from nonzero background effects will be suppressed by pow-
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ers of T). The prescription to obtain thermally corrected There is another effect we have to mention before pre-
masses is then to write the=0 mass matrices in whatever senting the results. Suppose that the scalar figidand ¢;
field background one is interest@utovided it is smaller than have the same quantum numbers but opposite Abelian
T), add the thermal corrections, and, afterwards, rotate ocharges. The mixingbi—¢}* by thermal mass effects is not
diagonalize the mass matrix. possible in the nondecoupling limit analyzed in the previous
Setting then a zero background we can in principle comsubsection[Egs. (7) and (8)] but becomes possible if the
pute thermal self-energies using either an interaction basis ahermal contributions from some particles are Boltzmann
a mass eigenstate basis. The first option is more conveniestippressed. We allow for such a possibility in our general
and it is simple to rotate to the mass basis in particular case®rmulas. The corresponding thermal self-energy will be de-
(note thatd’s are naturally defined in the mass basis, so thatnoted byIl & bF-
to decouple some particle, the rotation should be matke Also note that we give our results in terms of thermal

will express our general results in terms of some convenient|arizations and's for complex scalar fields. This assumes

0 symb_ols Wh|ch vary with the origin of the contributions as {4+ real and imaginary components behave in the same way;

shoyvn in Fig 1. The rules _to rotate these symbols from onee_g_, they decouple together when some mass parameter is

basis to'anot.her are explamed be!ow. ) made heavy. That is no longer true in the presence of large

The fields in the interaction basig; , can be written as a backgroundgwhich we assume not to be the cpse for

linear combination of the mass eigenstages singlet fields. The real and imaginary components of a sin-

bi=U% glet can have different masses and should be treated sepa-
i— Vi Pas

rately. Our formalism can be trivially generalized to take this
where we stress that the unitary matrid¢ésliagonalize the

possibility into account by relations such as
M? mass matrix calculated at zero background and zero tem-
perature. The symbob;; comes from the contraction of S— 1
* I . . =—(S+iS)=
¢ — ¢; to close the loop as shown in Fig. 1. It is defined by J2
rotating to the mass basis as

0ss=3 [Oss+ Ossi],
Oss =3[0~ Oss].

The general results are the following.

0= 0ugy, ube,=Ui"™ 05U =U™ 6,, UL,
(14) 1. Scalars
with a. Yukawa contribution from fermion loops:
T? i
1 if m,<T, — W wF St
0ap= 00aOup= (15 My;.0, 24W'k'WTfS‘9rk' (19

0 if m>T.

. ] ) b. Yukawa contributions from scalar loops:
The 6;; symbol defined applies both to fermion or boson

contractions. T2 T2
We define also the four-index symbaf' for the second 4, &= 75 Wrik Wi Ok I, 2 =57 Wrij Wriq O -
and third diagrams shown in Fig. 1. For these objects the (20)

rotation from the interaction basis to the mass basis is
c. Trilinear contributions Note that these terms are pro-

o =uf* Ul o35 Ut U (16)  portional to 6y, and thus give zero in the limif>M:
Now there is a difference between the fermionic and bosonic T2 . Kr . sk . K
cases. For fermions we have simgtildes omitted Iy, 4, :ﬂ{AiklA]’rs Ois + 2Wikt i Wi s (Ot Oner)
aﬁﬁ: aaaeﬁﬁ ’ (17) + W:nk|MmiWrSﬂM:j Hﬁll(—’— [ZWikIMEmWnrsMikr 0{22

while for bosons, s* k

m* |

sk
m* |

+ 2A10Wirs i Ope T Aikt Wrsmist; 0

0= 6%- (189 +(Hc.ie]]}, 1)
2

The reason for this is the following. Note that the bosonic H¢i ,¢J*=ﬂ{Aik,Ajrsa:‘*sr+2Wik|M’,§ijrSan(6',{]s
diagram is not quadratically diverge(ih particular 5= 0

if 0,,=03;=1). However, it contributes to the thermal Is* n*k
aa BB ’ + O ) T Wi e Wi bt jm O
masses if one of the particles running in the loop, say, e )+ Wk i Winngttjm Os
decouples. Then, the diagram behaves effectively as the first FI2A W * 05T L AL WE e gD
one, with the heavy line in the loop collapsed to a point. In [2AsaWimnt e O e markjm e
other words, in the effective theory that results after integrat- +2v\/fklﬂirwjmnﬂ:1502,'fl+ (i—] (22
ing out the heavy particle there are new quartic couplings
proportional to ]ani The symbol(18) takes this into ac- d. Gauge contributions from fermion loap#/e change

count. momentarily our notation frong; to N, whereN refers to a
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given representation of the group aadto the group index mal polarizations should then be understood as polarizations
(not to be confused with mass eigenstate indic®$ course for the temporal component$ly, of the gauge fields

no change is needed for(l)'s. The results are S,Vg.
, a. Scalar contribution:
T 73
Iy p.=%09 975 T?s %= T?
«'p 677 7 %8 ba Hab:EgAgB({Tava}ﬁyePBPy"'[TaaTgy(eMBNyaNaMa
T? 55 — Oy O )+ H.C. 2
HNa'pzzgganginzﬁag’g. (23) MBN5 NYMa) ]), ( 7)

where in principle two different groups, with coupling con-

The second contribution can be nonzero only if the modebtantsga, gs, are considered. _
contains matter fermions in the adjoint representation as dis- For SUN) and fields in the fundamental representation

cussed in footnote 5. M, P, etc., the general result is
e. Gauge contribution from scalar loopshe general re- 1 T2 1
Itis My= > Maa=208 S Oyt | O p. 6
su NTNZ-14 aa 129N < O™ Nz | PP, TPamy,
T2
+ a 1
M, P, =159 o TR TrS(T5500) + T5aTpo00l: = O p*Onrp,— 5(Om p Op M o Omp, On P*)H
B Ma"B N Pp’PgM ap
(29)
s WhereﬁME(llN)ZaﬁMaMa.
My, 23 =159 T5aT sl (25 ~ Forud,
2 2
For SUN) with all nonsinglet fields in the fundamental rep- Ig = 6 912 YiYil 0+ 6 = Oy 1.
resentation,
b. Contributions from matter fermion loops:
1 T 280pT8, Tre(T20) + 8,40 Ly T2
Na-Pa~ 249 | “ONPTpeTS BINPy N TR HabzggAQBTiﬁTl;&eE;NﬁEj\%- (28)

2 c. Contributions from gaugino loops:

* = 2 * - *
HNa,Pﬁ 529 [aPaNB N OPan, |- , B
dh
For U(1) HabzggAngﬁeafghbgga, (29
Y
T2 where fabc are the structure constants of the groép
My, 4= 739108 YiTrs(Y 0) + VY61, ([TaTOT=if 4peT9).

) Ill. MINIMAL SUPERSYMMETRIC STANDARD MODEL

291Y Y ;. In this section we apply our general results to a particu-
larly relevant example, the MSSM. It is the simplest super-
symmetric extension of the SM and is described by the su-
perpotential

Iy, o

f. Gauge contribution from gauge boson loof$e gen-

eral result is
T2 W= uH;-Ha+hy Q- HaUij+hp Hy- QiDi+hg Hy - LiE;
— a Tb
He, py=7 99875 Tyaban- (26) embedded into the SU(X)SU(2)x U(1) gauge group. We
will consider general soft SUSY-breaking terms although
For SUN), when 6,,= 61p0aa, with negligible intergenerational mixing. Then, the only
) fields that mix at zero background drg andH,.
T The scalar-fermionic soft Lagrangian reads
HPa,PB:ZgﬁCN(RP)aaﬁeG-
Lso=| Ag H1-LiEi+Ap Hi-QiDi+Ay Qi-HaU;
For U(1),
T? 2 —\ = 2| 412
H¢i,¢j=ZgiYi25ij 05 . —m3H; Hp+ 2 GMG+H.c. +Zi m?| &i°.
g
2. Gauge bosons A. Limit of very large T

As already mentioned, only longitudinal gauge bosons get The bosonic self-energies in the case in which the tem-
a nonzero thermal mass at leading order. The following therperature is the larger mass scale, i.e.,
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T>u, Ay, m,, mz, M, are obtained from Sed! A di- Two of these mass parameters,(,m,) can be traded by the
rectly as T=0 vacuum expectation valuew; and v, [with
vit+vs=v?=(174 GeV} and taB=uv,/v,], leaving only
one free mass parameter, conventionally taken to be the mass
of the pseudoscalar Higgs bosan,. Then we have two
scales in the Higgs sectar, (or M) andm,, and the only
nontrivial case at finite temperature corresponds to
M,<T<m,. Whenmp>M; one (linear combinatioh of

o 2,,2, 1, the two Higgs doublets is heavy~(m,) and one light
G, =395T°+ goiT"+ 5hy T (~Mz). _ _

' In order to obtain the mass eigenstates at zero back-
ground, we can work with the full doublets. Diagonalization
of the 2X2 mass matrix defines the mixing angdg. In the

M= = Engz+ inger Ehz T2 only nontrivial case withmy>M, it is straightforward to
Dr™ 373 18%1° " 2°bi" ¢ see tha{B,— B so that, in this limit, we can define the dou-
bletsH (light) and® (heavy by the rotation

2 3 1 1
Mg, =I5 = 305T2+g 05T+ 501 T+ Z(hf) +hp ) T2,

3 1
g =I5 = 2052+ 2giT?, _ |
H,=HcosB— dsing,

1
5, = 59172 o
i H,=Hsing+ ®cosB, (3D

o=l = S g2T24 ~g2T2 4 Sh2T? H, + HON)T
HY= =592 g1 26! whereH,=(—H7 ,H;*)". The doubletsH and ® are the
mass eigenstates so that E@31) is our equation

3 1 3 ¢i=U{"p, in this case. From Eq31) and using ruleg14)
HHg:Hng §g§T2+ §g§T2+ thTZ, and (16) we can express all symbols for Higgs bosons in
terms of 6, and 64 or, equivalently,9(2#T—M;) and
F Eq.(32) it foll that
HgL=§g§T2. rom Eq.(31) it follows tha
9 2012 i
My, = 59372, O0H0= 0110140COS B+ Og040Sir? B,
1, .
Mg = 501" (30 Or%% H9= (Brono— Ogog0) COSBSING,

For H; and H, we only keep third-generation Yukawa B ,
couplings. Also, note that particles in the same gauge mul- On;*ni =~ (Ourp+— Oprg+)COBSING,
tiplet receive the same thermal mass correction.

and so on. The rest af symbols are trivial to handle. For

squarks remember that gauge invariance requires equal soft
If there is not a defined hierarchy between the scalesnassmg for U, andD, so thatdg =65 =65.
L L

T, uy Ay, M, mg, M, we must apply the formulas of
Sec. Il B which have as asymptotic limit, for high, the
equations presented in the previous subsection.

In the formulas that follow we write most of the sel
energies in the interaction basis. Also, we uge=6;,
0!= 6l , etc., to simplify the notation. For all fields besides
H,; andH, the ¢;; functions in the gauge basis are diagonal
and coincide with the definition in the mass eigenstate basis
(at zero backgroundThe treatment oH, , is as follows: As 6Trs(0Y)=—3>, (05, +0c —20¢,)+3(6uz+ 0n0)
is well known, there are three mass parameters in the tree- ! : : :
level Higgs potential of the MSSM: —3(¢9H1i+ 9H2)

B. Explicit formulas in the general case

Also note that althougl®’s for gauge bosons will always
take the value I(because they are massless at zero back-
ground, we write them explicitly.
f- We also use

V=m3|H|2+m3|H,|2+mi(H;-Ho+H.c)

+N 0 +605 —4607 +2603 ),
+quartic terms. Cz ( Uy TPy TR DRJ)
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sector by sector that fermionic contributions are always half

2Trs(6T3) =$ (& = 0;LJ)+ Nc; (9GLJ— 95L1)+ B0 of the corresponding bosonic ones.

- 0H1: + 0”5 - HHg. 1. Squarks

Thermal self-energies are diagonal in color space unless a
Note, however, that this last trace would be nonzero only ircolor-breaking background that decouples some contribution

a SU?2), -breaking background. is present. As we assume this is not the case the color index
In the formulas that follow the reader can easily checkstructure is trivial and is suppressed:

1, ,Ni-1
H[jLi—GggTz —[36y+ 65, +2636y ]+48g2T2[69W_+30W + 05, +205 +2Trs(6T3)+26y 05, +40p, 0-]

1
+ 4gpUiT 30+ 6, +6TIS(6Y) + 2050, 1+ AT +A7 +ihﬁiTz[aH‘;*"UR.”ﬁ‘z"’Ua]

+ 1—2h2 T2 =+ 05, + Oz o,

1 NZ-
M5, = 693T2 an, [39 + 05, +2050p ]+48g2T2[60W++30W+0D +205, —2Trs(0T3) +20p 03, T40y, O-]
1 2 1 2 72 ~ ~
432 T [305+ HD +6Trs(0Y)+2 GD ]+A +A +1_2hU|T [6H2i+ 0URi+ 0H§0UR‘]

1
+ 1—2h%iT2[ Oro+ 05, + Oro0p, .

1 0 +
Up, + 20500, 1+ mgiTz[12eB+405Ri— 6Trs(0Y) +8056y, 1+ AGLi+ A3,

1
+ l_ZhaiTZ[ Ong+ Oz + 05, + 05+ 0fgby, + 05z 0p 1,

2
- 1
HBRizgggTZZ—I\IC[309+05Ri+2056DRi]+216ng2[605+20D +6Trg(6Y) +4056p, 1+A7 +A~

1
+ 1_2h2DiT2[ Ouo+ Oz + 05, + 05, + 0ol + 070y 1,

where

; _
s
A%fl—zhﬁnAuPFe L5+ (Augpact A ) 0,0 e,

2 -
Db
AG = 15h8llAo, |2 +|u|2 e~ (Po it AB 1) O e ier .

Rotating fromH,,H, to H,® as explained, the previous's can be written as

Ac T2h2| lep—eHc| |2e aq,c
P12 mas—ms Ap ma—ma|’

Here P:ULi'BLi’GRi’BRi’ c=0,=, and
:&lji =Ay,SinB+ u* cosB, K[,i =Ay,cos8— pu*sing,

'/Kgi =Ap,coB+ u*sing, Kgi = Ap,sinB— u* cosB.
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2. Sleptons

1
;5 = 4—893T2[66W¢ + 30w, + 0 +205 +2Tis(0T5)+20, Oy, +46¢ 6]

.1
+ 72291 T2[9eB+3a~ 6Trs(0Y)+60§0VLi]+AERi+1—2hEiT2[0H1r+agRi+0qlt«9ERi],

1
I, = 75

489§T2[60W: +30w,+ 05 +20; —2Trs(0T5)+20¢ 65, +40, 65

1
+ 17291 T2[905+3a~ —6Trs(0Y)+ 6656, ]+A~ +Eh§iT2[0Hg+agRi+0’g26ERi],

1
0 + ~ —~
Mz = —g2T[ 1805+ 60% o HOTIS(0Y) +12050e, 1+ AZ + A;Li + ShE T Bt O+ 0, + O, + 0ig0e, + 070, ],

R 72gl
where theA’s follow the same notation used for squarks and now
K,Jgi =Ag,COSB+ u*sing, Zgi =Ag SinB— u* cosB.

3. Higgs bosons

1
o= Eg%Tz[Ge\Ni + 36w, + B0+ 20,= + 2Trs( 6Ts) + 207065, + 465 = 0y=1+ 272965+ 36,0—6Trs(6Y)

1449

1
605 0R0]+ A1+ 1_2T22i [Nch%i(eaLi+ 05, + b, 0o, )+ hg.( Oc, + 08, + 0 O],

Iy = 4892T2[66W++30W + 0+ 20,0~ 2Trg(0T3) + 2607+ 0, + 407005 ]+144 T2[96?B+30Hl:—6Tr3(0Y)
—~ )~ 1 2 2 ~ ~ 2
+66505:]+ A1+ 5T Z [Nch3 (65, + 05, + O, o) +hE (05 + 08, +0, O, )],
1
Iyz= 4—895T2[60Wi+3owa+ Oz + 2610+ 2Trg( 0T 5) + 265> 65, + 4 6706 ]
+ 12291 9iT?[965+ 36y +6Tre(6Y) +66505:1+ Ao+ ZTZZ Nchﬁi(egLi+agRi+eDLi0URi),
1
Ipo= 4—8g§T2[60W¢+30W3+ 00+ 20— 2Trs( 0T3) + 265065, + 465 03]
2 1 2 2
+ 12291 03T [905+ 309+ 6Trs(0Y)+6650R9]+ A, + 15T 2 Nchd, (65, + 605, + fu,_Ou,),
HHgHg*___Tz[(92+gl)0H0HO* 2929H H**]+A12a (32
1 2
HHng:__T [(92+91)9H H**_2929H°H0*] Ay, (33
with

L
2 {N[h}, |u|2 +h2 Ao, |29 ]+héilAEi|20ER},
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T? QL QL T
Ay=-—5> {NJhE Ay [26="+h3 [1]20="1+hE | u]262 },
125 [ ' Ug [ Dg i Er

T2 6L 5|_ Ei
A= “EE {Nc[hﬁiAUi oGR{ + thiADi 95,;] + héiAEi eﬁai}'

As an example of how to rotat&s andIl’'s consider the case in which only offeombination of the Higgs doublets is
light compared to the temperature, while the other is heavy and Boltzmann supp(#ssdinit is realized for a large

pseudoscalar mass and has been considered at finite temperature in studies of the electroweak phasge Wansitibn
concentrate in the Higgs loop contribution to Higgs thermal self-energies only. The rest of the terms are trivial to deal with.

In terms ofédy, 04 , the off-diagonal thermal mixing betweéty, andH, [Eqgs.(32) and(33)] has the form

1 .
9o = = 75 T2L(95+01) (B0~ 0p0) +205( 4= — O =) ]sinBoss,

1 :
Mz = 75 T2(5+07) (By=— ) +205( B0 fg0) ISinBcosB.
In the neutral sector then, settimg,o=0, it is easy to obtain
HHozﬂchosz,BJr HHgsm23+ 21T ygu o COFBSING= 72(g1 +05)(200+ O+ )coS2B.
It can be checked that this is the correct result by noting that the standard model result is

1
scalar_ — y T2
I AT

(with the quartic Higgs coupling in the potential normalizedvts 3\ |H|%), while in the MSSM, the quartic self coupling of
H, defined by Eq(31), is A= 3(g2+ g3)cos2B.

4. Gauge bosons

a. SU(3)L:

1
— 272 ~ ~ ~ ~
Iy, = 759577 4Nchg+ 2; (65, + 65, + 05, + 65, )+ ; (B, + 0o+ 0y, + 0o, )+ 2Nc6g .
To simplify the contribution coming from squark loops we have used

o5+ (%zzaa. (34)

Note, however, that if we were to rotate the squark basis, the expression on the left-hand side should be used.
b. SU(2) :

1
_ =272
HW3L_ 2492T

186w+ —20gn+ 865+ + N (265, +265, + 6y +6p )+, (265 +265 +6, +6, )
j LJ- Lj LJ Lj J LJ- Lj LJ- LJ-

+2(Byo-+ Oy + Ot O =) + B0+ 0=+ O + Og,

1
— 212 ~ ~ ~ ~ \2
My = 52957 {3( O, + =) + 120y Oyy= — 209+ 8 05 Oy, + NCEj (65, + 05, )*+26u, b, ]

+ 2 [(65 + 65 )24+26, 0 1+ (0o+ 0y=)2+ (Ogpo+ Op=)2+ 205005+ + 205 670| .
j LJ LJ LJ LJ 1 1 2 2

Here 6, gives the ghost piece and we have already rotated the Higgs contributionsiio@hbasis using

2 2 2 _ 2
0H2+ 0H2+ 0Hg+ 0Hg+ eHgH(I* = 0H0+ GHO
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and similarly for the charged’s. We have further simplified our expression by using a relation similar to/¥j-
c. UQ)y:
1

HBL:2_169

ST218D) (07 + 05 +405 )+92 (8, + 0 +40e ) +18(Oy=+ ot 0=+ O0)
] i i i ] i i i

+9( 0z + OFo+ Oz + egg)+2Nc§j‘, (65, + 05L1+1605Ri+405Rj)+Nc; (6, + 0o, +166y, +400,)|.

Here, contributions from scalars, and in particular Higgs bosons, have been treated in the same way as explaif@&d for SU
and SU3).
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