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Effective thermal masses of bosonic particles in a plasma play an important role in many different phenom-
ena. We compute them in general supersymmetric models at leading order. The origin of the different correc-
tions is explicitly shown for the formulas to be applicable when some particles decouple. The correct treatment
of Boltzmann decoupling in the presence of trilinear couplings and mass mixing is also discussed. As a
relevant example, we present results for the minimal supersymmetric standard model.
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I. INTRODUCTION

If supersymmetry is realized in nature, it would have
manifold and very important implications on the history of
the early Universe. In fact, much effort has been devoted to
the study of supersymmetric cosmology and supersymmetric
solutions to old cosmological problems have been proposed
~while new problems have also arisen; see@1# for a review
and references!. However, the~weak scale1! supersymmetric
generalization of the standard model~SM! is not uniquely
defined. First, the introduction of arbitrary soft
supersymmetry-breaking parameters, to prevent the mass de-
generacy between ordinary and supersymmetric particles,
generates a lot of freedom; second, there are various options
related to the particle content and the gauge group definition.
This limits the generality of the predictions that can be made
although it still permits us to confront different classes of
models and theoretical assumptions by examining their cos-
mological implications.

At the high temperatures of the early Universe, supersym-
metric particles would be thermally pair created and would
populate the plasma. One of the simplest consequences of
this fact is that the effective thermal mass of a generic par-
ticle present in that plasma would change due to interactions
with supersymmetric ambient particles. It is obvious that
knowledge of these effective thermal masses is fundamental
to describe the behavior and properties of the plasma. More-
over, it is well known that these quantities play a crucial role
in many interesting aspects of the evolution of the early Uni-
verse.

In the case of gauge vector bosons~see, e.g.,@2,3#! the
effective thermal mass for longitudinal components corre-
sponds to the usual Debye mass, i.e., the inverse screening
length of electric potentials in the plasma. At leading order
~one loop in perturbation theory! the Debye mass is
mD;gT, whereg is the corresponding gauge coupling con-

stant. Transverse components have instead zero thermal
mass at leading order. For Abelian gauge bosons this is true
also to all orders, corresponding to the nonscreening of mag-
netic fields, but for non-Abelian gauge bosons a magnetic
mass of orderg2T is expected to appear nonperturbatively.
Supersymmetric particles in the plasma will have an influ-
ence on Debye masses~see@4#!. In this paper we will con-
sider only thermal masses at leading order so that magnetic
masses will be taken to be zero.

Let us turn now to scalar thermal masses. As pointed out
by Kirzhnits and Linde@5#, spontaneously broken symme-
tries are generally restored at high temperatures~see also
@6#!. This can be understood in terms of the effective thermal
mass of the~Higgs! scalars driving the symmetry breaking.
Consider as a particularly relevant example the case of elec-
troweak gauge symmetry. Callf the Higgs field responsible
for the breaking. The one-loop approximation for the effec-
tive potential off, including the effects of finite tempera-
ture, is of the form

V~f,T!5
1

2
~kT22m2!f22ET~f2!3/21

1

4
l~T!f4, ~1!

whereE, k, andl(T) are some functions of the masses and
couplings, easily calculable in a given model. For low tem-
peratures the negativeT50 mass squared dominates, favor-
ing the formation of a condensate, while at sufficiently high
T, the ~leading order! Higgs boson thermal mass
AkT;@coupling#3T dominates over the negativeT50
mass, disfavoring a nonzero condensate. Furthermore, it is
clear that knowledge of the thermal mass for the Higgs
bosons allows an estimate of the critical temperature2 of the
transition (Tc

2;m2/k). When the scalar potential allows for

1We concentrate here on temperatures of that order, relevant, for
example, in studies of the electroweak phase transition.

2Of course, a precise determination of the critical temperature
must take into account also the rest of the terms in Eq.~1! and
higher order effects~for example,m2 also depends onT, etc.!. In
many cases, however, the simple analytical estimateTc

2;m2/k is
useful.
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different patterns of symmetry breaking~as is the case if,
e.g.,m2,0 along different field directions! knowledge of the
critical temperatures associated with the different directions
is crucial to determine the thermal history of the Universe.

The order of these transitions is also related to the value
of thermal masses in a more indirect way. From Eq.~1! it is
clear that the presence of the nonanalytic cubic term causes
the transition to be first order. In fact, the jump in the order
parameter is

f~Tc!

Tc
5

2E

l~Tc!
~2!

@here Tc is defined by the coexistence of two degenerate
vacua in Eq.~1!#. The quantity~2! is of the utmost impor-
tance for the viability of electroweak baryogenesis~for re-
view and references, see, e.g.,@7#!. Now, the cubic term in
Eq. ~1! is a purely finite temperature effect and comes from
the interaction of the Higgs field with the static modes of
different species of bosons in the plasma~fermions do not
contribute to this term because they do not have static
modes!. In fact, each bosonic degree of freedom, with
(T50) field-dependent massMi(f), contributes to the po-
tentialV(f,T) a term

D iV52
T

12p
@Mi

2~f!#3/2. ~3!

Beyond the one-loop approximation for the potential, every
massMi(f) in Eq. ~3! should be substituted by the corre-
sponding effective thermal mass, obtained from

Mi j
2 ~f!→Mi j

2 ~f!1k i j T
2, ~4!

where the last piece comes from the interaction of the par-
ticles with the surrounding plasma. Substituting Eq.~4! into
Eq. ~3! resums an infinite series of higher order diagrams, the
so-called daisies. The net effect of this resummation is to
screen the cubic term in Eq.~1!, effectively reducing theE
parameter and thus weakening the strength of the phase tran-
sition. In the standard model, where the dominant contribu-
tion to the cubic term in the potential comes from gauge
bosons, the screening of the longitudinal modes is very ef-
fective while it is zero at leading order for the transverse
modes. Then, daisy improvement of the effective potential
leads to a reduction of the strength of the transition@8#
roughly by a factor of 2/3. In the minimal supersymmetric
standard model~MSSM!, if stops are light, they give the
dominant contribution to the cubic term in the Higgs poten-
tial ~see@9# for the effect of Debye screening on the elec-
troweak phase transition in the MSSM! and the final strength
of the transition will be sensitive to the value of the top
squark thermal masses.

In addition to the effects explained,~bosonic! thermal
mass corrections are very important because they represent
the starting point of a resummation of perturbation theory
@6,10#. This resummation is necessary to take care of the
infrared problems that plague theories at finite temperature if
they contain massless bosons in the symmetric phase, e.g.,
Yang-Mills theories@11#. The problem appears when we

probe our system at low scales3 O(gT) compared to the
temperatureT. At this scale, an infinite number of diagrams
can give contributions of the same order and, to improve the
usual perturbative series, they need to be resummed. The
effective thermal masses provide then an IR cutoff taming
the perturbative expansion.4 One example is provided by the
cubic term in the potential discussed previously. Its nonana-
lytic behavior signals its infrared singular origin: It comes
from ~bosonic! zero Matsubara frequency modes. Note that
fermions do not cause infrared problems because they do not
have zero Matsubara modes. In fact, at sufficiently high tem-
peratures~or for distances much larger than 1/T), fermions
decouple from the effective three-dimensional~3D! theory at
finite T. For that reason we concentrate here on bosons only.

Other examples where effective thermal masses play a
role ~in supersymmetric contexts! are studies on the 3D re-
duced effective theory in the MSSM@12#, analysis of charge-
and color-breaking minima@13# at finite temperature@14#,
nonrestoration of symmetries at very high temperature in
general supersymmetric models@15#, inverse symmetry
breaking at some range of temperatures@16,17#, different
details of the spontaneous mechanism for electroweak baryo-
genesis@18#, etc.

The aim of this paper is then to compute thermal masses
for bosons~scalars or gauge vectors! in general softly broken
supersymmetric models~Sec. II!. In Sec. II A these masses
are presented for temperatures much larger than all particle
masses. In that case all particles in the theory are thermally
produced and form part of the plasma. In Sec. II B we
present the more complicated case in which the temperature
is lower than the mass of some particles which decouple
from the thermal plasma and then do not contribute to the
effective masses of other particles. Section III applies these
results to the particular case of the MSSM~some of the re-
sults presented have already appeared in the literature
@4,9,19–21#!.

II. GENERAL SOFTLY BROKEN SUPERSYMMETRIC
MODEL

Since Bose-Einstein and Fermi-Dirac distributions are dif-
ferent, the thermal bath is populated by different amounts of
on-shell fermions and bosons. In that sense, in a supersym-
metry ~SUSY! theory, temperature effects can invalidate
various cancellations implied by the symmetry between fer-
mions and bosons@22#. This observation is relevant in par-
ticular for the computation of effective thermal masses.

As is well known, only self-energy diagrams which are
quadratically divergent atT50 contribute to the leading
thermal masses. Typical diagrams that enter such calculation
are depicted in Fig. 1. Although the second diagram is not
quadratically divergent, it can give a contribution in the pres-
ence of Boltzmann decoupling and should be kept. Note that
for our purpose the external momentum can be set to zero. If
fermion-boson cancellations were still operative at nonzero

3Here g stands for a typical gauge coupling or a Yukawa cou-
pling. For power counting quartic scalar couplings arel;g2.
4Of course, there remains an infrared problem for transverse

gauge bosons, associated with physics at the scaleg2T.
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temperature in the supersymmetric case, we would obtain
zero thermal masses. However, it can be shown that fermi-
onic contributions come with an extra factor of (21/2).
More explicitly, if a bosonic integral gives

I b5k~L21T2!1•••,

where L2 is the T50 quadratic divergence andkT2 the
associated finite temperature contribution to the thermal
mass, the fermionic counterpart will be

I f52kS L22
1

2
T2D1•••.

Then, instead of a cancellation of thermal masses there is a
reinforcement:

I b1I f5
3

2
kT21•••.

Explicit examples of this effect can be found in the next
sections.

A. Thermal masses in the limitT@M

As we will see, in the limit when the temperature is much
larger than any mass in the theory the contributions to the
various self-energies depend only on the gauge structure of
the theory and the dimensionless parameters of the superpo-
tentialW, which reads

W5
1

2
m i jf if j1

1

3!
Wijkf if jfk .

Latin indices i , j ,k, . . . will be used for scalar fields. The
corresponding fermionic partners carry a tilde:k̃, l̃ , . . . .
Latin indicesa,b,c, . . . are reserved for gauge bosons and
the tilded version for gauginos. Unless stated otherwise, a
sum over repeated indices is always implied.

The scalar potential is then

V0~f!5(
i

U ]W

]f i
U211

2
ga
2uf i*Ti j

af j u21mi
2uf i u2

1S 12Bi jf if j1
1

3!
Ai jkf if jfk 1H.c.D .

The remaining soft breaking terms5 are gaugino masses:

ṼaM ãṼa1H.c.

Leading order thermal masses for scalars can be obtained
simply taking derivatives from the one-loop finiteT effective
potential which reads

V~f!5V0~f!1V1~f!1VT~f!,

whereV1(f) is theT50 one-loop correction and

VT~f!5
T4

2p2(
s
nsJs@ms

2~f!/T2#,

with Js5J1(J2) if the sth particle is a boson~fermion! with
ns degrees of freedom~defined negative for fermions! and

J6~y2!5E
0

`

dx x2ln@12~6 !e2Ax21y2#.

The behavior ofJ6(m
2/T2) is very simple in two limiting

cases. First of all, the expansion ofJ6(m
2/T2) for large

values ofm/T gives contributions that are exponentially sup-
pressed;e2m/T, while the expansion for small values of
m/T gives the leading contributionsO(T2):

VT;
T2

24 (
boson

nbmb
22

T2

48 (
fermion

nfmf
21•••.

Then, we will simply use a step approximation for the effec-
tive potential to compute the thermal mass corrections:

VT5
T2

24F (
boson

nbmb
2ub2

1

2 (
fermion

nfmf
2u f G , ~5!

where the sum runs over all mass eigenstates calculated in
the theory at zero temperature and6 ub, f51 if mb, f!T and 0
if mb, f@T. Of course this is a crude approximation but gives
the correct results in the two limiting cases of interest. Now
we study the limit in which the temperature is the largest
mass scale. In that caseub, f51 for all bosons and fermions
and we can forget the complications induced by soft break-
ing mass terms and supersymmetric massive parameters
present in the superpotential.

Setting then allu ’s to 1 in Eq.~5! and using the fact that

StrM2~f![3TrMV
21TrMS

222TrMF
25(

s
nsms

2~f!

5K22gaD
aTrTa,

with K a field-independent constant and
Da52gaf i*Ti j

af j , we obtain

VT;2
T2

16(f nfmf
22

T2

12
gaD

aTrTa1
T2

24
K. ~6!

5If the model contains matter fermions in the adjoint representa-
tion of some group, soft masses that mix them with the correspond-
ing gauginos can be written. However, these soft terms are generi-
cally absent in supergravity scenarios.

6To be precise one should defineub5u(2pT2mb) and
u f5u(pT2mf); however, for masses of the same order of the
temperature the step approximation is too rough.

FIG. 1. Different types of diagrams contributing to thermal
masses and responsible for the indicatedu symbols.
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The constant term is irrelevant for our purposes and theD
term vanishes if we further assume TrY50 for any U~1!
gauge group present.

Then, up to a field-independent constant, we can write

VT~f i ,T!52
T2

16(f nfmf
2

5
T2

8 F(
i ,k

uWiku214(
a

ga
2(
i ,k

f i* ~TaTa! ikfk G .
~7!

And from this,

P i j5
]2VT~f,T!

]f i]f j*
5
T2

8 F(
k,l

WiklWjkl* 14(
a

ga
2~TaTa! i j G .

~8!

Writing (TaTa) i j5Ca(R)d i j and using a convenient basis
for the fieldsf i we get

P i j5d i j
T2

8 F(
k,l

uWikl u214(
a

ga
2Ca~Ri !G , ~9!

which gives the thermal mass corrections for scalars. This
diagonal correction should be added to theT50 mass ma-
trix. The eigenvalues of this thermally corrected matrix are
the end point of our calculation.

The leading order thermal masses for longitudinal gauge
bosons,PV , get contributions from scalar, fermion, and
gauge boson loops plus their supersymmetric partners~note
that we can describe the chiral supermultiplet contributions
either asS1S̃ or F̃1F; we use both below in the under-
standing that noF corresponds to anyS̃):

PV5PV
~S!1PV

~ S̃!1PV
~F !1PV

~ F̃ !1PV
~V!1PV

~ Ṽ!

5
3

2
PV

~S!13PV
~F !1

3

2
PV

~V! ,

where the last equality follows from supersymmetry as ex-
plained above. Now, the vector contribution is

U~1!: PV
~V!50, SU~N!: PV

~V!5
N

3
gN
2T2, ~10!

and, according to our rule, gaugino loops contribute half this
result. The contributions from scalars and~chiral! fermions
are

PV
~S!5

1

3(S g2t2~RS!T
2, PV

~F !5
1

6(F g2t2~RF!T2,

~11!

with Tr(TaTb)5t2(R)d
ab. The contribution from sfermion

loops is twice that from fermion loops. Higgsino loops, on
the other hand, give only a half of the Higgs contribution.
Also note that the contribution from nonchiral fermions
would be twice larger than that from chiral ones.

The final result is then

PU~1!5
1

2
g1
2T2F(

S
YS
21(

F
YF
2 G5

1

2
g1
2T2F(

A
YA
2 G ,

~12!

PSU~N!5
1

2
gN
2T2FN1(

S
t2~RS!1(

F
t2~RF!G

5
1

2
gN
2T2FN1(

A
t2~RA!G , ~13!

where the indexA runs over chiral supermultiplets.
We see explicitly that all possible self-energies depend

only on the gauge quantum numbers of the spectrum and on
the Yukawa couplingsWijk that appear in the superpotential.
In practice, at very high temperature the masses of the un-
derlyingT50 are irrelevant. In that case, the computation of
the leading thermal corrections is simplified and they can be
derived directly from an exactly conformal supersymmetric
theory.

B. Thermal masses for generalT

The study of the case in which the scale of the tempera-
ture is not the dominant one is a bit more involved. The mass
scales present in the theory, aside from possible nonzero
background fields, are the soft SUSY-breaking terms and the
massive coefficients in the bilinear terms of the superpoten-
tial. These scales can have very different values and there
always exists some range of temperatures in which decou-
pling and mixing effects have to be taken into account.

The obvious new effect is the Boltzmann decoupling of
particles with massm@T. Then, their contribution to the
thermal masses of other particles should be dropped. This
effect will be taken into account by writing every contribu-
tion with the correspondingu(2pT2mb) or u(pT2mf)
that will take care of the decoupling in a step approximation.

As long as field-background effects can be neglected, i.e.,
as long as no particle is decoupled because of a large
background-dependent mass, the thermal self-energies will
only mix particles with the same quantum numbers. The rea-
son for this is that leading thermal masses arise from qua-
dratically divergent diagrams that can already be drawn in
the T50 unbroken theory. As an example considerW3-B
mixing. One can certainly draw diagrams atT50 that mix
those particles at one loop. However, when summing such
diagrams over complete SU~2! multiplets these contributions
cancel. At finiteT this is reflected in the nondiagonal self-
energy

PW3LBL
5
1

6
g1g2T

2@TrS~uYT3!12TrF~uYT3!#,

which gives zero when allu ’s are 1. In a background that
breaks SU~2! 3 U~1! if some particle acquires a mass larger
than T its contribution toPW3LBL

will drop and only then
will a nonzero contribution result. Here we will assume that
background masses are always smaller than the temperature
~which is usually the case in most applications of interest! so
that we will not encounter this complication. In that case one
can compute thermal masses at zero background~corrections
from nonzero background effects will be suppressed by pow-
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ers of T). The prescription to obtain thermally corrected
masses is then to write theT50 mass matrices in whatever
field background one is interested~provided it is smaller than
T), add the thermal corrections, and, afterwards, rotate or
diagonalize the mass matrix.

Setting then a zero background we can in principle com-
pute thermal self-energies using either an interaction basis or
a mass eigenstate basis. The first option is more convenient
and it is simple to rotate to the mass basis in particular cases
~note thatu ’s are naturally defined in the mass basis, so that,
to decouple some particle, the rotation should be made!. We
will express our general results in terms of some convenient
u symbols which vary with the origin of the contributions as
shown in Fig 1. The rules to rotate these symbols from one
basis to another are explained below.

The fields in the interaction basis,f i , can be written as a
linear combination of the mass eigenstateswa :

f i5Ui
awa ,

where we stress that the unitary matricesU diagonalize the
M2 mass matrix calculated at zero background and zero tem-
perature. The symbolu i j comes from the contraction of
f i*2f j to close the loop as shown in Fig. 1. It is defined by
rotating to the mass basis as

u i j5uU
i
awa ,U

j
bwb

5Ui
a* uabUj

b 5Ui
a* uaa Uj

a ,

~14!

with

uab5uaadab5H 1 if ma!T,

0 if ma@T.
~15!

The u i j symbol defined applies both to fermion or boson
contractions.

We define also the four-index symbolu i j
kl for the second

and third diagrams shown in Fig. 1. For these objects the
rotation from the interaction basis to the mass basis is

u i j
kl5Ui

b* Uj
b ubb

aa Uk
a* Ul

a . ~16!

Now there is a difference between the fermionic and bosonic
cases. For fermions we have simply~tildes omitted!

ubb
aa5uaaubb , ~17!

while for bosons,

ubb
aa5

uaa2ubb

ma
22mb

2 . ~18!

The reason for this is the following. Note that the bosonic
diagram is not quadratically divergent~in particularubb

aa50
if uaa5ubb51). However, it contributes to the thermal
masses if one of the particles running in the loop, say,a,
decouples. Then, the diagram behaves effectively as the first
one, with the heavy line in the loop collapsed to a point. In
other words, in the effective theory that results after integrat-
ing out the heavy particle there are new quartic couplings
proportional to 1/ma

2 . The symbol~18! takes this into ac-
count.

There is another effect we have to mention before pre-
senting the results. Suppose that the scalar fieldsf i andf j
have the same quantum numbers but opposite Abelian
charges. The mixingf i-f j* by thermal mass effects is not
possible in the nondecoupling limit analyzed in the previous
subsection@Eqs. ~7! and ~8!# but becomes possible if the
thermal contributions from some particles are Boltzmann
suppressed. We allow for such a possibility in our general
formulas. The corresponding thermal self-energy will be de-
noted byPf i ,f j*

.

Also note that we give our results in terms of thermal
polarizations andu ’s for complex scalar fields. This assumes
that real and imaginary components behave in the same way;
e.g., they decouple together when some mass parameter is
made heavy. That is no longer true in the presence of large
backgrounds~which we assume not to be the case! or for
singlet fields. The real and imaginary components of a sin-
glet can have different masses and should be treated sepa-
rately. Our formalism can be trivially generalized to take this
possibility into account by relations such as

S5
1

A2
~Sr1 iSi !⇒H uSS5

1
2 @uSrSr1uSiSi#,

uSS*5 1
2 @uSrSr2uSiSi#.

The general results are the following.

1. Scalars

a. Yukawa contribution from fermion loops:

Pf i ,f j
5
T2

24
WiklWjrs* u

r̃ k̃

s̃ l̃
. ~19!

b. Yukawa contributions from scalar loops:

Pf i ,f j
5
T2

12
WrikWr jl* u lk , Pf i ,f j*

5
T2

24
Wri jWrkl* ukl* .

~20!

c. Trilinear contributions: Note that these terms are pro-
portional toukl

i j and thus give zero in the limitT@M :

Pf i ,f j
5
T2

24
$AiklAjrs* u ls

kr12Wiklm lm* Wjrs* m rn~umn
sk 1ums*

nk* !

1Wmkl* mmiWrsnm r j* unl
sk1@2Wiklmkm* Wnrsm j r* u l* s

mn

12AiklWjrs* mmrum* l
sk

1AiklWrsmm j r* um* l
s* k

1~H.c.,i↔ j !#%, ~21!

Pf i ,f j*
5
T2

24
$AiklAjrsu l* s

k* r12Wiklmkm* Wjrsm rn* ~ums
ln

1umn*
ls* !1Wrkl* m irWmns* m jmus* l

n* k

1@2AiklWjmnmmr* u lr
kn*1AiklWmnr* m jmu lr

kn

12Wrkl* m irWjmnmms* us* l
nk

1~ i↔ j !#%. ~22!

d. Gauge contributions from fermion loops: We change
momentarily our notation fromf i to Na whereN refers to a
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given representation of the group anda to the group index
~not to be confused with mass eigenstate indices!. Of course
no change is needed for U~1!’s. The results are

PNa ,Pb
5
T2

6
gagbTag

a Tdb
b u

b̃ ã

g̃ d̃
,

PNa ,P
b*
5
T2

6
gagbTag

a Tbd
b u

ã d̃

b̃ g̃
. ~23!

The second contribution can be nonzero only if the model
contains matter fermions in the adjoint representation as dis-
cussed in footnote 5.

e. Gauge contribution from scalar loops: The general re-
sult is

PNa ,Pb
5
T2

12
g2@dNPTba

a TrS~Tgd
a ugd!1Tga

a Tbd
a ugd#,

~24!

PNa ,P
b*
5
T2

12
g2@Tga

a Tdb
a ud* g#. ~25!

For SU(N) with all nonsinglet fields in the fundamental rep-
resentation,

PNa ,Pb
5
T2

24
g2F2dNPTba

a TrS~T
au!1dabuNgPg

2
1

N
uabG ,

PNa ,P
b*
5
T2

24
g2FuP

a*Nb
2
1

N
uP

b*NaG .
For U~1!Y ,

Pf i ,f j
5
T2

12
g1
2@d i j YiTrS~Yu!1YiYju i j #,

Pf i ,f j*
5
T2

12
g1
2YiYju i j * .

f. Gauge contribution from gauge boson loops:The gen-
eral result is

PPa ,Pb
5
T2

4
gAgBTbg

a Tga
b uab . ~26!

For SU(N), whenuab5dabuaa ,

PPa ,Pb
5
T2

4
gN
2CN~RP!dabuG .

For U~1!,

Pf i ,f j
5
T2

4
g1
2Yi

2d i juB .

2. Gauge bosons

As already mentioned, only longitudinal gauge bosons get
a nonzero thermal mass at leading order. The following ther-

mal polarizations should then be understood as polarizations
for the temporal componentsP00 of the gauge fields
V0
a ,V0

b .
a. Scalar contribution:

Pab5
T2

12
gAgB„$T

a,Tb%bguPbPg
1@Tba

a Tdg
b ~uMbNg

uNdMa

2uMbNd*
uNgMa*

!1H.c.#…, ~27!

where in principle two different groups, with coupling con-
stantsgA , gB , are considered.

For SU(N) and fields in the fundamental representation
M ,P, etc., the general result is

PN[
1

N221(a Paa5
T2

12
gN
2 H(

M
uM1

1

N221 FuMaPa
uPbMb

2uMbPa*
uM

a* Pb
2
1

N
~uMaPb

uPbMa
2uM

b* Pa
uMaPb*

!G J ,
whereuM[(1/N)(auMaMa

.
For U~1!,

PBL
5
T2

6
g1
2(
i j

YiYj@u i j1u i j
22u i j *

2
#.

b. Contributions from matter fermion loops:

Pab5
T2

6
gAgBTab

a Tgd
b u P̃bÑg

u P̃aÑd
. ~28!

c. Contributions from gaugino loops:

Pab5
T2

6
gAgBf dea

A f ghb
B u

ẽ g̃

d̃ h̃
, ~29!

where f abc
A are the structure constants of the groupA

(@Ta,Tb#5 i f abcT
c).

III. MINIMAL SUPERSYMMETRIC STANDARD MODEL

In this section we apply our general results to a particu-
larly relevant example, the MSSM. It is the simplest super-
symmetric extension of the SM and is described by the su-
perpotential

W5mH1•H21hUi
Qi•H2Ui1hDi

H1•QiDi1hEiH1•LiEi

embedded into the SU(3)3SU(2)3U(1) gauge group. We
will consider general soft SUSY-breaking terms although
with negligible intergenerational mixing. Then, the only
fields that mix at zero background areH1 andH2.

The scalar-fermionic soft Lagrangian reads

Lsoft5FAEi
H1•L̃ i Ẽi1ADi

H1•Q̃i D̃ i1AUi
Q̃i•H2Ũ i

2m3
2H1•H21(

g̃

g̃Mg̃1H.c.G1(
i
mi
2uf i u2.

A. Limit of very large T

The bosonic self-energies in the case in which the tem-
perature is the larger mass scale, i.e.,
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T@m, Af , mf , m3 , M , are obtained from Sec. II A di-
rectly as

P ŨLi
5P D̃Li

5
2

3
g3
2T21

3

8
g2
2T21

1

72
g1
2T21

1

4
~hUi

2 1hDi

2 !T2,

P ŨRi
5
2

3
g3
2T21

2

9
g1
2T21

1

2
hUi

2 T2,

P D̃Ri
5
2

3
g3
2T21

1

18
g1
2T21

1

2
hDi

2 T2,

P ẽLi
5P ñLi

5
3

8
g2
2T21

1

8
g1
2T2,

P ẽRi
5
1

2
g1
2T2,

PH
1
05PH

1
65

3

8
g2
2T21

1

8
g1
2T21

3

4
hb
2T2,

PH
2
05PH

2
65

3

8
g2
2T21

1

8
g1
2T21

3

4
ht
2T2,

PgL
5
9

2
g3
2T2,

PWL
5
9

2
g2
2T2,

PBL
5
11

2
g1
2T2. ~30!

For H1 and H2 we only keep third-generation Yukawa
couplings. Also, note that particles in the same gauge mul-
tiplet receive the same thermal mass correction.

B. Explicit formulas in the general case

If there is not a defined hierarchy between the scales
T, m, Af , mi , m3 , M , we must apply the formulas of
Sec. II B which have as asymptotic limit, for highT, the
equations presented in the previous subsection.

In the formulas that follow we write most of the self-
energies in the interaction basis. Also, we useu i5u i i ,
u i
j5u i i

j j , etc., to simplify the notation. For all fields besides
H1 andH2 the u i j functions in the gauge basis are diagonal
and coincide with the definition in the mass eigenstate basis
~at zero background!. The treatment ofH1,2 is as follows: As
is well known, there are three mass parameters in the tree-
level Higgs potential of the MSSM:

V5m1
2uH1u21m2

2uH2u21m3
2~H1•H21H.c.!

1quartic terms.

Two of these mass parameters (m1 ,m2) can be traded by the
T50 vacuum expectation valuesv1 and v2 @with
v1
21v2

25v25(174 GeV)2 and tanb5v2 /v1#, leaving only
one free mass parameter, conventionally taken to be the mass
of the pseudoscalar Higgs boson,mA . Then we have two
scales in the Higgs sector,v ~or MZ) andmA , and the only
nontrivial case at finite temperature corresponds to
MZ!T!mA . WhenmA@MZ one ~linear combination! of
the two Higgs doublets is heavy (;mA) and one light
(;MZ).

In order to obtain the mass eigenstates at zero back-
ground, we can work with the full doublets. Diagonalization
of the 232 mass matrix defines the mixing angleb0. In the
only nontrivial case withmA@MZ , it is straightforward to
see thatb0→b so that, in this limit, we can define the dou-
bletsH ~light! andF ~heavy! by the rotation

H̄15Hcosb2Fsinb,

H25Hsinb1Fcosb, ~31!

where H̄15(2H1
1 ,H1

0* )T. The doubletsH andF are the
mass eigenstates so that Eq.~31! is our equation
f i5Ui

awa in this case. From Eq.~31! and using rules~14!
and ~16! we can express allu symbols for Higgs bosons in
terms of uH and uF or, equivalently,u(2pT2MZ) and
u(2pT2mA).

From Eq.~31! it follows that

uH
1
0H

1
05uH0H0cos2b1uF0F0sin2b,

uH
1
0*H2

05~uH0H02uF0F0!cosbsinb,

uH
1
2*H2

152~uH1H12uF1F1!cosbsinb,

and so on. The rest ofu symbols are trivial to handle. For
squarks remember that gauge invariance requires equal soft
massmQ̃ for ŨL and D̃L so thatu ŨL

5u D̃L
[uQ̃ .

Also note that althoughu ’s for gauge bosons will always
take the value 1~because they are massless at zero back-
ground!, we write them explicitly.

We also use

6TrS~uY!523(
j

~u ñL j
1u ẽL j

22u ẽRj
!13~uH

2
61uH

2
0!

23~uH
1
61uH

1
0!

1Nc(
j

~u ŨL j
1u D̃L j

24u ŨRj
12u D̃Rj

!,
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2TrS~uT3!5(
j

~u ñL j
2u ẽL j

!1Nc(
j

~u ŨL j
2u D̃L j

!1uH
1
0

2uH
1
61uH

2
62uH

2
0.

Note, however, that this last trace would be nonzero only in
a SU~2! L-breaking background.

In the formulas that follow the reader can easily check

sector by sector that fermionic contributions are always half
of the corresponding bosonic ones.

1. Squarks

Thermal self-energies are diagonal in color space unless a
color-breaking background that decouples some contribution
is present. As we assume this is not the case the color index
structure is trivial and is suppressed:

P ŨLi
5
1

6
g3
2T2

Nc
221

4Nc
@3ug1u ŨLi

12u g̃uULi
#1

1

48
g2
2T2@6uW613uW3

1u ŨLi
12u D̃Li

12TrS~uT3!12uULi
u W̃3

14uDLi
uW̃6#

1
1

432
g1
2T2@3uB1u ŨLi

16TrS~uY!12u B̃uULi
#1D

ŨRi

0
1D

D̃Ri

6
1

1

12
hUi

2 T2@uH
2
01u ŨRi

1u H̃
2
0uURi

#

1
1

12
hDi

2 T2@uH
1
61u D̃Ri

1u H̃
1
6uDRi

#,

P D̃Li
5
1

6
g3
2T2

Nc
221

4Nc
@3ug1u D̃Li

12u g̃uDLi
#1

1

48
g2
2T2@6uW613uW3

1u D̃Li
12u ŨLi

22TrS~uT3!12uDLi
u W̃3

14uULi
uW̃6#

1
1

432
g1
2T2@3uB1u D̃Li

16TrS~uY!12u B̃uDLi
#1D

D̃Ri

0
1D

ŨRi

6
1

1

12
hUi

2 T2@uH
2
61u ŨRi

1u H̃
2
6uURi

#

1
1

12
hDi

2 T2@uH
1
01u D̃Ri

1u H̃
1
0uDRi

#,

P ŨRi
5
1

6
g3
2T2

Nc
221

4Nc
@3ug1u ŨRi

12u g̃uURi
#1

1

108
g1
2T2@12uB14u ŨRi

26TrS~uY!18u B̃uURi
#1D

ŨLi

0
1D

D̃Li

6

1
1

12
hUi

2 T2@uH
2
01uH

2
61u ŨLi

1u D̃Li
1u H̃

2
0uULi

1u H̃
2
6uDLi

#,

P D̃Ri
5
1

6
g3
2T2

Nc
221

4Nc
@3ug1u D̃Ri

12u g̃uDRi
#1

1

216
g1
2T2@6uB12u D̃Ri

16TrS~uY!14u B̃uDRi
#1D

D̃Li

0
1D

ŨLi

6

1
1

12
hDi

2 T2@uH
1
01uH

1
61u ŨLi

1u D̃Li
1u H̃

1
0uDLi

1u H̃
1
6uULi

#,

where

D
ŨP

c
5
T2

12
hU
2 @ uAUP

u2u
H
2
c

ŨP1umu2u
H
1
c

ŨP1~AUP
m1AUP

* m* !u
H
1
cH

2
c*

ŨP #,

D
D̃P

c
5
T2

12
hD
2 @ uADP

u2u
H
1
c

D̃P1umu2u
H
2
c

D̃P2~ADP
m1ADP

* m* !u
H
1
cH

2
c*

D̃P #.

Rotating fromH1 ,H2 to H,F as explained, the previousD ’s can be written as

DP
c5

T2

12
hP
2 F uÃP

1u2
uP2uHc

mP
22mZ

2 1uÃP
2u2

uP2uFc

mP
22mA

2 G .
HereP5ŨLi

,D̃Li
,ŨRi

,D̃Ri
, c50,6, and

ÃUi

1 5AUi
sinb1m* cosb, ÃUi

2 5AUi
cosb2m* sinb,

ÃDi

1 5ADi
cosb1m* sinb, ÃDi

2 5ADi
sinb2m* cosb.
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2. Sleptons

P ñLi
5

1

48
g2
2T2@6uW613uW3

1u ñLi
12u ẽLi

12TrS~uT3!12unLi
uW̃3

14ueLi
uW̃6#

1
1

144
g1
2T2@9uB13u ñLi

26TrS~uY!16u B̃unLi
#1D

ẼRi

6
1
1

12
hEi
2 T2@uH

1
61u ẼRi

1u H̃
1
6uERi

#,

P ẽLi
5

1

48
g2
2T2@6uW613uW3

1u ẽLi
12u ñLi

22TrS~uT3!12ueLi
uW̃3

14unLi
uW̃6#

1
1

144
g1
2T2@9uB13u ẽLi

26TrS~uY!16u B̃ueLi
#1D

ẼRi

0
1
1

12
hEi
2 T2@uH

1
01u ẼRi

1u H̃
1
0uERi

#,

P ẼRi
5

1

72
g1
2T2@18uB16u ẼRi

16TrS~uY!112u B̃uERi
#1D

ẼLi

0
1D

ñLi

6
1

1

12
hEi
2 T2@uH

1
01uH

1
61u ñLi

1u ẽLi
1u H̃

1
0ueLi

1u H̃
1
6unLi

#,

where theD ’s follow the same notation used for squarks and now

ÃEi
1 5AEi

cosb1m* sinb, ÃEi
2 5AEi

sinb2m* cosb.

3. Higgs bosons

PH
1
05

1

48
g2
2T2@6uW613uW3

1uH
1
012uH

1
612TrS~uT3!12u H̃

1
0uW̃3

14u H̃
1
6uW̃6#1

1

144
g1
2T2@9uB13uH

1
026TrS~uY!

16u B̃u H̃
1
0#1D11

1

12
T2(

i
@NchDi

2 ~u D̃Li
1u D̃Ri

1uDLi
uDRi

!1hEi
2 ~u ẽLi

1u ẼRi
1ueLi

uERi
!#,

PH
1
65

1

48
g2
2T2@6uW613uW3

1uH
1
612uH

1
022TrS~uT3!12u H̃

1
6uW̃3

14u H̃
1
0uW̃6#1

1

144
g1
2T2@9uB13uH

1
626TrS~uY!

16u B̃u H̃
1
6#1D11

1

12
T2(

i
@NchDi

2 ~u ŨLi
1u D̃Ri

1uULi
uDRi

!1hEi
2 ~u ñLi

1u ẼRi
1unLi

uERi
!#,

PH
2
65

1

48
g2
2T2@6uW613uW3

1uH
2
612uH

2
012TrS~uT3!12u H̃

2
6uW̃3

14u H̃
2
0uW̃6#

1
1

144
g1
2T2@9uB13uH

2
616TrS~uY!16u B̃u H̃

2
6#1D21

1

12
T2(

i
NchUi

2 ~u D̃Li
1u ŨRi

1uDLi
uURi

!,

PH
2
05

1

48
g2
2T2@6uW613uW3

1uH
2
012uH

2
622TrS~uT3!12u H̃

2
0uW̃3

14u H̃
2
6uW̃6#

1
1

144
g1
2T2@9uB13uH

2
016TrS~uY!16u B̃u H̃

2
0#1D21

1

12
T2(

i
NchUi

2 ~u ŨLi
1u ŨRi

1uULi
uURi

!,

PH
2
0H

1
0*52

1

48
T2@~g2

21g1
2!uH

2
0H

1
0*22g2

2uH
2
6H

1
7* #1D12, ~32!

PH
2
6H

1
752

1

48
T2@~g2

21g1
2!uH

2
6H

1
7*22g2

2uH
2
0H

1
0* #2D12, ~33!

with

D15
T2

12(i $Nc@hUi

2 umu2u
ŨRi

Q̃Li1hDi

2 uADi
u2u

D̃Ri

Q̃Li #1hEi
2 uAEi

u2u
ẼRi

L̃ i %,
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D25
T2

12(i $Nc@hUi

2 uAUi
u2u

ŨRi

Q̃Li1hDi

2 umu2u
D̃Ri

Q̃Li #1hEi
2 umu2u

ẼRi

L̃ i %,

D125m
T2

12(i $Nc@hUi

2 AUi
u
ŨRi

Q̃Li1hDi

2 ADi
u
D̃Ri

Q̃Li #1hEi
2 AEi

u
ẼRi

L̃ i %.

As an example of how to rotateu ’s andP ’s consider the case in which only one~combination! of the Higgs doublets is
light compared to the temperature, while the other is heavy and Boltzmann suppressed~this limit is realized for a large
pseudoscalar mass and has been considered at finite temperature in studies of the electroweak phase transition!. We will
concentrate in the Higgs loop contribution to Higgs thermal self-energies only. The rest of the terms are trivial to deal with.
In terms ofuH ,uF , the off-diagonal thermal mixing betweenH̄1 andH2 @Eqs.~32! and ~33!# has the form

PH
2
0H

1
0*52

1

48
T2@~g2

21g1
2!~uH02uF0!12g2

2~uH62uF6!#sinbcosb,

PH
2
6H

1
65

1

48
T2@~g2

21g1
2!~uH62uF6!12g2

2~uH02uF0!#sinbcosb.

In the neutral sector then, settinguF050, it is easy to obtain

PH05PH
1
0cos2b1PH

2
0sin2b12PH

2
0H

1
0* cosbsinb5

1

48
~g1

21g2
2!~2uH01uH6!cos22b.

It can be checked that this is the correct result by noting that the standard model result is

PH
scalar5

1

4
lT2

~with the quartic Higgs coupling in the potential normalized toV5 1
2luHu4), while in the MSSM, the quartic self coupling of

H, defined by Eq.~31!, is l5 1
4(g1

21g2
2)cos22b.

4. Gauge bosons

a. SU(3)C :

PgL
5

1

12
g3
2T2F4Ncug12(

j
~u ŨL j

1u D̃L j
1u ŨRj

1u D̃Rj
!1(

j
~uULj

1uDLj
1uURj

1uDRj
!12Ncu g̃G .

To simplify the contribution coming from squark loops we have used

u q̃1u
q̃

2
52u q̃ . ~34!

Note, however, that if we were to rotate the squark basis, the expression on the left-hand side should be used.
b. SU(2)L :

PW3L
5

1

24
g2
2T2F18uW622ugh18uW̃61Nc(

j
~2u ŨL j

12u D̃L j
1uULj

1uDLj
!1(

j
~2u ñL j

12u ẽL j
1unL j

1ueL j
!

12~uH01uH61uF01uF6!1u H̃
1
01u H̃

1
61u H̃

2
61u H̃

2
0G ,

PW
L
65

1

24
g2
2T2F3~uW3

1uW6!112uW3
uW622ugh18uW̃6uW̃3

1Nc(
j

@~u ŨL j
1u D̃L j

!212uULj
uDLj

#

1(
j

@~u ñL j
1u ẽL j

!212unL j
ueL j

#1~uH01uH6!21~uF01uF6!212u H̃
1
0u H̃

1
612u H̃

2
6u H̃

2
0G .

Hereugh gives the ghost piece and we have already rotated the Higgs contributions to theH,F basis using

uH
1
01uH

1
0

2
1uH

2
01uH

2
0

2
1uH

2
0H

1
0*

2
5uH01uH0

2
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and similarly for the chargedu ’s. We have further simplified our expression by using a relation similar to Eq.~34!.
c. U(1)Y :

PBL
5

1

216
g1
2T2F18(

j
~u ñL j

1u ẽL j
14u ẽRj

!19(
j

~unL j
1ueL j

14ueRj
!118~uH61uH01uF61uF0!

19~u H̃
1
61u H̃

1
01u H̃

2
61u H̃

2
0!12Nc(

j
~u ŨL j

1u D̃L j
116u ŨRj

14u D̃Rj
!1Nc(

j
~uULj

1uDLj
116uURj

14uDRj
!G .

Here, contributions from scalars, and in particular Higgs bosons, have been treated in the same way as explained for SU~2!
and SU~3!.
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