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Spatially homogeneous string cosmologies
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We determine the most general form of the antisymmaettifield tensor derived from a purely time-
dependent potential that is admitted by all possible spatially homogeneous cosmological ma@ei4)in
dimensional low-energy bosonic string theory. The maximum number of componentshbffitle that is left
arbitrary is found for each homogeneous cosmology defined by the Bianchi group classification. The relative
generality of these string cosmologies is found by counting the number of independent pieces of Cauchy data
needed to specify the general solution of Einstein’s equations. The hierarchy of generality differs significantly
from that characteristic of vacuum and perfect-fluid cosmologies. The degree of generality of homogeneous
string cosmologies is compared to that of the generic inhomogenous solutions of the string field equations.
[S0556-282197)02402-8
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- INTRODUCTION d8’=—dt’+ay(t)%(0")*+a(H)*(0)*+a3() (%),

The low-energy effective action of the bosonic sector of o . L
string theory provides cosmological models that might be'Vheréidt,»“} is the standard basis. However, in this paper

; : ; . the Bianchi models are not assumed to be diagonal.
applicable just below the Plandkr string energy scale in ) i )
the very early universgl]. A number of studies have been The form of theH field derived from a time-dependent

made of these cosmologies in order to ascertain the behavi@Ptential will be determined in all four-dimensional space-
of simple isotropic and anisotropic universes, investigate thdMmes with homogeneous three-spaces. These three-spaces

implications of duality, and search for inflationary solutions Were first classified by Bianch¥] and have been extensively
[2—6]. Many of the traditional questions of general relativis- s_tudl_ed in the cosmological context followmg their |_ntroduc-
tic cosmology can be asked of the cosmological models deion into cosmology by Taubg]. They provide us with the
fined by string theory: do they possess space-time singularge”eral class of cosmological models whose solutions are

ties?, what is the generic behavior of the solutions at late anl€termined by ordinary differential equations in time. By
early times?, what exact solutions can be found in Cbse@enerallzmg a procedure used to study electromagnetic fields

form?, and what relation do particular exact solutions have td! Spatially homogeneous cosmological models by Hughston
the general cosmological solution? Since this theory is to b@1d Jacob$l0], we can determine the maximum number of
applied at times very close to the Planck epoch, it would b&@mPonents permitted for tie field in each of the Bianchi
unwise to make special assumptions about the form of thgosmologies. This enables us to determine the number of

cosmological solutions. Anisotropies and inhomogeneitiel€drees of freedom which define the string cosmology of
could play an important role in the evolution. Indeed, anyeach case. The results are interesting. The Bianchi types con-

dimensional reduction process could be viewed as an exX@ining the most general geometries place the most restric-
treme form of anisotropic evolution in D dimensions in ONS upon the presence of thefield. S
which three spatial dimensions expand whilst the rest remain 1€ String world-sheet action for a closed bosonic string
static. Because of these irreducible uncertainties about thg @ background field including all the massless states of the
very early Universe, one would like to understand the genStfing as part of the background is given [y,

eral behavior of wide classes of solution in order to ascertain

the relative generality of any particular solution that may be 1

found. A number of studies have focused on obtaining par- S=- ﬁJ' d?o] \/Fh“ﬁﬁaX“&BX”gW(XP)

ticular solutions for(3+1)-dimensional space-times in cases e

where spatial homogeneifand sometimes also isotropis + €99, XEG pXB ,,(XP) + a'Vhdp(XPR?], (1)
assumed for the metric of space-time, whereHhigeld is set

to zero[4], or where theH field is included by assuming that

it takes a particular form which satisfies its constraints andvhereh®? is the two-dimensional world-sheet metrie{?

its equation of motiori5]. For example, Copelanet al.[2],  the world-sheet Ricci scalag®? the world-sheet antisym-
discussed Friedmann and Bianchi-type | universes, allowingnetric tensor, B,,,(X”) the antisymmetric tensor field,
*H to be time dependent or space dependent, respectively. ,,(X”) the background space-time metri@raviton,

a second papéd8], they discussed Bianchi | solutions with a ¢(X?) the dilaton,«’ the inverse string tension, and the
homogeneous antisymmetric tensor field[6h(see alsd5])  functionsX?(o) map the string world-sheet into the physical
Batakis presented an overview of all possible configuration® -dimensional space-time manifold.

of a (spatiall) homogeneoudd field in diagonal Bianchi For the consistency of string theory, it is essential that
models with a metric local scale invariance holds. Imposing this condition results
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in equations of motion for the fields,, , B,,, and¢ which 1 N
can be derived to lowest order im’ from the low-energy dw”=§Cf<‘)\w"/\w :
effective action

Spatial homogeneity is expressed by the following condi-

1 - .
S:J dDX\/__ge—qb R+gab(7a¢(7b¢_ 1_2HabCHabc_A)_ tions On¢, g, andH :
2 L; $=0,
In this paper we assume a vanishing cosmological con- _
stantA. £¢,9=0,
In a cosmological context it is generally assumed that by
some means, all but 4 of the 10 or 26 dimensions of space- Le H=0=L; (*H)=0.

time are compactified, leaving an expandin@+1)-

dimensional space-timeD(=4). Since we are interested in ~ The definition and properties of the Lie derivative imply
cosmological solutions of the field equations derived fromthat £§a¢:§a¢=o. Expanding H in the invariant basis
the variation of this action, we adopt the Einstein frame by(that is, *H=V°X,+V*X,), and using its properties, im-

making the conformal transformation plies thené,,V°=0 and¢,VA=0. The Killing vectors in the
— 3 Bianchi models are spacelike and time independent and this
Qab—€ "Qab- 3 then implies thaip andH are functions of time only in the

standard basi§dt,w“}. Furthermore, the antisymmetric ten-
sor potentiaB whereH =dB will be assumed to be a func-
tion of time only.
We would like to know the general algebraic form of the
1 H field with a time-dependent potentiBl in these models,
Rap~ 59abR= K2(PT 0+ MT), (4  determine which Bianchi universes are the most general, and
discover whether the assumption of spatial homogeneity re-
duces the number of independent pieces of Cauchy data be-
low the number needed to specify a generic inhomogeneous
1 solution of the field equation&})—(8). This analysis of the
D¢+ 56_2¢HabcHab°=0, (6)  allowed components of thél field is most economically
performed using differential forms.

In this frame the four-dimensional string field equations
and the equations of motion are given liyndices run
0=a,b,c<3 and I=«,8<3)

Va(e*2¢HabC):0, (5)

where k’=87G is the four-dimensional Einstein gravita-

tional coupling and Il. THE ANTISYMMETRIC TENSOR FIELD

AS A TWO-FORM

BT == - c There are three equations determining the antisymmetric
Tap 2 ( P.ab Zgab¢'°¢ ) @ tensor field: the definition of its field strengtfor a closed
bosonic string

1 1
(H)TabE 1_2e2¢<3HacdeCd_ Egamelkalk)- (8) H=dB, (9)

The three-geometries of the nine spatially homogeneou¥hich implies the second equation
cosmological solutions of these equations are defined by the dH=0 (10
Bianchi classification of homogeneous spa@eih the ex- o
ception of the Kantowski-Sachs univerg®&, which has a

four-dimensional group of motions, but no three—dimensionafind there is the equation of moti¢),

subgroup. In these Bianchi model&.g.,[13]) the spacelike d(*H)—2(dé)/\(* H)=0. (12)
hypersurfaces are invariant under the gr@pof isometries
whose generators are three Killing vectggs These hyper- Spatially homogeneous models are described by choosing
surfaces can be described by an invariant vector 4365  an orthonormal tetrad,
satisfying

ds’= 9,,0%0°, (12

‘Cgﬂxa:[gﬁixa]zo!

where n,,=diag(—1,1,1,1), and specifying the one-forms
whereﬁgﬁ is the Lie derivative in the direction of;. The  42[10,13 as

timelike directionX, is chosen to be orthogonal to the in- o
variant spacelike hypersurfaces obeying o"=N(Q)dQ,

ﬁgﬁxoz[fﬁ,xo]zo- U“Zefﬂbzwﬁ. (13

Dual to{X,} is the basis of one-form&w*} satisfying Here, thew® obey the algebra
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1 Y gl 0dQN 0 N N\ o
dwa=§Cg7wﬂ/\w7, (14
1
o + 5 X0 (Chgo* = Chpo) N0 NwPNdQ=0.  (29)
whereCy,, are the structure constants of the possible isom- 2

etry groups which define the homogeneous three spaces, and
the by are symmetric matrices which depend only on the
time coordinate). SinceB is a two-form, it can be decom-

posed as
B=B,0%/\o*+ B30 N\oP=Q, d0 N\ +S, 0" \w,
(15
where
Qox(2)=NBg.e by, (16)
Seu(Q)=e 2B, zbibl . (17)
Hence,H=dB is given by
1 K @ B
H= Sllﬁm_ECaBQOK dONw*N\w
L Gl A e
+ ESKMCanM No*/\wP. (18

Using the expressiofil9) for the structure constants, and
noting that the three-dimensional Levi-Civita symbol is de-
fined by e= Jdeg,z0'/ \w?/\w?, Eq.(24) becomes

(YK)\Mlﬂ_ZXO#Ka)\)dQ/\U)K/\w}\/\U)'MZO. (25

The dual, ®\, of ann-dimensionalp-form A is defined by
the Levi-Civita symbol a$12]

This expression can be analyzed further if we introduce the

Ellis-MacCallum [11] decomposition of the structure con-

stants into the matrixn,; and the vectorg,
Clp= €apuM*’+ 5fa,— 585, (19
so Eq.(18) becomes
1 K a B
H= Saﬁ|ﬂ_§CaBQOK dQ/\w /\w

+2a,S,,0* \Nw* N\ (20

The structure constants satisfy a Jacobi identity which leaves

1
* by by a)\al apéal “aghy by
Hence, *H is a one-form given by
1 bed
*HZEH ¢ EbcdaO'a:UdQ"‘Vawa, (26)
where
1
U=U(Q)=gH®7e.4,0N, (27)
1

VaEVa(Q)E gHabcEabCszeiﬂv (28)

and so

1
0" H=VodQN 0"+ 5V,Ch 0P Ae”. (29

Since ¢=¢({1), we havedo=¢,d) and Eq.(11)
reads

1
(Vajo—280V)dQ N0 + SV,Ch 0f\w?=0;

C, s With a maximum of six independent components. Since (30)
the Lagrangian is invariant under the gauge transformation

Bab—BapT djaAp, We can always choosd such that

Qox=—3d[0A = —3doA ., and selQ, to be zero.

The 9 Bianchi-type universes fall into two classes, A and
B, distinguished by whether the constant is zero or non-
zero, respectively11]. From Eq.(20) we see thaH has no

purely spatial components in class A models.
H is also given by

H=H_,.0%\o? Aot

= Hoaﬁao/\cr“/\(r'g-f- H aﬁyoa/\oﬁ/\(ﬂ
=XOK>\dQ/\w"/\w)‘+YK)\#w"/\w)‘/\w”“, (21
where
Xo=Xoa (Q)=Ne 2?bibfHq,z, (22
Yow=Yau(Q)=e3DiblbIH 4. . (23

Therefore,dH=0 implies

2
hence,
Vaa—=2¢1aV.=0, (31)
1 o

Notice that the constrainB2) is preserved in time. Con-
tracting Eq.(31) with Cf; gives (V,C{},,)jo=0 so that if
Eqg. (32 is satisfied at one time, it holds at all times. Equa-
tion (32) implies

eﬁyﬁvacgy: 0, (33
which can be rewritten as
V(M +agzef?) =0, (34)
and so, by Eq(20), we have

H=XoadOA 0 No* +Y 0 No*No®, (35
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TABLE I. Summary of the possible components of the homogeneous antisymmetric tensor field strength
and degrees of freedom. The different variables are explained in the text.

Bianchi Type a, m V, X0aB Y123 p r u N
)(012:e2d>K3

I 0 0 V,arb X0B3=—ge?¢K, 0 0 3 0 6
X023:e2¢>K1

Vi=0 X0=e?K,
I 0 diag1,0,0  V,arb X%3=-—g2?K, 0 3 1 1 6
Vsarb X023=0

V=0 X%=e?’K,
VI, 0 m=—a V,=0 X03=0 0 5 0 2 6
V,arb X0%B=0

V=0 X=e?’K,
VIl 0 diag(-1,—-1,0) V,=0 X0=0 0 5 0 2 6
Vsarb X92%=0

V=0 X?=0

VI 0 diag(—1,1,1) V,=0 X18=0 0 6 0 3 6
V3=0 X%%3=0
V=0 X?2=0

IX 0 diag(1,1,1) V,=0 X0B=0 0 6 0 3 6
V3=0 X%%=0

Vi=0 X0=e?K,
n —36% —la Voarb  X0B= — 29K, -S, 5 0 0 8
V,arb X0%=0

V=0 X=e?K,

v -85 diag1,0,0  V,=0 X%3=0 -2S;,
Vsarb X23=0

(&)
o
=
~

V=0 X"=e??K;
\% -85 0 V,=0 X8=0 —2S;, 3 0 1 5
V,arb X923=0

h=0 V=0 X2=g2?%K, 5 0 0 8
Y/ —3h+1)8f —3h-1)a V,h=0 X’5=-e?’K, —(h+1)S;,
h#0,—3,—2 Xp% =0 5 0 1 7
h=-3-2 Vsarb X0%=0 5 1 1 8
V=0 X%=e?’K,
h ; _ 013_ h
VI a0 -5 diag(-1,-1,0) V,=0 X03=0 - 55 5 0 1 7
h Vsarb X023=0
+s5a
2
with whereK , is a constant spatial three-vector of integration.
Since *(*H)=H, we have
1
Xon=Spa0 = 5C[aQor  and Y0, =2a7,S, - 0af_ _ Oa
= S| 2 kA< 0w pHak [a K,u](36) X0aB— _ ¢ Byvy
= e2Pre??K (39

Equation(25) implies
where the minus sign has been absorbed into the constant

Cllucn1Qoa=0, (37  spatial three-vectoK .
Table | displays the restrictions on the spatial components
and Eq.(31) can be integrated to give of *H imposed by the constraint E¢34) for the different

Bianchi types[11,13, together with the components of the
V,=e??K,, (39 homogeneous antisymmetric tensor field strengthin the
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standard basi§d(),w“} which are given by Eq(35). Note  sis{dQ),w“}. The components of the Ricci tensor are given
that in class A, Eq(36) impliesY,,5=0, and the contravari- by [14]
ant components of 5, are obtained by raising the indices

usinggap given by Roo= — 0— 0,367, (43)
— _ N2

Jdoo= —N<(Q), (40 Ro.=3a,0}—a,0+ emfm”f”% , (44)

9up=€ 29> blb. (4D Rup=0up+ 00,5—20,,05+T) Th,—T) 05 +C5 T2,

Y (45

In class B, Eq.(36) implies thatY,3=221,S311=2a351,.  where 0,5=30,p50. 6=0%, and the Ellis-MacCallum pa-
The matrix @ which specifies the Ellis-MacCallum symbol rametrization(19), has been used to express the spatial cur-
m=m,z is defined by{11], the matrix vature terms in Eq944) and (45).

The string field equations give ten equations for the six
components of the symmetric metri;, ;, so there are at
most four constraint equations. The initial data Qs con-

sist of 12 independent constantsy §; and 69,5 . These are
reduced by (9-p+1) due to the fact that there are
9—p+1 parameters of triad freedom to put the group struc-
IIl. COUNTING DEGREES OF FREEDOM ture constants into their canonical Ellis-MacCallum form
[14]. The parametep is the number of independent group
Consider first the question of how many independentlystructure constants and<(p<6. Their values are given be-
arbitrary spatial functions are required to specify generic inifow, and in Table I, for each Bianchi group type. The num-
tial data for the system of string field Eq8})—(8). In @  per of independent constants is reduced by a further 4
synchronous frame we requireggz, 6 9,5, 3 components due to the constraint equations, whergounts the number of

of the H field, together with values ofp and ¢. This field equations satisfied identically. Hence, a total of

amounts to 17 functions, but we can remove 4 by using thd2—(9—p+1)—(4—r)=p+r—2 independent constants

coordinate covariance of the theory, another 4 by using th&Pecify the general solution to Edg)—(8) for spatially ho-

Roa CONstraint equations, and another 1 by using¢hEq.  Mogeneous universes. To calculatee must check if any of

(6). This leaves eight independent functions of three spatia‘lhe field equations are identically satisfied due to a particular

variables to specify a general solution of the field Eg3—  choice of the group structure parametagsandm,z. From

(8). If special symmetries are assumed for the solutions ofd. (7) it is clear that the dilaton’s contribution to tHey,,

the field equations, then some of the metric components an@duations vanishes identically. The contribution of tHe

their time derivatives may be absent but some of the algefield is determined byHqcqH,, but we know from Egs.

braicR,, constraints may be identically satisfied. As a result,(35—(36) that HgqH a°d= —XOBVYaBy, hence,Ry,=0 for

the number of functions characterizing the most general saall class A models.

lution compatible with some symmetry may be specified by The equations of motion foH and the constraints they

fewer functiongor by lower-dimensional functionshan the  impose have been discussed in Sec. Il; Table | gives the

general solution. number of free parameters,—31, needed to specify initial
Spatially homogeneous cosmological models will be de-data forH for each group type. The initial conditions for the

termined by some number of independently arbitrary condilaton ¢ require two further independent constantsand

stants rather than spatial functions. If spatially homogeneoug, \while Eq. (6) determines the dynamics of. Therefore,

string cosmologies are representative of the most general ifhe general spatially homogeneous solutibrio Egs. (4)—
homogeneous string cosmologies, then it is neces&fy (g) contain

though not necessarily sufficigrthat they be characterised

by eight independent arbitrary constants. When khéeld N=3+p+r—u (46)

vanishes in Eqsi4)—(8), so they reduce to Einstein’s equa-

tions for a free scalar field, the number of arbitrary functionsindependent arbitrary constants. Using the constraint Egs.

required to characterize the general inhomogeneous solutiq@4) and (44), we can evaluate, r, u, and N (Bianchi

equals the number of constants required for the general haype) explicitly as follows(the values of these parameters are

mogeneous solution. This equivalence also holds for Einsummarized in Table)l

stein’s equations with a perfect flui@r in vacuum, where

eight (or four) functions specify a general inhomogeneous

solution and eightor four) constants specify Bianchi-types ) )

Vi, VI, VI, and IX [15,16. We shall now investigate ~_Bianchi I: R,,=0, hence r=3, p=0, u=0, and

the degree of generality of the different Bianchi-type solu-M1)=6.

tions of the string field equations when tHefield is present. Bianchi Il: Ry;=0, R;=— 63, Ros=63, hence,r=1,
In order to determine how many free parameters are alp=3, u=1, and\/(I1)=6.

lowed in the different Bianchi models, consider the field Egs. Bianchi VI_;: Ry;=— 03, Ro>= 03, Roz= 6%— 05, hence,

(4), for spatially homogeneous universes in the standard ba-=0, p=5,u=2, andMVI_;)=6.

o O -

0
0l. (42)
0

8
I
o r O

A. Class A models
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Bianchi VIl o: Ry;=— 63, Roy= 63, Rog= 03— 62, hence, The hierarchy of generality in the string cosmologies has
r=0, p=5,u=2, andMV{(Vlly)=6. several interesting features when compared with the situation

Bianchi VIII: Ry=603— 63, Rp,=63+63, Rye=—06?  of vacuum and perfect-fluid universes in general relativity.
— 62, hencer=0, p=6,u=3, andN(VIII):6. The most general category of eight-parameter modgtses

Bianchi IX: Ry;= 63— 62, Rpy= 05— 63, Rys= 62— 63, I and VI h=0,,1_,2',2) does not _contain clos_ed uniyerses
hencer=0, p=6, u=3, andA{IX)=6. (i.e., type 1X as in general relativity, nor does it contain any

Hence, all class A models are equally general according/P€s which contain isotropic universes as particular cases

to the parameter-counting criterion. i.e., types I, V, Vllp, VIl ,, or IX). Isotropy is not an open
property of homogeneous initial data space. This is related to

the fact that theH field is an anisotropic stress: the isotropic
) . 3 3 1 3 limit cannot be obtained with a nonzekbfield. This means
Bianchilll: Ryy=—267, Rop=— 03, Rog= 01— 03, hence  hat the isotropic Friedmann universes appear to be even less

B. Class B models

r=0,p=5,u=0, and\(lIl)=8. representative of the general behavior of cosmological mod-
H H . _ 3 _ 3 3 _ 3 . . . .S
BlaHZChl IV Roy= =367, Rop=—36,—61, Riz=—03 els in string theory than they are in general relativity. How-
+ 6+ 67, hencer=0, p=5,u=1, and\V(IV)=7. ever, a similar situation can arise in general relativity when

Bianchi V: Rg;=—363, Rp;=—363, Rys=—60—363,  anisotropic stresses are included.
hencer=0, p=3,u=1, andM(V)=5.

Bianchi V. _1: Ro;=—(h+2)63, Ry=—(2h+1)63,
Ros=61+h6#5— (h+1)63. For special choices df, either IV. CONCLUSIONS
Rg; or Ry, can be made to vanish identically. The two
choices are eitherh=—2 or h=-1 [15], so that
r(h=—-2)=r(h=-1/2)=1. Therefore, we have three

The equations that determine the antisymmetric tensor
field in low-energy effective string theory have been inves-
tigated in spatially homogeneous Bianchi-type universes. It

cas(,gs,hzo:r_ o= 5 u=0, and M(VIg)=8, (i) h#0, is found that th_e Ihomorg?eneous threer;foHrwith a _h(;]r_no—
h#—2, andh# - Lr=0, p=5,u=1, andA{V1,) =7, (iii) geneous potential can have at most three nonvanishing com-
12 ponents. The number of allowed components were fully clas-
h=-2, orh=—3:r=1, p=5,u=1, andMVly.-2-12 sified in Table I. In Bianchi class A models the field strength
=8. H has no purely spatial components in the standard basis.

Bianchi VII h#) R01— h01 02, Roo= 03 2h02, Ros  Bianchi-types VIII and IX allow only a time-independent,
= 02 02+ h¢92 h03 Sinceh is a real parameter, there are antisymmetric tensor field3,,, which implies a vanishing
no exceptional cases; hence=0, p=5, u=1, and field strengthH. In the case of Bianchi IX this can be under-
MV =7. stood in geometrical terms. Each of the Bianchi models cor-

This analysis of class B models indicates that they argesponds to a group of motions or isometries of spatial hy-
described by more free parameters than those of class A ameersurfaces. In the case of Bianchi IX this group is
the different class B models are not equally general likesomorphic to S@,R), which is isomorphic to the three-
those of class A. Thus, the most general spatially homogedimensional rotation group. Since the dual of the antisym-
neous solutions of the string Eq$4)—(8) are those of metric tensor field strength, is a vector, one of the spatial
Bianchi-types Il and V}_o_1-». These cosmological directions is picked out and this is incompatible with the
models contain the maximum number of eight free param¥otational invariance.
eters. These results can be compared with the study of ho- In comparison with Batakis’ findings on the possible con-
mogeneous pure magnetic or pure electric fields in generafigurations of theH field (not necessarily derived from a
relativistic Bianchi universes carried out by Hughston andhomogeneous potentjah diagonal Bianchi models,5] the
Jacobs[10] and Ruban[17] where a similar phenomenon casesy(d—) and x(d ) are recovered18] if Einstein’s
occurs. For a homogeneous magnetic field, the most generafjuations for the diagonal Bianchi IV and VIl models are
solution is found to be Bianchi-type Ill. Contrary to what taken into accountprimarily the Ry, constraint equation in
was found for the antisymmetric tensor field strength, thethe orthonormal frame which implies a solution which is
exceptional purely magnetic universes of Bianchi-type VI dosingular everywhepe For they(d—) case one must bear in
not contain as many free parameters as the Bianchi Il unimind that forY;,;=0 Eq. (25 implies Xy;,=0. Since we
verse. This might be related to the fact thats a three-form  started with a purely time-dependent potential, the case
and the homogeneous space is three dimensional, which im«(d?) is only partially recovered. However, in the other two
plies thatdH does not provide additional constraints on thecases the generality is not restricted by assuming a purely
purely spatial components d¢f, whereas in the case of a time-dependent potential.
Maxwell two-form, f, the differentialdf does give addi- Eight independent functions of three spatial variables
tional constraints on the purely spatial components involvingvere found to be required to characterize a general inhomo-
the group structure constants via the Maxwell equationgeneous solutions of the string field equations. This was
df=0=d* f. However, the number of free parameters in Bi- compared with the number required to specify each homoge-
anchi models in the cases of the homogeneous pure magnetieous Bianchi-type solution. It was found that the most gen-
fields and homogeneous antisymmetric tensor field strengtaral homogeneous solutions are of Bianchi-types Ill and
possess common features. In both cases the generality of tv¢,_, _,,, _,, and contain eight independent constants. This
solutions is the same in Bianchi-types IV, Mo _1> -, and  situation contrasts with that for spatially homogeneous
VIl 0 and the least general model is Bianchi-type V. vacuum and perfect-fluid universes in general relativity and
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