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We determine the most general form of the antisymmetricH-field tensor derived from a purely time-
dependent potential that is admitted by all possible spatially homogeneous cosmological models in~311!-
dimensional low-energy bosonic string theory. The maximum number of components of theH field that is left
arbitrary is found for each homogeneous cosmology defined by the Bianchi group classification. The relative
generality of these string cosmologies is found by counting the number of independent pieces of Cauchy data
needed to specify the general solution of Einstein’s equations. The hierarchy of generality differs significantly
from that characteristic of vacuum and perfect-fluid cosmologies. The degree of generality of homogeneous
string cosmologies is compared to that of the generic inhomogenous solutions of the string field equations.
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I. INTRODUCTION

The low-energy effective action of the bosonic sector of
string theory provides cosmological models that might be
applicable just below the Planck~or string! energy scale in
the very early universe@1#. A number of studies have been
made of these cosmologies in order to ascertain the behavior
of simple isotropic and anisotropic universes, investigate the
implications of duality, and search for inflationary solutions
@2–6#. Many of the traditional questions of general relativis-
tic cosmology can be asked of the cosmological models de-
fined by string theory: do they possess space-time singulari-
ties?, what is the generic behavior of the solutions at late and
early times?, what exact solutions can be found in closed
form?, and what relation do particular exact solutions have to
the general cosmological solution? Since this theory is to be
applied at times very close to the Planck epoch, it would be
unwise to make special assumptions about the form of the
cosmological solutions. Anisotropies and inhomogeneities
could play an important role in the evolution. Indeed, any
dimensional reduction process could be viewed as an ex-
treme form of anisotropic evolution in D dimensions in
which three spatial dimensions expand whilst the rest remain
static. Because of these irreducible uncertainties about the
very early Universe, one would like to understand the gen-
eral behavior of wide classes of solution in order to ascertain
the relative generality of any particular solution that may be
found. A number of studies have focused on obtaining par-
ticular solutions for~311!-dimensional space-times in cases
where spatial homogeneity~and sometimes also isotropy! is
assumed for the metric of space-time, where theH field is set
to zero@4#, or where theH field is included by assuming that
it takes a particular form which satisfies its constraints and
its equation of motion@5#. For example, Copelandet al. @2#,
discussed Friedmann and Bianchi-type I universes, allowing
*H to be time dependent or space dependent, respectively. In
a second paper@3#, they discussed Bianchi I solutions with a
homogeneous antisymmetric tensor field. In@6# ~see also@5#!
Batakis presented an overview of all possible configurations
of a ~spatially! homogeneousH field in diagonal Bianchi
models with a metric

ds252dt21a1~ t !
2~v1!21a2~ t !

2~v2!21a3~ t !
2~v3!2,

where$dt,va% is the standard basis. However, in this paper
the Bianchi models are not assumed to be diagonal.

The form of theH field derived from a time-dependent
potential will be determined in all four-dimensional space-
times with homogeneous three-spaces. These three-spaces
were first classified by Bianchi@7# and have been extensively
studied in the cosmological context following their introduc-
tion into cosmology by Taub@8#. They provide us with the
general class of cosmological models whose solutions are
determined by ordinary differential equations in time. By
generalizing a procedure used to study electromagnetic fields
in spatially homogeneous cosmological models by Hughston
and Jacobs@10#, we can determine the maximum number of
components permitted for theH field in each of the Bianchi
cosmologies. This enables us to determine the number of
degrees of freedom which define the string cosmology of
each case. The results are interesting. The Bianchi types con-
taining the most general geometries place the most restric-
tions upon the presence of theH field.

The string world-sheet action for a closed bosonic string
in a background field including all the massless states of the
string as part of the background is given by@1#,

S52
1

4pa8
E d2s@Ahhab]aX

m]bX
ngmn~Xr!

1eab]aX
m]bX

nBmn~Xr!1a8Ahf~Xr!R~2!#, ~1!

wherehab is the two-dimensional world-sheet metric,R(2)

the world-sheet Ricci scalar,eab the world-sheet antisym-
metric tensor, Bmn(X

r) the antisymmetric tensor field,
gmn(X

r) the background space-time metric~graviton!,
f(Xr) the dilaton,a8 the inverse string tension, and the
functionsXr(s) map the string world-sheet into the physical
D-dimensional space-time manifold.

For the consistency of string theory, it is essential that
local scale invariance holds. Imposing this condition results
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in equations of motion for the fieldsgmn , Bmn , andf which
can be derived to lowest order ina8 from the low-energy
effective action

S5E dDxA2ge2fSR1gab]af]bf2
1

12
HabcHabc2L D .

~2!

In this paper we assume a vanishing cosmological con-
stantL.

In a cosmological context it is generally assumed that by
some means, all but 4 of the 10 or 26 dimensions of space-
time are compactified, leaving an expanding~311!-
dimensional space-time (D54). Since we are interested in
cosmological solutions of the field equations derived from
the variation of this action, we adopt the Einstein frame by
making the conformal transformation

gab→e2fgab . ~3!

In this frame the four-dimensional string field equations
and the equations of motion are given by~indices run
0<a,b,c<3 and 1<a,b<3)

Rab2
1

2
gabR5k2~ ~f!Tab1

~H !Tab!, ~4!

¹a~e
22fHabc!50, ~5!

hf1
1

6
e22fHabcH

abc50, ~6!

where k258pG is the four-dimensional Einstein gravita-
tional coupling and

~f!Tab[
1

2 S f ,af ,b2
1

2
gabf ,cf

,cD , ~7!

~H !Tab[
1

12
e22fS 3HacdHb

cd2
1

2
gabHmlkH

mlkD . ~8!

The three-geometries of the nine spatially homogeneous
cosmological solutions of these equations are defined by the
Bianchi classification of homogeneous spaces~with the ex-
ception of the Kantowski-Sachs universe@9#, which has a
four-dimensional group of motions, but no three-dimensional
subgroup!. In these Bianchi models~e.g.,@13#! the spacelike
hypersurfaces are invariant under the groupG3 of isometries
whose generators are three Killing vectorsja . These hyper-
surfaces can be described by an invariant vector basis$Xa%
satisfying

Ljb
Xa5@jb ,Xa#50,

whereLjb
is the Lie derivative in the direction ofjb . The

timelike directionX0 is chosen to be orthogonal to the in-
variant spacelike hypersurfaces obeying

Ljb
X05@jb ,X0#50.

Dual to $Xa% is the basis of one-forms$vm% satisfying

dvm5
1

2
Ckl

m vk`vl.

Spatial homogeneity is expressed by the following condi-
tions onf, g, andH :

Lja
f50,

Lja
g50,

Lja
H50⇒Lja

~*H !50.

The definition and properties of the Lie derivative imply
that Lja

f5jaf50. Expanding *H in the invariant basis

~that is, *H5V0X01VaXa), and using its properties, im-
plies thenjaV

050 andjaV
b50. The Killing vectors in the

Bianchi models are spacelike and time independent and this
then implies thatf andH are functions of time only in the
standard basis$dt,va%. Furthermore, the antisymmetric ten-
sor potentialB whereH5dB will be assumed to be a func-
tion of time only.

We would like to know the general algebraic form of the
H field with a time-dependent potentialB in these models,
determine which Bianchi universes are the most general, and
discover whether the assumption of spatial homogeneity re-
duces the number of independent pieces of Cauchy data be-
low the number needed to specify a generic inhomogeneous
solution of the field equations~4!–~8!. This analysis of the
allowed components of theH field is most economically
performed using differential forms.

II. THE ANTISYMMETRIC TENSOR FIELD
AS A TWO-FORM

There are three equations determining the antisymmetric
tensor field: the definition of its field strength~for a closed
bosonic string!

H5dB, ~9!

which implies the second equation

dH50, ~10!

and there is the equation of motion~5!,

d~*H !22~df!`~*H !50. ~11!

Spatially homogeneous models are described by choosing
an orthonormal tetrad,

ds25habs
asb, ~12!

wherehab5diag(21,1,1,1), and specifying the one-forms
sa @10,13# as

s05N~V!dV,

sa5e2Vbb
avb. ~13!

Here, theva obey the algebra
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dva5
1

2
Cbg

a vb`vg, ~14!

whereCbg
a are the structure constants of the possible isom-

etry groups which define the homogeneous three spaces, and
the bb

a are symmetric matrices which depend only on the
time coordinateV. SinceB is a two-form, it can be decom-
posed as

B5B0as0`sa1Babsa`sb5Q0kdV`vk1Skmvk`vm,
~15!

where

Q0k~V![NB0ae
2Vbk

a , ~16!

Skm~V![e22VBabbk
abm

b . ~17!

Hence,H5dB is given by

H5SSabuV2
1

2
Cab

k Q0kDdV`va`vb

1
1

2
SkmCab

[k vm]`va`vb. ~18!

This expression can be analyzed further if we introduce the
Ellis-MacCallum @11# decomposition of the structure con-
stants into the matrixmab and the vectorab ,

Cab
g 5eabmm

mg1db
gaa2da

gab , ~19!

so Eq.~18! becomes

H5SSabuV2
1

2
Cab

k Q0kDdV`va`vb

12aaSkmvm`va`vk. ~20!

The structure constants satisfy a Jacobi identity which leaves
Cab

g with a maximum of six independent components. Since
the Lagrangian is invariant under the gauge transformation
Bab→Bab1] [aLb] , we can always chooseL such that
Q0k52] [0Lk]52]0Lk , and setQ0k to be zero.

The 9 Bianchi-type universes fall into two classes, A and
B, distinguished by whether the constantab is zero or non-
zero, respectively@11#. From Eq.~20! we see thatH has no
purely spatial components in class A models.

H is also given by

H5Habcs
a`sb`sc

5H0abs0`sa`sb1Habgsa`sb`sg

5X0kldV`vk`vl1Yklmvk`vl`vm, ~21!

where

X0kl5X0kl~V![Ne22Vbk
abl

bH0ab , ~22!

Yklm5Yklm~V![e23Vbk
abl

bbm
gHabg . ~23!

Therefore,dH50 implies

YklmuVdV`vk`vl`vm

1
1

2
X0kl~Cab

k vl2Cab
l vk!`va`vb`dV50. ~24!

Using the expression~19! for the structure constants, and
noting that the three-dimensional Levi-Civita symbol is de-
fined bye5Adetgabv1`v2`v3, Eq. ~24! becomes

~YklmuV22X0mkal!dV`vk`vl`vm50. ~25!

The dual, *l, of an n-dimensionalp-form l is defined by
the Levi-Civita symbol as@12#

* lb1•••bn2p
5

1

p!
la1•••apea1•••apb1•••bn2p

.

Hence, *H is a one-form given by

*H5
1

6
Hbcdebcdas

a5UdV1Vava, ~26!

where

U[U~V![
1

6
Habgeabg0N, ~27!

Va[Va~V![
1

6
Habceabckba

ke2V, ~28!

and so

d*H5VauVdV`va1
1

2
VaCbg

a vb`vg. ~29!

Since f5f(V), we havedf5f uVdV and Eq. ~11!
reads

~VauV22f uVVa!dV`va1
1

2
VaCbg

a vb`vg50;

~30!

hence,

VauV22f uVVa50, ~31!

1

2
VaC[bg]

a 50. ~32!

Notice that the constraint~32! is preserved in time. Con-
tracting Eq.~31! with C[bg]

a gives (VaC[bg]
a ) uV50 so that if

Eq. ~32! is satisfied at one time, it holds at all times. Equa-
tion ~32! implies

ebgdVaCbg
a 50, ~33!

which can be rewritten as

Va~mda1abebad!50, ~34!

and so, by Eq.~20!, we have

H5X0kldV`vk`vl1Ymakvm`va`vk, ~35!
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with

X0kl5S[kl] uV2
1

2
C[kl]

n Q0n and Ymak52a[aSkm] .

~36!

Equation~25! implies

C[mk
a al]Q0a50, ~37!

and Eq.~31! can be integrated to give

Va5e2fKa , ~38!

whereKa is a constant spatial three-vector of integration.
Since *(*H)5H, we have

X0ab52e0abgVg

5e0abge2fKg , ~39!

where the minus sign has been absorbed into the constant
spatial three-vectorKg .

Table I displays the restrictions on the spatial components
of *H imposed by the constraint Eq.~34! for the different
Bianchi types@11,13#, together with the components of the
homogeneous antisymmetric tensor field strengthH in the

TABLE I. Summary of the possible components of the homogeneous antisymmetric tensor field strength
and degrees of freedom. The different variables are explained in the text.

Bianchi Type aa m Va X0ab Y123 p r u N

X0125e2fK3

I 0 0 Vaarb X01352e2fK2 0 0 3 0 6
X0235e2fK1

V150 X0125e2fK3

II 0 diag~1,0,0! V2arb X01352e2fK2 0 3 1 1 6
V3arb X02350

V150 X0125e2fK3

VI 21 0 m52a V250 X01350 0 5 0 2 6
V3arb X02350

V150 X0125e2fK3

VII 0 0 diag(21,21,0) V250 X01350 0 5 0 2 6
V3arb X02350

V150 X01250
VIII 0 diag(21,1,1) V250 X01350 0 6 0 3 6

V350 X02350

V150 X01250
IX 0 diag(1,1,1) V250 X01350 0 6 0 3 6

V350 X02350

V150 X0125e2fK3

III 2
1
2d3

a 2
1
2a V2arb X01352e2fK2 2S12 5 0 0 8

V3arb X02350

V150 X0125e2fK3

IV 2d3
a diag~1,0,0! V250 X01350 22S12 5 0 1 7

V3arb X02350

V150 X0125e2fK3

V 2d3
a 0 V250 X01350 22S12 3 0 1 5

V3arb X02350

h50 V150 X0125e2fK3 5 0 0 8
VI hÞ21 2

1
2(h11)d3

a 2
1
2(h21)a V2h50 Xh50

013 52e2fK2 2(h11)S12
hÞ0,2 1

2,22 XhÞ0
013 5 0 5 0 1 7

h52
1
2,22 V3arb X02350 5 1 1 8

V150 X0125e2fK3

VII hÞ0 2
h

2
d3

a diag(21,21,0) V250 X01350 2
h

2
S12

5 0 1 7

1
h

2
a

V3arb X02350
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standard basis$dV,va% which are given by Eq.~35!. Note
that in class A, Eq.~36! impliesY12350, and the contravari-
ant components ofYabg are obtained by raising the indices
usinggab given by

g0052N2~V!, ~40!

gab5e22V(
g

ba
gbb

g . ~41!

In class B, Eq.~36! implies thatY12352a[2S31]52a3S12.
The matrixa which specifies the Ellis-MacCallum symbol
m5mab is defined by@11#, the matrix

a5S 0 1 0

1 0 0

0 0 0
D . ~42!

III. COUNTING DEGREES OF FREEDOM

Consider first the question of how many independently
arbitrary spatial functions are required to specify generic ini-
tial data for the system of string field Eqs.~4!–~8!. In a
synchronous frame we require 6gab , 6 ġab , 3 components
of the H field, together with values off and ḟ. This
amounts to 17 functions, but we can remove 4 by using the
coordinate covariance of the theory, another 4 by using the
R0a constraint equations, and another 1 by using thef Eq.
~6!. This leaves eight independent functions of three spatial
variables to specify a general solution of the field Eqs.~4!–
~8!. If special symmetries are assumed for the solutions of
the field equations, then some of the metric components and
their time derivatives may be absent but some of the alge-
braicR0a constraints may be identically satisfied. As a result,
the number of functions characterizing the most general so-
lution compatible with some symmetry may be specified by
fewer functions~or by lower-dimensional functions! than the
general solution.

Spatially homogeneous cosmological models will be de-
termined by some number of independently arbitrary con-
stants rather than spatial functions. If spatially homogeneous
string cosmologies are representative of the most general in-
homogeneous string cosmologies, then it is necessary~al-
though not necessarily sufficient! that they be characterised
by eight independent arbitrary constants. When theH field
vanishes in Eqs.~4!–~8!, so they reduce to Einstein’s equa-
tions for a free scalar field, the number of arbitrary functions
required to characterize the general inhomogeneous solution
equals the number of constants required for the general ho-
mogeneous solution. This equivalence also holds for Ein-
stein’s equations with a perfect fluid~or in vacuum!, where
eight ~or four! functions specify a general inhomogeneous
solution and eight~or four! constants specify Bianchi-types
VI h , VII h , VIII, and IX @15,16#. We shall now investigate
the degree of generality of the different Bianchi-type solu-
tions of the string field equations when theH field is present.

In order to determine how many free parameters are al-
lowed in the different Bianchi models, consider the field Eqs.
~4!, for spatially homogeneous universes in the standard ba-

sis $dV,va%. The components of the Ricci tensor are given
by @14#

R0052 u̇2uabuab, ~43!

R0a53agua
g2aau1egatm

tbub
g , ~44!

Rab5 u̇ab1uuab22uagub
g1Glg

g Gab
l 2Glb

g Gag
l 1Cgb

k Gak
g ,
~45!

where uab5 1
2gabuV , u[ua

a, and the Ellis-MacCallum pa-
rametrization~19!, has been used to express the spatial cur-
vature terms in Eqs.~44! and ~45!.

The string field equations give ten equations for the six
components of the symmetric metricgab , so there are at
most four constraint equations. The initial data forgab con-
sist of 12 independent constants: 6gab and 6ġab . These are
reduced by (92p11) due to the fact that there are
92p11 parameters of triad freedom to put the group struc-
ture constants into their canonical Ellis-MacCallum form
@14#. The parameterp is the number of independent group
structure constants and 0<p<6. Their values are given be-
low, and in Table I, for each Bianchi group type. The num-
ber of independent constants is reduced by a further 42r
due to the constraint equations, wherer counts the number of
field equations satisfied identically. Hence, a total of
122(92p11)2(42r )5p1r22 independent constants
specify the general solution to Eqs.~4!–~8! for spatially ho-
mogeneous universes. To calculater we must check if any of
the field equations are identically satisfied due to a particular
choice of the group structure parametersab andmab . From
Eq. ~7! it is clear that the dilaton’s contribution to theR0a
equations vanishes identically. The contribution of theH
field is determined byH0cdHa

cd , but we know from Eqs.
~35!–~36! thatH0cdHa

cd52X0bgYabg , hence,R0a50 for
all class A models.

The equations of motion forH and the constraints they
impose have been discussed in Sec. II; Table I gives the
number of free parameters, 32u, needed to specify initial
data forH for each group type. The initial conditions for the
dilaton f require two further independent constants,f and
ḟ, while Eq. ~6! determines the dynamics off. Therefore,
the general spatially homogeneous solution~s! to Eqs. ~4!–
~8! contain

N[31p1r2u ~46!

independent arbitrary constants. Using the constraint Eqs.
~34! and ~44!, we can evaluatep, r , u, andN ~Bianchi
type! explicitly as follows~the values of these parameters are
summarized in Table I!.

A. Class A models

Bianchi I: R0a50, hence r53, p50, u50, and
N(I )56.

Bianchi II: R0150, R0252u1
3 , R035u1

2 , hence,r51,
p53, u51, andN(II )56.

BianchiVI21: R0152u1
3, R025u2

3 , R035u1
12u2

2, hence,
r50, p55, u52, andN(VI21)56.
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Bianchi VII 0: R0152u2
3, R025u1

3, R035u2
12u1

2, hence,
r50, p55, u52, andN(VII 0)56.

Bianchi VIII: R015u2
32u3

2 , R025u1
31u3

1 , R0352u1
2

2u2
1, hence,r50, p56, u53, andN(VIII )56.
Bianchi IX: R015u2

32u3
2 , R025u3

12u1
3 , R035u1

22u2
1,

hence,r50, p56, u53, andN(IX)56.
Hence, all class A models are equally general according

to the parameter-counting criterion.

B. Class B models

Bianchi III: R01522u1
3 , R0252u2

3 , R035u1
12u3

3, hence
r50, p55, u50, andN(III )58.

Bianchi IV: R01523u1
3 , R02523u2

32u1
3 , R0352u3

3

1u1u1
2 , hence,r50, p55, u51, andN(IV)57.

Bianchi V: R01523u1
3 , R02523u2

3 , R0352u23u3
3 ,

hence,r50, p53, u51, andN(V)55.
Bianchi VIhÞ21: R0152(h12)u1

3 , R0252(2h11)u2
3 ,

R035u1
11hu2

22(h11)u3
3 . For special choices ofh, either

R01 or R02 can be made to vanish identically. The two
choices are eitherh522 or h52 1

2, @15#, so that
r (h522)5r (h521/2)51. Therefore, we have three
cases,

~i! h50:r50, p55, u50, andN(VI0)58, ~ii ! hÞ0,
hÞ22, andhÞ2 1

2:r50, p55, u51, andN(VIh)57, ~iii !

h522, or h52 1
2 :r51, p55, u51, andN(VIhÞ22,21/2)

58.
Bianchi VII hÞ0: R0152hu1

32u2
3 , R025u1

322hu2
3 , R03

5u2
12u1

21hu2
22hu3

3 . Sinceh is a real parameter, there are
no exceptional cases; hence,r50, p55, u51, and
N(VII h)57.

This analysis of class B models indicates that they are
described by more free parameters than those of class A and
the different class B models are not equally general like
those of class A. Thus, the most general spatially homoge-
neous solutions of the string Eqs.~4!–~8! are those of
Bianchi-types III and VIh50,21/2,22 . These cosmological
models contain the maximum number of eight free param-
eters. These results can be compared with the study of ho-
mogeneous pure magnetic or pure electric fields in general-
relativistic Bianchi universes carried out by Hughston and
Jacobs@10# and Ruban@17# where a similar phenomenon
occurs. For a homogeneous magnetic field, the most general
solution is found to be Bianchi-type III. Contrary to what
was found for the antisymmetric tensor field strength, the
exceptional purely magnetic universes of Bianchi-type VI do
not contain as many free parameters as the Bianchi III uni-
verse. This might be related to the fact thatH is a three-form
and the homogeneous space is three dimensional, which im-
plies thatdH does not provide additional constraints on the
purely spatial components ofH, whereas in the case of a
Maxwell two-form, f , the differentiald f does give addi-
tional constraints on the purely spatial components involving
the group structure constants via the Maxwell equations
d f505d* f . However, the number of free parameters in Bi-
anchi models in the cases of the homogeneous pure magnetic
fields and homogeneous antisymmetric tensor field strength
possess common features. In both cases the generality of the
solutions is the same in Bianchi-types IV, VIhÞ0,21/2,22 and
VII hÞ0 and the least general model is Bianchi-type V.

The hierarchy of generality in the string cosmologies has
several interesting features when compared with the situation
of vacuum and perfect-fluid universes in general relativity.
The most general category of eight-parameter models~types
III and VI h50,21/2,22) does not contain closed universes
~i.e., type IX! as in general relativity, nor does it contain any
types which contain isotropic universes as particular cases
~i.e., types I, V, VII0 ,VII h , or IX!. Isotropy is not an open
property of homogeneous initial data space. This is related to
the fact that theH field is an anisotropic stress: the isotropic
limit cannot be obtained with a nonzeroH field. This means
that the isotropic Friedmann universes appear to be even less
representative of the general behavior of cosmological mod-
els in string theory than they are in general relativity. How-
ever, a similar situation can arise in general relativity when
anisotropic stresses are included.

IV. CONCLUSIONS

The equations that determine the antisymmetric tensor
field in low-energy effective string theory have been inves-
tigated in spatially homogeneous Bianchi-type universes. It
is found that the homogeneous three-formH with a homo-
geneous potential can have at most three nonvanishing com-
ponents. The number of allowed components were fully clas-
sified in Table I. In Bianchi class A models the field strength
H has no purely spatial components in the standard basis.
Bianchi-types VIII and IX allow only a time-independent,
antisymmetric tensor field,Bmn , which implies a vanishing
field strengthH. In the case of Bianchi IX this can be under-
stood in geometrical terms. Each of the Bianchi models cor-
responds to a group of motions or isometries of spatial hy-
persurfaces. In the case of Bianchi IX this group is
isomorphic to SO~3,R!, which is isomorphic to the three-
dimensional rotation group. Since the dual of the antisym-
metric tensor field strength,H, is a vector, one of the spatial
directions is picked out and this is incompatible with the
rotational invariance.

In comparison with Batakis’ findings on the possible con-
figurations of theH field ~not necessarily derived from a
homogeneous potential! in diagonal Bianchi models@6,5# the
casesx(d→) and x(d↗) are recovered@18# if Einstein’s
equations for the diagonal Bianchi IV and VII models are
taken into account~primarily theR12 constraint equation in
the orthonormal frame which implies a solution which is
singular everywhere!. For thex(d→) case one must bear in
mind that forY12350 Eq. ~25! implies X01250. Since we
started with a purely time-dependent potential, the case
x(d↑) is only partially recovered. However, in the other two
cases the generality is not restricted by assuming a purely
time-dependent potential.

Eight independent functions of three spatial variables
were found to be required to characterize a general inhomo-
geneous solutions of the string field equations. This was
compared with the number required to specify each homoge-
neous Bianchi-type solution. It was found that the most gen-
eral homogeneous solutions are of Bianchi-types III and
VI h50,21/2,22, and contain eight independent constants. This
situation contrasts with that for spatially homogeneous
vacuum and perfect-fluid universes in general relativity and
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for degenerate string cosmologies withfÞ0 andH50. In
these cases, the most general universes are of Bianchi-types
VI h , VII h , VIII, and IX. WhenHÞ0 we find a change in
the relative degrees of generality that is analogous to that
found in the case of spatially homogeneous general relativ-
istic universes containing pure magnetic fields.
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