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The derivative expansion of the effective action for field theories with spontaneous symmetry breaking has
a variable expansion parameter which may become locally infinite. To circumvent this difficulty, | propose an
alternative expansion series in which the series expansion is simultaneously developed in order of the number
of derivatives of the field and in powers of the deviation of the field from its ground-state value. As an
example, | have applied this new method to calculate the quantum correction to the energy(bf ihe
dimensional soliton in various models which have been well investigated previously. The expansion series are
calculated usingnATHEMATICA to 14 terms. For the models in which exact solutions have been found, such as
the sine-Gordon solitong* soliton, and¢* soliton with a fermion loop, the new improved series can be
recognized as well-known analytically summable series. The complete results of exact solutions are recovered.
More importantly, for the cases where exact solutions may not be available appoeximants or the Borel
summation can be used as an efficient method to provide an excellent approximation, in contrast with cum-
bersome numerical calculations. The Christ-Lee soliton andsthbag are used to illustrate this approxima-
tion. We also derive a compact hybrid formula in closed form to estimate the quantum correction to the static
energy of thg1+1)-dimensional field. This new method can be easily extended to higher dimensions as well
as other important applications such as vacuum tunneling, Skyrmion physickS@5&6-282197)06210-3

PACS numbd(s): 11.10.Lm, 11.15.Kc

I. INTRODUCTION ticular in the case of a scalar field with spontaneous symme-
try breaking, the coefficients of the derivative expansion may
In local quantum field theory, short-distance effects comede infinite term by ternj9-13,17,18
primarily from heavy particles, confining fields, and the In this paper, we propose that, in the case of spontaneous
higher frequency parts of the quantum fluctuation of the lightSymmetry breaking, the conventional derivative expansion of
particles. In the low-energy limit, it may be more convenientthe effective action should be replaced by a new improved
to eliminate those degrees of freedom not directly observabl@XpPansion series which incorporates the derivative expansion
and incorporate their effects into an effective action of thewith additional expansion described below. To avoid unnec-

observable low-energy fields. The expansion of this nece€SSary complications, we shall not include internal symmetry

sarily nonlocal effective action into an infinite series of local " thiS Paper. : . .
action in terms of the number of derivatives of the local In most of the local quantum field theories, the calculation

fields is known as the derivative expansion of the effective]f)f the one-loop effective action ib dimensions can be ef-
action[1-8,15,16, ectively reduced to the calculation of the derivative expan-

In the 1970s, the leading term of the derivative expansion,SIOn of the actior3],

the effective potential, was used to understand the dynamics _

of spontaneous symmetry breaking in local-field theories. In u]= I—TrInG(u)*l

the 1980s, with increasing interest toward effective theories 2 '

with higher derivative terms, such as topological anomalies,

Skyrmion physics, the strqngly interacting Higgs sector OfwhereG, in coordinate representation, is given by

the standard model, etc., important progress was made to-

ward an efficient derivation of the derivative expansion of

the effective action by integrating out the nonobservable

guantum degrees of freedom associated with short-distant d®p .

dynamics[1—4]. =fw[&§+ u(x)Je’P =y, 1)
However, as a functional series with no detectable pattern

of regularity, the derivative expansion is very complex with

no obvious parameter of expansion. The convergence of thEhe derivative expansion is a functional series ugk).

series has not been thoroughly investigated. In spite of itéligher power derivative terms must be balanced by an ap-

many possible applications, use of the derivative expansiopropriate inverse power af(x). In order for the derivative

is severely restricted because the series does not converggpansion to converge, it is necessary for the functix)

fast enough or diverge in interesting cases. Important exto be a slowly varying function for alk such that higher

amples are vacuum energy in the presence of backgrourdkrivatives become smaller and smaller. More importantly,

fields and quantum correction to the soliton energy. In paru(x) cannot pass through zero to become negative. The latter

G Yx,y)=[ 32+ u(x)]8°(x—y)
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case indeed occurs in field theories with spontaneous sym- In this paper, in order to illustrate the spirit and the power
metry breaking. Associated with the spontaneous symmetrgf this new development, we apply this method to the calcu-
breaking is the asymmetric vacuuiground statesuch that lation of the one-loop quantum correction to tke+1)-
dimensional (with no internal symmetry static soliton in
various models, in which extensive works on exact solutions
and numerical solutions have been carried[@413,17,18
For the models in which exact solutions have been found,
If u(x) is a slow-varying function for alk, the finite differ- ~ SUCh as the sine-Gordon soliton, thf soliton, and the
enceU (x) =u(x)— M2 should also be small. fermion-loop _contnbutlon to theb _sollton, we are aple to .
deduce a unique pattern of the improved expansion series

Therefore, we propose thatconsistent expansion in this . . . .
case should be a double expansion series expanding simuﬂ‘pd' therefore, succeed in resumming the series to obtain the

taneously in powers of the derivative as well as in powers ofXact results. More importantly, in the cases where exact

U(x). The expansion parameter can now be readily idemi_solutions may not be available, well-known analytic continu-

fied. The large cancellations between the terms in the doupf@tion techniques such as the Paadmrc.)x]mant or the Borel
expansion render the expansion a much better-behaved ser mation can be u.sed as avery eff|C|ent.metho.d o provide
so that an exact or approximated analytic continuation of th&" excellent approx[matlon, n cpntrast with re]ymg on the
series is possible, if the series is not already convergent. As $imPersome numerical calculations. The fermion-loop con-

. 4 . . . -
side benefit of this double expansion, the expansion is mucfiioution to the 4™ soliton mass with the exact solution is
simpler to carry out. This improved expansion not only cir- used to test the approximated analytic continuation method.

cumvents some outstanding difficulties concerning the Con'_l'gen, we apply the method to the Christ-Lee soliton and the

vergence of the expansion series when applied to theories

spontaneously broken symmetry but also leads to a well- Finally, we de_rive a useful hybrid formula to estima_te t_he
defined path of analytic continuation of the series. quantum correction to the vacuum energy of the static field

The simplification of our formulation of the derivative using the ggne'ralized derivative expan§ion series up'to only
expansion is based on a hybrid approach that the effectivif1® two-derivative terms and the low-lying pole energies.
action is kept in a configuration representation while the loop
integration is performed conveniently in the momentum rep-
resentation. The calculation of the effective action is essen-
tially the calculation of the sum of vacuum graphs of a par-  Following from Eqg.(1) and commuting the exponential
ticle propagating in the potential of an external backgroundrom the left to the right of the differential operator, we have
field. The generalized derivative expansion is essentially 3]
high-loop-energy expansion series of the effective action.

The analytic properties of the loop-energy integrand in the

. H D
complex energy plane is well known from study of the po- [u]= Iif 4Px dWF)JD IN[(9+ip)2+u(x)]

xIimcu(x)=M2>O. 2

1. AN IMPROVED DERIVATIVE EXPANSION

tential scattering and they can be used as additional con- (4

straints for the analytic continuation of the generalized de- b

rivative expansion series by the Pad@proximation. In :J dPx d In[ — p2—ie+u(x)+2ip- a+ 2]
addition, we propose that the dominant contributions from (4m)° '
the low-lying poles can be conveniently isolated such that 3)

the convergence of the analytic continuation of the remain-
ing generalized derivative expansion series shows orders of
magnitude improvement. The recognition of these propertiedhe conventional derivative expansion can be obtained by
in the loop-energy space provides a hitherto completely unexpanding the logarithmic function in power series of the
exploited powerful tool which can turn the derivative expan-operator (2p-d+ 3%). Special care must be taken for the
sion into a genuinely useful method of computation. noncommutivity between the two operators 29+ 4%) and

We have carried out the complete implementation of thisu(x). The p integration can be performed to give
approach for static background fields and have successfully
calculated the energy for a large collection of modelgIof
+1)-dimensional solitons. The calculations, which include
up to 22-derivative terms in the expansion, using the Pade
approximant of the analytic continuation, were performed
using theMATHEMATICA program[14]. The capability to do %
most parts of the calculations analytically and interactively is
most important for the successful implementation of this pro-

D 1
_ _\|,Dl2p —
F( 2)u +12F

D 1 D
3- 5) u=3*P2(g9 u)?+ —r( 6— —)

1 D
F[U]wa d"x

288 2

gram both in understanding the physics and in the improve- XU~ 8Py u)+ ir 4— E)
ment of the approximation. This new method opens up the # 120 2
possibility of asking some more fundamental questions, such 1 D
as whether one can define the effective potential more mean- xu~ 4t D/Z((yaaﬂu)z_ _1“< 5— _>
ingfully using some test spatially varying background fields, 7?2 2

in the region when the conventional effective potential is not

well defined for a constant background field. Xu~3P2y29Pug udzu |+ 0(°). (4)
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This expansion has been calculated'?). It is clear that '
if the functionu(x) crosses from a positive value to a nega-
tive value through the point zero, the expansion series would
definitely be invalid. It is also not clear how to analytically
continue this functional series.

u(x) can cross zero in a number of contexts. The most
interesting case is the spontaneously symmetry-breaking .
case in whichM? in Eq. (2) is positive and nonzero. The @ e
appropriate expansion should be a double expansion which i 7 %
includes the derivative expansion and the Taylor series ex-
pansion ofu(x) aboutu(x)=M?2. In principle, the double
expansion can be achieved by further expanding (Egin
Taylor series olJ(x)=u(x)—M? to give
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1 FIG. 1. Singularities and contour paths in the complex plane.
XM~2tPy+ 5T

2 E) M74+DU2
2
Fi[U]=—<Jdt)E[U], @

1 D\
+1_2F(3_§>M P[-2U%+(9,0)%] and identify the one-loop quantum correction to the field
energy for a static field configuration:
D
+—I‘<4—§)M8+D[—5U4—10U(ﬁﬂU)2 i (» do A
E[U]=— —f ﬂTrln[—wZ—ieJr M?2=V2+U(o(x))].

2)_
®

This integral is in general divergent and requires subtractions
to render it finite. With this subtraction understood and to be

The gxpansion parameter can now be identifie_d to he?1/ defined later, we can perform integration by parts for ¢he
The first few terms can be used to isolate the divergent termi?ﬁtegration'

to be used for renormalization.

However, it is more convenient as well as more correct to
develop the double expansion directly from E). It is [~ do
much easier to keep track of the higher order terms and the E[UJsup= 1 fﬁmﬁ“’ r
analytic property in momentum space is much better under-
stood. We can rewrite Eq3),

+(aaaﬂU)2]+0(M—1°+D)]. (5)

1

X T ier MZ—V21 U((x))

.9

sub

i
Ifu]= ETrInG*l Throughout this paper we will refer energ¥) or soliton
energy to mean the one-loop quantum correction to the
vacuum energy of the static background field, unless it is

H D
:'_J d_XDdem{_ p?—ie+M?2 otherwise specified, such as classical eneffy,{sc.). The
2) (4m) trace may be evaluated by solving the quantum-mechanical
problem of the Hamiltoniamd = — V2+ U (¢(X)).
+[U(x)+2ip-a+ 3]}, (6) In Fig. 1, we plot the singularities of the trace function

) _ ) ) and various contour paths af integration in the complex
and expand it as a power series [i(x)+2ip-d+d°]. 4 plane. The branch cuts extend frafM to +c along the
Since we are expanding the only operator in the expressionea| axes. Betweer M andM are the discrete bound state

there is no complication because of noncommutativity. poles atw; . Along the imaginary axes are pole§<0. The
path C is the original contour. With an appropriate subtrac-

ll. QUANTUM CORRECTIONS TO THE VACUUM tion, the contoulC can be deformed to the pa@t along the
ENERGY OF STATIC BACKGROUND FIELDS imaginary axes. This path of integration is particularly useful

. . _ _ to evaluate the integral when there is no pole on the imagi-
In this paper we shall consider exclusively the time-p,. aves In this case the integral is dominated by the
independent background field(¢(x)). We decompose the  owest-lying bound state pole on the real axes.
momentum vectop ,= (w,p) and effectivelyd,— (0,V). In This contour may also be deformed to the cont
that case we can factor out the constant time integration, consisting of a set of contours encircling clockwise around
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poles at the negative imaginary axes and a contour pathigh-energy expansion. Since the integrand in#&@) is not
wrapping around singularities on the positive real axes. Than analytic function ofv, it cannot be analytically continued
w integration along the real axes becomes the integration ab the complexw plane.
the discontinuity(imaginary part of the integrand in the In the case of absence of any pole on the imaginary axes,
physical regior[19]: a more appropriate contour path in the compieplane for
the w integration would be the conto@: (w=iwg) along
the imaginary axes far away from any singularity. Equation

[ (*dw
E[U]=~ 521-: || +2i J;) EwZImTr (9) becomes
© dw 1
! E[U]:_f EwéTr 7_: 7_v2
TV U0, A LM U0,
_i_ , 100 In this paper the final evaluation @ integrations will be
E |w1|+0<;<M 2w~ M) performed using this pathQg) while the physical variable

o will be used for intermediate expressions.
In this paper we shall show that our generalized derivative
, (100  expansion can provide a powerful method to evaluate the
sub expression in Eq(9). This method can equally be adopted
for other quantum-mechanical problems. The trace in(8g.
can be evaluatefB]:

f —2w 9o sz S(®?)

where §, is the phase shift for thk channel.
While the eigenvalues of the Hamiltonian are relatively
simple to calculate numerically, the numerical evaluation of

the phase shift for a continuous distribution @f can con- = de dxdp
sume an enormous amount of computer time, especially fore[y]= _|J —o? | =—p=1
large w? where numerical accuracy suffers because of large —a 2 (2m)
cancellations. A hybrid method has been suggested in which

the w integration is performed using the conventional ap- 1

proach from the threshol®! up to a certain value\ and X
then fromA to oo using the first two terms of the derivative
expansiorf13]. The convergence of the derivative expansion
series may be rather poor for some background fields. It is (12)
also not clear how to choose the artificial divisianto op- After  expandi h . d i f
timize the calculation. panding the mtegran in power O
In the physical region, the conventional derivative expan[U(X) 2ip-V-V?)/(~w?~ie+p?+M?) and integrating
sion is equivalent to the WKB approximation which is a overp, we obtain

—w?—ie+p2+M2+[U(X)—2ip-V—V?]

sub

E[U]=i w?73?A(2), 13

.27

1
—w2—ie+MZ=VZ+U(g(X))

A(z)=—z¥2Tr

sub

1 = 5-D 1 (7-D 1_(9-D
———W[(Dl),zlf_xdx[—l“<—2 )UZl—D/2+§r(—2 )uzzz—f”z—l—zr(—z )[2U3+Ui2]z3"3/2

4
1 — I — 11-b 5U%+10UU2+U%]z4 P2— 1 T 13-D 42U°%+21002U%+70U;U;U
120 [ i1z 5020 | 2 L i Rdhgl
1 15-D
+420U7 +3Uf, J2° P2+ 30240F( )[42u6+42cu3u +4200U;U;U;; + 1260207 + 18UU5,

: (14)

sub

+108U7U T+ 22U U U ji + 84U U Uy + UF 1287 P2+ O(z7D’2)}
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whereU; ..., =V, ---V, U andA(z2) is expanded in power Mmension, has a branch cut above the threshdid The
o ! n branch cut would represent the continuum contribution. It is

series of : . -
not possible to separate from this term the pole contribution
1 1 and the cut contribution analytically.
= - . o )
2= T T e M2 wZ et MZ (195 o L/\(/ae define the contribution of each palg<M? to A(z)

The coefficient of the" term contains terms up to and in-

cluding one term with 2—4+ D derivatives. Integration of a(wZ;wiZ,MZ): _(
x by part has been performed repeatedly on this coefficient to

arrive at this unique representation such that there is no mo
thann— 2+ D/2 derivatives on eachl and there is no con-
traction between derivative components on the same

(_ wi2+ M2)3/2

—w’—iet o)

(18

r _ - . .
Igor M?>w?>0, its contribution to the soliton mass is

2

In the region of integratiorl) is mostly negative. There is E (w2 ,M2)=— i\/m( 1— Lz
a large cancellation among these terms. As the power of P ™ ' M?— i
increases, the number of terms and, therefore, the degree of 5
cancellation also increase accordingly. For the examples of % arcta M*— o ) (19)
(1+1)-dimensional soliton in this paper, the degree of can- wiz '
cellation can be as big as an extra order of magnitude for
each higher order ia. The w integration has been performed with cont@g along

For reference purposes, we find it convenient to characthe imaginary axes. It is interesting to point out that the
terize the order of the power series by the maximum numbediscrete bound state pole contribution to the soliton mass
of derivatives of a single term in its coefficient rather thanEg after the subtraction is independent of the dimengion
the power ofz. There should has been a leading term Equation(19) can be analytically continued toiz<0:
I'[(3—D)/2]z "2 in the power serieé\(z), which is inde- . L

endent ofU. It is, therefore, divergent even without tle 2 vy | vvamsa
ﬁnegration. This term has been drogpped without any physical Ep(0f M%) =—3]oi|= M+ [wj]
consequence. For ternz8 with n<1, the o integration is
divergent. Therefore, subtractions must be carried out to re-
move such terms. If the same functional forms of these terms 1 [ |oil?
appear in the original Lagrangian, the field theory is renor- o 2 W
malizable and the subtractions would come from the corre- '
sponding counterterms introduced into the original Lagrang-

ian for the purpose of renormalization. Our renormalization [0; ]2

prescription is to truncate divergent terms in the beginning of 1+ \/ o

the generalized derivative expansion series and start the se- «In M?+ || (20)
ries with the leading ternz for any dimensionD. In this \/W

paper all relevant expressions include proper subtraction un- 1- M2+ ;|2

less explicitly indicated otherwise.

The exact functiorA(z) is an analytic function oz or At w;=0, Ep(O,MZ): —M/r.
w, and has singularities of poles and cuts slightly displaced To remove a pole ab; and its influence, fronA(z(w))
from the real axis. The series in this present form is suitablenalytically, it is necessary to subtract not just the simple
for analytic continuation. The analytic continuation of the pole but the entire expression. The extraction procedure is

power series in Eq.14) should yield defined by the subtraction
ri - n )
A(Z(w))=w§M2 W ieral F(w) AZ(w),~{w1, ... ,wn})=A(z(w))—§l a(w? w? M?),
| (21)
riz(w) _
- 22 ) 1+(wi2—M2)z(w)+F(Z(w))’ 18 \where A(Z(w),—{w1,...,w,}) is an analytic function of
i <M o and has the identical singularities A¢z(w)) except that
the poles affwq, ... ,w,} have been completely removed.

where F(w) is regular everywhere except possibly on the
real axes ofv™>M andF(w) goes to zero faster thand? as
w—. In order to be consistent with the result from Eq. n
(10), the coefficients; or, equivalently, the residues of the E(_{wL L ,wn})ZE—Z Ep(w; ,M?) (22
poles, are completely determined: i=1

r=—(—of+M??% (17 :if“ do

We express

0?23 (2( o),

In the expression fo€(w), the bound state poles are multi-
plied by aw-dependent factor®? which, in odd space di- —{wq1,...05). (23
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We can now expand[wz(z);wiz,Mz] in a power series in ueSwi2 from above whilean,i>M2 increases in number and
Z: becomes more dense. Equati@th6é) and(17) imply that for
an exact solutiorb, ; must be 1 or a positive integer which

a[wz(z);wiz,Mz]= — (- wi2+ M2)32 represents the multiplicity of the degenerate eigenstates with

1-2z(M2—w?) eigenvalue o?. For the Padeapproximant,b,;>1 ap-

’ o3 2ier2 2 proaches 1 or integer values from above. The deviation of

= —(—o{+M*)¥z+A(M?~ o) the value ofb,; from 1 can be used as a measure of the
+23(M2—wi2)2+ S, (24) deviation ofaﬁi from the correct valua)iz. In principle, it is

possible to exploit the constraint of tiés exactly or itera-

and combine this expansion with the expansiqz) in Eq.  tively for better approximation of the’s. We have devel-
(14) to give a new power Serie’g(z'_{wl' . wp)). We oped some preliminary methods which show great improve-
shall refer to this process of removing the pole contributionMent over the standard Padpproximation. Our goal is to
analytically as pole extraction and to the new power serie§alculate the soliton mass here. With perhaps some excep-
R(z —{w, ®,}) as remainder series tions, there is no need to go beyond the present approach. In
We would Iikento evaluate the integration with the con- this approximation, the quantum correction to the soliton

tour path along the imaginary axes such that the path woull'ass 1S given by
be far away from the singularities. The integral is dominated K n
by the nearest singularity, in this case, lowest-lying poles _ ' 2 a2y _ 2 \2
which also control the convergence of the generalized de- En ;1 Pn, i Eplarni M%) igk CniEolani M),
rivative expansion series. If we can extract the low-lying (26)
poles in a manner described above, we would have replaced
the dominant pole contributions by the known analytic ex-where
pression, Eq.(19), and at the same time we would have
weakened the continuurcut) contributions substantially.
The remaining singularities would be much farther away M 1
from the integration path and the remainder series would be Ec(a®,MY)=——| 1-
much more convergent.

However, the location of the low-lying bound states may
not be given explicitly; we may choose to proceed in one of

2
the following ways or some combinations of them. 1+ — M_2
(1) For a soliton background field, spatial translational @
. . oo ; XIn| ——— (27
invariance implies the existence of zero frequenay=0) M2
pole(s) whose contribution to the soliton mass can be ex- 1- 2

tracted easily. Even though the zero-frequency pole is super-
ficially removed by the overall factor @b? in the integrand  js  the analytic  continuation of the function

of Eq. (12), there is known continuum contribution associ- 1/\/m)Ep(a2 M?2) from a?<M?2 to a?>M?2.
ated with this mode which has to be removed by our extrac- - (3) 1t i relatively simple to calculate numerically the low-

tion procedure. . o~ ) lying wiz for a given potentialJ (¢(x)). Extracting just one
(2) The remainder power seriég(z) may be analytically |oyest-lying pole would improve the convergence of the
continued by Padepproximants. LetA, ,, be the{n.m}  padeapproximant greatly, which means that fewer higher
Padeapproximant ofA(2). A, , is a ratio of two polynomi-  derivative terms will be needed. In general, we would like to
als of z of ordern andm and its power series expansion extract all poles along the imaginary axes and those along
matches that of the power seriégz) for the firstn+m  the real axes withw?<M?, such that the integration path can
terms. Since there is an overall factoroin A(z), we shall e rotated toCg, the imaginary axes, and away from any
take the Padsequencé, ,. To calculateA, , requires the singularity.
seriesA(2) calculated up to the® term or up to terms In the following section we shall use this result to calcu-
containing 4 —4+D derivatives. We rewrité\, , as aratio  |ate the quantum correction to the soliton energy.
of two polynomials inw?. After factorizing the denominator

and performing partial fractions, we can then express the IV. SCALAR FIELD

result as
The Lagrangian density for a scalar field coupled to a
A—-S bn,i(_aﬁ,i'}_Mz)glz_é CniM(—af;+M?) fermion is
MU —wl—ietad; <k —wl-ietal; '

25) L=1(0, 82— V($) + Hid—Ve($)]w, (28
2

where ay,; is arranged in order such that;;<aj; for  \whereV() satisfies reflection symmethy(— ¢) = V() so
i<j, a2;<M?2for i<k, ande,;>M for i>k. The poles at that the Lagrangian is reflection symmetric with respect to
a?<M? are physical poles whereas the polestat-M? are  ¢. Spontaneous symmetry breaking occurs when there are
there to approximate the additional continuum contributionsmore than two degenerate absolute minigh& * ¢, such
Asn increasesaﬁ‘i<M2 converges to the correct eigenval- that V' (%= ¢g)=0 andV"(= ¢¢) = M2>0. We also choose
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to normalizeV(= ¢y)=0. For a finite energy fieldg(x) where U’ (x)=(d/dx)U(4(x)), U”(x)=(d%
must satisfy the asymptotic conditions that|als— °: dxz)U(¢(x)) ..... A more complete expression Ag(z) up
to z*3is given in the Appendix.
|p(x)| = o, For the fermion loop, we obtain
V(#(x))—0, 1
Er[U]=— 5{Ea[ W+ Vr(x) ]+ Eg[ W= VE(x) ]}
V' (¢(x))—0,
[~ do
V() — M2, (29 - | St

In the one-loop order, the effective action is given by

Ar(2)= Efw dx{ §z[w2+(V’F)2]— i22[2W3+(W')2
r[¢]=r0[¢]+rs[¢]+rp[¢]=fdxceﬁ, (30) 2)-»"18 32

;
where +B6W(VE) 2+ (VE) ]+ = BT Z[5BW3+ 10W(W')?
Fo=f dxc, 31) +(W")2+ 30WA(VE) 2+ LOW( V) 2+ 20V VEW!
i +5(VE)*+ (V)2 + - - - +0(2
FB=§TrIn[(92+V”(¢(><))]|sub, (32)
1(= (3 5
- : =—f Z[W2+(VF)2]— 2[2W3

Ce=—iTrin[—(i4—9é)]|sub- (33 2
The derivative expansion dfg in Eqg. (32) is given by Eq. 2 2 2 "2 ’ 73 4
@ with u(x)=V"(4(x)). Since V'(+dg)=0, unless TAVE(VR)THBW(VE) ™ (VR) ']+ 1507 [5W

V'(¢) is identically zero for the whole range
— Po<Pp<¢o,V'(¢) must have at least a maximum or
minimum and, thereforey”(#) must has at least one zero in
this range. FromV"(+ ¢o)=M3>0 it follows that V" () —T(VE)*+4AVE(VE)2+(Vp) 2]+ - - - +O(2¥ ¢,
must have at least two zeros in this range, which means that

u(x)=V"(¢) must go through zero to a negative value and (37
back to a positive value at least once. In that case the deriva-

tive expansion, Eq(4), may not be appropriate. The proper where we have definedV=W(¢(x))=Ve(p(x))?—M2

+30WA(V[) 2+ 10W(VE) 2+ 40W(VE)A(VE)?

expansion should be E¢l4) with with M§=VF(¢0)2, z=1(— w?—ie+ Mﬁ), and Vg(x)
U =V _ M2 34 :VF(¢(X))
(B(x)=V"(¢(x)) ' (34 In this paper we shall examine the renormalizable models

in Table I. The infinite subtraction term linear h has been

" _ 2 2
whereV”(¢) = (d“/d¢*)V($(x)). absorbed into the renormalization gt

In the (1+1)-dimensional case and for the static field con-
figuration qS()Z), we have calculated the series up to #1&
term usingMATHEMATICA [14]. For the meson loop, we ob-
tain

V. ONE-LOOP CORRECTIONS TO SOLITONS
IN (1+1)-DIMENSIONAL THEORIES

The (1+1)-dimensional soliton solutior¢(x) is the so-

(> dw (> do : : . .
EB[U]:IJ_OCEEB(“’):'J Sow 27327 ,(z), (35) lution of the differential equation
d2
o2 DX =

T V(9s(X)), (39

AB(Z)=—%F dX[ 3zUZ— i22[2U3+(U ")?] d¢>( )

which can be integrated by an integrating factor

Z[5U*+10U(U")%+(U")?3]— —=Z[14u>  (d/dx) ¢s(X):

128 512°

d 2
+70U2(U")%+14U(U")2+(U") 2]+ ===z 4208 d—x¢s(><)) =2V(¢4(X)). (39

2048

+4200%(U")?=35(U")*+ 1260%(U")? - 20(U")* This equation can be further integrated with the boundary
condition thatgy(x)— ¢q as|x|—« and ¢, is defined by
+18U(U™)2+(U")2]+ - .- +0(2) ¢, (36) Eg.(29), we get
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TABLE |. Models of the(1+1)-dimensional soliton.

Model V(¢) ¢0 M2 U(d)) Eclassical
sine-Gordon NN mar m? NN m?
— i - _ - 8—
)\cos(mqﬁ +1 0 mzcos(mqﬁ +1 X
¢ 1, mP? m m? 3 m? 2m?
23] W 23] 3
Christ-Lee 1 A m\2 m m? 3 A P m3 1
I 2 - D 2 - - 2 2_
8(1+c2)(¢’ x) JN 4(1+c2)( x) A 803\/1+cz[c 1ref(ze-1)
N 2152 N, +(1+4c?)In(1+1+c?)]
><1+c”—]2¢> x| 2+ +5(:n—]2¢>)
Fermion
Yukawa 9¢ o 9’%5 gL B(x)2— 5l =g’ (x)
Coupling
s do tons have been found, there is no simple method of approxi-
x—xozf , (400 mation to evaluate the quantum correction to the soliton
0 V2V(¢) energy efficiently without heavily relying on tedious and

. ) . CPU time-consuming numerical computation. Derivative ex-
where X, is defined as the center of the soliton such that,,gjon can be combined with numerical calculation to re-
$s(Xo) =0 and is set equal to zero in this paper with N0 10SSy,ce the computation time substantialy3]. However, it
of generality. Inverting this equation yields the soliton profile .5 n 6t replace the numerical calculation entirely because of
¢s(x). However, it is much simpler to compute the classicalihe geficiency of the derivative expansion in the presence of
energy of the soliton and its quantum correction directly usypqo spontaneous breaking of symmetry. This difficulty can be
ing Eq. (39 rather than the solutiogps(x). The classical completely removed by the new improved expansion pro-

energy is given by posed in this paper.
- o 2 In this new approach, there is no need for solving any
Eclassical:f dXV(¢s(X))=f ° dps—— V() differential equation. Instead, we use E§9) to transform
—o — o des the integration in Eq(36) from x to ¢5. The spatial deriva-
dx tives of U(¢¢(x)) can be expressed in terms of function only
of ¢.. In this section, we deal exclusively with the soliton
b0 > -
:2\/§j doV(e), (41  solution as the background field and we shall suppress the
0 subscripts:
and the corresponding values for various models are given in U’ (¢(x)— V2 V() VP (),
Table I.
The normal modesy;(x) of fluctuations aroundpg(x) " VAV D)+ 2V( VP
satisfy the eigenvalue equation U"(¢(x) (¢) (¢) (¢) (4),
d? V(30| 7:(X) = 0277, (%) 42 U (h(x))=V2W(A)[V"(H)VE () +3V' ()V ()
- + V" (ps(X)) | 7:1(X) = wi 7 (X),
CEC e K F2V(HVE()]

with the boundary condition(x)—0 as |x|—«. The
ground staterg(x)=d¢s/dx is the zero-energytransla-
tional) mode (wy=0) obtained directly from differentiating
Eqg. (38). The spectrum contains possible discrete eigenval-

Equation(36) can be rewritten in terms of the integration of

ues of positivew? and a real continuous spectrum above the o (w) _dé [ 3 U( )2 S 20U( )3+ V()
i w)=—| —=——=|gZ -z
thresholdM 2. ® 0o V2v(¢) 8 16
The solution of this eigenvalue problem can be used to 7
evaluate the trace in E¢9): X[VO($)]2 + @23{5U(¢)4+20U(¢)2V(¢)
1
Tr 2 XIVE(9) PP+ [V ()VE(h)+2V () V() ]%}

—wtien oo HVI(,00)
x b T o<zl4>] . (43

However, the technical problems of solving these differential
equations and evaluating the trace are highly nontrivial. Al-With the functions of¢ given for various models in Table |,
though exact solutions of the sine-Gordon and ¢fesoli-  the integration of¢p can be carried out analytically.
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Because of translational invariance, there is a zero- B. The ¢* soliton
frequency modew,=0 for Eq. (42), with the eigenfunction

/ ! Similarly, for the ¢* soliton, we obtain
1o(X)=(d/dX) ps(X). We can obtain a much improved

power series by extracting out this zero frequency pole from 4 9 33 129 513
- : AL (2)=—m’Z = + ——mPz+ —_m*z?+ ——-m°Z°
Eq. (43). Using Egs. (18—(24) and noting that B 8 32 128 512
Eg(0,M?)=—M/m, we obtain
+.-+0(2B)
2 i[9 5 um 3 3
Esoliton= Ep(O:M )+i Ew z7“Ag[ 2(w),—{0}] _ m-z . } mz
 1-m’z 81- 1l
4

M | (do
I i Y

m3
w2 8 4232
X (1+zM2+Z22M*+ - - )]. (44) !

=a(w?0m?) +a(w?3im?m?). (47
If the path of » integration is taken along the imaginary o symmation of this series is less obvious because it re-

axes, Cg), then quires{2,2} with six-derivative or higher order Padgprox-
imant to converge to the exact sum. By extracting the zero-

) frequency bound state pole, we have
0<M?z= ———<1. 45
we+M? “9 Kot 4 m’z (m?z\? [m?z\3
=—= +—F|— =] +-
g (2) m 4 2 2

This series and the series in the following examples are con- N i 12+ o9 E m3

vergent series. 4 8 w2— 2m?
=a(w?im’,m?). (48)

A. The sine-Gordon soliton

This convergent geometric series can be summed1bi}

We can use/(¢) andU(¢) for the sine-Gordon soliton Padeapproximant and

in Table | to evaluate Eq43). After the ¢ integration, we
find

~ 1 1 1
o' M e e m®=ml - | &
ES 71_+Ep(4m,m) m 1-r+(4\/§ 27)

AsBine-GordoTZ) - _ m3z[1+ m2z+m4z2+ ...

+m242834 O (2141 ( 1 3
=m| ——=—|.
mz m? o 443 2w
=_1—mzz=?=a(w ;0m?). (46

Thus, we have recovered again the exact solutions for the
¢* solitons[19] using terms only up to the two derivative.

The{1,1} Padeapproximant using the first two terms of the

series up to only the two-derivative contribution has already C. Fermion-loop contribution to the ¢* soliton
converged to the exact solution and generates the required with Yukawa coupling: Exact
zero-frequency bound state of the translational invariance. The Yukawa coupling is defined by

Higher order Padapproximant{n,n} with n>1 gives the

same result. Alternatively, we can apply E44) directly to Ve(h(X))=gp(x), (49
calculate the static energy. Since

and from this one deduces the fermion mass

:&sBine—Gordorcz, —{0H)=0+ 0(214), m
MF:gﬁbo:g\/_X- (50

we obtain the correct energy with no effort It is convenient to define the dimensionless variables

2M 29
. m _ F_
EsBme Gordon_ __ G= = (51)

T’ m NS
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2o e 52
==\ z16% (52

7 1, 1 m?
=-—-m°z=—
4 4_w2_i6+zm2G2
1 1 53
-1 —ie+G? 1E+G? ®3

The fermion-loop contribution to the* soliton mass is

EF(G):ifig—:&(w)zifig—iwzz?”zAF(z(w),G)

d
_'chy SE(), (54)

Ar(Z,G)=Ar(Z,G) +a(w,0,:m’G?)
=Ap(2,G)— imG3Z(1+ G?Z+G*Z%+
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where

m
A(Z,G)= E{%GZ(GZ+ 1)Z+:G?%(2G*+5G?—1)Z?

+5G?(3G%+14G*—7G?+2)Z8
+ £G?(2G8+ 15G%— 14G%+ 10G?—3) Z*
+.--+0(Z5)]. (55)

It is clear thatAg(z,0)=0 andEg(0)=0. Following Egs.
(18)—(24) and folding in the extra factor of 1 for the ferm-
ion loop, we extract out the zero-frequency mode:

Er(G)= (23—;n+ifm d—w 2320 (z(),G).  (56)

w 2T

The first term comes from- E,(0MZ=im?G?) and

=im{3G2%(G—1)2Z+:G?*G—1)%(2G?>-2G—-1)Z%+ 5G*(G—1)%(3G*—6G°—G?+4G+2)Z°

+5G2(G-1)2(G?*-G—1)(2G*—4G3—G2+3G+3)Z*+ .- - +0(Z)}. (57)
WhenG is an integer, this series can be rewritten and analytically continued:
_ G-1 G-1 3 1 n3me
A,:(Z,G)zmgl [N3Z+n°Z2+n"Z3+ - - - +n?Z7¥%+ 0(Z215)]= mE =75 = 221 Coiier ImGE Irnt
G-1 2 2\3/2 G-1
:2n§=:1 %:_221 a(o®wp aMG?), 58)

where w2=m?(G?—n?) for n=1, ..

. G—1, are theG—1 doubly degeneraten& +|n|) bound state poles ankllZ= 3

m2°G? is the threshold. Therefore, for integer values&fwe recover the exact solutig20]

and

G-1

m
Er(G)= ~Ep(04m’G?)—2 %, E,[im*(G*—n%),im*G?)= 5
n=1

n2
Gz—n2>'

G-1
m
= E( G2-2>, JGZ—nZarcta
n=1

G-1
Ar(©,6)=—a(0,0,;m*G?)~2 Y alw,;m*(G2-n?),;
n=1

m?G?], (59

G—-1 7
m n
G+ —, (n—\/Gz—nzarcta ﬁ>
Tn=1 G°—n

(60)

The analytic continuation of Eq58) from integerG to noninteger value can obtained by rewriting the expression

G-1 3 G-1 S
Ar(Z.G)=m2, > - ~G(G-1)Z d in[T - ~G(G-1)Z
] 1-n%Z" 22& |\Z =~ Z P2 T2z o|z—1/2 Z %
_ml_d - [(1+Z7 Y22 1 2 ootz N
“2z|dz P"Tirz P era+z -6) Tz Prg 2 GG DZ) (62)

The final result for the fermion-loop contribution to ti¢ soliton mass for any real value & is given by
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2 2 2
m (= v G
E¢'= J | 201+ V2 G — (1 + VB G2+ G) — (1 + 12+ G~ G) - +
F = oo E[ \/W 4G ve+Ge) —( VE+ G+ G)—( vet+ G —G) VE-FGZ vé+G2
(62
mfxd G2 G2 | T(1+1Z+G?)? ©3
=>—| dv - ~In ,
2mlo B\ vE+G? iZ+G?  T(1+ ¥+ GE+G)T(1+ 12+ G2-G)

wherey(x) = (d/dx)InT’(x) is the polygamma function. Inte- Equation(62) may also be derived directly from Eq&4)

gration by part is performed in the last equality using theand (55) by Borel summation. To the order indicated in Eq.

derivative from the definition off. (55), the coefficients of this series can be expressed in terms
The integrand is an analytic function of Our expression of the Bernoulli polynomial$,(x):

appears to have a much simpler form than that of the previ-

ous exact solution but is otherwise completely equivalent N

[25]. The arguments in the function and the polygamma Ar(v)= 27 n§=:2 %Z {B2n(G) +Ban(—G) —2Ban}

function are always real and greater than 1. In principle, the

integral in Eq.(62) can be evaluated numerically. However, m

for largeG and largevg, there exists a many order of mag- =57

nitude cancellation between terms in the integrand which

renders the numerical integration either inaccurate or time G2

consuming. In that case it would be useful to replace the ——VZ]|.

integrand by its asymptotic expansion, such as the expansion v

equations(54) and (55) for the integrand in Eq(62). The

loss of accuracy from the high-frequency contribution has

o

2 Z“’Z{B (G)+Bn(—G)—2B,}—ZG?

(64)

The Bernoulli polynomials are given by

been a problem in any numerical method in this type of n |
calculation. Derivative expansions have been found to be — 2 n: n-m
extremely useful to supplement numerical methods, even in m=0 M!(n—m)!

the case that the complete solution has been reduced to a
quadrature form. Fo&> 20, the numerical evaluation of the and B, are the Bernoulli numbers. Using the generating

integrand in Eq(62) has a large uncertainty for large . functional of the Bernouli polynomials
becomes more practical to evaluate the numerical integranon "

by breaking up the integration into a sum of two integrations: teXt 2 B x)
use Eq(62) to integratevg from O to v¢ and use the expan- -1 & n(

sion equationg54) and (55) to integrateve from VE t0 0,
The choice ofvg depends on how many terms in the expan-we can analytically continue the serids in Eq. (64) by
sion equation$54) and (55) are being included. Borel summation:

eGSdz_’_ e—GSV/z_ 2
eS\c“z_ 1

AF(v):%( J:dse‘s\/z

G2
+ZG%+ ?ﬁ) (65)

2Z

o (@ (220 o= (1427 VG 9o (1427 2t
dt =
f 1-e™!

G2
+ZG2+ ?\/Z} ,
(66)

where we have changed the integration variable=ts/Z. m_ (= 5 1 1
The last integral can be expressed in terms of the pongammEF =1 J_de\/Z{V [24(1+Z77) = p(1+Z7 7+ G)
function defined by

—y(1+2712-G)-2G?]- G2z}, (68)

d « [e"t g xt
"b(x):d_xlnr(x):fo dt[T_l——et . (67)
which becomes Eq62) after rotating the path of integration

We obtain in the complexy plane by 90°y=ivg.
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D. Fermion-loop contribution to the ¢* soliton flective and the problems are exactly solvable. However, if
with Yukawa coupling: Approximation the series is not recognizable, we may have to rely on a

For the examples in the previous sections, the expansioffduence of Padapproximants to approximate the analytic
series are relatively simple that we are able to deduce theontinuation of the generalized derivative expansion. In or-
unique pattern of the infinite series by calculating more tharfier to evaluate the reliability of this approximation, we shall
sufficient but still a finite number of terms. Perhaps, thisapply the scheme outlined in Sec. IIl to the fermion-loop
simplicity is related to the fact that the potentials are nonre<contribution to thes* soliton mass.
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E. Christ-Lee soliton

The potential for the Christ-Lee model is given [81]

1 X , m?\? SN,
V=g aren| ¥ x| e ?
1 m2 2
Hogx(‘ﬁz‘ T) - (69

Since we can always suppress the dependence amd\ by
rescalingx—x/m and ¢—m/y/\, we can setm=1 and
N=1, or simply drop the factor ofn or A without loss of
generality; however, for clarity, with the exception of plot-
ting graphs, we shall keep the overall factomoffor dimen-
sional purposes and set omy’/A=1. In Figs. 5 and 6, we
plot the potentialV(¢) and the correspondind(¢) as func-
tions of the field¢ for various values ot in Figs. 5 and 6.
The potential is normalized such that it becomes #fe
model forc=0. Asc—, the potential atp)=0 approaches
G zero and the ground states become triply degenerate. The
soliton with the topological boundary condition
FIG. 4. Fermion-loop bound states energy in unit of boson mas¢?(**)—*1 breaks up into two independent solitons, one
m. with the boundary conditiof¢(—0o)— —1,4(*)—0] and
the other with the boundary condition
We calculate the PadapproximantA, , for the expres- [#(—%)—0,¢(*)—1].
sion in Eq.(57) and follow the general procedure as in Eqs.  For the potentia(69), Eq. (39) can be integrated analyti-
(18)—(24) and the description in that section. The resultingcally to yield the soliton configuration
E-(G) is compared with the correct values calculated using r( mx)
sinhf —

Bound State Poles

Eq. (62). In Fig. 2, we plotted the relative error

: (70)

Er(G) —Ep(G) correct b(x)= %
Er(G) correct *

. r(mx
c°+cos Py

as a function ofG for variousn. Instead ofn, we label the

curves by the correspondinqi4 2 derivatives which is the nichy s plotted in Fig. 7. The potential¥(¢<(x)) and

highest number pf denvapves for a single term required tOU(qSS(x)) for the soliton background field are plotted as

construct the PadapproximantA, ,. The convergence of ¢ ntions ofx in Figs. 8 and 9. It is clear that for smal) the

the Padesequence is excellent for a wide range®f al- iy is Jocated atx=0. As ¢ increases, the single kink
though it may require more terms &hbecomes very large. gradually separates into two kinka2],

WhenG—0, the fermion masMg— 0. The Padeequence
is not expected to be uniformly convergent@t 0. In Fig.

~ + J— -
3 we plotER(G) for G<1. The convergence becomes worse D)~ e>x(X) = de—>u(X), (7D
asG decreases, but the deviations from the correct value are
small in absolute terms. There is no reason to expect the 62 (%) \/ 1 \/ 1
: o . = ()= _ _ _
Egriviar?up;tirgrflmat?]tistc;el;ieog good approximation for analytic c 1+ e xtin(1+4c?) 1+ (1+4c%)e™ ™
' (72)

We shall usé, 4 to illustrate more details of the approxi-
mation. SinceA,, is a ratio of two polynomials both of
degree 4, it can only have four poles in theplane. How-
ever, the correct number of poles should Ge-1. A4
would give the correct pole positions and the coriegtfor . .
integerG=<5. ForG>5, the discrepancy between the correct lim ¢c.(x)—1 and lim ¢ ..(x)—0. (73)
number of poles and the number four given Ry,, in- X— e X—we
creases a& increases. In Fig. 4, we plot the correct position
of the poles for integer values @ (solid circleg, and the It is interesting to point out that Eq71) is not only an
trajectories of the four poles from,,. The four poles are excellent approximation to Eq70) but also a respectable
distributed optimally to produce a well-approximated valueapproximation for smalt down toc=0.
for the correct function at the imaginary axes, the integration A closed form for the one meson-loop contribution to the
path. The lowest trajectory is always above the correcsoliton massE{™"*¢ has not been found. We calculate the
lowest-lying pole. expansion equatiof43):

which are soliton solutions of Eq39) with V(¢) from Eq.
(69 atc— and boundary conditions
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FIG. 5. Christ-Lee model potentidd as a

function of ¢.

FIG. 6. Christ-Lee model potentidl as a

function of ¢.
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FIG. 7. Christ-Lee soliton configuration.
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FIG. 8. Christ-Lee model potentidd as a
function of x.
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FIG. 9. Christ-Lee model potentidl as a
function of x.

This series appears to be far more complex than the €X¥mproved. In the limit thatc_,o,',&ghrist-Lee reduces to Eq.
amples encountered previously and does not seem to be suf7) for all 14 terms as it should. In Fig. 11, we plot
mable. If we proceed to continue analytically this series by g=Christlee 55 5 function ofc for the sequence of Pad®p-
sequence of Padapproximants, we can obtain reasonably proximations. The convergence is excellent for a wide range
good convergence fa<6, as shown in Fig. 10. However, if of ¢, except for very large values af where the ground

we first ~
ASMStLeq ), the convergence of the seria§™™s"-*%is much

-0.35}

-0.45F

-0.65¢

-0.7

extract the zero-frequency modes

26 Derivatives

' 22 Derivatives

--------------------- 18 Derivatives‘

—————————— 14 Derivatives

————— 10 Derivatives
6 Derivatives

2 Derivatives

O >
\\\\ -
IS
. )
1 2 | | | |

fromstates become almost triply degenerate, which means that
there is another pole ati very close to zero.

FIG. 10. Boson-loop correction to the Christ-
Lee soliton mass.
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-0.4¢1 ——  ———— 2 Derivatives
~————— 6 Derivatives
————————— 10 Derivatives

o5l VT 14 Derivatives
.......................... 18 Derivatives

\ ———— 22 Derivatives
[l -0.6 . .
FIG. 11. Boson-loop correction to the Christ-
Lee soliton mass with pole extraction.
-0.7
-0.8
. . 4
If »? is known, we can perform another extraction to VI. THE ¢" BAG MODEL

improve the convergence at large In Table Il we list the It is clear that the convergence of the expansion series
numerical value ofw] calculated from Eq(42) and the se-  gepends critically on the field configuration. The soliton field
quence of the one-loop corrections to the soliton mass fogonfigurations are perhaps the most smooth field configura-
various values ofc. The convergence is drastically im- tions. We have shown that the generalized derivative expan-
proved. These results are summarized by four black dots igion indeed works extremely well for the solitons. It is nec-
Fig. 11 representing almost the exact values. The results assary to test this improved expansion for nonsoliton
the two-derivative level are within a one-half percent of theconfiguration.

final values. This is very important because in some cases it For this purpose, we choose ti#é model with the set of
may not be practical to compute the higher derivative conparameters specified bx=m?=2 such that¢,=1. A

tributions. simple field configuratioh9,13]
As ¢ approaches infinity, the two kinks in E¢71) be-
come well separated. The interaction between them becomes d(x)=1— ¢o (75)

weaker and weaker. The two kinks eventually become two
independent solitons and have two distinct translational
modes. Axc—x, w;—0 and we have a double degeneracy
at w=0. Therefore, for large values af a much improved has been used to study the dependence of this convergence
approximation can be achieved by extraction of twee0  on the shape of the field configuration. The fiddXx) is
modes instead of one. Even at the two-derivative level, thiseflection symmetric ®(x)=®(—x). It varies from
approximation shows a drastic improvement over the singleb(0)=1—¢,[1+exp(—-R¥T?)] at the center to
zero-mode extraction approximation for large This is  ®(*=o)=1 monotonically with the steepest increase at the
shown by a broad grey curve in Fig. 11. The transition berangex~R. We further specifyfR=1, T=0.5 and a set of
tween the two approximations is approximatelycat6. values for¢,=0.2, 0.4, 0.6, and 0.8.

TABLE Il. Boson-loop energy for the Christ-Lee soliton with pole extraction.

c w? 2 Der 6 Der 10 Der 14 Der 18 Der 22 Der
5. 0.0369180 —0.63566 —0.63667 —0.63669 —0.63669 —0.63669 —0.63669
10. 0.0097447 —0.72505 —0.72709 —0.72716 —0.72717 —0.72717 —0.72717
25. 0.0015912 —0.81276 —0.81602 —0.81616 —0.81618 —0.81618 —0.81618

50. 0.0003993 —0.86661 —0.87071 —0.87090 —0.87092 —0.87092 —0.87092
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TABLE III. Boson-loop energy for thep* bag.

by 6 Der 10 Der 14 Der 18 Der 22 Der Wassdr8]
0.2 —0.020968 —0.021126 —0.021193 —0.021227 —0.021247 —0.021
0.4 —0.080926 —0.081955 —0.082424 —0.082680 —0.082836 —0.083
0.6 —0.173806 —0.178064 —0.180280 —0.181622 —0.182511 —0.188
0.8 —0.286022 —0.301124 —0.310733 —0.317608 —0.322873 —0.354
In this case there is no soliton equation and no zero- From Egs.(21) and(24), we have
frequency mode to extract. We have to perform the integra-
tion in Eq.(36) numerically to obtain the generalized deriva- _
tive expansionAff;g and then proceed with the analytic AZ(w), —{og, .. . )
continuation by the Padapproximants sequence. The results
are summarized in Table Il together with the numerical val-
ues calculated by Wasson and Koofili3]. The convergence =AZ(w)~ 2 a(eZw? M?)
is slow for large¢ because the energy of the lowest-lying wl<o?
pole, which gives the dominant contribution to the energy
integral, becomes very close to zero. -
It is possible to improve the convergence greatly if we are :ZHZO An— 22 ) (M?— wiz)"+3/2 z"
willing to calculate numerically the energy of the first bound WSOy
state pole and extract its contribution from the generalized o
derivative expansion before the analytic continuation by the —z> A2, (76)
Padeapproximants. Table IV shows that the convergence in n=0

this case is extremely rapid and very few derivative terms are

needed to achieve convergence. ) 5 ) )
We have pointed out in Sec. Il that the Paggproximant ~ Where oy is to be chosen such thatQvy<M®. Applying

An.n does not satisfy the constraint on the residues of thdhe{1,1} Padeapproximant to the two terms of the series, we

bound state poles,, =1, in Eq.(25). Bothb,,; and the pole obtain

positions (eigenvalues aﬁ‘i [in Eq. (25)] approach to their

correct values from above. This information can be used to

improve the estimate of the bound state energy eigenvalues’/_”\(z(w) oy, .. 0d)= AgZ
substantially through some iteration scheme or fitting param- ' Y A,
eters in analogy to the variation method. 1- K—Z
0
VII. HYBRID FORMULA Ao

o = 7= ozt M,
In the previous section we have demonstrated that our ¢
generalized derivative expansion has indeed provided a con- 77
vergent method to calculate the quantum correction to the
vacuum energy of a static background field in the presence
of spontaneous symmetry breaking. If we can extract allV"€r®
poles along the imaginary axes and along the real axes with
|wi|<M, we can obtain a good estimate of the quantum ~
correction to the vacuum energy with two terms of the series wi=M2— =% (78)
up to only the two-derivative terms and the result can be ¢ Ap
expressed in a compact formula in closed form. Thus, the
problem is reduced to the calculation of the positions of the
lowest-lying poles and the generalized derivative expansion The final formula for the vacuum energy of a static back-
up and including the second derivative term. ground field is, forw§<M2,

TABLE IV. Boson-loop energy for the)* bag with extraction of the lowest-lying pole.

by 2 Der 6 Der 10 Der 14 Der 18 Der 22 Der Wasgas)]
0.2 —0.021093 —-0.02121 —0.021249 —0.021267 —0.021278 —0.021284 -0.021
0.4 —0.083087 —0.08317 —0.083188 —0.083195 —0.083198 —0.083199 —0.083
0.6 —0.185006 —0.18525 —0.185314 —0.185338 —0.185349 —0.185355 —0.188
0.8 —0.353119 —0.35376 —0.353954 —0.354038 —0.354083 —0.354111 —0.354
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|wj|2

S | Lo Lo 1o Iy el VMl
20 J 2 Y M2+ oy 1—\/7¢’i|2
M2+|w]|2

wj2<0

2 2 2
. M2— o
+ > lVMZ—wiZ(l— \/%arctan\/ Zw')
O<wi2<wﬁ T M — Wi wj
( 2 2_ 2
1 ch sarcta M zwc if 0 <w2<M?,
_ — W¢ c
A 2
Vi i{ 1+ 1—% (79
S I — _In “ | ifwim2,
2yJ1-M2 - 1i- M
\ wg wg

The summation should include a multiplicity factor if there is _ 1 (= R . R

a degeneracy of a particular energy eigenvalue. The imagi- AOZEf_wdsx{ZUW(X))s‘*‘[VU(¢(X))]2}
nary part ofE corresponds to the decay width of the field

configuration.

For a i -t [ ion fi - 2 (MP=0)¥,
particular even space-time dimension field theory &~ , i
model U(¢) and a particular static field configuration CISON
#(X), Eq. (79) provides a fair estimate of the quantum cor-
rection to the-vacuum energy. Tlg are the ?igenvalues. of A= — LJ‘” dBx{5U (4(X))*
the well-studied operator-V2+M?2+U(¢(x)) and their 5127 )
values can be computed analytically or numerically by stan- N - -
dard methods. The accuracy of the estimate depends cru- + 10U (¢(X)[VU(p(x))]“+[ViV;U((x))]%}
cially on the number ofv; extracted.
Because the number of re~quired En‘inite subtraction terms - 22 ) (Mz—wiz)5’2. (81)
is different, the definitions oAy and A; depend on the di- @i SON
mensionD. For 1+ 1 dimension they can be obtained from
Eq. (36) or directly from Eq.(14): Here we have demonstrated that our approach functions

equally well in higher dimension in principle. Calculations of
the eigenvalues and the integrations may be more involved

~ 3 (= 5 s 2 but systematic and standard numerical methods are available.
Ao=—1—6£ dxU(é(x))*— 22 , (M7= D)™ More accurate calculation can be carried out in a similar
wj <oy manner using higher order Padpproximation.

VIIl. CONCLUSION

~ ©

5
A1=52 _de[ZU(¢(X))3+U’(¢(X))2]

We have presented a generalized derivative expansion for
the action of field theories with spontaneous symmetry
S (M2—?)52 80) breaking gnd a procedure of i_ts analytic gontinuat_ion. We

gy ' have carried out the.comp!ete |mple_me_ntat|on of_ this proce-

PN dure for the(1+1)-dimensional static field configurations
and have successfully calculated the energy for various mod-

) _ els of soliton, fermion loop, and bag. The results indicate that
Using Eqs(78)—(80), one can easily reproduce all the results e jmproved derivative expansion is not only an elegant tool
of the previous sections for the two-derivative approximation;, theory but a viable technique for numerical computation.
for various situations. lfvy is chosen appropriately, this set This approach may open up the possibility of asking some
of equations can provide a very direct method of calculationmore fundamental questions, such as whether one can define
of one-loop corrections to the vacuum energy of static backthe effective potential more meaningfully by using some spa-
ground fields. tially varying background field, in the region in which the

For 1+ 3 dimension, substituting E14) into Eqg. (76), conventional effective potential is not well defined for con-
we obtain stant background field. Another interesting question is
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whether quantum corrections can stabilize or destabilize #emendously helpful in understanding the mathematics of

classical soliton. the physical problems and in making progress toward a bet-
An immediate extension of thd+1)-dimensional soliton ter solution by experimentation which is otherwise too time

calculation is the(1+3)-dimensional classical stationary consuming to try.

background field with no internal symmetry, such as the con-

figuration of the critical bubble. A nontrivial extension

would be to generalize the present approach from the zero- ACKNOWLEDGMENTS

temperature formulation to finite-temperature field theories.

More interesting applications would have to include internal

symmetry such as Skyrmion physics. As the dimension an

internal degrees of freedom increase, the generalized deriva-

tive expansion unavoidably becomes more complex. How-"

ever, the improved derivative expansion is actually easier to

calculate than the_conventional dgrivative expansiqn. The AppENDIX: MESON-LOOP DERIVATIVE EXPANSION

general procedure is very systematic and the underlying ana-

lytic continuation is basically the same. The capacity to do In this appendix, we give a more complete expression of

most parts of the calculations analytically and interactively isEq. (36) up to thez'? term:

This work was supported in part by the U.S. Department
f Energy. The calculations and the graphs of this paper were
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where UM=(d"dx"U(¢(x)). Integration by parts has  We have computed the series up to #éterm with 26
been repeatedly used to reduce the number of derivatives aterivatives for the calculations in this paper. However, the
the functionU(¢(x)) in each term to a minimum possible remaining terms are too lengthy to present here. The calcu-
value. The highest value of derivative for a sintlefor the  lation is performed usingIATHEMATICA [14]. The CPU time

z" term isn— 2. Such a representation, irreducible by furtherincreases by approximately a factor of 4 for computations of
integration by parts, is unique. each higher order term.
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