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The derivative expansion of the effective action for field theories with spontaneous symmetry breaking has
a variable expansion parameter which may become locally infinite. To circumvent this difficulty, I propose an
alternative expansion series in which the series expansion is simultaneously developed in order of the number
of derivatives of the field and in powers of the deviation of the field from its ground-state value. As an
example, I have applied this new method to calculate the quantum correction to the energy of the~111!-
dimensional soliton in various models which have been well investigated previously. The expansion series are
calculated usingMATHEMATICA to 14 terms. For the models in which exact solutions have been found, such as
the sine-Gordon soliton,f4 soliton, andf4 soliton with a fermion loop, the new improved series can be
recognized as well-known analytically summable series. The complete results of exact solutions are recovered.
More importantly, for the cases where exact solutions may not be available, Pade´ approximants or the Borel
summation can be used as an efficient method to provide an excellent approximation, in contrast with cum-
bersome numerical calculations. The Christ-Lee soliton and thef4 bag are used to illustrate this approxima-
tion. We also derive a compact hybrid formula in closed form to estimate the quantum correction to the static
energy of the~111!-dimensional field. This new method can be easily extended to higher dimensions as well
as other important applications such as vacuum tunneling, Skyrmion physics, etc.@S0556-2821~97!06210-3#

PACS number~s!: 11.10.Lm, 11.15.Kc

I. INTRODUCTION

In local quantum field theory, short-distance effects come
primarily from heavy particles, confining fields, and the
higher frequency parts of the quantum fluctuation of the light
particles. In the low-energy limit, it may be more convenient
to eliminate those degrees of freedom not directly observable
and incorporate their effects into an effective action of the
observable low-energy fields. The expansion of this neces-
sarily nonlocal effective action into an infinite series of local
action in terms of the number of derivatives of the local
fields is known as the derivative expansion of the effective
action @1–8,15,16#.

In the 1970s, the leading term of the derivative expansion,
the effective potential, was used to understand the dynamics
of spontaneous symmetry breaking in local-field theories. In
the 1980s, with increasing interest toward effective theories
with higher derivative terms, such as topological anomalies,
Skyrmion physics, the strongly interacting Higgs sector of
the standard model, etc., important progress was made to-
ward an efficient derivation of the derivative expansion of
the effective action by integrating out the nonobservable
quantum degrees of freedom associated with short-distant
dynamics@1–4#.

However, as a functional series with no detectable pattern
of regularity, the derivative expansion is very complex with
no obvious parameter of expansion. The convergence of the
series has not been thoroughly investigated. In spite of its
many possible applications, use of the derivative expansion
is severely restricted because the series does not converge
fast enough or diverge in interesting cases. Important ex-
amples are vacuum energy in the presence of background
fields and quantum correction to the soliton energy. In par-

ticular in the case of a scalar field with spontaneous symme-
try breaking, the coefficients of the derivative expansion may
be infinite term by term@9–13,17,18#.

In this paper, we propose that, in the case of spontaneous
symmetry breaking, the conventional derivative expansion of
the effective action should be replaced by a new improved
expansion series which incorporates the derivative expansion
with additional expansion described below. To avoid unnec-
essary complications, we shall not include internal symmetry
in this paper.

In most of the local quantum field theories, the calculation
of the one-loop effective action inD dimensions can be ef-
fectively reduced to the calculation of the derivative expan-
sion of the action@3#,

G@u#5
i

2
TrlnG~u!21,

whereG, in coordinate representation, is given by

G21~x,y!5@]x
21u~x!#dD~x2y!

5E dDp

~2p!D
@]x

21u~x!#eip•~x2y!. ~1!

The derivative expansion is a functional series ofu(x).
Higher power derivative terms must be balanced by an ap-
propriate inverse power ofu(x). In order for the derivative
expansion to converge, it is necessary for the functionu(x)
to be a slowly varying function for allx such that higher
derivatives become smaller and smaller. More importantly,
u(x) cannot pass through zero to become negative. The latter
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case indeed occurs in field theories with spontaneous sym-
metry breaking. Associated with the spontaneous symmetry
breaking is the asymmetric vacuum~ground state! such that

lim
x→`

u~x!5M2.0. ~2!

If u(x) is a slow-varying function for allx, the finite differ-
enceU(x)5u(x)2M 2 should also be small.

Therefore, we propose thata consistent expansion in this
case should be a double expansion series expanding simul-
taneously in powers of the derivative as well as in powers of
U(x). The expansion parameter can now be readily identi-
fied. The large cancellations between the terms in the double
expansion render the expansion a much better-behaved series
so that an exact or approximated analytic continuation of the
series is possible, if the series is not already convergent. As a
side benefit of this double expansion, the expansion is much
simpler to carry out. This improved expansion not only cir-
cumvents some outstanding difficulties concerning the con-
vergence of the expansion series when applied to theories of
spontaneously broken symmetry but also leads to a well-
defined path of analytic continuation of the series.

The simplification of our formulation of the derivative
expansion is based on a hybrid approach that the effective
action is kept in a configuration representation while the loop
integration is performed conveniently in the momentum rep-
resentation. The calculation of the effective action is essen-
tially the calculation of the sum of vacuum graphs of a par-
ticle propagating in the potential of an external background
field. The generalized derivative expansion is essentially a
high-loop-energy expansion series of the effective action.
The analytic properties of the loop-energy integrand in the
complex energy plane is well known from study of the po-
tential scattering and they can be used as additional con-
straints for the analytic continuation of the generalized de-
rivative expansion series by the Pade´ approximation. In
addition, we propose that the dominant contributions from
the low-lying poles can be conveniently isolated such that
the convergence of the analytic continuation of the remain-
ing generalized derivative expansion series shows orders of
magnitude improvement. The recognition of these properties
in the loop-energy space provides a hitherto completely un-
exploited powerful tool which can turn the derivative expan-
sion into a genuinely useful method of computation.

We have carried out the complete implementation of this
approach for static background fields and have successfully
calculated the energy for a large collection of models of~1
11!-dimensional solitons. The calculations, which include
up to 22-derivative terms in the expansion, using the Pade´
approximant of the analytic continuation, were performed
using theMATHEMATICA program@14#. The capability to do
most parts of the calculations analytically and interactively is
most important for the successful implementation of this pro-
gram both in understanding the physics and in the improve-
ment of the approximation. This new method opens up the
possibility of asking some more fundamental questions, such
as whether one can define the effective potential more mean-
ingfully using some test spatially varying background fields,
in the region when the conventional effective potential is not
well defined for a constant background field.

In this paper, in order to illustrate the spirit and the power
of this new development, we apply this method to the calcu-
lation of the one-loop quantum correction to the~111!-
dimensional~with no internal symmetry! static soliton in
various models, in which extensive works on exact solutions
and numerical solutions have been carried out@9–13,17,18#.
For the models in which exact solutions have been found,
such as the sine-Gordon soliton, thef4 soliton, and the
fermion-loop contribution to thef4 soliton, we are able to
deduce a unique pattern of the improved expansion series
and, therefore, succeed in resumming the series to obtain the
exact results. More importantly, in the cases where exact
solutions may not be available, well-known analytic continu-
ation techniques such as the Pade´ approximant or the Borel
summation can be used as a very efficient method to provide
an excellent approximation, in contrast with relying on the
cumbersome numerical calculations. The fermion-loop con-
tribution to thef4 soliton mass with the exact solution is
used to test the approximated analytic continuation method.
Then, we apply the method to the Christ-Lee soliton and the
f4 bag.

Finally, we derive a useful hybrid formula to estimate the
quantum correction to the vacuum energy of the static field
using the generalized derivative expansion series up to only
the two-derivative terms and the low-lying pole energies.

II. AN IMPROVED DERIVATIVE EXPANSION

Following from Eq. ~1! and commuting the exponential
from the left to the right of the differential operator, we have
@3#

G@u#5
i

2E dDx
dDp

~4p!D
ln@~]1 ip !21u~x!#

5E dDx
dDp

~4p!D
ln@2p22 i e1u~x!12ip•]1]2#.

~3!

The conventional derivative expansion can be obtained by
expanding the logarithmic function in power series of the
operator (2ip•]1]2). Special care must be taken for the
noncommutivity between the two operators (2ip•]1]2) and
u(x). Thep integration can be performed to give

G@u#5
1

2~4p!D/2
E dDxFGS 2

D

2 DuD/21 1

12
G

3S 32
D

2 Du231D/2~]mu!21
1

288
GS 62

D

2 D
3u261D/2~]mu!41

1

120
GS 42

D

2 D
3u241D/2~]a]bu!22

1

72
GS 52

D

2 D
3u251D/2]a]bu]au]buG1O~]6!. ~4!
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This expansion has been calculated toO(]10). It is clear that
if the functionu(x) crosses from a positive value to a nega-
tive value through the point zero, the expansion series would
definitely be invalid. It is also not clear how to analytically
continue this functional series.

u(x) can cross zero in a number of contexts. The most
interesting case is the spontaneously symmetry-breaking
case in whichM2 in Eq. ~2! is positive and nonzero. The
appropriate expansion should be a double expansion which
includes the derivative expansion and the Taylor series ex-
pansion ofu(x) aboutu(x)5M2. In principle, the double
expansion can be achieved by further expanding Eq.~4! in
Taylor series ofU(x)5u(x)2M2 to give

i

2
TrlnG215

1

2~4p!D/2
E dDxH GS 2

D

2 DMD2GS 12
D

2 D
3M221DU1

1

2
GS 22

D

2 DM241DU2

1
1

12
GS 32

D

2 DM261D@22U31~]mU !2#

1
1

120
GS 42

D

2 DM281D@25U4210U~]mU !2

1~]a]bU !2#1O~M2101D!J . ~5!

The expansion parameter can now be identified to be 1/M2.
The first few terms can be used to isolate the divergent terms
to be used for renormalization.

However, it is more convenient as well as more correct to
develop the double expansion directly from Eq.~3!. It is
much easier to keep track of the higher order terms and the
analytic property in momentum space is much better under-
stood. We can rewrite Eq.~3!,

G@U#5
i

2
TrlnG21

5
i

2E dDx

~4p!D
dDpln$2p22 i e1M2

1@U~x!12ip•]1]2#%, ~6!

and expand it as a power series in@U(x)12ip•]1]2#.
Since we are expanding the only operator in the expression,
there is no complication because of noncommutativity.

III. QUANTUM CORRECTIONS TO THE VACUUM
ENERGY OF STATIC BACKGROUND FIELDS

In this paper we shall consider exclusively the time-
independent background fieldU„f(xW )…. We decompose the
momentum vectorpm5(v,pW ) and effectively]m→(0,¹W ). In
that case we can factor out the constant time integration,

G i@U#52S E dtDE@U#, ~7!

and identify the one-loop quantum correction to the field
energy for a static field configuration:

E@U#52
i

2E2`

` dv

2p
Trln@2v22 i e1M22¹W 21U„f~x!…#.

~8!

This integral is in general divergent and requires subtractions
to render it finite. With this subtraction understood and to be
defined later, we can perform integration by parts for thev
integration:

E@U#sub52 i E
2`

` dv

2p
v2Tr

3F 1

2v22 i e1M22¹21U„f~x!…G
sub

. ~9!

Throughout this paper we will refer energy (E) or soliton
energy to mean the one-loop quantum correction to the
vacuum energy of the static background field, unless it is
otherwise specified, such as classical energy (Eclassical). The
trace may be evaluated by solving the quantum-mechanical
problem of the HamiltonianH52¹21U„f(x)….

In Fig. 1, we plot the singularities of the trace function
and various contour paths ofv integration in the complex
v plane. The branch cuts extend from6M to 6` along the
real axes. Between2M andM are the discrete bound state
poles atv i . Along the imaginary axes are polesv j

2,0. The
pathC is the original contour. With an appropriate subtrac-
tion, the contourC can be deformed to the pathCE along the
imaginary axes. This path of integration is particularly useful
to evaluate the integral when there is no pole on the imagi-
nary axes. In this case the integral is dominated by the
lowest-lying bound state pole on the real axes.

This contour may also be deformed to the contourCp
consisting of a set of contours encircling clockwise around

FIG. 1. Singularities and contour paths in the complex plane.
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poles at the negative imaginary axes and a contour path
wrapping around singularities on the positive real axes. The
v integration along the real axes becomes the integration of
the discontinuity~imaginary part! of the integrand in the
physical region@19#:

E@U#52
i

2(j uv j u12i E
0

`dv

2p
v2ImTr

3F 1

2v22 i e1M22¹21U„f~x!…G
sub

52
i

2(j uv j u1 (
0,v i,M

1
2 ~v i2M !

1E
M

`dv

2p
2v2

d

dv2(
k

dk~v2!U
sub

, ~10!

wheredk is the phase shift for thek channel.
While the eigenvalues of the Hamiltonian are relatively

simple to calculate numerically, the numerical evaluation of
the phase shift for a continuous distribution ofv2 can con-
sume an enormous amount of computer time, especially for
largev2 where numerical accuracy suffers because of large
cancellations. A hybrid method has been suggested in which
the v integration is performed using the conventional ap-
proach from the thresholdM up to a certain valueL and
then fromL to ` using the first two terms of the derivative
expansion@13#. The convergence of the derivative expansion
series may be rather poor for some background fields. It is
also not clear how to choose the artificial divisionL to op-
timize the calculation.

In the physical region, the conventional derivative expan-
sion is equivalent to the WKB approximation which is a

high-energy expansion. Since the integrand in Eq.~10! is not
an analytic function ofv, it cannot be analytically continued
to the complexv plane.

In the case of absence of any pole on the imaginary axes,
a more appropriate contour path in the complexv plane for
thev integration would be the contourCE (v5 ivE) along
the imaginary axes far away from any singularity. Equation
~9! becomes

E@U#52E
2`

` dvE

2p
vE
2TrF 1

vE
22 i e1M22¹21U„f~x!…G

sub

.

~11!

In this paper the final evaluation ofv integrations will be
performed using this path (CE) while the physical variable
v will be used for intermediate expressions.

In this paper we shall show that our generalized derivative
expansion can provide a powerful method to evaluate the
expression in Eq.~9!. This method can equally be adopted
for other quantum-mechanical problems. The trace in Eq.~9!
can be evaluated@3#:

E@U#52 i E
2`

` dv

2p
v2F E dxWdpW

~2p!D21

3
1

2v22 i e1pW 21M21@U~xW !22ipW •¹W 2¹W 2#
G
sub

.

~12!

After expanding the integrand in power of

@U(xW )22ipW •¹W 2¹W 2#/(2v22 i e1pW 21M2) and integrating
over pW , we obtain

E@U#5 i E
2`

` dw

2p
v2z3/2A~z!, ~13!

A~z!52z23/2TrF 1

2v22 i e1M22¹21U„f~x!…G
sub

52
1

4p [ ~D21!/2]E
2`

`

dxW H 2GS 52D

2 DUz12D/21
1

2
GS 72D

2 DU2z22D/22
1

12
GS 92D

2 D @2U31Ui
2#z32D/2

1
1

120
GS 112D

2 D @5U4110UUi
21Ui j

2 #z42D/22
1

5040
GS 132D

2 D @42U51210U2Ui
2170UiU jUi j

142UUi j
213Ui jk

2 #z52D/21
1

30240
GS 152D

2 D @42U61420U3Ui
21420UUiU jUi j1126U2Ui j

2118UUi jk
2

1105Ui
2Uj

2122UikUk jU ji184UiU jkUi jk1Ui jkl
2 #z62D/21O~z72D/2!J U

sub

, ~14!
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whereUi1••• i n
5¹W i1

•••¹W i n
U andA(z) is expanded in power

series of

z5
1

2v22 i e1M2 5
1

vE
22 i e1M2 . ~15!

The coefficient of thezn term contains terms up to and in-
cluding one term with 2n241D derivatives. Integration of
x by part has been performed repeatedly on this coefficient to
arrive at this unique representation such that there is no more
thann221D/2 derivatives on eachU and there is no con-
traction between derivative components on the sameU.

In the region of integration,U is mostly negative. There is
a large cancellation among these terms. As the power ofz
increases, the number of terms and, therefore, the degree of
cancellation also increase accordingly. For the examples of
~111!-dimensional soliton in this paper, the degree of can-
cellation can be as big as an extra order of magnitude for
each higher order inz.

For reference purposes, we find it convenient to charac-
terize the order of the power series by the maximum number
of derivatives of a single term in its coefficient rather than
the power of z. There should has been a leading term
G@(32D)/2#z2D/2 in the power seriesA(z), which is inde-
pendent ofU. It is, therefore, divergent even without thev
integration. This term has been dropped without any physical
consequence. For termszn with n,1, thev integration is
divergent. Therefore, subtractions must be carried out to re-
move such terms. If the same functional forms of these terms
appear in the original Lagrangian, the field theory is renor-
malizable and the subtractions would come from the corre-
sponding counterterms introduced into the original Lagrang-
ian for the purpose of renormalization. Our renormalization
prescription is to truncate divergent terms in the beginning of
the generalized derivative expansion series and start the se-
ries with the leading termz for any dimensionD. In this
paper all relevant expressions include proper subtraction un-
less explicitly indicated otherwise.

The exact functionA(z) is an analytic function ofz or
v, and has singularities of poles and cuts slightly displaced
from the real axis. The series in this present form is suitable
for analytic continuation. The analytic continuation of the
power series in Eq.~14! should yield

A„z~v!…5 (
v i
2
,M2

r i
2w22 i e1v i

21F~v!

5 (
v i
2
,M2

r iz~v!

11~v i
22M2!z~v!

1F„z~v!…, ~16!

whereF(v) is regular everywhere except possibly on the
real axes ofv.M andF(v) goes to zero faster than 1/v2 as
v→`. In order to be consistent with the result from Eq.
~10!, the coefficientsr i or, equivalently, the residues of the
poles, are completely determined:

r i52~2v i
21M2!3/2. ~17!

In the expression forE(v), the bound state poles are multi-
plied by av-dependent factorz3/2 which, in odd space di-

mension, has a branch cut above the thresholdM . The
branch cut would represent the continuum contribution. It is
not possible to separate from this term the pole contribution
and the cut contribution analytically.

We define the contribution of each polev i,M2 to A(z)
to be

a~v2;v i
2 ,M2!52S ~2v i

21M2!3/2

2v22 i e1v i
2 D . ~18!

ForM2.v i
2.0, its contribution to the soliton mass is

Ep~v i
2 ,M2!52

1

p
AM22v i

2S 12A v i
2

M22v i
2

3arctanAM22v i
2

v i
2 D . ~19!

Thev integration has been performed with contourCE along
the imaginary axes. It is interesting to point out that the
discrete bound state pole contribution to the soliton mass
EB after the subtraction is independent of the dimensionD.

Equation~19! can be analytically continued tov i
2,0:

Ep~v i
2 ,M2!52

i

2
uv i u2

1

p
AM21uv i u2

3S 12
1

2
A uv i u2

M21uv i u2

3 ln

11A uv i u2

M21uv i u2

12A uv i u2

M21uv i u2
D . ~20!

At v i50, Ep(0,M
2)52M /p.

To remove a pole atv i and its influence, fromA„z(v)…
analytically, it is necessary to subtract not just the simple
pole but the entire expression. The extraction procedure is
defined by the subtraction

Ã„z~v!,2$v1 , . . . ,vn%…5A„z~v!…2(
i51

n

a~v2;v i
2 ,M2!,

~21!

where Ã„z(v),2$v1 , . . . ,vn%… is an analytic function of
v and has the identical singularities asA„z(v)… except that
the poles at$v1 , . . . ,vn% have been completely removed.
We express

Ẽ~2$v1 , . . . ,vn%!5E2(
i51

n

Ep~v i ,M
2! ~22!

5 i E
2`

` dv

2p
v2z3/2Ã„z~v!,

2$v1 , . . . ,vn%…. ~23!
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We can now expanda@v2(z);v i
2 ,M2# in a power series in

z:

a@v2~z!;v i
2 ,M2#52~2v i

21M2!3/2
z

12z~M22v i
2!

52~2v i
21M2!3/2@z1z2~M22v i

2!

1z3~M22v i
2!21•••#, ~24!

and combine this expansion with the expansionA(z) in Eq.
~14! to give a new power seriesÃ(z,2$v1 , . . . ,vn%). We
shall refer to this process of removing the pole contribution
analytically as pole extraction and to the new power series
Ã(z,2$v1 , . . . ,vn%) as remainder series.

We would like to evaluate thev integration with the con-
tour path along the imaginary axes such that the path would
be far away from the singularities. The integral is dominated
by the nearest singularity, in this case, lowest-lying poles
which also control the convergence of the generalized de-
rivative expansion series. If we can extract the low-lying
poles in a manner described above, we would have replaced
the dominant pole contributions by the known analytic ex-
pression, Eq.~19!, and at the same time we would have
weakened the continuum~cut! contributions substantially.
The remaining singularities would be much farther away
from the integration path and the remainder series would be
much more convergent.

However, the location of the low-lying bound states may
not be given explicitly; we may choose to proceed in one of
the following ways or some combinations of them.

~1! For a soliton background field, spatial translational
invariance implies the existence of zero frequency (v i50)
pole~s! whose contribution to the soliton mass can be ex-
tracted easily. Even though the zero-frequency pole is super-
ficially removed by the overall factor ofv2 in the integrand
of Eq. ~12!, there is known continuum contribution associ-
ated with this mode which has to be removed by our extrac-
tion procedure.

~2! The remainder power seriesÃ(z) may be analytically
continued by Pade´ approximants. LetAn,m be the $n,m%
Padéapproximant ofÃ(z). An,m is a ratio of two polynomi-
als of z of order n andm and its power series expansion
matches that of the power seriesA(z) for the first n1m
terms. Since there is an overall factor ofz in A(z), we shall
take the Pade´ sequenceAn,n . To calculateAn,n requires the
seriesA(z) calculated up to thez2n term or up to terms
containing 4n241D derivatives. We rewriteAn,n as a ratio
of two polynomials inv2. After factorizing the denominator
and performing partial fractions, we can then express the
result as

An,n52(
i51

k bn,i~2an,i
2 1M2!3/2

2v22 i e1an,i
2 2(

i5k

n cn,iM ~2an,i
2 1M2!

2v22 i e1an,i
2 ,

~25!

where an,i is arranged in order such thatan,i
2 ,an, j

2 for
i, j , an,i

2 ,M2 for i,k, andan,i.M for i.k. The poles at
a i
2,M2 are physical poles whereas the poles ata i

2.M2 are
there to approximate the additional continuum contributions.
As n increases,an,i

2 ,M2 converges to the correct eigenval-

uesv i
2 from above whilean,i.M2 increases in number and

becomes more dense. Equations~16! and~17! imply that for
an exact solutionbn,i must be 1 or a positive integer which
represents the multiplicity of the degenerate eigenstates with
eigenvaluev i

2 . For the Pade´ approximant, bn,i.1 ap-
proaches 1 or integer values from above. The deviation of
the value ofbn,i from 1 can be used as a measure of the
deviation ofan,i

2 from the correct valuev i
2 . In principle, it is

possible to exploit the constraint of theb’s exactly or itera-
tively for better approximation of thea ’s. We have devel-
oped some preliminary methods which show great improve-
ment over the standard Pade´ approximation. Our goal is to
calculate the soliton mass here. With perhaps some excep-
tions, there is no need to go beyond the present approach. In
this approximation, the quantum correction to the soliton
mass is given by

En52(
i51

k

bn,iEp~an,i
2 ,M2!2(

i5k

n

cn,iEc~an,i
2 ,M2!,

~26!

where

Ec~a2,M2!52
M

p F 12
1

2A12M2/a2

3 lnS 11A12
M2

a2

12A12
M2

a2

D G ~27!

is the analytic continuation of the function
(1/A12M2/a2)Ep(a

2,M2) from a2,M2 to a2.M2.
~3! It is relatively simple to calculate numerically the low-

lying v i
2 for a given potentialU„f(x)…. Extracting just one

lowest-lying pole would improve the convergence of the
Padéapproximant greatly, which means that fewer higher
derivative terms will be needed. In general, we would like to
extract all poles along the imaginary axes and those along
the real axes withv i

2!M2, such that the integration path can
be rotated toCE , the imaginary axes, and away from any
singularity.

In the following section we shall use this result to calcu-
late the quantum correction to the soliton energy.

IV. SCALAR FIELD

The Lagrangian density for a scalar field coupled to a
fermion is

L5 1
2 ~]mf!22V~f!1c̄@ i ]”2VF~f!#c, ~28!

whereV(f) satisfies reflection symmetryV(2f)5V(f) so
that the Lagrangian is reflection symmetric with respect to
f. Spontaneous symmetry breaking occurs when there are
more than two degenerate absolute minimaf56f0 such
that V8(6f0)50 andV9(6f0)5M2.0. We also choose
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to normalizeV(6f0)50. For a finite energy field,f(x)
must satisfy the asymptotic conditions that asuxu→`:

uf~x!u→f0 ,

V„f~x!…→0,

V8„f~x!…→0,

V9„f~x!…→M2. ~29!

In the one-loop order, the effective action is given by

G@f#5G0@f#1GB@f#1GF@f#5E dxLeff , ~30!

where

G05E dxL, ~31!

GB5
i

2
Trln@]21V9„f~x!…#usub, ~32!

GF52 iTrln@2~ i ]”2gf!#usub. ~33!

The derivative expansion ofGB in Eq. ~32! is given by Eq.
~4! with u(x)5V9„f(x)…. Since V8(6f0)50, unless
V8(f) is identically zero for the whole range
2f0,f,f0 ,V8(f) must have at least a maximum or
minimum and, therefore,V9(f) must has at least one zero in
this range. FromV9(6f0)5MB

2.0 it follows thatV9(f)
must have at least two zeros in this range, which means that
u(x)5V9(f) must go through zero to a negative value and
back to a positive value at least once. In that case the deriva-
tive expansion, Eq.~4!, may not be appropriate. The proper
expansion should be Eq.~14! with

U„f~x!…5V9„f~x!…2MB
2 , ~34!

whereV9(f)5(d2/df2)V„f(x)….
In the~111!-dimensional case and for the static field con-

figurationf(xW ), we have calculated the series up to thez16

term usingMATHEMATICA @14#. For the meson loop, we ob-
tain

EB@U#5 i E
2`

` dv

2p
EB~v!5 i E

2`

` dv

2p
v2z3/2AB~z!, ~35!

AB~z!52
1

2E2`

`

dxH 38 zU22
5

32
z2@2U31~U8!2#

1
7

128
z3@5U4110U~U8!21~U9!2#2

9

512
z4@14U5

170U2~U8!2114U~U9!21~U-!2#1
11

2048
z5@42U6

1420U3~U8!2235~U8!41126U2~U9!2220~U9!3

118U~U-!21~U99!2#1•••1O~z15!J , ~36!

where U8(x)5(d/dx)U„f(x)…, U9(x)5(d2/
dx2)U„f(x)…, . . . . Amore complete expression ofAB(z) up
to z13 is given in the Appendix.

For the fermion loop, we obtain

EF@U#52
1

2
$EB@W1VF8 ~x!#1EB@W2VF8 ~x!#%

5 i E
2`

` dv

2p
v2z3/2AF~z!,

AF~z!5
1

2E2`

`

dxH 38 z@W21~VF8 !2#2
5

32
z2@2W31~W8!2

16W~VF8 !21~VF9 !2#1
7

128
z4@5W3110W~W8!2

1~W9!2130W2~VF8 !2110W~VF9 !2120VF8VF9W8

15~VF8 !41~VF
- !2#1•••1O~z14!J

5
1

2E2`

`

dxH 38 z@W21~VF8 !2#2
5

32
z2@2W3

14VF
2~VF8 !216W~VF8 !21~VF9 !2#1

7

128
z3@5W4

130W2~VF8 !2110W~VF9 !2140W~VF!2~VF8 !2

27~VF8 !414VF
2~VF9 !21~VF

- !2#1•••1O~z14!J ,
~37!

where we have definedW5W„f(x)…5VF„f(x)…
22MF

2

with MF
25VF(f0)

2, z51(2v22 i e1MF
2), and VF(x)

5VF„f(x)….
In this paper we shall examine the renormalizable models

in Table I. The infinite subtraction term linear inU has been
absorbed into the renormalization ofV.

V. ONE-LOOP CORRECTIONS TO SOLITONS
IN „111…-DIMENSIONAL THEORIES

The ~111!-dimensional soliton solutionfs(x) is the so-
lution of the differential equation

d2

dx2
fs~x!5

d

dfs~x!
V„fs~x!…, ~38!

which can be integrated by an integrating factor
(d/dx)fs(x):

S ddxfs~x! D 252V„fs~x!…. ~39!

This equation can be further integrated with the boundary
condition thatfs(x)→f0 as uxu→` andf0 is defined by
Eq. ~29!, we get
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x2x05E
0

fs df

A2V~f!
, ~40!

where x0 is defined as the center of the soliton such that
fs(x0)50 and is set equal to zero in this paper with no loss
of generality. Inverting this equation yields the soliton profile
fs(x). However, it is much simpler to compute the classical
energy of the soliton and its quantum correction directly us-
ing Eq. ~39! rather than the solutionfs(x). The classical
energy is given by

Eclassical5E
2`

`

dxV„fs~x!…5E
2f0

f0
dfs

2

U dfs

dx U V~fs!

52A2E
0

f0
dfAV~f!, ~41!

and the corresponding values for various models are given in
Table I.

The normal modesh i(x) of fluctuations aroundfs(x)
satisfy the eigenvalue equation

F2
d2

dx2
1V9„fs~x!…Gh i~x!5v i

2h i~x!, ~42!

with the boundary conditionh(x)→0 as uxu→`. The
ground stateh0(x)5dfs /dx is the zero-energy~transla-
tional! mode (v050) obtained directly from differentiating
Eq. ~38!. The spectrum contains possible discrete eigenval-
ues of positivev i

2 and a real continuous spectrum above the
thresholdM2.

The solution of this eigenvalue problem can be used to
evaluate the trace in Eq.~9!:

Tr
1

2v22 i e2
d2

dx2
1V9„fs~x!…U

sub

.

However, the technical problems of solving these differential
equations and evaluating the trace are highly nontrivial. Al-
though exact solutions of the sine-Gordon and thef4 soli-

tons have been found, there is no simple method of approxi-
mation to evaluate the quantum correction to the soliton
energy efficiently without heavily relying on tedious and
CPU time-consuming numerical computation. Derivative ex-
pansion can be combined with numerical calculation to re-
duce the computation time substantially@13#. However, it
cannot replace the numerical calculation entirely because of
the deficiency of the derivative expansion in the presence of
the spontaneous breaking of symmetry. This difficulty can be
completely removed by the new improved expansion pro-
posed in this paper.

In this new approach, there is no need for solving any
differential equation. Instead, we use Eq.~39! to transform
the integration in Eq.~36! from x to fs . The spatial deriva-
tives ofU„fs(x)… can be expressed in terms of function only
of fs . In this section, we deal exclusively with the soliton
solution as the background field and we shall suppress the
subscripts:

U8„f~x!…→A2AV~f!V~3!~f!,

U9„f~x!…→V8~f!V~3!~f!12V~f!V~4!~f!,

U ~3!
„f~x!…→A2AV~f!@V9~f!V~3!~f!13V8~f!V~4!~f!

12V~f!V~5!~f!#.

Equation~36! can be rewritten in terms of the integration of
f:

AB~v!52E
0

f0 df

A2V~f!
H 38 zU~f!22

5

16
z2$U~f!31V~f!

3@V~3!~f!#2%1
7

128
z3$5U~f!4120U~f!2V~f!

3@V~3!~f!#21@V8~f!V~3!~f!12V~f!V~4!~f!#2%

1•••1O~z14!J . ~43!

With the functions off given for various models in Table I,
the integration off can be carried out analytically.

TABLE I. Models of the~111!-dimensional soliton.

Model V(f) f0 M2 U(f) Eclassical

sine-Gordon m4

l
FcosSAl

m
f D 11G mp

Al

m2

2m2FcosSAl

m
f D 11G 8

m3

l

f4
1

8
lSf22

m2

l D2 m

Al

m2
3

2
lSf22

m2

l D 2
3
m3

l

Christ-Lee 1

8

l

~11c2! Sf22
m2

l D2 m

Al

m2
3

4

l

~11c2! Sf22
m2

l D m3

l

1

8c3A11c2
@cA11c2(2c221)

3S11c2
l

m2f2D 3S21c215c2
l

m2f2D 1(114c2)ln(11A11c2)]

Fermion
Yukawa gf f0 g2f0

2 g2@f(x)22f0
2#6gf8(x)

Coupling
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Because of translational invariance, there is a zero-
frequency modev050 for Eq. ~42!, with the eigenfunction
h0(x)5(d/dx)fs(x). We can obtain a much improved
power series by extracting out this zero frequency pole from
Eq. ~43!. Using Eqs. ~18!–~24! and noting that
EB(0,M

2)52M /p, we obtain

Esoliton5Ep~0,M
2!1 i E dv

2p
v2z3/2ÃB@z~v!,2$0%#

52
M

p
1 i E dv

2p
v2z3/2@AB„z~v!…1zM3

3~11zM21z2M41••• !#. ~44!

If the path ofv integration is taken along the imaginary
axes, (CE), then

0,M2z5
M2

vE
21M2,1. ~45!

This series and the series in the following examples are con-
vergent series.

A. The sine-Gordon soliton

We can useV(f) andU(f) for the sine-Gordon soliton
in Table I to evaluate Eq.~43!. After thef integration, we
find

AB
sine-Gordon~z!52m3z@11m2z1m4z21•••

1m24z131O~z14!#

52
m3z

12m2z
5
m3

v2 5a~v2;0,m2!. ~46!

The $1,1% Padéapproximant using the first two terms of the
series up to only the two-derivative contribution has already
converged to the exact solution and generates the required
zero-frequency bound state of the translational invariance.
Higher order Pade´ approximant$n,n% with n.1 gives the
same result. Alternatively, we can apply Eq.~44! directly to
calculate the static energy. Since

ÃB
sine-Gordon~z,2$0%!501O~z14!,

we obtain the correct energy with no effort

EB
sine-Gordon52

m

p
.

B. The f4 soliton

Similarly, for thef4 soliton, we obtain

AB
f4

~z!52m3zF981
33

32
m2z1

129

128
m4z21

513

512
m6z3

1•••1O~z13!G
52

m3z

12m2z
2
1

8

m3z

12 1
4 m

2z

5
m3

v2 1
1

8

m3

v22 3
4 m

2

5a~v2;0,m2!1a~v2; 34m
2,m2!. ~47!

The summation of this series is less obvious because it re-
quires$2,2% with six-derivative or higher order Pade´ approx-
imant to converge to the exact sum. By extracting the zero-
frequency bound state pole, we have

ÃB
f4

~z!52
1

8
m3F11

m2z

4
1Sm2z

4 D 21Sm2z

4 D 31•••

1Sm2z

4 D 121O~z13!G5
1

8

m3

v22 3
4 m

2

5a~v2; 34m
2,m2!. ~48!

This convergent geometric series can be summed by$1,1%
Padéapproximant and

ẼB
f4

52
m

p
1Ep~

3
4m

2,m2!5mF2
1

p
1S 1

4A3
2

1

2p D G
5mS 1

4A3
2

3

2p D .
Thus, we have recovered again the exact solutions for the
f4 solitons@19# using terms only up to the two derivative.

C. Fermion-loop contribution to the f4 soliton
with Yukawa coupling: Exact

The Yukawa coupling is defined by

VF„f~x!…5gf~x!, ~49!

and from this one deduces the fermion mass

MF5gf05g
m

Al
. ~50!

It is convenient to define the dimensionless variables

G5
2MF

m
5
2g

Al
, ~51!

55 6231GENERALIZED DERIVATIVE EXPANSION AND ONE- . . .



n5 inE5
2v

m
5A2

1

Z
1G2, ~52!

Z5
1

4
m2z5

1

4

m2

2v22 i e1 1
4 m

2G2

5
1

2n22 i e1G2 5
1

nE
21G2 . ~53!

The fermion-loop contribution to thef4 soliton mass is

EF~G!5 i E
2`

` dv

2p
EF~v!5 i E

2`

` dv

2p
v2z3/2AF„z~v!,G…

5 i E
2`

` dn

2p

m

2
EF~n!, ~54!

where

AF~Z,G!5
m

2
$ 1
2G

2~G211!Z1 1
6G

2~2G415G221!Z2

1 1
12G

2~3G6114G427G212!Z3

1 1
10G

2~2G8115G6214G4110G223!Z4

1•••1O~Z15!%. ~55!

It is clear thatAF(z,0)50 andEF(0)50. Following Eqs.
~18!–~24! and folding in the extra factor of21 for the ferm-
ion loop, we extract out the zero-frequency mode:

EF~G!5
Gm

2p
1 i E

2`

` dv

2p
v2z3/2ÃF„z~v!,G…. ~56!

The first term comes from2Ep(0,MF
25 1

4m
2G2) and

ÃF~Z,G!5AF~Z,G!1a~v,0,14m
2G2!

5AF~z,G!2 1
2mG3Z~11G2Z1G4Z21••• !

5 1
2m$ 1

2G
2~G21!2Z1 1

6G
2~G21!2~2G222G21!Z21 1

12G
2~G21!2~3G426G32G214G12!Z3

1 1
10G

2~G21!2~G22G21!~2G424G32G213G13!Z41•••1O~Z15!%. ~57!

WhenG is an integer, this series can be rewritten and analytically continued:

ÃF~Z,G!5m(
n51

G21

@n3Z1n5Z21n7Z31•••1n29Z141O~Z15!#5m(
n51

G21
n3Z

12n2Z
52(

n51

G21 1
8 n

3m3

2v22 i e1 1
4 m

2G22 1
4 n

2m2

52(
n51

G21
~MF

22vn
2!3/2

2v22 i e1vn
2 522(

n51

G21

a~v2,vn
2 , 14m

2G2!, ~58!

wherevn
25 1

4m
2(G22n2) for n51, . . . ,G21, are theG21 doubly degenerate (n56unu) bound state poles andMF

25 1
4

m2G2 is the threshold. Therefore, for integer values ofG, we recover the exact solution@20#

AF~v,G!52a~v,0,14m
2G2!22(

n51

G21

a@v, 14m
2~G22n2!, 14m

2G2#, ~59!

and

EF~G!52Ep~0,
1
4m

2G2!22(
n51

G21

Ep@
1
4m

2~G22n2!, 14m
2G2#5

m

2p
G1

m

p (
n51

G21 S n2AG22n2arctanA n2

G22n2D
5

m

2p SG222(
n51

G21

AG22n2arctanA n2

G22n2D . ~60!

The analytic continuation of Eq.~58! from integerG to noninteger value can obtained by rewriting the expression

ÃF~Z,G!5m(
n51

G21
n3Z

12n2Z
5

m

2Z(
n51

G21 F S 1

Z21/22n
2

1

Z21/21nD 2G~G21!ZG5
m

2Z F d

dZ21/2 ln)
n51

G21
Z21/22n

Z21/21n
2G~G21!ZG

5
m

2Z F d

dZ21/2ln
G~11Z21/2!2

G~11Z21/21G!G~11Z21/22G!
1

1

Z21/21G
2Z

1
22G~G21!ZG . ~61!

The final result for the fermion-loop contribution to thef4 soliton mass for any real value ofG is given by
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EF
f4

5
m

2pE0
`

dnEH nE
2

AnE
21G2 F2c~11AnE

21G2!2c~11AnE
21G21G!2c~11AnE

21G22G!2
G2

nE
21G2G1

G2

nE
21G2 J

~62!

5
m

2pE0
`

dnES G2

nE
21G2 2

G2

AnE
21G2

2 ln
G~11AnE

21G2!2

G~11AnE
21G21G!G~11AnE

21G22G!
D , ~63!

wherec(x)5(d/dx)lnG(x) is the polygamma function. Inte-
gration by part is performed in the last equality using the
derivative from the definition ofc.

The integrand is an analytic function ofn. Our expression
appears to have a much simpler form than that of the previ-
ous exact solution but is otherwise completely equivalent
@25#. The arguments in theg function and the polygamma
function are always real and greater than 1. In principle, the
integral in Eq.~62! can be evaluated numerically. However,
for largeG and largenE , there exists a many order of mag-
nitude cancellation between terms in the integrand which
renders the numerical integration either inaccurate or time
consuming. In that case it would be useful to replace the
integrand by its asymptotic expansion, such as the expansion
equations~54! and ~55! for the integrand in Eq.~62!. The
loss of accuracy from the high-frequency contribution has
been a problem in any numerical method in this type of
calculation. Derivative expansions have been found to be
extremely useful to supplement numerical methods, even in
the case that the complete solution has been reduced to a
quadrature form. ForG.20, the numerical evaluation of the
integrand in Eq.~62! has a large uncertainty for largenE . It
becomes more practical to evaluate the numerical integration
by breaking up the integration into a sum of two integrations:
use Eq.~62! to integratenE from 0 to n̄E and use the expan-
sion equations~54! and ~55! to integratenE from n̄E to `.
The choice ofn̄E depends on how many terms in the expan-
sion equations~54! and ~55! are being included.

Equation~62! may also be derived directly from Eqs.~54!
and ~55! by Borel summation. To the order indicated in Eq.
~55!, the coefficients of this series can be expressed in terms
of the Bernoulli polynomialsBn(x):

AF~n!5
m

2Z (
n52

`
1

2n
Zn$B2n~G!1B2n~2G!22B2n%

5
m

2Z F S (
n51

`
1

n
Zn/2$Bn~G!1Bn~2G!22Bn%2ZG2D

2
G2

n2
AZG . ~64!

The Bernoulli polynomials are given by

Bn~x!5 (
m50

n
n!

m! ~n2m!!
Bmx

n2m

and Bn are the Bernoulli numbers. Using the generating
functional of the Bernoulli polynomials

text

et21
5 (

n50

`

Bn~x!
tn

n!
,

we can analytically continue the seriesAF in Eq. ~64! by
Borel summation:

AF~n!5
m

2Z S E
0

`

dse2sAZFeGsAZ1e2GsAZ22

esAZ21 G1ZG21
G2

n2
AZD ~65!

5
m

2Z F E
0

`

dtS e2~11Z21/21G!t1e2~11Z21/22G!t22e2~11Z21/2!t

12e2t D 1ZG21
G2

n2
AZG ,

~66!

where we have changed the integration variable tot5sAZ.
The last integral can be expressed in terms of the polygamma
function defined by

c~x!5
d

dx
lnG~x!5E

0

`

dtFe2t

t
2

e2xt

12e2tG . ~67!

We obtain

EF
f4

5
m

4p
i E

2`

`

dnAZ$n2@2c~11Z21/2!2c~11Z21/21G!

2c~11Z21/22G!2ZG2#2G2AZ%, ~68!

which becomes Eq.~62! after rotating the path of integration
in the complexn plane by 90°,n5 inE .
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D. Fermion-loop contribution to the f4 soliton
with Yukawa coupling: Approximation

For the examples in the previous sections, the expansion
series are relatively simple that we are able to deduce the
unique pattern of the infinite series by calculating more than
sufficient but still a finite number of terms. Perhaps, this
simplicity is related to the fact that the potentials are nonre-

flective and the problems are exactly solvable. However, if
the series is not recognizable, we may have to rely on a
sequence of Pade´ approximants to approximate the analytic
continuation of the generalized derivative expansion. In or-
der to evaluate the reliability of this approximation, we shall
apply the scheme outlined in Sec. III to the fermion-loop
contribution to thef4 soliton mass.

FIG. 2. Relative error of the fermion-loop
correction to thef4 soliton mass.

FIG. 3. Fermion-loop correction to thef4

soliton mass (G!1).
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We calculate the Pade´ approximantAn,n for the expres-
sion in Eq.~57! and follow the general procedure as in Eqs.
~18!–~24! and the description in that section. The resulting
EF(G) is compared with the correct values calculated using
Eq. ~62!. In Fig. 2, we plotted the relative error

EF~G!2EF~G!correct
EF~G!correct

as a function ofG for variousn. Instead ofn, we label the
curves by the corresponding 4n22 derivatives which is the
highest number of derivatives for a single term required to
construct the Pade´ approximantAn,n . The convergence of
the Pade´ sequence is excellent for a wide range ofG, al-
though it may require more terms asG becomes very large.
WhenG→0, the fermion massMF→0. The Pade´ sequence
is not expected to be uniformly convergent atG50. In Fig.
3 we plotEF(G) for G!1. The convergence becomes worse
asG decreases, but the deviations from the correct value are
small in absolute terms. There is no reason to expect the
Padéapproximant to be a good approximation for analytic
continuation in this region.

We shall useA4,4 to illustrate more details of the approxi-
mation. SinceA4,4 is a ratio of two polynomials both of
degree 4, it can only have four poles in thev plane. How-
ever, the correct number of poles should beG21. A4,4
would give the correct pole positions and the correctEF for
integerG<5. ForG.5, the discrepancy between the correct
number of poles and the number four given byA4,4, in-
creases asG increases. In Fig. 4, we plot the correct position
of the poles for integer values ofG ~solid circles!, and the
trajectories of the four poles fromA4,4. The four poles are
distributed optimally to produce a well-approximated value
for the correct function at the imaginary axes, the integration
path. The lowest trajectory is always above the correct
lowest-lying pole.

E. Christ-Lee soliton

The potential for the Christ-Lee model is given by@21#

V~f!5
1

8

l

~11c2! S f22
m2

l D 2S 11c2
l

m2f2D
→

c2.0

1

8
lS f22

m2

l D 2. ~69!

Since we can always suppress the dependence onm andl by
rescalingx→x/m and f→m/Al, we can setm51 and
l51, or simply drop the factor ofm or l without loss of
generality; however, for clarity, with the exception of plot-
ting graphs, we shall keep the overall factor ofm for dimen-
sional purposes and set onlym2/l51. In Figs. 5 and 6, we
plot the potentialV(f) and the correspondingU(f) as func-
tions of the fieldf for various values ofc in Figs. 5 and 6.
The potential is normalized such that it becomes thef4

model forc50. As c→`, the potential atf50 approaches
zero and the ground states become triply degenerate. The
soliton with the topological boundary condition
f(6`)→61 breaks up into two independent solitons, one
with the boundary condition@f(2`)→21,f(`)→0# and
the other with the boundary condition
@f(2`)→0,f(`)→1#.

For the potential~69!, Eq. ~39! can be integrated analyti-
cally to yield the soliton configuration

f~x!5
m

Al

sinhSmx

2
D

Ac21coshSmx

2
D 2 , ~70!

which is plotted in Fig. 7. The potentialsV„fs(x)… and
U„fs(x)… for the soliton background field are plotted as
functions ofx in Figs. 8 and 9. It is clear that for smallc, the
kink is located atx50. As c increases, the single kink
gradually separates into two kinks@22#,

f~x!'fc2.`
1 ~x!2fc2.`

2 ~x!, ~71!

fc→`
6 ~x!5A 1

11e7x1 ln~114c2!
5A 1

11~114c2!e7x

~72!

which are soliton solutions of Eq.~39! with V(f) from Eq.
~69! at c→` and boundary conditions

lim
x→6`

fc→`
6 ~x!→1 and lim

x→7`

fc→`
6 ~x!→0. ~73!

It is interesting to point out that Eq.~71! is not only an
excellent approximation to Eq.~70! but also a respectable
approximation for smallc down toc50.

A closed form for the one meson-loop contribution to the
soliton mass,EM

Christ-Lee, has not been found. We calculate the
expansion equation~43!:

FIG. 4. Fermion-loop bound states energy in unit of boson mass
m.
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FIG. 5. Christ-Lee model potentialV as a
function off.

FIG. 6. Christ-Lee model potentialU as a
function off.
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AB
Christ-Lee~z!52m

3

8 H 3S zm2

27c2~11c2!D F2~122c2!~111198c2!13~37126c228c4116c6!S arcsinh~c!

cA11c2
D G

15S zm2

27c2~11c2!D 2F ~104792848c2210900c4117248c6115264c8!

13~2349322046c217136c415056c62384c81768c10!S arcsinh~c!

cA11c2
D G1•••1O~z14!J . ~74!

FIG. 7. Christ-Lee soliton configuration.

FIG. 8. Christ-Lee model potentialV as a
function of x.
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This series appears to be far more complex than the ex-
amples encountered previously and does not seem to be sum-
mable. If we proceed to continue analytically this series by a
sequence of Pade´ approximants, we can obtain reasonably
good convergence forc,6, as shown in Fig. 10. However, if
we first extract the zero-frequency modes from
AB
Christ-Lee(z), the convergence of the seriesÃB

Christ-Leeis much

improved. In the limit thatc→0, ÃB
Christ-Lee reduces to Eq.

~47! for all 14 terms as it should. In Fig. 11, we plot
EM
Christ-Lee as a function ofc for the sequence of Pade´ ap-

proximations. The convergence is excellent for a wide range
of c, except for very large values ofc where the ground
states become almost triply degenerate, which means that
there is another pole atv1

2 very close to zero.

FIG. 9. Christ-Lee model potentialU as a
function of x.

FIG. 10. Boson-loop correction to the Christ-
Lee soliton mass.
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If v1
2 is known, we can perform another extraction to

improve the convergence at largec. In Table II we list the
numerical value ofv1

2 calculated from Eq.~42! and the se-
quence of the one-loop corrections to the soliton mass for
various values ofc. The convergence is drastically im-
proved. These results are summarized by four black dots in
Fig. 11 representing almost the exact values. The results at
the two-derivative level are within a one-half percent of the
final values. This is very important because in some cases it
may not be practical to compute the higher derivative con-
tributions.

As c approaches infinity, the two kinks in Eq.~71! be-
come well separated. The interaction between them becomes
weaker and weaker. The two kinks eventually become two
independent solitons and have two distinct translational
modes. Asc→`, v1→0 and we have a double degeneracy
at v50. Therefore, for large values ofc, a much improved
approximation can be achieved by extraction of twov50
modes instead of one. Even at the two-derivative level, this
approximation shows a drastic improvement over the single
zero-mode extraction approximation for largec. This is
shown by a broad grey curve in Fig. 11. The transition be-
tween the two approximations is approximately atc'6.

VI. THE f4 BAG MODEL

It is clear that the convergence of the expansion series
depends critically on the field configuration. The soliton field
configurations are perhaps the most smooth field configura-
tions. We have shown that the generalized derivative expan-
sion indeed works extremely well for the solitons. It is nec-
essary to test this improved expansion for nonsoliton
configuration.

For this purpose, we choose thef4 model with the set of
parameters specified byl5m252 such thatf051. A
simple field configuration@9,13#

F~x!512
fb

11expS x22R2

T2 D ~75!

has been used to study the dependence of this convergence
on the shape of the field configuration. The fieldF(x) is
reflection symmetric F(x)5F(2x). It varies from
F(0)512fb@11exp(2R2/T2)# at the center to
F(6`)51 monotonically with the steepest increase at the
rangex'R. We further specifyR51, T50.5 and a set of
values forfb50.2, 0.4, 0.6, and 0.8.

FIG. 11. Boson-loop correction to the Christ-
Lee soliton mass with pole extraction.

TABLE II. Boson-loop energy for the Christ-Lee soliton with pole extraction.

c v1
2 2 Der 6 Der 10 Der 14 Der 18 Der 22 Der

5. 0.0369180 20.63566 20.63667 20.63669 20.63669 20.63669 20.63669
10. 0.0097447 20.72505 20.72709 20.72716 20.72717 20.72717 20.72717
25. 0.0015912 20.81276 20.81602 20.81616 20.81618 20.81618 20.81618
50. 0.0003993 20.86661 20.87071 20.87090 20.87092 20.87092 20.87092
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In this case there is no soliton equation and no zero-
frequency mode to extract. We have to perform the integra-
tion in Eq.~36! numerically to obtain the generalized deriva-

tive expansionAbag
f4

and then proceed with the analytic
continuation by the Pade´ approximants sequence. The results
are summarized in Table III together with the numerical val-
ues calculated by Wasson and Koonin@13#. The convergence
is slow for largef because the energy of the lowest-lying
pole, which gives the dominant contribution to the energy
integral, becomes very close to zero.

It is possible to improve the convergence greatly if we are
willing to calculate numerically the energy of the first bound
state pole and extract its contribution from the generalized
derivative expansion before the analytic continuation by the
Padéapproximants. Table IV shows that the convergence in
this case is extremely rapid and very few derivative terms are
needed to achieve convergence.

We have pointed out in Sec. III that the Pade´ approximant
An,n does not satisfy the constraint on the residues of the
bound state poles,bn,i51, in Eq.~25!. Bothbn,i and the pole
positions~eigenvalues! an,i

2 @in Eq. ~25!# approach to their
correct values from above. This information can be used to
improve the estimate of the bound state energy eigenvalues
substantially through some iteration scheme or fitting param-
eters in analogy to the variation method.

VII. HYBRID FORMULA

In the previous section we have demonstrated that our
generalized derivative expansion has indeed provided a con-
vergent method to calculate the quantum correction to the
vacuum energy of a static background field in the presence
of spontaneous symmetry breaking. If we can extract all
poles along the imaginary axes and along the real axes with
uv i u!M , we can obtain a good estimate of the quantum
correction to the vacuum energy with two terms of the series
up to only the two-derivative terms and the result can be
expressed in a compact formula in closed form. Thus, the
problem is reduced to the calculation of the positions of the
lowest-lying poles and the generalized derivative expansion
up and including the second derivative term.

From Eqs.~21! and ~24!, we have

Ã„z~v!,2$v1 , . . . ,vk%…

5A„z~v!…2 (
v i
2
,vN

2
a~v2;v i

2 ,M2!

5z(
n50

` FAn2 (
v i
2
,vN

2
~M22v i

2!n13/2Gzn
5z(

n50

`

Ãnz
n, ~76!

wherevN is to be chosen such that 0,vN
2!M2. Applying

the$1,1% Padéapproximant to the two terms of the series, we
obtain

Ã„z~v!,2$v1 , . . . ,vk%…5
Ã0z

12
Ã1

Ã0

z

5
Ã0

~M22vc
2!3/2

a~v2,vc
2 ,M2!,

~77!

where

vc
25M22

Ã1

Ã0

. ~78!

The final formula for the vacuum energy of a static back-
ground field is, forvc

2,M2,

TABLE III. Boson-loop energy for thef4 bag.

fb 6 Der 10 Der 14 Der 18 Der 22 Der Wasson@13#

0.2 20.020968 20.021126 20.021193 20.021227 20.021247 20.021

0.4 20.080926 20.081955 20.082424 20.082680 20.082836 20.083

0.6 20.173806 20.178064 20.180280 20.181622 20.182511 20.188

0.8 20.286022 20.301124 20.310733 20.317608 20.322873 20.354

TABLE IV. Boson-loop energy for thef4 bag with extraction of the lowest-lying pole.

fb 2 Der 6 Der 10 Der 14 Der 18 Der 22 Der Wasson@13#

0.2 20.021093 20.02121 20.021249 20.021267 20.021278 20.021284 20.021

0.4 20.083087 20.08317 20.083188 20.083195 20.083198 20.083199 20.083

0.6 20.185006 20.18525 20.185314 20.185338 20.185349 20.185355 20.188

0.8 20.353119 20.35376 20.353954 20.354038 20.354083 20.354111 20.354
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E@U„f~x!…#52 (
v j
2,0 F i2 uv j u1

1
p

AM21uv j u2S 12
1
2
A uv j u2

M21uv j u2
ln

11A uv j u2

M21uv j u2

12A uv j u2

M21uv j u2
D G

1 (
0,v i

2,vN
2

1
p

AM22v i
2S 12A v i

2

M22v i
2arctanAM22v i

2

v i
2 D

1
Ã0

M22vc
2
1
p 5

12A vc
2

M22vc
2arctanAM22vc

2

vc
2

if 0,vc
2,M2,

12
1

2A12
M2

vc
2

lnS 11A12
M2

vc
2

12A12
M2

vc
2

D if vc
2.M2.

~79!

The summation should include a multiplicity factor if there is
a degeneracy of a particular energy eigenvalue. The imagi-
nary part ofE corresponds to the decay width of the field
configuration.

For a particular even space-time dimension field theory
model U(f) and a particular static field configuration

f(xW ), Eq. ~79! provides a fair estimate of the quantum cor-
rection to the vacuum energy. Thev i are the eigenvalues of

the well-studied operator2¹21M21U„f(xW )… and their
values can be computed analytically or numerically by stan-
dard methods. The accuracy of the estimate depends cru-
cially on the number ofv i extracted.

Because the number of required infinite subtraction terms
is different, the definitions ofÃ0 and Ã1 depend on the di-
mensionD. For 111 dimension they can be obtained from
Eq. ~36! or directly from Eq.~14!:

Ã052
3

16E2`

`

dxU„f~x!…22 (
v i
2
,vN

2
~M22v i

2!3/2,

Ã15
5

64E2`

`

dx@2U„f~x!…31U8„f~x!…2#

2 (
v i
2
,vN

2
~M22v i

2!5/2. ~80!

Using Eqs.~78!–~80!, one can easily reproduce all the results
of the previous sections for the two-derivative approximation
for various situations. IfvN is chosen appropriately, this set
of equations can provide a very direct method of calculation
of one-loop corrections to the vacuum energy of static back-
ground fields.

For 113 dimension, substituting Eq.~14! into Eq. ~76!,
we obtain

Ã05
1

128pE2`

`

d3x$2U„f~xW !…31@¹W U„f~xW !…#2%

2 (
v i
2
,vN

2
~M22v i

2!3/2,

Ã152
1

512pE2`

`

d3x$5U„f~xW !…4

110U„f~xW !…@¹W U„f~xW !…#21@¹ i¹ jU„f~xW !…#2%

2 (
v i
2
,vN

2
~M22v i

2!5/2. ~81!

Here we have demonstrated that our approach functions
equally well in higher dimension in principle. Calculations of
the eigenvalues and the integrations may be more involved
but systematic and standard numerical methods are available.
More accurate calculation can be carried out in a similar
manner using higher order Pade´ approximation.

VIII. CONCLUSION

We have presented a generalized derivative expansion for
the action of field theories with spontaneous symmetry
breaking and a procedure of its analytic continuation. We
have carried out the complete implementation of this proce-
dure for the ~111!-dimensional static field configurations
and have successfully calculated the energy for various mod-
els of soliton, fermion loop, and bag. The results indicate that
the improved derivative expansion is not only an elegant tool
in theory but a viable technique for numerical computation.
This approach may open up the possibility of asking some
more fundamental questions, such as whether one can define
the effective potential more meaningfully by using some spa-
tially varying background field, in the region in which the
conventional effective potential is not well defined for con-
stant background field. Another interesting question is
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whether quantum corrections can stabilize or destabilize a
classical soliton.

An immediate extension of the~111!-dimensional soliton
calculation is the~113!-dimensional classical stationary
background field with no internal symmetry, such as the con-
figuration of the critical bubble. A nontrivial extension
would be to generalize the present approach from the zero-
temperature formulation to finite-temperature field theories.
More interesting applications would have to include internal
symmetry such as Skyrmion physics. As the dimension and
internal degrees of freedom increase, the generalized deriva-
tive expansion unavoidably becomes more complex. How-
ever, the improved derivative expansion is actually easier to
calculate than the conventional derivative expansion. The
general procedure is very systematic and the underlying ana-
lytic continuation is basically the same. The capacity to do
most parts of the calculations analytically and interactively is

tremendously helpful in understanding the mathematics of
the physical problems and in making progress toward a bet-
ter solution by experimentation which is otherwise too time
consuming to try.
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APPENDIX: MESON-LOOP DERIVATIVE EXPANSION

In this appendix, we give a more complete expression of
Eq. ~36! up to thez12 term:

AB~z!52
1

2E2`

`

dxHU1
3

8
zU22

5

32
z2@2U31~U8!2#1

7

128
z3@5U4110U~U8!21~U9!2#2

9

512
z4

3@14U5170U2~U8!2114U~U9!21~U-!2#1
11

2048
z5@42U61420U3~U8!2235~U8!41126U2~U9!2220~U9!3

118U~U-!21~U99!2#2
13

8192
z6@132U712310U4U822770UU841924U3U922462U82U922440UU93

1198U2U ~3!~x!22110U9U ~3!~x!2122UU ~4!21U ~5!2#1
15

32768
z7@429U8112012U5U82210010U2U84

16006U4U92212012UU82U9225720U2U9311001U9411716U3U ~3!22858U82U ~3!222860UU9U ~3!2

1286U2U ~4!22182U9U ~4!2126UU ~5!21U ~6!2#

2
17

131072
z8@1430U9160060U6U822100100U3U84110010U86

136036U5U922180180U2U82U92257200U3U93152624U82U93130030UU94112870U4U ~3!2

225740UU82U ~3!2242900U2U9U ~3!2116406U92U ~3!215096U8U ~3!312860U3U ~4!221430U82U ~4!2

25460UU9U ~4!21252U ~4!31390U2U ~5!22280U9U ~5!2130UU ~6!21U ~7!2#

1
19

524288
z9@4862U101291720U7U822850850U4U841340340UU861204204U6U9222042040U3U82U92

1510510U84U922486200U4U9311789216UU82U931510510U2U942101660U95187516U5U ~3!2

2437580U2U82U ~3!22486200U3U9U ~3!21418132U82U9U ~3!21557804UU92U ~3!21173264UU8U ~3!3

216099U ~3!4124310U4U ~4!2248620UU82U ~4!2292820U2U9U ~4!2138726U92U ~4!2

132368U8U ~3!U ~4!218568UU ~4!314420U3U ~5!222210U82U ~5!229520UU9U ~5!211428U ~4!U ~5!2

1510U2U ~6!22408U9U ~6!2134UU ~7!21U ~8!2#

2
7

2097152
z10@50388U1114157010U8U82219399380U5U84119399380U2U86

13325608U7U92258198140U4U82U92158198140UU84U92211085360U5U931101985312U2U82U93
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119399380U3U94230207606U82U94211589240UU9511662804U6U ~3!2216628040U3U82U ~3!2

14157010U84U ~3!2213856700U4U9U ~3!2147667048UU82U9U ~3!2131794828U2U92U ~3!2

210949700U93U ~3!219876048U2U8U ~3!3211795960U8U9U ~3!321835286UU ~3!4

1554268U5U ~4!222771340U2U82U ~4!223527160U3U9U ~4!212872116U82U9U ~4!214414764UU92U ~4!2

13689952UU8U ~3!U ~4!22753882U ~3!2U ~4!21488376U2U ~4!32519384U9U ~4!31125970U4U ~5!2

2251940UU82U ~5!22542640U2U9U ~5!21246126U92U ~5!21186048U8U ~3!U ~5!21162792UU ~4!U ~5!2

119380U3U ~6!229690U82U ~6!2246512UU9U ~6!217524U ~4!U ~6!211938U2U ~7!221710U9U ~7!21114UU ~8!2

13U ~9!2#

1
23

25165824
z11@176358U12119399380U9U822135795660U6U841271591320U3U86224249225U88

117459442U8U9~x!22488864376U5U82U9211222160940U2U84U92277597520U6U93

11427794368U3U82U932519903384U84U931203693490U4U9421268719452UU82U942243374040U2U95

154936486U9619976824U7U ~3!22174594420U4U82U ~3!21174594420UU84U ~3!22116396280U5U9U ~3!2

11001008008U2U82U9U ~3!21445127592U3U92U ~3!22624962364U82U92U ~3!22459887400UU93U ~3!2

1138264672U3U8U ~3!3289085984U83U ~3!32495430320UU8U9U ~3!3238541006U2U ~3!4155604450U9U ~3!4

13879876U6U ~4!2238798760U3U82U ~4!219699690U84U ~4!2237035180U4U9U ~4!2

1120628872UU82U9U ~4!2192710044U2U92U ~4!2233414996U93U ~4!2177488992U2U8U ~3!U ~4!2

297900008U8U9U ~3!U ~4!2231663044UU ~3!2U ~4!216837264U3U ~4!328488440U82U ~4!3

221814128UU9U ~4!311219515U ~4!411058148U5U ~5!225290740U2U82U ~5!227596960U3U9U ~5!2

15914776U82U9U ~5!2110337292UU92U ~5!217814016UU8U ~3!U ~5!221743402U ~3!2U ~5!2

13418632U2U ~4!U ~5!223842028U9U ~4!U ~5!22406296U8U ~5!31203490U4U ~6!22406980UU82U ~6!2

2976752U2U9U ~6!21479598U92U ~6!21330372U8U ~3!U ~6!21316008UU ~4!U ~6!2210296U ~6!3

127132U3U ~7!2213566U82U ~7!2271820UU9U ~7!2112474U ~4!U ~7!212394U2U ~8!222310U9U ~8!2

1126UU ~9!213U ~10!2#

2
25z12

100663296
@624036U13189237148U10U822892371480U7U8413123300180U4U8621115464350UU88

189237148U9U9223747960216U6U82U92118739801080U3U84U9223123300180U86U92

2509926560U7U93116419635232U4U82U93223915555664UU84U9311873980108U5U94

229180547396U2U82U9423731735280U3U9518928350496U82U9512527078356UU96157366738U8U ~3!2

21606268664U5U82U ~3!214015671660U2U84U ~3!22892371480U6U9U ~3!2115348789456U3U82U9U ~3!2

25443466028U84U9U ~3!215118967308U4U92U ~3!2228748268744UU82U92U ~3!2210577410200U2U93U ~3!2

13603139290U94U ~3!211590043728U4U8U ~3!324097955264UU83U ~3!3211394897360U2U8U9U ~3!3

18637846880U8U92U ~3!32590962092U3U ~3!411413396966U82U ~3!412557804700UU9U ~3!4

125496328U7U ~4!22446185740U4U82U ~4!21446185740UU84U ~4!22340723656U5U9U ~4!2
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12774464056U2U82U9U ~4!211421554008U3U92U ~4!221825661892U82U92U ~4!221537089816UU93U ~4!2

11188164544U3U8U ~3!U ~4!22747060240U83U ~3!U ~4!224503400368UU8U9U ~3!U ~4!2

2728250012U2U ~3!2U ~4!211088502324U9U ~3!2U ~4!2178628536U4U ~4!32390468240UU82U ~4!3

2501724944U2U9U ~4!31341468304U92U ~4!31378511920U8U ~3!U ~4!3156097690UU ~4!418112468U6U ~5!2

281124680U3U82U ~5!2120281170U84U ~5!2287365040U4U9U ~5!21272079696UU82U9U ~5!2

1237757716U2U92U ~5!2290112896U93U ~5!21179722368U2U8U ~3!U ~5!22239975928U8U9U ~3!U ~5!2

280196492UU ~3!2U ~5!2152419024U3U ~4!U ~5!2261040160U82U ~4!U ~5!22176733288UU9U ~4!U ~5!2

120441250U ~4!2U ~5!2218689616UU8U ~5!319687876U ~3!U ~5!311872108U5U ~6!229360540U2U82U ~6!2

214976864U3U9U ~6!2111232648U82U9U ~6!2122061508UU92U ~6!2115197112UU8U ~3!U ~6!2

23679770U ~3!2U ~6!217268184U2U ~4!U ~6!228637420U9U ~4!U ~6!222541132U8U ~5!U ~6!22473616UU ~6!3

1312018U4U ~7!22624036UU82U ~7!221651860U2U9U ~7!21874230U92U ~7!21552552U8U ~3!U ~7!2

1573804UU ~4!U ~7!2259202U ~6!U ~7!2136708U3U ~8!2218354U82U ~8!22106260UU9U ~8!2119734U ~4!U ~8!2

12898U2U ~9!223036U9U ~9!21138UU ~10!213U ~11!2#1•••J ,

where U (n)5(dn/dxn)U„f(x)…. Integration by parts has
been repeatedly used to reduce the number of derivatives on
the functionU„f(x)… in each term to a minimum possible
value. The highest value of derivative for a singleU for the
zn term isn22. Such a representation, irreducible by further
integration by parts, is unique.

We have computed the series up to thez14 term with 26
derivatives for the calculations in this paper. However, the
remaining terms are too lengthy to present here. The calcu-
lation is performed usingMATHEMATICA @14#. The CPU time
increases by approximately a factor of 4 for computations of
each higher order term.

@1# L.-H. Chan, Phys. Rev. Lett.57, 1199~1986!.
@2# L.-H. Chan, Phys. Rev. Lett.55, 21 ~1985!.
@3# L.-H. Chan, Phys. Rev. Lett.54, 1222~1985!; 56, 404 ~1985!.
@4# L.-H. Chan, Phys. Rev. D36, 3755~1987!.
@5# C. M. Fraser, Z. Phys. C28, 101 ~1985!.
@6# I. J. R. Aitchison and C. M. Fraser, Phys. Lett.146B, 63

~1984!; Phys. Rev. D31, 2605~1985!.
@7# O. Cheyette, Phys. Rev. Lett.55, 2394~1985!.
@8# M. K. Gaillard, Nucl. Phys.B268, 669 ~1986!.
@9# M. Li, R. Perry, and L. Wilets, Phys. Rev. D36, 596 ~1987!.

@10# R. Perry and M. Li, Mod. Phys. Lett. A2, 353 ~1987!.
@11# R. Perry and M. Li, Phys. Rev. D37, 1670~1988!.
@12# R. J. Perry, Phys. Lett. B182, 269 ~1986!.

@13# D. A. Wasson and S. E. Koonin, Phys. Rev. D43, 3400
~1991!.

@14# Wolframe Research, Inc.MATHEMATICA Version 2.2 ~1993!
and Version 3.0~1996!.

@15# L.-H. Chan, inChiral Soliton, edited by K. F. Liu ~World
Scientific, Singapore, 1987!, Chap. 2.

@16# L.-H. Chan, Phys. Rev. D36, 3755~1987!.
@17# L.-H. Chan, Phys. Rev. D38, 3739~1988!.
@18# S. G. Naculich, Phys. Rev. D46, 5487~1992!.
@19# R. F. Dashen, B. Hasslacher, and A. Neveu, Phys. Rev. D10,

4114 ~1974!; 10, 4130~1974!.
@20# S. J. Chang and T. M. Yan, Phys. Rev. D12, 3225~1975!.
@21# N. H. Christ and T. D. Lee, Phys. Rev. D12, 1606~1975!.
@22# L.-H. Chan~in preparation!.

6244 55LAI-HIM CHAN


