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The effective action of~211!-dimensional QED with a finite fermion density is calculated in a uniform
electromagnetic field. It is shown that the integer quantum Hall effect and de Haas–van Alphen-like phenom-
enon in condensed matter physics are derived directly from the effective action.@S0556-2821~97!03608-4#
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I. INTRODUCTION

In ~211!-dimensional spacetime, Fermi systems interact-
ing through Maxwell field may have a dynamically induced
Chern-Simons~CS! term in the effective Lagrangian@1,2#.
That is, the low-energy effective action for the electromag-
netic fields in the system, obtained by integrating out the
fermionic degrees of freedom, has the induced CS term as a
parity-odd part of the effective action. This CS term could
describe the quantum Hall effect~QHE! @3#. In particular, an
effective action at zero fermion density in uniform electro-
magnetic field was obtained by Redlichet al. @4,5#, where
the coefficient of the induced CS term represents the Hall
conductivity of the quantum Hall effect@3#. However, real
systems in the experiment of QHE@6# consist of a finite
density of electrons, therefore, it is necessary to evaluate an
effective action at finite fermion density and then to examine
the behavior of the CS term as the external electromagnetic
field is varied.

Recently, it was argued in Refs.@7,8# that the induced CS
term in the presence of nonzero fermion density may de-
scribe the integer QHE; here, we use a different method from
theirs, and calculate an effective action in a uniform electro-
magnetic field at finite fermion density. Then we show di-
rectly that the coeffecient of the induced CS term represents
the QHE. Additionally, the free energy of the system is ob-
tained as a parity-even part of the effective action. This exi-
hibits a certain periodic dependence on the external field,
which is similar to the de Haas–van Alphen effect@9#.

The technique used here for deriving the effective action
is the proper-time method, which was established by
Schwinger first@10#, and generalized to the case of finite
fermion density in (311)-dimensional spacetime by Chodos
et al. several years ago@11#.

In Sec. II, we calculate the effective action of~211!-
dimensional QED with finite fermion density in a constant
uniform electromagnetic field. From this effective action, the
integer quantum Hall effect and de Haas–van Alphen-like
phenomenon in condensed matter physics are derived di-
rectly. In the last section, a summary of our results is given.

II. EFFECTIVE ACTION OF „211…-DIMENSIONAL QED
WITH A FINITE FERMION DENSITY

We consider two-component Dirac fermions in a constant
uniform electromagnetic field in~211!-dimensional space-

time. The Lagrangian of the Fermi systems at a finite fer-
mion density@7,12# is given by

L5c̄~ i ]”2eA” !c2mc̄c2 1
4FmnF

mn2mc̄g0c, ~1!

where m is a chemical potential, A”5Amgm, Fmn

5]mAn2]nAm , andg05s3, g1,25 is1,2 with s i Pauli ma-
trices. Here, the last term inL, mr with r5c̄g0c, indicates
that the system under consideration is composed of nonzero
density of fermions. The fermion-mass term in the Lagrang-
ian violates parityP and time-reversalT symmetries, and so
a P- and T-odd term, which is the Chern-Simons term, is
generated in the effective theory for the gauge fieldFmn @1#.

The one-loop contribution to the effective actionSeff
1 has

the expression

Seff
1 52 i Trln~ i ]”2eA”2m2mg0!, ~2!

where Tr denotes the summation over spacetime coordinates
as well as spinor indices. This can be immediately rewritten
as @13#

Seff
1 52

i

2
@Trln~D”̃ 2m!2Trln~D”̃ 1m!#

2
i

2
@Trln~D”̃ 2m!1Trln~D”̃ 1m!#, ~3!

whereD̃m5(p02eA02m,pi2eAi). Note that the first term
in the right-hand side of Eq.~3!, to be labeled asSeff

odd, is
explicitly odd underm→2m and corresponds to the parity-
odd CS action, while, the second term,Seff

even, is the ordinary
effective action of even parity, which is negative value of the
free energy of the system. From the analysis of eigenvalues
of Dirac Hamiltonian for the above Lagrangian Eq.~1!, the
transformationm→2m results in the corresponding trans-
formation of the chemical potentialm; m→2m. This prop-
erty comes from the fact that in 211 dimensions, two types
of mass parameter in the Dirac equation are allowed, which
holds only in 211 dimensions. So the induced CS term must
involve the terms of the formm/umu or m/umu @see Eq.~17!#.

We first calculate the parity-odd part of the actionSeff
odd.

To evaluate theSeff
odd term, we may proceed in two steps

@2,4#: first, the ground-state currrent density of the system,
^Jm&, is calculated, and then by integrating with respect to
the vector potentialAm , using the relation between an effec-
tive action and current density:
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dSeff
dAm 5^Jm&, ~4!

the parity-odd part of the effective action may be obtained.
The ground-state current^Jm& may be expressed in terms of
the Green’s functionG:

^Jm&5 ieTr~gmG!. ~5!

Here, the Green’s functionG(x,y) is defined by

~ i ]”2eA”2m2mg0!G~x,y!5d~x2y!. ~6!

We confine ourselves to the case where only the magnetic
fieldB is turned on and the electric fieldEW is zero. At the end
of calculation, we can express the evaluated effective action
in a Lorentz-covariant form. Under the Lorentz transforma-
tion, Fmn→Fmn8 ; therefore, the nonzero electric- as well as
magnetic-field effects may be deduced.

As in Ref. @11#, the solution of Eq.~6! for G in the mo-
mentum space is given by

G5~D” 1m!H 2 i E
0

`

dsexp@ is~D”̃ 22m2!#u@~p02m!sgnp0#

1 i E
0

`

dsexp@2 is~D”̃ 22m2!#u@~m2p0!sgnp0#J , ~7!

where D̃m5(p02m,DW ) with DW [pW 2eAW and F0i50,
F1252B. Now we use the identity

D”̃ 25~p02m!22DW 2

1
e

2
smnF

mn, with smn[2
i

2
~gm ,gn!. ~8!

Inserting the expression forG, Eq. ~7!, into Eq. ~5! and
introducing the proper-time parameters @10,11# leads to

^Jm&5 ietrgmK xU2 i E
0

`

dsexpS isF2m21~p02m!21
e

2
s•F2DW 2G D ~D” 1m!u@~p02m!sgnp0#

1 i E
0

`

dsexpF2 isS 2m21~p02m!21
e

2
s•F2DW 2D G•~D” 1m!u@~m2p0!sgnp0#UxL , ~9!

where^xu denotes the eigenket of the spacetime coordinate operatorxm in Tr operation in Eq.~5!. Note that we are led to a
kind of dynamical problem; that is, exp(2isDW 2) plays the role of an evolution operator in the time variables, governed by the
HamiltonianDW 2. Settingux&[ux0&uxW & and ^xW ,su[^xW uexp(2isDW 2), ^Jm& is rewritten as

^Jm&5 ietrgmH 2 i E
0

`

dsexpF2 isSm22
e

2
s•F D G

3E
2`

` dp0

2p
exp@ is~p02m!2#^xW ,suDig i1~p02m!g01muxW & u@~p02m!sgnp0#2 i E

0

`

dsexpF isSm22
e

2
s•F D G

3E
2`

` dp0

2p
exp@2 is~p02m!2#^xW ,suDig i1~p02m!g01muxW & u@~m2p0!sgnp0#J . ~10!

To evaluate the rather formal expression for^Jm&, one may use the quantities

tr expS 2
i

2
es smnF

mnD5cos~esuBu!1 i
ga*Fa

uBu
1sin~esuBu!, ~11!

and

^xW ,suDi uxW &50, ^xW ,suxW &5
2 i

4p

euBu
sin~esuBu!

, ~12!

where *Fa5 1
2eabgF

bg with *F052B, *Fi50.
Note that only the time component of^Jm&, ^J0&, is sufficient in determining the coefficient of CS term@2,4#. Substituting

Eqs.~11! and ~12! into Eq. ~10! and using*2`
` dxexp(isx2)5Ap/sexp(ip/4), one may get that

^J0&5
me2

4p3/2expS ip4 D *F0E
0

`ds

As
exp~2 ism2!2

me2

2p2*F0ReE
0

m

dxE
0

`

dsexp@ is~x22m2!#

2
e2

2p2*F0ImE
0

m

dx xE
0

`

dsexp@ is~x22m2!#cot~esuBu!, ~13!
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where Re~Im! denote the real~imaginary! part of the corre-
sponding quantity.

To obtain the final expression for^J0& in Eq. ~13!, one has
to take the integration over boths andx variables. The inte-
gration overs in the first term is taken by lettings→2 i s.
As may be checked, in the calculation of the second term in
the right-hand side~RHS! of Eq. ~13!, one had better inte-
grate overs variable first and then overx variable. In this
way, one gets theu(m22m2) function. On the other hand,
some care is needed in the calculation of the third term in the
above equation; in this case, an integration overx may first
be performed. And then in the integration overs, the inte-
gration contour in the real axis (0,`) does have the meaning
of (02 i e,`2 i e) @11,14#. Thus, the third term in̂J0& in Eq.
~13! leads to the expression

«~m!u~m22m2!p2Fm22m2

2euBu

1 (
n51

`
1

pn
sinS pn

~m22m2!

euBu D G , ~14!

where«(m) is defined by«(m)5m/umu andu(x) is the step
function such thatu(x)51 for x.0 andu(x)50 for x,0.
Adding up three terms in Eq.~13!, we have a more familiar
expression for̂ J0&:

^J0&5
e2

4p

m

umu
[12u~m22m2!] *F0

2
e2

2p
«~m!u~m22m2!Fm22m2

2euBu

1 (
n51

`
1

pn
sinS pn

~m22m2!

euBu D G*F0 . ~15!

Here, the charge density vector^J0& is one component of the
covariant current vector̂Jm&. Note that under a Lorentz
transformation,uBu5u*Fu is an invariant quantity; that is,
u*Fu5uBu→u*F8u5AB822E82. The present situation is the
zero temperature limit of relativistic thermodynamics. Ther-
modynamics can be formulated in the relativistically covari-
ant way @15#. The chemical potentialm is a Lorentz scalar
and defined by the value in the rest frame of Fermi gases;
therefore,m2→m2 under the Lorentz transformation. One
may write the parity-odd part of the effective action in the
covariant form

Seff
odd5

1

2E ^Jm8 &A8md3x8. ~16!

The corresponding effective Lagrangian is

Leffodd5
e2

16p H m

umu @12u~m22m2!#22 «~m!u~m22m2!

3Fm22m2

2eu*Fu
1 (

n51

`
1

pn
sinS pn

~m22m2!

eu*Fu D G J
3eabgAaFbg , ~17!

where the expression has the covariant form and the prime
was suppressed for the simplicity of notation. Note carefully
that taking the derivative of Eq.~17! with respect toA0 leads
to Eq. ~15!. The firstm-independent term was the obtained
one in Refs.@4,5#. It is interesting to notice that the CS term
for a vacuum fermion system~without them-dependent term
in the Lagrangian! vanishes by the presence of arbitrary
small fermion density. One may see that the«(m) term is
odd underm→2m; that is, this transformation leads to the
corresponding transformation inm such asm→2m.

The coefficient of CS term corresponds to the Hall con-
ductivity @3#. This may be easily calculated in the frame
where the electric fieldEW vanishes. Then, the chemical po-
tential m satisfiesm25m212ueBun, when the fermions in
the system occupy Landau levels up to certain integern. And
the infinite series term@14# in Leffodd vanishes. Then, Eq.~17!
is reduced as follows:

Leffodd52
e2

8p
«~m!

m22m2

2eu*Fu
eabgAaFbg

52
e2

8p
«~m!n eabgAaFbg . ~18!

Thus we get the Hall conductivitysxy :

sxy5
e2

2p
«~m!n, ~19!

wheren is some integer number corresponding to the filled
Landau levels in the system. In this case of a finite fermion
density @16#, the conductivity is 2 times the one for the
vacuum system for each staten. This is the well-known in-
teger Quantum Hall effect.

We now calculate the parity-even part of the effective
action,Seff

even, in Eq. ~3!. This may be calculated as in the
(311)-dimensional case,

Seff
even52

i

2
@Trln~D”̃ 2m!1Trln~D”̃ 1m!#

52
i

2
Trln~D”̃ 22m2!. ~20!

As for the odd part, we first consider pure magnetic case
and then extend to the general case at the end of the calcu-
lation. Following the procedure in Refs.@10,11# and using
the Green’s function in Eq.~7!, one may obtainSeff

even:
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Seff
even5

i

2
trE

0

`ds

s
^xuexp@ is~D”̃ 22m2!#u@~p02m!sgnp0#ux&1

i

2
trE

0

`ds

s
^xuexp@2 is~D”̃ 22m2!#u@~m2p0!sgnp0#ux&.

~21!

Substituting Eq.~8! into Eq.~21! and using Eqs.~11! and~12!, we have the following expression for the parity-even effective
LagrangianLeffeven:

Leffeven52
exp~ ip/4!

8p2/3 E
0

` ds

s5/2
exp~2 ism2!esuBucot~esuBu!2

1

4p2 ReE
0

m

dxE
0

`ds

s2
exp@ is~x22m2!#esuBucot~esuBu!. ~22!

The first term in the right-hand side of Eq.~22! is calculated by deforming the path of integrations→2 is; for m50 it can
be analytically integrated@4#. The integration over thes variable in the second term is performed by choosing a proper contour
in the complexs plane just as the third term in Eq.~13! @11#. Then, it leads to the two terms

euBu
2p2E

0

m

dxIm(
n51

`
1

n
expS ipn x22m2

euBu D u~x22m2!1
1

12p
u~m22m2!~ umu2m!2~ umu12m!. ~23!

Thus, expressing this in the covariant form as in Eq.~16!, we get the parity-even part of the one-loop effective action

Leffeven5
1

8p2/3E
0

` ds

s5/2
exp~2m2s!@esu*Fucoth~esu*Fu!21#1

1

12p
u~m22m2!~ umu2m!2~ umu12m!

1
~eu*Fu!3/2

p2 (
n51

`
1

n3/2
sin3/2S pn

m22m2

2eu*Fu D cos1/2S pn
m22m2

2eu*Fu D , ~24!

where for renormalization one term has been added to the
first term on the right-hand side. Notice that the first
m-independent term in this effective Lagrangian is the pre-
viously obtained result in Ref.@4#. The third term in the
right-hand side of Eq.~24! shows a periodic behavior as
u*Fu is decreased; the analogous term also appears in the
effective Lagrangian of (311)-dimensional QED@11,14#. In
Ref. @14# it is argued that the infinite series term when
EW 50 may describe the de Haas–van Alphen effect@9# in
condensed matter physics.

III. DISCUSSION

In this article we obtained an exact one-loop effective
action of ~211!-dimensional QED with finite fermion den-
sity in a uniform electromagnetic field. The obtained total
effective LagrangianLeff1 5Leffodd1Leffeven in Eq. ~17! and Eq.
~24! agrees with the previously calculated one in Refs.@4,5#
where the chemical potentialm-dependent term is not intro-
duced into the Lagrangian.

We showed that the coefficient of the induced CS term
exhibits the step-function behavior, when the fermions fill
some Landau levels completely, and that this corresponds to
the phenomena of the integer quantum Hall effect@7,8#. In

particular, the induced fermion density in the vacuum van-
ishes if a finite density of fermions is added to the system.
Then, the Chern-Simons term corresponding to the induced
fermion density in the vacuum disappears. Similar behavior
has already been observed in Ref.@17#; that is, the fermion
density in the vacuum corresponding to the same system
under consideration in this paper evaporates for any nonzero
temperatureTÞ0. This nonanalytic behavior under the ef-
fect of finite temperature or finite chemical potential seems
to be a very general phenomenon.

In addition, the third term inLeffeven in Eq. ~24! for EW 50
has a periodic behavior as a function of (m22m2)/2euBu.
This agrees with the frequency for the de Haas–van Alphen
effect @14#. So the infinite series overn in Eq. ~24! seems to
be related to the de Haas–van Alphen effect@9#.
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