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Effective action of (2+1)-dimensional QED: The effect of a finite fermion density
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The effective action of2+1)-dimensional QED with a finite fermion density is calculated in a uniform
electromagnetic field. It is shown that the integer quantum Hall effect and de Haas—van Alphen-like phenom-
enon in condensed matter physics are derived directly from the effective d&i666-282(97)03608-4

PACS numbgs): 11.10.Kk, 12.20.Ds, 73.40.Hm

[. INTRODUCTION time. The Lagrangian of the Fermi systems at a finite fer-
mion density[7,12] is given by
In (2+1)-dimensional spacetime, Fermi systems interact- o e o

ing through Maxwell field may have a dynamically induced L=y(ib—eAy—mypp— %FWF“”—MMO% (1)
Chern-SimongCS) term in the effective LagrangialL,2].
That is, the low-energy effective action for the electromagyhere x is a chemical potential, A=A, y*, F,,
netic fields in the system, obtained by integrating out the_ 5 A _ 5 A andy°=03, yL2=ic!? with o Pauli ma-
fermionic degrees of freedom, has the induced CS term as R ' —
parity-odd part of the effective action. This CS term could
describe the quantum Hall effe@HE) [3]. In particular, an

o
ffices. Here, the last term i, up with p= iy, indicates
that the system under consideration is composed of nonzero

effective action at zero fermion density in uniform electro- Qens!ty of fermllons. The.ferm|on-mass term |n.the Lagrang-
magnetic field was obtained by Redlieh al. [4,5], where a0 violates parityP and tlr_ne-r_eversaT symm(_atrles, and so
the coefficient of the induced CS term represents the Haff P- @nd T-odd term, which is the Chern-Simons term, is
conductivity of the quantum Hall effe¢8]. However, real 9generated in the effective theory for the gauge ffejd [1].
systems in the experiment of QHEB] consist of a finite The one-loop contribution to the effective actisbﬂ has
density of electrons, therefore, it is necessary to evaluate ahe expression
effective action at finite fermion density and then to examine
the behavior of the CS term as the external electromagnetic Sag=—1 Trin(ib—eA—m— o), 2
field is varied.

Recently, it was argued in Refs/,8] that the induced CS  where Tr denotes the summation over spacetime coordinates

term in the presence of nonzero fermion density may deas well as spinor indices. This can be immediately rewritten
scribe the integer QHE; here, we use a different method fromyg[13)

theirs, and calculate an effective action in a uniform electro-
magnetic field at finite fermion density. Then we show di- i _ _
rectly that the coeffecient of the induced CS term represents Ste=— =[TrIn(D —m)—Trin(D+m)]
the QHE. Additionally, the free energy of the system is ob- 2
tained as a parity-even part of the effective action. This exi- i _ _
hibits a certain periodic dependence on the external field, — =[TrIn(D —m)+ Trin(D +m)], 3
which is similar to the de Haas—van Alphen effggt. 2
The technique used here for deriving the effective action _
is the proper-time method, which was established bywhereD#=(p®—eA’— u,p'—eA). Note that the first term
Schwinger first{10], and generalized to the case of finite in the right-hand side of Eq3), to be labeled asy, is
fermion density in (3- 1)-dimensional spacetime by Chodos explicitly odd undem— —m and corresponds to the parity-
et al. several years agd.1]. odd CS action, while, the second ter8g"™", is the ordinary
In Sec. Il, we calculate the effective action (#+1)-  effective action of even parity, which is negative value of the
dimensional QED with finite fermion density in a constantfree energy of the system. From the analysis of eigenvalues
uniform electromagnetic field. From this effective action, thegf Dirac Hamiltonian for the above Lagrangian E@), the
integer quantum Hall effect and de Haas—van Alphen-likransformationm— —m results in the corresponding trans-
phenomenon in condensed matter physics are derived diprmation of the chemical potential; x— — w. This prop-
rectly. In the last section, a summary of our results is givenerty comes from the fact that in+2L dimensions, two types
of mass parameter in the Dirac equation are allowed, which
holds only in 2+1 dimensions. So the induced CS term must
involve the terms of the forrm/|m| or u/|u| [see Eq(17)].
We consider two-component Dirac fermions in a constant We first calculate the parity-odd part of the actisgf’.
uniform electromagnetic field ii2+1)-dimensional space- To evaluate thesgﬁd term, we may proceed in two steps
[2,4]: first, the ground-state currrent density of the system,
(J,.), is calculated, and then by integrating with respect to
*Electronic address: dkkim@powerl.snu.ac.kr the vector potentiah ,, using the relation between an effec-
"Electronic address: kssoh@phyb.snu.ac.kr tive action and current density:

Il. EFFECTIVE ACTION OF (2+1)-DIMENSIONAL QED
WITH A FINITE FERMION DENSITY
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5Sest As in Ref.[11], the solution of Eq(6) for G in the mo-
SAE — Juds (49 mentum space is given by

the parity-odd part of the effective action may be obtained.G:(Der)[ i fmdsexr[is('lzv)z—mz)]a[(po—,u)sgrpo]
The ground-state curred,,) may be expressed in terms of 0
the Green’s functiors:

+i | “asent ~is(B2-m) 100~ po)sgrpol |,

(I =1eTr(y,G). (5)
Here, the Green’s functio®(x,y) is defined by where D#=(p°—u,D) with D=p—eA and Fy=0,
. F,>,=—B. Now we use the identit
(id—eA-m—puyo)G(x,y) = 8(x~Y). ® 12 Y
m2_/n0 2_R2
We confine ourselves to the case where only the magnetic D*=(p"—un)*—D
field B is turned on and the electric fieklis zero. At the end e _ i
of calculation, we can express the evaluated effective action toowF withe,,==5(y.7). (8
in a Lorentz-covariant form. Under the Lorentz transforma-
tion, F,,—F,,,; therefore, the nonzero electric- as well as  Inserting the expression fds, Eq. (7), into Eq. (5) and
magnetic-field effects may be deduced. introducing the proper-time parametf10,11] leads to

(D +m) 6 (p°— w)sgrp°]

where(x| denotes the eigenket of the spacetime coordinate opetator Tr operation in Eq(5). Note that we are led to a
kind of dynamical problem; that is, exp(sf)z) plays the role of an evolution operator in the time variahlgoverned by the
HamiltonianD?2. Setting|x)=x%)|x) and(x,s|=(x|exp(isD?), (J,) is rewritten as

<Ju>:ietrm( —i fowdsexp{ —is( m?— gg. F”

[e¢] 0 oo
><f d—pexr[is(po—mz]&,SID‘yi+(p°—u)yo+ml>?> 0[(p°—u)sgrp°]—ifo dsexp[is(mz—gap)}

0 27T

e >
—m’+ (p°—p)?+ 50 F—DZ}

—iJ'wdsexy{is
0

+i f:dsexp{ —is( —m?+(p°— u)?+ ng—ﬁZ”-(D+m)49[(,u—p°)sgrp°]

(J= ietry#< X

= dpP - :
><f_w%exr[—iS(pO—u)sz,SID'7i+(p°—myo+mIX> 0[(u—p°)sgm°]]- (10

To evaluate the rather formal expression §dy,), one may use the quantities

tr exp{—Izes(er“")zcos(eSJBDH yTB|  +sin(esB|), (11)
and .
SN - .. —i ¢€B]
(x,s|D'|x)=0, <X,S|X>=Em, (12

where *F = 3€,5,FP” with *Fo=—B, *F;=0.
Note that only the time component @J,,), (Jo), is sufficient in determining the coefficient of CS tefth4]. Substituting
Egs.(11) and(12) into Eq.(10) and using[” .dxexp(sx?) = m/sexp(m/4), one may get that

J_me2 im\*_ [eds _ mez*FRfMdfmd I
(0)—m§ex e 0 Oﬁexp( ism°) 5.2 o eO X o sexgis(x“—m*)]

2 oo
- ;TZ*FOImede xfo dsexifis(x2—m?)]cotesB|), (13




6220 DAE KWAN KIM AND
where Re(Im) denote the realimaginary part of the corre-
sponding quantity.

To obtain the final expression f¢dg) in Eq.(13), one has
to take the integration over bothandx variables. The inte-
gration overs in the first term is taken by letting— —1i s.

As may be checked, in the calculation of the second term in

the right-hand sidéRHS) of Eq. (13), one had better inte-
grate overs variable first and then over variable. In this
way, one gets thed(u?—m?) function. On the other hand,
some care is needed in the calculation of the third term in th
above equation; in this case, an integration avenay first
be performed. And then in the integration owgrthe inte-
gration contour in the real axis () does have the meaning
of (0—ie,>—ie) [11,14. Thus, the third term ifJy) in Eq.
(13) leads to the expression

2_m2
S(M)a(ﬂz_mz)ﬂ'z 28|B|
o 1 (w2—m?)
+ ngl %SII’( n w) } , (14

wheree (w) is defined byes(u) = u/| 1| and 8(x) is the step
function such tha®(x) =1 for x>0 and 6(x) =0 for x<0.
Adding up three terms in Eq13), we have a more familiar
expression foKJo):

m 2
<‘]O> | |[1 9(;“« —-—m )] Fo
o2 2_ 2
_ = 2_ 2
2778(/")0(//’ m-) 28|B|
o1 2-m?)
+n§=:1 71_ns“,ln( n o8| ) Fo. (15

Here, the charge density vectgdl,) is one component of the
covariant current vectofJ,). Note that under a Lorentz
transformation,|B|=|*F| is an invariant quantity; that is,
|*F|=|B|—|*F'|=B’2—E'?. The present situation is the
zero temperature limit of relativistic thermodynamics. Ther-
modynamics can be formulated in the relativistically covari-
ant way[15]. The chemical potentigl is a Lorentz scalar
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The corresponding effective Lagrangian is
_ €| m
(o] _ 2 2
Lett =167 T [1—6(pu?~m?)]—2e(u)O(u?—m?)
2 2 2
(n"—m°)
_|_ e
2e|*F| E sm( n o[ F|
e X ePIAF g, (17

where the expression has the covariant form and the prime
was suppressed for the simplicity of notation. Note carefully
that taking the derivative of Eq17) with respect toA° leads

to Eqg. (15). The first u-independent term was the obtained
one in Refs[4,5]. It is interesting to notice that the CS term
for a vacuum fermion systeffwithout theu-dependent term

in the Lagrangiah vanishes by the presence of arbitrary
small fermion density. One may see that thge) term is

odd undem— —m,; that is, this transformation leads to the
corresponding transformation jm such asu— — u.

The coefficient of CS term corresponds to the Hall con-
ductivity [3]. This may be easily calculated in the frame
where the electric fiel& vanishes. Then, the chemical po-
tential u satisfiesu?=m?+ 2|eB|n, when the fermions in
the system occupy Landau levels up to certain integémd
the infinite series terril4] in £33 vanishes. Then, Ed17)
is reduced as follows:

2 2

2

L3%0= —g-e(n) msaﬁmf sy
eZ
:_8_778(’“)” 6“B7Aa|:ﬁ7. (18
Thus we get the Hall conductivity,, :
eZ
nyzﬂs(,u,)n, (19

wheren is some integer number corresponding to the filled
Landau levels in the system. In this case of a finite fermion
density [16], the conductivity is 2 times the one for the
vacuum system for each state This is the well-known in-
teger Quantum Hall effect.

We now calculate the parity-even part of the effective
action, Sg", in Eq. (3). This may be calculated as in the
(3+1)-dimensional case,

Seren= — 'E[Tnn(ﬁ —m)+Trin(D+m)]

and defined by the value in the rest frame of Fermi gases;

therefore, u?>— u? under the Lorentz transformation. One
may write the parity-odd part of the effective action in the
covariant form

Odd f<\] >A/Md3 ’ (16)

m?).

i ~
- ETrln(|7)2— (20)

As for the odd part, we first consider pure magnetic case
and then extend to the general case at the end of the calcu-
lation. Following the procedure in Reffl0,11 and using
the Green’s function in Eq7), one may obtairgg™"™
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i (=ds o~ i ~ds .
Sai= ot |~ (Xlexiis(D® = m*)10L(Po— 1)SgPol[X) + 5 trJO ~ (Xlex —is(D?—m?)]6[ (1~ Po)sgrpo]|x).
(21
Substituting Eq(8) into Eq.(21) and using Egs(11) and(12), we have the following expression for the parity-even effective

LagrangianCgy™
exp(im/4) (=ds 1 u ~ds
,chf‘%—%n—) S—5,gexp(—ism2)eQB|cot(eQB|)—mReJ de STexp[is(xz—mz)]eszlcot(edBl). (22
0 0 0

The first term in the right-hand side of E@2) is calculated by deforming the path of integrat®s —is; for m=0 it can
be analytically integratef#]. The integration over the variable in the second term is performed by choosing a proper contour
in the complexs plane just as the third term in E¢L3) [11]. Then, it leads to the two terms
x2—m?
e[B|

e|B| [«

Sl 1
_— _ H 2_m2 - 2_ 2 _ 2
272, dxlmnz1 Sexpimn )a(x m?) + 127T0(,u m?) (| | —m)(| | +2m). (23

Thus, expressing this in the covariant form as in Bd), we get the parity-even part of the one-loop effective action

1 »ds 1
g}/fen:_mf —pexp —m?s)[eg* F|coth(es* F|) — 1]+ —5—=60( u?—m?) (| u| = m)?(| u|+2m)
877" )o S 127

e*F 3/2 * 2_ 2_m2
(e[*F|) “ ) 24

1 m? M
312 12
+ 2:1 —,—n323|n3 (wn 26l F] )cos1 (wn 26l F]

772 n

where for renormalization one term has been added to thparticular, the induced fermion density in the vacuum van-
first term on the right-hand side. Notice that the firstishes if a finite density of fermions is added to the system.
u-independent term in this effective Lagrangian is the pre-Then, the Chern-Simons term corresponding to the induced
viously obtained result in Ref4]. The third term in the fermion density in the vacuum disappears. Similar behavior
right-hand side of Eq(24) shows a periodic behavior as has already been observed in Réf7]; that is, the fermion
|*F| is decreased; the analogous term also appears in thdensity in the vacuum corresponding to the same system
effective Lagrangian of (3 1)-dimensional QE11,14. In  under consideration in this paper evaporates for any nonzero
Ref. [14] it is argued that the infinite series term when temperaturelT #0. This nonanalytic behavior under the ef-

E=0 may describe the de Haas—van Alphen eff@jtin  fect of finite temperature or finite chemical potential seems

condensed matter physics. to be a very general phenomenon. )
In addition, the third term inCg" in Eq. (24) for E=0
IIl. DISCUSSION has a periodic behavior as a function qi’—m?)/2¢|B|.

This agrees with the frequency for the de Haas—van Alphen

In this article we obtained an exact one-loop effectiveeffect[14]. So the infinite series over in Eq. (24) seems to
action of (2+1)-dimensional QED with finite fermion den- pe related to the de Haas—van Alphen eff&dt
sity in a uniform electromagnetic field. The obtained total
effective LagrangianCi,= £33+ £&"in Eq. (17) and Eq.
(24) agrees with the previously calculated one in Rpds5]
where the chemical potential-dependent term is not intro-
duced into the Lagrangian. This work was supported by the Korea Science and Engi-

We showed that the coefficient of the induced CS ternrneering FoundationKOSER, the Center for Theoretical
exhibits the step-function behavior, when the fermions fillPhysics (SNU), and the Basic Science Research Institute
some Landau levels completely, and that this corresponds t8rogram, Ministry of Education, 1996, Project No. BSRI-96-
the phenomena of the integer quantum Hall effeG8]. In  2418.
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