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Correspondence principle for black holes and strings
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For most black holes in string theory, the Schwarzschild radius in string units decreases as the string
coupling is reduced. We formulate a correspondence principle, which state§)tlaien the size of the
horizon drops below the size of a string, the typical black hole state becomes a typical state of strings and
D-branes with the same charges, &ingthe mass does not change abruptly during the transition. This provides
a statistical interpretation of black hole entropy. This approach does not yield the numerical coefficient, but
gives the correct dependence on mass and charge in a wide range of cases, including neutral black holes.
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PACS numbes): 04.70.Dy, 11.25.Mj

I. INTRODUCTION vature at the horizon of a black holen the string metrig
becomes greater than the string scale, the typical black hole
A few years ago, Susskind proposgld that there was a state becomes a typical state of strings Badranes with the
one-to-one correspondence between Schwarzschild bladame charges and angular moment@m;the mass changes
holes and fundamental string states. This is based on the falby at most a factor of order unity during the transition.
that as one increases the string coupling, the size of a highly The condition on the curvature i) is just the condition
excited string state becomes less than its Schwarzschild réer «’ corrections to become important near the horizon, so
dius, so it must become a black hole. Conversely, as ontnis is a natural point for the transition to occur. An imme-
decreases the coupling, the size of a black hole eventuallgiate consequence of this principle is that the black hole
becomes less than the string scale. At this point, the metric isntropy must be comparable to the string entropy. One may
no longer well defined near the horizon, so it can no longewonder how this is possible, since we explicitly assume that
be interpreted as a black hole. Susskind suggested that thige mass does not change significantly during the transition
configuration should be described in terms of some strindgo a string state. The point is that as the string coupting
state. At large values of the mass, the typical state consists ofried, the mass of a black hole is constant in Planck units,
a small number of highly excited strings, so the black holewhile the mass of a strinGgnoring gravitational corrections
should reduce to such a state at weak coupling. In fact, this constant in string units. So they can agree for only one
single-string entropy approximates the total entropy up tovalue ofg. It is natural to equate the masses at the value of
subleading terms, and so one can focus on states of a singlewhen the black hole becomes a string. By the above prin-
highly excited string. Further evidence for this correspon-ciple, this occurs when the size of the horizon is of order the
dence between black holes and excited string states has retring scale. We will show that when the black hole mass and
cently been giver2,3]. string mass are set equal at this scale, their respective entro-
It is widely believed that there is a discrepancy betweerpies are also equal, up to a factor of order unity that depends
the entropy of a free fundamental striidgyhich is propor-  on exactly when the black hole forms. Turning the argument
tional to the mass of the string statend the Bekenstein- around, if we follow a given statdthat is, fixing the
Hawking entropy(which is proportional to thequareof the  entropy) adiabatically through the transition between a
mass of the black hole This apparent discrepancy must black hole and a string, its mass changes by a factor which is
clearly be resolved in order for the proposed correspondencef order one, rather than being parametrically large.
to be valid. Susskind has suggested that a large gravitational For the Schwarzschild black hole in four dimensions, the
redshift might account for the difference. equality of the single-string and black hole entropies for
We will show that the standard formulas for the string andstring-sized black holes was pointed out by SusskijdWe
black hole entropies can be related directly to one anotheextend this to all dimensions and to black holes carrying a
More generally, when the black hole carries Ramond-variety of charges(Adding angular momentum typically
Ramond charge, the weak-coupling limit involvBsbranes changes the entropy by at most a factor of two, so its effect
[4]. The correspondence between black holes at strong cois difficult to see just from the correspondence principle.
pling and strings and-branes at weak coupling can be some cases the typical state on the weak-coupling side is a
stated in terms of the following principléi) When the cur-  single long string, but in others it is gas of massless strings

*Electronic address: gary@cosmic.physics.ucsb.edu IFor a system with rapidly growing density of states, a narrow
TElectronic address: joep@itp.ucsb.edu band of states can be labeled by its entropy.
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on D-branes; two distinctly different kinds of gégee and Put differently, consider following a particular state as the
interacting arise. Thus the correspondence principle unifiescoupling is varied, which means holding the entropy fixed.
the known results on black hole entropies and enables us fbhe success of the above matching means that the mass
understand many new cases. changes only by a factor of order 1 during the transition from

Section |l treats black holes without Ramond-Ramondthe black hole description to the string description. There are
(RR) charges, starting with Schwarzschild in any dimensionyarious large and small dimensionless numbers in the prob-
and then including electric Neveu-SchwaiidS) charge$.  lem. One is the excitation levéll. Another is the string
Section |l treats blackp-branes with a single Ramond- coupling g at the transition; from the matching condition
Ramond charge. The near extremal entropy of these soly2.2) andG~g2«’, one findsg~N~*4 It could have turned
tions have been discussed previoyslywhere it was argued out that the mass changes during the transition by a factor
that in most cases it could not be understood simply in termsvhich is parametrically large, such as a poweNgfbut this
of the known light degrees of freedom on the brane. We willis not the case here or in any of the later examples.
see that when the correspondence principle is applied, the Since the string forms a black hole at the string scale,
near extremal entropy in all cases agrees with@hkbrane  which is not large compared to the compactification scale, it
counting (up to factors of order unily We will also discuss is important to see whether this agreement continues to hold
two ways of compactifying the blagk-brane space time and for black holes in higher dimensions. The Schwarzschild
show that their entropies are reproduced by two differentnetric ind spatial dimensions is similar to E.1) except
configurations oD-branes. Section IV presents a discussionthat ro/r is replaced by 1,/r) 2. The mass is now
of the relation to other work and some concluding remarks.Mg,,~r3~2/G. We again equate this with the string mass

when the black hole is of order the string size
Il. NEUTRAL AND NS-NS BLACK HOLES

. , (a)2 N
A. Schwarzschild black holes Mgy~ oz "o (2.9
We start with the familiar four-dimensional Schwarzs-
child black hole The black hole entropy is thus
d52=—(1—r—0 d2+ 1—r—0>_1dr2+r2d9 (2.2) ret (a)@ 2
r r ’ ' SgH~ G~ S ~ \/N (2.5

The mass of the black hole Blgy=ry/2G. We want to
equate this with the mass of a string state at excitation lev i i
N, which is M§~N/a’ at zero string couplingy. In four string entropy.

dimensions Newton'’s constant is related to the string cou- On(_e might have been concerr_wed that the typical string
. , >, L state is much larger than the string scale and so does not
pling g ande’ by G~g“a’. So it is clear that the mass of : o
. ensibly match onto the black hdl&]. This is a somewhat
the black hole cannot equal the string mass for all values o] ; ; . :
{nvolved guestion, about which we will have more to say in

g. If we want to equate them, we have to decide at wha f 111, but in fact it i Ilv rel h A
value of the string coupling they should be equal. Clearly a uture pe}pe[ ]Z Ut. n actitis notreally re gvant ere.
) highly excited string is like a random walk, with an entropy

the natural choice is to Igg be the value at which the string roportional to its length. Even if we restrict attention to

forms a black hole, which, by our correspondence prmuplx%ghly excited string states that are small, constrained to lie

is when the horizon is o/f qrder the string scale. Setting thein just a few string volumes, the entropy is still proportional
masses equal whag~«' yields

to the length, just with a numerically smaller coefficient to
N which we are not sensitive. In fact there is an offsetting

opO once again the black hole entropy is comparable to the

MZBH~ %~ —. (2.2) effect due to the gravitational self-interactiftil)].
o
The black hole entropy is then B. Charged black holes
) ) We now consider charges that can be carried by funda-
S Nr_owa_~\/ﬁ 2.3 mental strings, i.e., electric Neveu-Schwarz charges associ-
H'G G ' ' ated with momentum and winding modes. For a black hole

with these charges, the dilaton is not constant, so the string
So the Bekenstein-Hawking entropy is comparable to themetric differs from the Einstein metric. The correspondence
string entropy[1]. They have the same dependence on théetween strings and black holes occurs when the curvature of
mass and only differ by a factor of order unity which de-the string metric at the horizon is of order the string scale.
pends on exactly when the string state forms a black hole. We will see that this implies that the size of the horizon in
the string metric is of order the string scale. We will equate
the mass of the black hole to the mass of the string at this
2Black holes with magnetic Neveu-Schwarz charge are the ongoint and show that the black hole entrafyhich is propor-
example in which the horizon does not become smaller than a strinjonal to the horizon area in the Einstein mekigthen com-
at weak coupling. An approach for understanding these entropieparable to the usual string entropy.
has been discussed [i§,6]. For a string propagating on a circle with radRsthe left-
3For other discussions of the near extremal entropy[8e&(]. and right-moving momenta are defined to be
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n mR n mR o

P=R™ pR:§+71 (2.6 PR= 55

(sinh2y,+sinh2y,). (2.19
wheren,m are the integer momentum and winding numbers.The horizon area in the Einstein metdsz=e 2¢ds? is
The string entropy is

S N+ VNg, @9 The curvature of the full ten dimensional string metric
where [which is the product of Eg2.9) with a five torug has two
independent components near the horizon. One is propor-
tional to 143 and the other is proportional to (tahh)/r3. So
the first is always larger, and the curvature is of order the
string scale whem§~a’. Setting the mass and charges of

To obtain the four-dimensional black hole solution with the black hole equal to those of the string at this scale yields
these charges we start with the five-dimensional black string

A= 47-rr?,coshylcoshyp . (2.19

N Ng
—~Mi-pf, —~MI-pi. (2.8

. . : , N "
solution[12,13 (in the string metrig a_lr_NMéH_ o2 GT[3+2(COSh2y1+COSh2yp)
-1
r r
dSz:F{—(l—TO dt?+dz?|+ 1—70) dr?+r2dQ, +cosha y;+y,)],
(2'9) NR 5 ) a!

where ?~MBH—pR~ @[3+2(cosh2y1+ cosh2y,)

Flo1+ rOsmhz'yl (2.10 +COShZ'}’1_7p)]- (2.1

Y .

The largest term or terms iN, or Ny is always of order

a’2G~%cosh2(y,|+|y|), which for all y;, v, is the same as
a’?G ™ %coslfy,cosity, up to a factor of order one. The
string entropy is then

and the dilaton i2?%5=F. One can now boost along tize
direction(to add momentumand reduce to four dimensions
to obtain

dt?+

_1 a'
dSZI_Al(l_rr—O l_rr_o) dr2+r2dQ, Ss"‘ \/N_L+ \/N_R"’ ECOSh}/]_COSh}/p. (217}

(2.1 This is the same as the black hole entr&@y,~A/G, where
r sini? r sini? the area is given in Eq2.15, at the pointr3~ a’ where the
A=(1+ 0 71)( 0 79) _ matching is done. Thus we find that the black hole entropy
always agrees with the string entropy up to factors of order
unity. In particular, it has the same dependence on the mass
and charge. We have also checked that this agreement ex-
tends to charged black holes in higher dimensions.

It should be noted that even after the transition to the
weakly coupled regime, the gravitational dressing remains
, large. The stringy behavior at-r, smears out the zero in

-9 (1—ry/r) and so this does not cause a large correctem
Men SG(2+COSh2)/1+COSh2Yp)' (212 sentially, this is part of the correspondence pringipBut

) ] ) , ~ the factorA differs significantly from unity over a much
whereG is the four-dimensional Newton’s constant. The in- greater scale wheny, or y, is large, and its value near the

teger nor_malized charges corresponding to the momentufyrizon is of order coﬁaylcosﬁyp. We must use the cor-
and winding numbers ate rected local metric in calculating the string entropy. This

does not, however, affect the result. Consider first the case
sinh2y; . (213  7p=0, so there is only winding charge; the dress{@d) is
8GR then a uniform rescaling of thet plane. Near the extremal
limit, the mass relation becomes

The four-dimensional dilatorfwhich differs from ¢5 by a
factor of the length of the fifth dimensipiis e 4?=A. The
horizon is atr =ry, and the Arnowitt-Deser-MisngiADM )
mass is

_ roR . h2 _ roaf,
—@SII’] Yp,» M=5=5

n
The left- and right-moving momenta are thus

mR N
r Mgp— —r ~ —. (2.18
pL=£(sinh2yp—sinh2yl), "o’ mR

The left-hand side is the free energy, the excess energy

above the rest mass of the winding strings. Its value near the

“We follow the conventions of14,15. The left and right boost ~ string is greater than its asymptotic value by the redshift
parameters of(16] are related toy;, y, by a=y,—y; and  coshy;. But also the radiu is contracted by the same fac-

B=7vpt 71. tor, so the value oN and hence the entropy are the same as
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would follow from the asymptotic values. For the secondE and Q are the same, so that in the extremal limit
charge, the compact momentum, we do not need a detailg@d,— 0, a— o, with Q fixed) we haveE=QV/ga' ("7,
analysis: it is simply a result of applying a boost to both the In the limit of weak string coupling, this extremal limit

black hole and string configurations. corresponds td) Dirichlet p-branes[4]. The nonextremal
The redshift does have one notable effect. The asymptotisolution should correspond to an excited state of these
temperature at the matching point is D-branes and strings. To determine when this weak-coupling

T~ (a'Y%coshy,coshy,) . With the redshift included, the description is applicable, we consider the curvature of Eq.
local temperature at the string B~ (a’) "2 the string  (3.1) at the horizonr=r,. The largest contribution comes
scale, just as in the Schwarzschild cétg from the angular part of the metric and is of order
String states withNg=0 are supersymmetric. On the (r3coshy) .. By the correspondence principle, the matching
black hole side this corresponds to an extremal limithetween the black-brane and the strings arid-branes oc-

ro/G—0, yp,y1—> keeping €o/G)sinh2y; and y1—7v,  curs when this is of order & or
fixed. In Planck unitdconstantG), the horizon are#2.15

vanishes in this limit, which led Sefl7] to compare the a'l?
number of string states with the area of a “stretched hori- VOZW- (3.9

zon” where the curvature of the extremal solution was of

order the string scale. Since we start with nonextremal blackhat is, for givenQ andS, Eq. (3.4) determines the value of
holes and set the size of the horizon in the string metric to bg at which the description changes. At this point we wish to
of order the string scafethe entropy remains finite in the compare the Bekenstein-Hawking entropy to that of an as-

limit and agrees with the string expression. sembly of strings and-branes with the same charge and
mass. Note that sinae”= (coshw)"~*"? on the horizon, Eq.
lll. BLACK p-BRANES (3.4) implies thatge?<1/Q. Thus the local string coupling

remains small.
There are two qualitatively different kinds of excited
In this section we consider blagikbranes with a single states oD-branes. The first consists of adding a small num-
Ramond-Ramond charge. The string metric is giveri1®]  ber of long stringS. In this state the entropy is
S,~a'Y2AE, where

A. Ten dimensions

ro .
dsz=f‘1’z[— 1- 5 dt2+dy'dyi} QV
AE=E- —mrop 3.9
rmy -1 Ja
12| 4__0 2., .2
+f (1 rﬂ) dri+ridQa,, |, (3.9 is the excess energy above thebrane rest mass. The sec-
ond class of states consists of exciting a large number of
where massless open strings on thebranes. There ar®? species
of open string, as will be explained below, so the excess
rgsinr?a energy and the entropigropping numerical constantare
f: 1+ S E—— (32)
r AE~Q?TPT1y,
The y; are p=7—n spatial coordinates along the brane S,~Q2TPV (3.6)

which we assume are compactified on a large torus of vol-

umeV. The dilaton ise?”=f("~*’2 The energy, RR charge, which implies S,=(AE)P®*1). Not surprisingly, for large
and entropy of thep-brane are excess energy, long string states are more numerous, while
. the string gas has higher entropy whaf is small. The
E roV EJF hy transition occurs whed E~Q?V/a' (P12 je. whenT is
g’ Tn T8 ’ of order one in string units.
We now wish to compare these weak-coupling entropies
(n with Sg. The procedure is to match the energy and the
Q~ —spSinh2a, (3.3  charge of the strings anB-branes with that of the black
ga p-brane when Eq(3.4) is satisfied. At this point,
rottv V
Sgu~ WCOSI’H. AE~ QZT’HD/Z(COSM) —n2

We have dropped overall constants of order unity since they
will not be needed for testing the correspondence principle. 6The blackp-brane should match onto long strings lying in ap-
However, it should be noted that the constants in front ofproximately the volume of thp-brane, but this constraint will only
affect the coefficient in the entropy. Also, long open strings ending
on theD-branes are more numero(nd hence more likeJythan
5Sincery~(a’)Y? the string couplingg must become large as long closed strings, but the effect on the entropy is of subleading
ro/G vanishes. order.
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1 but only by a numerical factor. This is within the accuracy of
Q~ —sinh2a(coshw) ~"2, (3.7 the correspondence princigle.
9 The correspondence principle is thus confirmed for the
large class of solution§3.1), but we should note that it is
and so working even better than one might expect in some cases.
Specifically, forn>4 (p=0,1,2) and« large, spheres out-
Vv side the horizom=r, grow smallg:/rasr increases, reaching
S1~ = (coshy) P72, a minimum size atr ~rq(sinha)“". Correspondingly, the
g a maximum curvature outside the horizon occurs at a finite
distance away from the horizon. Thus as one decreases the
v string coupling, thea’ expansion first breaks down away
Sy~ =5 (tanhe) PV (coshy) P02 (3.9) from the horizon, and there is a range of couplings where the
g a horizon and asymptotic region are both described by low-
energy gravity but an intermediate region has string correc-
tions. In applying the correspondence principle we have im-

. - . plicitly assumed that the expressions for the blackrane
> . ) . X . .
S2>$,), while small a corresponds to configurations far (3.3) remain valid until the curvature at the horizon itself is

from extremality(with S;>S,). In either case, the larger of . . Co
; " ._,of order the string scale. It is not clear why this is justified.
the two entropies agrees with the black hole entropy, WhICI]ncidentally, if one attempts to match the black hole to the

from Eqs.(3.3 and(3.4) is D-branes when the curvature away from the horizon first
becomes of order the string scale, one finds that the entropies
do not agree—th®-brane entropy is too small.

Large a corresponds to near extremal configuratigngth

v (p—6)/2
Seu—~ g%WQ(COSI’U) P . (3.9

B. Compactification

Thus the correspondence principle correctly reproduces the W€ now consider compactification of the blapkoranes
entropy of all blackp-branes with a RR charge. below ten dimensions. We begin with the simplest case of
As in the case of near extreme black holes with NSZEro charge ¢=0), when the solutions are just the product

charges, there is a large redshift near Brbranes, but it ©f @ torusT? and the (16-p)-dimensional Schwarzschild
does not affect the result. From the metf&1) f is a uni- metric. This is one form of compactification, and was con-
form rescaling of theD-brane world volume, to which the sidered in Sec. Il. However there is another possibility: One

massless string gas is insensitive. In other words, in the ide&@" consider ap-dimensional array of ten-dimensional
gas relations(3.6) we need to include a redshift factor Schwarzschild black holes. An array of finite size would not

y=(cosh®)2in AE andT andy " in the volume, so these be static, but an infinite array _does lead to a static solution
equations continue to hold. The redshift again raises th&20)- ldentifying after one period, the array has the same
asymptotic temperature at the matching poirk mass7ar;d Entropy as a smgle ten-dimensional plack hole
~ (&' coshw) Y2 to the string scaled’) Y2 M~ro/g”a’® and S~rgM, while the product solution has
Now we must justify the assumption @2 degrees of M’~pgV/g®a’?, andS'~poM’ wherep, is the Schwarzs-
freedom in the gas regime. The massless fields on thehild radius of the lower-dimensional black hoM,is the
D-branes are the non-Abelian gauge fields and collective cocolume of the internal space, ami=7-p. Setting the
ordinates[18]. These areQ? in number, but the collective masses equaly~ pgV, yields
coordinates have a potential proportional to[®(X/]?) so h
that the moduli space is of dimensi@n similarly the gauge §~ r_0~< V)
fields have a self-interaction. These interaction terms will S po '
restrict the number of effective degrees of freedom only if
they are large compared to the kinetic term, which turns ouSo the array has greater entropy as longvasr§, below
not to be the case. Treating the interaction as a perturbatiowhich point the images start to merge. This suggests that the
on a free gas 0Q? species, we can estimate its ratio to theproduct solution is unstable in this regime, a fact which has
kinetic term as follows. By the usual largé-counting, the  been confirmed by studying the linearized perturbat[@is.
ratio will have a factor ofge?Q. The quartic coupling in Both the entropy of the product solution and the array can
p+1 space time dimensions has units(ofas$>~P, so the  be understood by our correspondence principle, since we saw
dimensionless expansion parameteg@QTP 3. We have in Sec. Il that it reproduces the entropy of Schwarzschild
seen that at the horizonT~(a') Y2 and ge’Q black holes in any dimension. The difference between the
~(a")P~32 50 the expansion parameter is of ordef 1. two cases is the following. As we decrease the string cou-
That is, the two energies are of the same order. The potentigling, the mass of the black hole in string units increases. For
is positive so we have underestimated the energy of the ga#)e product solution, the curvature at the horizon reaches the

P
)

(3.10

"Curiously the position dependence ¢fand of the effectivel 8The gas picture does not apply fpe=0, but the result is the
cancel, so one comes to the same conclusion by erroneously usirsgme: the potential determines the magnitude of the fluctuations of
the asymptotic values. the Q? degrees of freedom.
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string scale at a larger value of the coupling than for theOnce again, the array has greater entropy as long=asy,
array. Hence the energy of the resulting string state and a®elow which point the array solution approaches the transla-
sociated entropy is smaller. tionally invariant one. Notice that in the near extremal limit,
Now we consider the near extremal solutiams 1. (So-  rg is very small, so the homogeneous solution is almost al-
lutions far from extremality are qualitatively similar to the ways unstable.
case of zero chargeWe first consider a periodic coordinate  Let us now consider the weak-coupling description in
transverse to thg-brane, sayx®~x%+27R. Again there terms of D-branes. The array corresponds@ocoincident
are two kinds of black hole, the array and the translationallyD-branes. The translationally invariant solution corresponds
invariant solution. For the extremal blagkbrane, the array to Q D-branes evenly distributed kP. To count the number
is given by replacing in Eq. (3.2 with of excited states, it is convenient to apglyduality. TheD
" p-branes then become ¢ 1)-branes, extended in thé di-
n. rection. Thex® coordinate isT dual to theD-brane Wilson
f1=1+rosmhzalk;x X=X’ 31D e [18], so for the coincidenD-branes the Wilson line is
the identity while for the distributed-branes its eigenvalues
where x;=27Rk are the image positions, and taking are uniformly distributed. In the latter case, one can go to a
ro—0 with rgsintfe fixed. The array of nonextremal solu- basis in which the Wilson line is the shift matrix,
tionsry>0 is more complicatefR2], but forry<R it is easy
to construct an approximate solution. The metric for a single Wi;=6 41 (i=i+Q). (3.1
nonextremep-brane is indistinguishable from the extreme
solution whenr>r,. So one can approximate the nonex- With this Wilson line theD-brane fieldsg; ; (both the col-
treme array by keeping, as above and inserting factors of |ective coordinates and the gauge figldse periodically
(1—=rg/r™ just as in the ten-dimensional solutioi3.1) identified with ¢;,;,,1 and one essentially h&Q species

(wherer is a radius from eacp-brane. (distinguished by |i—j|) on a D-brane of length
The homogeneous solution, which is translationally in-27QR’=27Qa’/R. We refer to this as the wrapped system
variant in thex® direction, is since it describes onB-brane wrapped) times around the

circle [19]. For W=1, the unwrapped system, there @&
species on ®»-brane of length ZR'.

For TR’>1, meaning largeR’ or large energy density,
these two systems behave essentially the same, with

1

o
dszzlelz[—(l— Z(n’_l

dt2+dyidyi}

n-1\ -1
+ f;’z{ ( 1- Zﬁl) dp?+ p2dQ,+dx3

(3.12

AE~Q?VR'TP'2,

S~Q?VR'TP*L, (3.17
where

n=lgintP WhenTR’ <1, the modes of the unwrapped system can no
pO Sin ay . . .
fob=1+ ————. (3.13 longer propagate in the compact direction and the system
p behaves like @-dimensional gas, while the wrapped system
OIcontinues to behave like @ 1)-dimensional gas. We now
show that when the correspondence principle is applied,
these two systems reproduce the entropy of the array and

homogeneous black-branes respectively. The entropy of

The array solution3.11) has the same energy, charge an
entropy as the ten-dimensional solution, E8.3), while for
the homogeneous solutidB.12) these are

pgflRV n+1 the array is the same as a single blgekrane in ten dimen-
E'~—5—g er cosh2a2>, sions, since the compactification has little effect. We have
9 a already seen that its near extremal entropy is reproduced by a
n—1 gas ofQ? degrees of freedom ip dimensions which is just
po R ;
Q' ~ —zsinh2a,, (3.149  the unwrapped system. If we applyduality to the homoge-
ga neous solution, the effect on the met(&12) is ggg— 1/ggg
0 and we obtain the solution for a blaclp{ 1)-brane. The
/ poRV energy and entropy are duality invariant. Thus the near ex-

SeH™ gza,4cosm2. tremal entropy is reproduced by a gasQf degrees of free-

dom in (p+1) dimensions which is the wrappdat-brane.

For largeR, one would expect the compactification to have ngtice that the wrappe®-brane hadessentropy than the
little effect and so the array solutid8.11) would appear to  ypwrapped one.

be more physical. As before, we can determine which solu- \what is the role of the transition poitR' ~1 in the

tion is stable by seeing which has more entropy for givenyack p-brane picture? As we have seen, the asymptotic tem-
mass and charge. For equal masses and charges(¥Eg)s. perature satisfies ~ («’coshw) Y2, so the radius above
and(3.14 imply thata; ~a, andpg 'R~rg. Itfollows that  \yhich the wrapped and unwrapped systems become indistin-

S ; R\ Un-1) guishable is R’ ~(a'coshw)?2. The T-dual radius is
B0 _) 3.15 R=(a'l/costm)?=r,, which is just the radius below which
Sgv Po \To the array overlaps into a translationally invariant system.
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Thus we see a detailed correspondence between wramatches that of an interacting string gas w@h or Q2 de-
ping/unwrapping foD-branes and the two kinds of compac- grees of freedom. When both Ramond charges are large, the
tified black holes. entropy is reproduced precisely by a gas@fQs moduli

Now let us consider compactification of one of the direc-[23-25. This is now a free gas, in that the moduli have no
tions parallel to thev-brane, i.e., we suppose one direction is potential®
much smaller than the rest. To make use of the previous Note that in most of the cases we have discussed, if one

discussion(to which it is T dua), we start With a black  gets the energy and charge of the weak-coupling state equal
(p+1)-brane, compactify with periodicity 2R’, and de- 4 hat of the black hole at an arbitrary value of the

note the volume of theg(+ 1)-brane by ZTR.,V‘ We saw in  geparzschild radius,, the two entropies have different
Sec. Il A that the near extremal entropy is reproduced by Ebependence ono. For example, in the Schwarzschild black

. . . 2 . 12 .
(p+1)-dimensional gas witlQ“ species. FOR'T>1 this hole SBHoch while Syt at fixedg. The matching of en-

can be represented in weak coupling either by wrapped or _ . )
unwrapped D-branes. However, forR'T<1, only the tropies then depends on a special value phiven by the

wrapped system yields the black 1)-brane entropy: the correspondence principle. For the cases where exact calcula-
unwl?gppedy brane)g have higher entropy. It may spgém puztsi_ons of the entropy have been done, thalependence is the
zling that the black §+ 1)-brane ceases to be the lowest- ame on both sides and so the matching scale drops out.

entropy configuration at a rather large radius
R’ ~(a'costw)Y. Moreover, the higher-entropy configura-

tion is hard to describe. It i§ dual to the array. But the array We have proposed a Correspondence princip]e which con-
is not invariant undex® translation—that is, the background pects black holes to weakly coupled strings dhbranes,
has modes of nonzerpy—so the dual background must and shown that it leads to an agreement between the entropy
have fields associated with nonzero winding number. We cagf these two systems. Although we have not been able to
see a signature of this in the blapkbrane metrid3.1). The  compare the precise coefficients in the entropy formulas,
metric along the D-brane, at the horizon, is they have the same dependence on the mass and charge in
dy?(coshy) 2 so that wherR’ ~(a'coshr)'? the size of  wide variety of different contexts. This strengthens the idea
the compactified directioat the horizoris only @’*?and so  that a black hole is an ordinary quantum mechanical system,
it is possible for stringy effects to arise. and that string theory is a viable theory of quantum gravity.
It is interesting to note if we continue to reduce the radiusin all examples considered here, string theory provides the
until QR'T<1, the entropy of the wrappda-brane changes correct number of degrees of freedom to account for the
from a (p+1) dimensional gas to p-dimensional gas with black hole entropy.
Q degrees of freedom. This is to be expected since the We have seen that the typical string state depends in an
T-dual configuration now consists @ widely separated essential way on the quantum numbers. With no large RR
D-branes. The strong-coupling limit of this would Qenear  charges it is a single long string, with one it is an interacting
extremal blackp-branes each with unit charge. Thus whenstring gas orD-branes, and for some examples with two or
QR'T<1, the entropy of the homogeneopsbrane is not more RR charges it is a free string gas, a gas of moduli. The
only smaller than the array of chargg p-branes, but also correspondence principle thus unifies various results in the
smaller than an array of charge opebranes with spacing literature.
1/Q of the previous period. The success of the correspondence principle does not
To summarize, we have seen that the correspondendeean that gravitational effects remain small whenever the
principle works in great detail: We have considered two dif-string andD-brane picture is valid. For near extremal black
ferent kinds of compactified blagik-branes and two configu- holes, we have seen that the metric deviates from flat space
rations of D-branes, and the entropies match in detail bothover a region much larger than the horizon size. Thus there is
for the higher-entropy and the lower-entropy system. a large gravitational dressing after the transition. This affects
both the local energy and the size of the internal space, but
suprisingly, the entropy is unaffected. In all cases, the local
Hawking temperature at the matching point is of order the
Recently, a precise agreemeimcluding the numerical string scale.
coefficien) has been foundl23,24 between the entropy of One can trivially extend this agreement in certain ways,
certain extreme and near extreme black holes and states efg., by adding momentum to the blaglbranes discussed in
D-branes. These cases differ from the ones we have dissec. lll. The only change in both the black hole and weak-
cussed in that there are at least two Ramond-Ramondoupling descriptions is to apply a boost in some direction.
charges. An example is the five-dimensional black hole carOther extensions are probably possible, but require further
rying one-brane charge, five-brane charge, and compact ménvestigation. For example consider magnetic NS charge. It
mentum. Applying the correspondence principle to this black
hole, there are eight cases to consider according to which 6f
the three charges are large. These separate into three categ8¥here is a puzzle here, in that the local temperature at the tran-
ries. When neither of the Ramond charges is large the resultstion is of order the string scale and so large enough that there will
of Sec. Il apply: The typical weak-coupling state is a longbe some excitation of states other than the moduli. This does not
string, whose entropy matches that of the black hole. Wheaffect the qualitative agreement required by the correspondence
one of the Ramond charges is large, the discussion fromrinciple, but makes the precise agreement for near extremal entro-
earlier in this section applies and the black hole entropyies[25] somewhat puzzling.

IV. DISCUSSION

QD

C. Black holes with two or more RR charges
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is clear that when the charge is small, it has little effect onentropy(at fixed energyby a similar factor. The interactions
the entropy and the matching can be done as in Sec. Il. lare quite complicated, however, and we do not see a way to
other cases, e.g., the near extremal black five-brane in lIBbtain the precise factor.

string theory with large charge, the correspondence principle In the casep=5, the blackp-brane entropy has been
cannot be applied directly since the horizon size never beshown to agree precisely with that of a gas of noncritical
comes small in string units. However, in this case the stringlosed strings living on the five-braf@]. We, on the other
coupling becomes large near the horizon. It thus seems ajrand, have shown approximate agreement with the entropy
propriate to count states by going to the weakly coupledf ordinaryD-branes and open strings. Moreover, in the lat-
S-dual description. This is five-brane with RR charge, forter case the open string interactions are of order 1 and the
which the correspondence principle can be applied andravitational dressing is large, while all such complications
yields the correct entropy. are blithely ignored in Ref.9]. Is there some duality here?

It appears difficult to extend our analysis to try to com-  Susskind has pointed out that our results give an approxi-
pare the precise coefficients in the formulas for the entropymate verification of string duality for non-BPS states. Many
This would require a better understanding of the string statef our examples are related by duality. The simplest is just
when it is of order the string scale. the Schwarzschild black hole, which might turn into a het-

Near extremal blaclp-branes with one RR charge have erotic string at smallg and a type-ll string at large. The
been discussed recently in the literature. It is perhaps usefalgreement of the nonextremal entropies of each string with
if we comment on the relation between our discussion in Sechat of the black hole implies agreement with each other. In
[l and some of this previous work. It has been noted that theother words, we can follow a given state from a long het-
black hole and-brane entropies have different temperatureerotic string, to a black hole, to a long type-Il string. The
(or equivalentlyr,) dependence in generfif]. This is in  new ingredient is that the black hole description gives a
accord with our point of view, since we expect them toknowng dependence of the mass in the intermediate regime.
match only at one poirf Since the different weakly coupled string theories have

The self-dual casp=3 is particularly interesting. If we different degeneracy of states, one might wonder whether
consider ther, dependence of the entropy at fixgdand they could all be consistent with the Bekenstein-Hawking
a, the black hole entropy is proportional t§ P while the  entropy at a precise levéivhen the coefficients are better
string gas entropy is proportional t§’ ~P(P*2/(P+1) pre.  understoogl _The_re_are at Iea;t_two ways in which this could
cisely for p=3 these are the same, so the matching scal@ccur. The first s if the transition from the black hole to the

drops out and one might hope to relate the entropies prestring state takes place at slightly different values of the cur-
cisely. However, this is the case where ebrane entropy Vature in the different string theories. The second is that, as
seems to exceed that of the black hole by a factor of 263 ~ We have remarked several times, the black hole state may
We now have some understanding of the origin of this factorturn into only a subset of the available string states. This
TheD-brane calculations were done with a gas@fspecies  Subset is large enough so that its entropy differs from the
treated as free. We have seen, however, that the interactio#§ual string entropy only by an overall coefficient. In this
are of order 1; neglecting them underestimates the energy §€NSe, there may not be a precise one-to-one correspondence

each state by a factor of order 2 and so overestimates tHeetween string states and black holes, and may explain the
factor of two discrepancy ifi3].
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