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For most black holes in string theory, the Schwarzschild radius in string units decreases as the string
coupling is reduced. We formulate a correspondence principle, which states that~i! when the size of the
horizon drops below the size of a string, the typical black hole state becomes a typical state of strings and
D-branes with the same charges, and~ii ! the mass does not change abruptly during the transition. This provides
a statistical interpretation of black hole entropy. This approach does not yield the numerical coefficient, but
gives the correct dependence on mass and charge in a wide range of cases, including neutral black holes.
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I. INTRODUCTION

A few years ago, Susskind proposed@1# that there was a
one-to-one correspondence between Schwarzschild black
holes and fundamental string states. This is based on the fact
that as one increases the string coupling, the size of a highly
excited string state becomes less than its Schwarzschild ra-
dius, so it must become a black hole. Conversely, as one
decreases the coupling, the size of a black hole eventually
becomes less than the string scale. At this point, the metric is
no longer well defined near the horizon, so it can no longer
be interpreted as a black hole. Susskind suggested that the
configuration should be described in terms of some string
state. At large values of the mass, the typical state consists of
a small number of highly excited strings, so the black hole
should reduce to such a state at weak coupling. In fact, the
single-string entropy approximates the total entropy up to
subleading terms, and so one can focus on states of a single
highly excited string. Further evidence for this correspon-
dence between black holes and excited string states has re-
cently been given@2,3#.

It is widely believed that there is a discrepancy between
the entropy of a free fundamental string~which is propor-
tional to the mass of the string state! and the Bekenstein-
Hawking entropy~which is proportional to thesquareof the
mass of the black hole!. This apparent discrepancy must
clearly be resolved in order for the proposed correspondence
to be valid. Susskind has suggested that a large gravitational
redshift might account for the difference.

We will show that the standard formulas for the string and
black hole entropies can be related directly to one another.
More generally, when the black hole carries Ramond-
Ramond charge, the weak-coupling limit involvesD-branes
@4#. The correspondence between black holes at strong cou-
pling and strings andD-branes at weak coupling can be
stated in terms of the following principle:~i! When the cur-

vature at the horizon of a black hole~in the string metric!
becomes greater than the string scale, the typical black hole
state becomes a typical state of strings andD-branes with the
same charges and angular momentum;~ii ! the mass changes
by at most a factor of order unity during the transition.

The condition on the curvature in~i! is just the condition
for a8 corrections to become important near the horizon, so
this is a natural point for the transition to occur. An imme-
diate consequence of this principle is that the black hole
entropy must be comparable to the string entropy. One may
wonder how this is possible, since we explicitly assume that
the mass does not change significantly during the transition
to a string state. The point is that as the string couplingg is
varied, the mass of a black hole is constant in Planck units,
while the mass of a string~ignoring gravitational corrections!
is constant in string units. So they can agree for only one
value ofg. It is natural to equate the masses at the value of
g when the black hole becomes a string. By the above prin-
ciple, this occurs when the size of the horizon is of order the
string scale. We will show that when the black hole mass and
string mass are set equal at this scale, their respective entro-
pies are also equal, up to a factor of order unity that depends
on exactly when the black hole forms. Turning the argument
around, if we follow a given state~that is, fixing the
entropy1! adiabatically through the transition between a
black hole and a string, its mass changes by a factor which is
of order one, rather than being parametrically large.

For the Schwarzschild black hole in four dimensions, the
equality of the single-string and black hole entropies for
string-sized black holes was pointed out by Susskind@1#. We
extend this to all dimensions and to black holes carrying a
variety of charges.~Adding angular momentum typically
changes the entropy by at most a factor of two, so its effect
is difficult to see just from the correspondence principle.! In
some cases the typical state on the weak-coupling side is a
single long string, but in others it is gas of massless strings
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1For a system with rapidly growing density of states, a narrow
band of states can be labeled by its entropy.
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on D-branes; two distinctly different kinds of gas~free and
interacting! arise. Thus the correspondence principle unifies
the known results on black hole entropies and enables us to
understand many new cases.

Section II treats black holes without Ramond-Ramond
~RR! charges, starting with Schwarzschild in any dimension,
and then including electric Neveu-Schwarz~NS! charges.2

Section III treats blackp-branes with a single Ramond-
Ramond charge. The near extremal entropy of these solu-
tions have been discussed previously@7# where it was argued
that in most cases it could not be understood simply in terms
of the known light degrees of freedom on the brane. We will
see that when the correspondence principle is applied, the
near extremal entropy in all cases agrees with theD-brane
counting3 ~up to factors of order unity!. We will also discuss
two ways of compactifying the blackp-brane space time and
show that their entropies are reproduced by two different
configurations ofD-branes. Section IV presents a discussion
of the relation to other work and some concluding remarks.

II. NEUTRAL AND NS-NS BLACK HOLES

A. Schwarzschild black holes

We start with the familiar four-dimensional Schwarzs-
child black hole

ds252S 12
r 0
r Ddt21S 12

r 0
r D 21

dr21r 2dV. ~2.1!

The mass of the black hole isMBH5r 0/2G. We want to
equate this with the mass of a string state at excitation level
N, which is Ms

2;N/a8 at zero string couplingg. In four
dimensions Newton’s constant is related to the string cou-
pling g anda8 by G;g2a8. So it is clear that the mass of
the black hole cannot equal the string mass for all values of
g. If we want to equate them, we have to decide at what
value of the string coupling they should be equal. Clearly,
the natural choice is to letg be the value at which the string
forms a black hole, which, by our correspondence principle
is when the horizon is of order the string scale. Setting the
masses equal whenr 0

2;a8 yields

MBH
2 ;

a8

G2;
N

a8
. ~2.2!

The black hole entropy is then

SBH;
r 0
2

G
;

a8

G
;AN. ~2.3!

So the Bekenstein-Hawking entropy is comparable to the
string entropy@1#. They have the same dependence on the
mass and only differ by a factor of order unity which de-
pends on exactly when the string state forms a black hole.

Put differently, consider following a particular state as the
coupling is varied, which means holding the entropy fixed.
The success of the above matching means that the mass
changes only by a factor of order 1 during the transition from
the black hole description to the string description. There are
various large and small dimensionless numbers in the prob-
lem. One is the excitation levelN. Another is the string
coupling g at the transition; from the matching condition
~2.2! andG;g2a8, one findsg;N21/4. It could have turned
out that the mass changes during the transition by a factor
which is parametrically large, such as a power ofN, but this
is not the case here or in any of the later examples.

Since the string forms a black hole at the string scale,
which is not large compared to the compactification scale, it
is important to see whether this agreement continues to hold
for black holes in higher dimensions. The Schwarzschild
metric in d spatial dimensions is similar to Eq.~2.1! except
that r 0 /r is replaced by (r 0 /r )

d22. The mass is now
MBH;r 0

d22/G. We again equate this with the string mass
when the black hole is of order the string size

MBH
2 ;

~a8!d22

G2 ;
N

a8
. ~2.4!

The black hole entropy is thus

SBH;
r 0
d21

G
;

~a8!~d21!/2

G
;AN. ~2.5!

So once again the black hole entropy is comparable to the
string entropy.

One might have been concerned that the typical string
state is much larger than the string scale and so does not
sensibly match onto the black hole@1#. This is a somewhat
involved question, about which we will have more to say in
a future paper@11#, but in fact it is not really relevant here. A
highly excited string is like a random walk, with an entropy
proportional to its length. Even if we restrict attention to
highly excited string states that are small, constrained to lie
in just a few string volumes, the entropy is still proportional
to the length, just with a numerically smaller coefficient to
which we are not sensitive. In fact there is an offsetting
effect due to the gravitational self-interaction@11#.

B. Charged black holes

We now consider charges that can be carried by funda-
mental strings, i.e., electric Neveu-Schwarz charges associ-
ated with momentum and winding modes. For a black hole
with these charges, the dilaton is not constant, so the string
metric differs from the Einstein metric. The correspondence
between strings and black holes occurs when the curvature of
the string metric at the horizon is of order the string scale.
We will see that this implies that the size of the horizon in
the string metric is of order the string scale. We will equate
the mass of the black hole to the mass of the string at this
point and show that the black hole entropy~which is propor-
tional to the horizon area in the Einstein metric! is then com-
parable to the usual string entropy.

For a string propagating on a circle with radiusR, the left-
and right-moving momenta are defined to be

2Black holes with magnetic Neveu-Schwarz charge are the one
example in which the horizon does not become smaller than a string
at weak coupling. An approach for understanding these entropies
has been discussed in@5,6#.
3For other discussions of the near extremal entropy, see@8–10#.
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pL5
n

R
2
mR

a8
, pR5

n

R
1
mR

a8
, ~2.6!

wheren,m are the integer momentum and winding numbers.
The string entropy is

Ss;ANL1ANR, ~2.7!

where

NL

a8
;Ms

22pL
2 ,

NR

a8
;Ms

22pR
2 . ~2.8!

To obtain the four-dimensional black hole solution with
these charges we start with the five-dimensional black string
solution @12,13# ~in the string metric!

ds25FF2S 12
r 0
r Ddt21dz2G1S 12

r 0
r D 21

dr21r 2dV,

~2.9!

where

F21511
r 0sinh

2g1

r
~2.10!

and the dilaton ise2f55F. One can now boost along thez
direction~to add momentum! and reduce to four dimensions
to obtain

ds252D21S 12
r 0
r Ddt21S 12

r 0
r D 21

dr21r 2dV,

~2.11!

D5S 11
r 0sinh

2g1

r D S 11
r 0sinh

2gp

r D .
The four-dimensional dilaton~which differs fromf5 by a
factor of the length of the fifth dimension! is e24f5D. The
horizon is atr5r 0, and the Arnowitt-Deser-Misner~ADM !
mass is

MBH5
r 0
8G

~21cosh2g11cosh2gp!, ~2.12!

whereG is the four-dimensional Newton’s constant. The in-
teger normalized charges corresponding to the momentum
and winding numbers are4

n5
r 0R

8G
sinh2gp , m5

r 0a8

8GR
sinh2g1 . ~2.13!

The left- and right-moving momenta are thus

pL5
r 0
8G

~sinh2gp2sinh2g1!,

pR5
r 0
8G

~sinh2gp1sinh2g1!. ~2.14!

The horizon area in the Einstein metricdsE
25e22fds2 is

A54pr 0
2coshg1coshgp . ~2.15!

The curvature of the full ten dimensional string metric
@which is the product of Eq.~2.9! with a five torus# has two
independent components near the horizon. One is propor-
tional to 1/r 0

2 and the other is proportional to (tanh2g1)/r0
2. So

the first is always larger, and the curvature is of order the
string scale whenr 0

2;a8. Setting the mass and charges of
the black hole equal to those of the string at this scale yields

NL

a8
;MBH

2 2pL
2;

a8

G2@312~cosh2g11cosh2gp!

1cosh2~g11gp!#,

NR

a8
;MBH

2 2pR
2;

a8

G2@312~cosh2g11cosh2gp!

1cosh2~g12gp!#. ~2.16!

The largest term or terms inNL or NR is always of order
a82G22cosh2(ug1u1ugpu), which for all g1 ,gp is the same as
a82G22cosh2g1cosh

2gp up to a factor of order one. The
string entropy is then

Ss;ANL1ANR;
a8

G
coshg1coshgp . ~2.17!

This is the same as the black hole entropySBH;A/G, where
the area is given in Eq.~2.15!, at the pointr 0

2;a8 where the
matching is done. Thus we find that the black hole entropy
always agrees with the string entropy up to factors of order
unity. In particular, it has the same dependence on the mass
and charge. We have also checked that this agreement ex-
tends to charged black holes in higher dimensions.

It should be noted that even after the transition to the
weakly coupled regime, the gravitational dressing remains
large. The stringy behavior atr;r 0 smears out the zero in
(12r 0 /r ) and so this does not cause a large correction~es-
sentially, this is part of the correspondence principle!. But
the factorD differs significantly from unity over a much
greater scale wheng1 or gp is large, and its value near the
horizon is of order cosh2g1cosh

2gp . We must use the cor-
rected local metric in calculating the string entropy. This
does not, however, affect the result. Consider first the case
gp50, so there is only winding charge; the dressing~2.9! is
then a uniform rescaling of thezt plane. Near the extremal
limit, the mass relation becomes

MBH2
mR

a8
;

N

mR
. ~2.18!

The left-hand side is the free energy, the excess energy
above the rest mass of the winding strings. Its value near the
string is greater than its asymptotic value by the redshift
coshg1. But also the radiusR is contracted by the same fac-
tor, so the value ofN and hence the entropy are the same as

4We follow the conventions of@14,15#. The left and right boost
parameters of@16# are related tog1 , gp by a5gp2g1 and
b5gp1g1.
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would follow from the asymptotic values. For the second
charge, the compact momentum, we do not need a detailed
analysis: it is simply a result of applying a boost to both the
black hole and string configurations.

The redshift does have one notable effect. The asymptotic
temperature at the matching point is
T;(a81/2coshg1coshgp)

21. With the redshift included, the
local temperature at the string isT;(a8)21/2, the string
scale, just as in the Schwarzschild case@1#.

String states withNR50 are supersymmetric. On the
black hole side this corresponds to an extremal limit
r 0 /G→0, gp ,g1→` keeping (r 0 /G)sinh2g1 and g12gp
fixed. In Planck units~constantG), the horizon area~2.15!
vanishes in this limit, which led Sen@17# to compare the
number of string states with the area of a ‘‘stretched hori-
zon’’ where the curvature of the extremal solution was of
order the string scale. Since we start with nonextremal black
holes and set the size of the horizon in the string metric to be
of order the string scale,5 the entropy remains finite in the
limit and agrees with the string expression.

III. BLACK p-BRANES

A. Ten dimensions

In this section we consider blackp-branes with a single
Ramond-Ramond charge. The string metric is given by@12#

ds25 f21/2F2S 12
r 0
n

r nDdt21dyidyi G
1 f 1/2F S 12

r 0
n

r nD
21

dr21r 2dVn11G , ~3.1!

where

f511
r 0
nsinh2a

r n
. ~3.2!

The yi are p572n spatial coordinates along the brane
which we assume are compactified on a large torus of vol-
umeV. The dilaton ise2f5 f (n24)/2. The energy, RR charge,
and entropy of thep-brane are

E;
r 0
nV

g2a84S n12

n
1cosh2a D ,

Q;
r 0
n

ga8n/2
sinh2a, ~3.3!

SBH;
r 0
n11V

g2a84
cosha.

We have dropped overall constants of order unity since they
will not be needed for testing the correspondence principle.
However, it should be noted that the constants in front of

E and Q are the same, so that in the extremal limit
(r 0→0, a→`, with Q fixed! we haveE5QV/ga8(82n)/2.

In the limit of weak string coupling, this extremal limit
corresponds toQ Dirichlet p-branes@4#. The nonextremal
solution should correspond to an excited state of these
D-branes and strings. To determine when this weak-coupling
description is applicable, we consider the curvature of Eq.
~3.1! at the horizonr5r 0. The largest contribution comes
from the angular part of the metric and is of order
(r 0

2cosha)21. By the correspondence principle, the matching
between the blackp-brane and the strings andD-branes oc-
curs when this is of order 1/a8 or

r 05
a81/2

~cosha!1/2
. ~3.4!

That is, for givenQ andS, Eq. ~3.4! determines the value of
g at which the description changes. At this point we wish to
compare the Bekenstein-Hawking entropy to that of an as-
sembly of strings andD-branes with the same charge and
mass. Note that sinceef5(cosha)(n24)/2 on the horizon, Eq.
~3.4! implies thatgef,1/Q. Thus the local string coupling
remains small.

There are two qualitatively different kinds of excited
states ofD-branes. The first consists of adding a small num-
ber of long strings.6 In this state the entropy is
S1;a81/2DE, where

DE5E2
QV

ga8~p11!/2 ~3.5!

is the excess energy above theD-brane rest mass. The sec-
ond class of states consists of exciting a large number of
massless open strings on theD-branes. There areQ2 species
of open string, as will be explained below, so the excess
energy and the entropy~dropping numerical constants! are

DE;Q2Tp11V,

S2;Q2TpV ~3.6!

which impliesS2}(DE)
p/(p11). Not surprisingly, for large

excess energy, long string states are more numerous, while
the string gas has higher entropy whenDE is small. The
transition occurs whenDE;Q2V/a8(p11)/2, i.e., whenT is
of order one in string units.

We now wish to compare these weak-coupling entropies
with SBH . The procedure is to match the energy and the
charge of the strings andD-branes with that of the black
p-brane when Eq.~3.4! is satisfied. At this point,

DE;
V

g2a8~p11!/2 ~cosha!2n/2,

5Since r 0;(a8)1/2, the string couplingg must become large as
r 0 /G vanishes.

6The blackp-brane should match onto long strings lying in ap-
proximately the volume of thep-brane, but this constraint will only
affect the coefficient in the entropy. Also, long open strings ending
on theD-branes are more numerous~and hence more likely! than
long closed strings, but the effect on the entropy is of subleading
order.
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Q;
1

g
sinh2a~cosha!2n/2, ~3.7!

and so

S1;
V

g2a8p/2
~cosha!~p27!/2,

S2;
V

g2a8p/2
~ tanha!2/~p11!~cosha!~p26!/2 . ~3.8!

Large a corresponds to near extremal configurations~with
S2.S1), while small a corresponds to configurations far
from extremality~with S1.S2). In either case, the larger of
the two entropies agrees with the black hole entropy, which
from Eqs.~3.3! and ~3.4! is

SBH;
V

g2a8p/2
~cosha!~p26!/2 . ~3.9!

Thus the correspondence principle correctly reproduces the
entropy of all blackp-branes with a RR charge.

As in the case of near extreme black holes with NS
charges, there is a large redshift near theD-branes, but it
does not affect the result. From the metric~3.1! f is a uni-
form rescaling of theD-brane world volume, to which the
massless string gas is insensitive. In other words, in the ideal
gas relations~3.6! we need to include a redshift factor
g5(cosha)1/2 in DE andT andg2p in the volume, so these
equations continue to hold. The redshift again raises the
asymptotic temperature at the matching pointT
;(a8cosha)21/2 to the string scale (a8)21/2.

Now we must justify the assumption ofQ2 degrees of
freedom in the gas regime. The massless fields on the
D-branes are the non-Abelian gauge fields and collective co-
ordinates@18#. These areQ2 in number, but the collective
coordinates have a potential proportional to Tr(@Xi ,Xj #2) so
that the moduli space is of dimensionQ; similarly the gauge
fields have a self-interaction. These interaction terms will
restrict the number of effective degrees of freedom only if
they are large compared to the kinetic term, which turns out
not to be the case. Treating the interaction as a perturbation
on a free gas ofQ2 species, we can estimate its ratio to the
kinetic term as follows. By the usual large-N counting, the
ratio will have a factor ofgefQ. The quartic couplingg in
p11 space time dimensions has units of~mass! 32p, so the
dimensionless expansion parameter isgefQTp23. We have
seen that at the horizonT;(a8)21/2 and gefQ
;(a8)(p23)/2, so the expansion parameter is of order 1.7

That is, the two energies are of the same order. The potential
is positive so we have underestimated the energy of the gas,

but only by a numerical factor. This is within the accuracy of
the correspondence principle.8

The correspondence principle is thus confirmed for the
large class of solutions~3.1!, but we should note that it is
working even better than one might expect in some cases.
Specifically, forn.4 (p50,1,2) anda large, spheres out-
side the horizonr5r 0 grow smallerasr increases, reaching
a minimum size atr;r 0(sinha)

2/n. Correspondingly, the
maximum curvature outside the horizon occurs at a finite
distance away from the horizon. Thus as one decreases the
string coupling, thea8 expansion first breaks down away
from the horizon, and there is a range of couplings where the
horizon and asymptotic region are both described by low-
energy gravity but an intermediate region has string correc-
tions. In applying the correspondence principle we have im-
plicitly assumed that the expressions for the blackp-brane
~3.3! remain valid until the curvature at the horizon itself is
of order the string scale. It is not clear why this is justified.
Incidentally, if one attempts to match the black hole to the
D-branes when the curvature away from the horizon first
becomes of order the string scale, one finds that the entropies
do not agree—theD-brane entropy is too small.

B. Compactification

We now consider compactification of the blackp-branes
below ten dimensions. We begin with the simplest case of
zero charge (a50), when the solutions are just the product
of a torusTp and the (102p)-dimensional Schwarzschild
metric. This is one form of compactification, and was con-
sidered in Sec. II. However there is another possibility: One
can consider ap-dimensional array of ten-dimensional
Schwarzschild black holes. An array of finite size would not
be static, but an infinite array does lead to a static solution
@20#. Identifying after one period, the array has the same
mass and entropy as a single ten-dimensional black hole
M;r 0

7/g2a84 andS;r 0M , while the product solution has
M 8;r0

nV/g2a84, andS8;r0M 8 wherer0 is the Schwarzs-
child radius of the lower-dimensional black hole,V is the
volume of the internal space, andn572p. Setting the
masses equalr 0

7;r0
nV, yields

S

S8
;
r 0
r0

;S Vr 0pD
1/n

. ~3.10!

So the array has greater entropy as long asV.r 0
p , below

which point the images start to merge. This suggests that the
product solution is unstable in this regime, a fact which has
been confirmed by studying the linearized perturbations@21#.

Both the entropy of the product solution and the array can
be understood by our correspondence principle, since we saw
in Sec. II that it reproduces the entropy of Schwarzschild
black holes in any dimension. The difference between the
two cases is the following. As we decrease the string cou-
pling, the mass of the black hole in string units increases. For
the product solution, the curvature at the horizon reaches the

7Curiously the position dependence off and of the effectiveT
cancel, so one comes to the same conclusion by erroneously using
the asymptotic values.

8The gas picture does not apply forp50, but the result is the
same: the potential determines the magnitude of the fluctuations of
theQ2 degrees of freedom.
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string scale at a larger value of the coupling than for the
array. Hence the energy of the resulting string state and as-
sociated entropy is smaller.

Now we consider the near extremal solutionsa@1. ~So-
lutions far from extremality are qualitatively similar to the
case of zero charge.! We first consider a periodic coordinate
transverse to thep-brane, say,x9;x912pR. Again there
are two kinds of black hole, the array and the translationally
invariant solution. For the extremal blackp-brane, the array
is given by replacingf in Eq. ~3.2! with

f 1511r 0
nsinh2a1 (

k52`

`
1

ux2xkun
, ~3.11!

where xk
952pRk are the image positions, and taking

r 0→0 with r 0
nsinh2a fixed. The array of nonextremal solu-

tionsr 0.0 is more complicated@22#, but for r 0!R it is easy
to construct an approximate solution. The metric for a single
nonextremep-brane is indistinguishable from the extreme
solution whenr@r 0. So one can approximate the nonex-
treme array by keepingf 1 as above and inserting factors of
(12r 0

n/r n) just as in the ten-dimensional solution~3.1!
~wherer is a radius from eachp-brane!.

The homogeneous solution, which is translationally in-
variant in thex9 direction, is

ds25 f 2
21/2F2S 12

r0
n21

rn21Ddt21dyidyi G
1 f 2

1/2F S 12
r0
n21

rn21D 21

dr21r2dVn1dx9
2G ,

~3.12!

where

f 2511
r0
n21sinh2a2

rn21 . ~3.13!

The array solution~3.11! has the same energy, charge and
entropy as the ten-dimensional solution, Eq.~3.3!, while for
the homogeneous solution~3.12! these are

E8;
r0
n21RV

g2a84 S n11

n21
1cosh2a2D ,

Q8;
r0
n21R

ga8n/2
sinh2a2 , ~3.14!

SBH8 ;
r0
nRV

g2a84
cosha2 .

For largeR, one would expect the compactification to have
little effect and so the array solution~3.11! would appear to
be more physical. As before, we can determine which solu-
tion is stable by seeing which has more entropy for given
mass and charge. For equal masses and charges, Eqs.~3.3!
and~3.14! imply thata1;a2 andr0

n21R;r 0
n . It follows that

SBH
SBH8

;
r 0
r0

;S Rr 0D
1/~n21!

. ~3.15!

Once again, the array has greater entropy as long asR.r 0,
below which point the array solution approaches the transla-
tionally invariant one. Notice that in the near extremal limit,
r 0 is very small, so the homogeneous solution is almost al-
ways unstable.

Let us now consider the weak-coupling description in
terms ofD-branes. The array corresponds toQ coincident
D-branes. The translationally invariant solution corresponds
toQ D-branes evenly distributed inx9. To count the number
of excited states, it is convenient to applyT duality. TheD
p-branes then become (p11)-branes, extended in thex9 di-
rection. Thex9 coordinate isT dual to theD-brane Wilson
line @18#, so for the coincidentD-branes the Wilson line is
the identity while for the distributedD-branes its eigenvalues
are uniformly distributed. In the latter case, one can go to a
basis in which the Wilson line is the shift matrix,

Wij5d i , j11 ~ i[ i1Q!. ~3.16!

With this Wilson line theD-brane fieldsf i , j ~both the col-
lective coordinates and the gauge fields! are periodically
identified with f i11,j11 and one essentially hasQ species
~distinguished by u i2 j u) on a D-brane of length
2pQR852pQa8/R. We refer to this as the wrapped system
since it describes oneD-brane wrappedQ times around the
circle @19#. ForW51, the unwrapped system, there areQ2

species on aD-brane of length 2pR8.
For TR8.1, meaning largeR8 or large energy density,

these two systems behave essentially the same, with

DE;Q2VR8Tp12,

S;Q2VR8Tp11. ~3.17!

WhenTR8,1, the modes of the unwrapped system can no
longer propagate in the compact direction and the system
behaves like ap-dimensional gas, while the wrapped system
continues to behave like a (p11)-dimensional gas. We now
show that when the correspondence principle is applied,
these two systems reproduce the entropy of the array and
homogeneous blackp-branes respectively. The entropy of
the array is the same as a single blackp-brane in ten dimen-
sions, since the compactification has little effect. We have
already seen that its near extremal entropy is reproduced by a
gas ofQ2 degrees of freedom inp dimensions which is just
the unwrapped system. If we applyT duality to the homoge-
neous solution, the effect on the metric~3.12! is g99→1/g99
and we obtain the solution for a black (p11)-brane. The
energy and entropy are duality invariant. Thus the near ex-
tremal entropy is reproduced by a gas ofQ2 degrees of free-
dom in (p11) dimensions which is the wrappedD-brane.
Notice that the wrappedD-brane haslessentropy than the
unwrapped one.

What is the role of the transition pointTR8;1 in the
blackp-brane picture? As we have seen, the asymptotic tem-
perature satisfiesT;(a8cosha)21/2, so the radius above
which the wrapped and unwrapped systems become indistin-
guishable is R8;(a8cosha)1/2. The T-dual radius is
R5(a8/cosha)1/25r 0, which is just the radius below which
the array overlaps into a translationally invariant system.
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Thus we see a detailed correspondence between wrap-
ping/unwrapping forD-branes and the two kinds of compac-
tified black holes.

Now let us consider compactification of one of the direc-
tions parallel to thep-brane, i.e., we suppose one direction is
much smaller than the rest. To make use of the previous
discussion~to which it is T dual!, we start with a black
(p11)-brane, compactify with periodicity 2pR8, and de-
note the volume of the (p11)-brane by 2pR8V. We saw in
Sec. III A that the near extremal entropy is reproduced by a
(p11)-dimensional gas withQ2 species. ForR8T.1 this
can be represented in weak coupling either by wrapped or
unwrapped D-branes. However, forR8T,1, only the
wrapped system yields the black (p11)-brane entropy; the
unwrapped branes have higher entropy. It may seem puz-
zling that the black (p11)-brane ceases to be the lowest-
entropy configuration at a rather large radius
R8;(a8cosha)1/2. Moreover, the higher-entropy configura-
tion is hard to describe. It isT dual to the array. But the array
is not invariant underx9 translation—that is, the background
has modes of nonzerop9—so the dual background must
have fields associated with nonzero winding number. We can
see a signature of this in the blackp-brane metric~3.1!. The
metric along the D-brane, at the horizon, is
dy2(cosha)21/2, so that whenR8;(a8cosha)1/2 the size of
the compactified directionat the horizonis onlya81/2 and so
it is possible for stringy effects to arise.

It is interesting to note if we continue to reduce the radius
until QR8T,1, the entropy of the wrappedD-brane changes
from a (p11) dimensional gas to ap-dimensional gas with
Q degrees of freedom. This is to be expected since the
T-dual configuration now consists ofQ widely separated
D-branes. The strong-coupling limit of this would beQ near
extremal blackp-branes each with unit charge. Thus when
QR8T,1, the entropy of the homogeneousp-brane is not
only smaller than the array of chargeQ p-branes, but also
smaller than an array of charge onep-branes with spacing
1/Q of the previous period.

To summarize, we have seen that the correspondence
principle works in great detail: We have considered two dif-
ferent kinds of compactified blackp-branes and two configu-
rations ofD-branes, and the entropies match in detail both
for the higher-entropy and the lower-entropy system.

C. Black holes with two or more RR charges

Recently, a precise agreement~including the numerical
coefficient! has been found@23,24# between the entropy of
certain extreme and near extreme black holes and states of
D-branes. These cases differ from the ones we have dis-
cussed in that there are at least two Ramond-Ramond
charges. An example is the five-dimensional black hole car-
rying one-brane charge, five-brane charge, and compact mo-
mentum. Applying the correspondence principle to this black
hole, there are eight cases to consider according to which of
the three charges are large. These separate into three catego-
ries. When neither of the Ramond charges is large the results
of Sec. II apply: The typical weak-coupling state is a long
string, whose entropy matches that of the black hole. When
one of the Ramond charges is large, the discussion from
earlier in this section applies and the black hole entropy

matches that of an interacting string gas withQ1
2 or Q5

2 de-
grees of freedom. When both Ramond charges are large, the
entropy is reproduced precisely by a gas ofQ1Q5 moduli
@23–25#. This is now a free gas, in that the moduli have no
potential.9

Note that in most of the cases we have discussed, if one
sets the energy and charge of the weak-coupling state equal
to that of the black hole at an arbitrary value of the
Schwarzschild radiusr 0, the two entropies have different
dependence onr 0. For example, in the Schwarzschild black
holeSBH}r 0

2 while Sstr}r 0 at fixedg. The matching of en-
tropies then depends on a special value ofr 0 given by the
correspondence principle. For the cases where exact calcula-
tions of the entropy have been done, ther 0 dependence is the
same on both sides and so the matching scale drops out.

IV. DISCUSSION

We have proposed a correspondence principle which con-
nects black holes to weakly coupled strings andD-branes,
and shown that it leads to an agreement between the entropy
of these two systems. Although we have not been able to
compare the precise coefficients in the entropy formulas,
they have the same dependence on the mass and charge in a
wide variety of different contexts. This strengthens the idea
that a black hole is an ordinary quantum mechanical system,
and that string theory is a viable theory of quantum gravity.
In all examples considered here, string theory provides the
correct number of degrees of freedom to account for the
black hole entropy.

We have seen that the typical string state depends in an
essential way on the quantum numbers. With no large RR
charges it is a single long string, with one it is an interacting
string gas onD-branes, and for some examples with two or
more RR charges it is a free string gas, a gas of moduli. The
correspondence principle thus unifies various results in the
literature.

The success of the correspondence principle does not
mean that gravitational effects remain small whenever the
string andD-brane picture is valid. For near extremal black
holes, we have seen that the metric deviates from flat space
over a region much larger than the horizon size. Thus there is
a large gravitational dressing after the transition. This affects
both the local energy and the size of the internal space, but
suprisingly, the entropy is unaffected. In all cases, the local
Hawking temperature at the matching point is of order the
string scale.

One can trivially extend this agreement in certain ways,
e.g., by adding momentum to the blackp-branes discussed in
Sec. III. The only change in both the black hole and weak-
coupling descriptions is to apply a boost in some direction.
Other extensions are probably possible, but require further
investigation. For example consider magnetic NS charge. It

9There is a puzzle here, in that the local temperature at the tran-
sition is of order the string scale and so large enough that there will
be some excitation of states other than the moduli. This does not
affect the qualitative agreement required by the correspondence
principle, but makes the precise agreement for near extremal entro-
pies @25# somewhat puzzling.
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is clear that when the charge is small, it has little effect on
the entropy and the matching can be done as in Sec. II. In
other cases, e.g., the near extremal black five-brane in IIB
string theory with large charge, the correspondence principle
cannot be applied directly since the horizon size never be-
comes small in string units. However, in this case the string
coupling becomes large near the horizon. It thus seems ap-
propriate to count states by going to the weakly coupled
S-dual description. This is five-brane with RR charge, for
which the correspondence principle can be applied and
yields the correct entropy.

It appears difficult to extend our analysis to try to com-
pare the precise coefficients in the formulas for the entropy.
This would require a better understanding of the string state
when it is of order the string scale.

Near extremal blackp-branes with one RR charge have
been discussed recently in the literature. It is perhaps useful
if we comment on the relation between our discussion in Sec.
III and some of this previous work. It has been noted that the
black hole andD-brane entropies have different temperature
~or equivalentlyr 0) dependence in general@7#. This is in
accord with our point of view, since we expect them to
match only at one point.10

The self-dual casep53 is particularly interesting. If we
consider ther 0 dependence of the entropy at fixedg and
a, the black hole entropy is proportional tor 0

82p while the
string gas entropy is proportional tor 0

(72p)(p12)/(p11) . Pre-
cisely for p53 these are the same, so the matching scale
drops out and one might hope to relate the entropies pre-
cisely. However, this is the case where theD-brane entropy
seems to exceed that of the black hole by a factor of 4/3@26#.
We now have some understanding of the origin of this factor.
TheD-brane calculations were done with a gas ofQ2 species
treated as free. We have seen, however, that the interactions
are of order 1; neglecting them underestimates the energy of
each state by a factor of order 2 and so overestimates the

entropy~at fixed energy! by a similar factor. The interactions
are quite complicated, however, and we do not see a way to
obtain the precise factor.

In the casep55, the blackp-brane entropy has been
shown to agree precisely with that of a gas of noncritical
closed strings living on the five-brane@9#. We, on the other
hand, have shown approximate agreement with the entropy
of ordinaryD-branes and open strings. Moreover, in the lat-
ter case the open string interactions are of order 1 and the
gravitational dressing is large, while all such complications
are blithely ignored in Ref.@9#. Is there some duality here?

Susskind has pointed out that our results give an approxi-
mate verification of string duality for non-BPS states. Many
of our examples are related by duality. The simplest is just
the Schwarzschild black hole, which might turn into a het-
erotic string at smallg and a type-II string at large. The
agreement of the nonextremal entropies of each string with
that of the black hole implies agreement with each other. In
other words, we can follow a given state from a long het-
erotic string, to a black hole, to a long type-II string. The
new ingredient is that the black hole description gives a
knowng dependence of the mass in the intermediate regime.

Since the different weakly coupled string theories have
different degeneracy of states, one might wonder whether
they could all be consistent with the Bekenstein-Hawking
entropy at a precise level~when the coefficients are better
understood!. There are at least two ways in which this could
occur. The first is if the transition from the black hole to the
string state takes place at slightly different values of the cur-
vature in the different string theories. The second is that, as
we have remarked several times, the black hole state may
turn into only a subset of the available string states. This
subset is large enough so that its entropy differs from the
usual string entropy only by an overall coefficient. In this
sense, there may not be a precise one-to-one correspondence
between string states and black holes, and may explain the
factor of two discrepancy in@3#.
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