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Black hole entropy in the Chern-Simons formulation of (2+ 1)-dimensional gravity
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I. INTRODUCTION lying at the horizon. This assumption has been extensively
discussed in the last few years by Carlip himgélfand by
In the last two years there has been major progress in thethers[6,7]. One can further justify it by resorting to the
understanding of the quantum mechanics of black holes. Oreroth law of black hole mechanics which states that the
the one hand, Carlifil] has given a statistical description for surface gravityx is constant over the horizon. Therefore, the
the entropy of thg2+1)-dimensional black hol¢2]. More  thermodynamic objeds the horizon and it is thus natural to
recently, string theory has also provided a statistical descripgook for microscopic states defined on that surface. Second,
tion of the black hole entropy for extremal and near extremathe horizon is assumed to rotate with a rigid angular velocity
black holes[3]. Despite the success of these new formula-and that parameter, which only depends on time, is varied in
tions, much work remains to be done. In fact, Carlip’s ap-the boundary action principle. Given these two assumptions,
proach relies heavily on the Chern-Simons formulation ofthe rest is done by the dynamics(@f+1)-dimensional grav-
(2+1)-dimensional gravity and, therefore, its generalizationity. It only remains to set appropriate boundary conditions to
to higher dimensions is not an easy tf8k The formulation ensure the existence of a black hole, find the boundary ac-
given in[3], on the other hand, can be implemented in vari-tion, and quantize it.
ous dimensions but only for extremal and near-extremal In this paper we shall mainly be concerned with the issue
black holes. The real four-dimensional nonextremal blackof imposing the correct boundary conditions and finding the
hole still seems far from being completely understood. boundary action; we shall not attempt to clarify or further
In this paper we address some issues concerning Carlipanalyze the two assumptions described above. As we shall
derivation for the entropy of the Minkowskiar+A black  see, the method followed here to find the boundary action is
hole. It was shown iri1] that the degeneracy of boundary remarkably simple and may be, in principle, applicable to
degrees of freedom gR+1)-dimensional gravity gives the 3+1 dimensions.
correct value for the black hole entropy. However, the ex- For notational simplicity and to gain some generality, we
plicit form of the boundary action was not written [d]  shall start by analyzing the problem of boundary conditions
because it involved a complicated Jacobian. It was argueth Chern-Simons theory for a general Lie grodpOnce the
instead that in the limik— <0, the boundary degrees of free- general case is understood, the application (B+1)-
dom should be described by Kac-Moody currents subject talimensional gravity will be straightforward.
the constraintLy=0 (this constraint was imposed because

L, generates a gauge symmetry at the boundatgre, we Il. CLASSICAL CHERN-SIMONS THEORY
shall prove that the Kac-Moody currents are indeed the rel- ON A MANIEOLD WITH A BOUNDARY
evant degrees of freedom for any valuekpfand the con-

straintLy=0 is also necessary to ensure differentiability of A. The action

mula for the Wess-Zumino-WitteWWZW) action that gives  Chern-Simons theory on a manifold with a boundary. We
rise to the boundary degrees of freedom for any valuk.of consider a Chern-Simons action formulated on a manifold
Our analysis is simple and relies only on some general cony with the topology3, X % and the “spacelike” surfac&,

siderations of Chern-Simons theory formulated in a manifoldhas the topology of an annulus. The manifditi has thus

boundary theory(which is classically well defined for all

values ofk) will be possible only in the limitk—c. The B, =02, XNR, B,=d2,.XN"A, 2

reason is that the WZW action for the group SO(2,1) is not

completely understood. In particular, we do not know how to

count states in the full non-Abelian theory. 1As stressed ifil], because of the noncompact nature of the sym-
Carlip’s analysis has two main ingredients. First, it is as-metry group and the lack of a full diffeomorphism invariance, the

sumed that the entropy can be associated to a field theorgsulting Hilbert space has states with negative norm.
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where g%, , and d%.., are the boundaries df. Since both tions leaving these boundary conditions invariant are those
d% . and g2, are topologically circlesB, andB.. are cyl- whose parameters do not depend on time. These transforma-
inders. tions are global symmetries and are generated by Kac-
An important difference between the inneB) and Moody currentd13,14]. A second possibility to ensure the
outer B.) boundaries is thaB.. is located at an infinite vanishing of Eq(7) is to setAf equal to a fixed given value,
distance whileB., is located at a fixed finite distance. As it i.e., SA}=0 atB, . We then seB= (k/47) [Tr(AA,), pro-
has been proved i8], the asymptotic grougthe group of  ducing an action which has well-defined variations. The re-
transformations that leave the asymptotic conditions invarisidual group in this case is given by the set of parameters
anp at B, has a classical central charge. This central chargga satisfyingDA®=\2+[A;,\]*=0. Thus, in this case the
is absent at the inner boundary becaliseis located at & narameters can depend on time but their dependence is not
finite distance and,_ therefore, diffeomorphisms normal to thearbitrary becausé\, is fixed. Again, these transformations
boundary, responsible for the central charge, are not acceptegle generated by Kac-Moody currents and are global trans-

[9]. . - formations.
The Chern-SimongCS) action is given by In our application to black hole physics, we will need a
_ different set of boundary conditions. Consider the case on
les=kWLA]+B, @ \Which the surface’s, . (which is topologically a circlero-
where tates with angular velocityv(t). Since the time evolution is

generated by a gauge transformation with paraméfdisee

1 Eaq. (4)], the appropriate boundary condition is
WIA]= o~ J Tr(AdA+3A3) ©) %] PRIoP Y
M

A=wW(DA, ®

is the Chern—Simons functional, aldis a boundary term.
Its variation gives rise to the equations of motién=0,
whereF=dA+AAA is the Yang-Mills curvature two-form.
These equations can be split in the conveni@rtl)-form

because, in Chern-Simons theory, a displacemeigt with
parametew(t) is equivalent to a gauge transformation with
parametew(t)AZ [15].

Having chosen the boundary conditions, we now have to
A2—D A2 @ a_lddress two remaining things: Whethe_r the b_oum_dary condi-
' AN tions (8) are enough to ensure the differentiability of the
action and what is the set of gauge transformations that leave
Eq. (8) invariant. These two issues are connected.

Under Eq.(8) the boundary tern(7) reduces to

Fa=0, (5)

showing that the time evolution is generated by a gauge

transformation with paramete&?. Equation(5) is a con- k

straint over the initial conditions. Here, we have denoted by pp dtde Tr(Ai)&w(t)Jr o6B=0. (9
0_ H H i mJB

x°=t the coordinate running alort§, andx' are local coor- +

dinates onz..

To ensure the vanishing of this boundary term we have two
possibilities. One could imposéw(t)=0 andB=0. In this
case, the surface rotates with a given, fixed, angular velocity.
K A second possibility, which will be the relevant boundary
—— | Tr AASA+6B=0, (6) condition for the black hole, is to vary with respect to
4 Jom w(t). This implies that the coefficient ofw(t) in Eq. (9)
must vanish, which in turn ensures the differentiability of the
which appears when E€R) is varied. As usual, at the initial acL:ionv(wilth Bvlol) i su ! lability
gz\d_ (f)lnal dgo_u(;\dgrles, Eq(_6) IS cance![ed bythlmposm? Indeed, ifw(t) is varied, there exists gaugesymmetry at
— Y andb=0. HOWEVET, In our present case there are twoy, boundary whose generator is the coefficiendwf{t) in

othe[ t'fTﬁ"ke tbongndar(;es, ”ar_”e'%+ ;ng B“’a The :\reli':lt- ; Eqg. (9). This can be seen as follows. We look at the most
ment of the outer boundary(;) is standard and we shall no general set of gauge transformatiomji: —D,\? leaving

repeat it here. The interested reader can cofi8ulD, 11 for Eq. (8) invariant. This group will be called “the boundary

the case of gravity gnﬂl2,9] for the genere}l case. We WlII_ Iqroup” atB. . One finds the condition ovex®:
concentrate on the inner boundary which in the next sectio

will be associated to the black hole horizon.

An important point to ensure the validity of the above
equations is the cancellation of the boundary term

A= — SW(1) A2+ W(1) A2 (10

B. Boundary conditions Note that, sincev(t) is not fixed, we have allowed for trans-

Let ¢ be an angular coordinate running aloay, and formations withow#O0.

x°=t, then the boundary ter6) at the inner boundary reads  The boundary group has two pieces. First, for those trans-
formations withéw(t) =0, one finds that the time derivative

of A? is completely determined by E¢LO). These are global
symmetries and are generated by Kac-Moody currents. A

k
- —f dtde Tr(AWGA,—A,0A)+B=0. (7)
B different solution to Eq(10) is provided by

4

A simple way to cancel E(7) is by imposing the boundary ) a a
conditionA,=0 andB=0. The group of gauge transforma- ow(t)=—e€(t), N'=e(t)Ag, 11
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wheree(t) is anarbitrary function of time andA, satisfies Equation(4), on the other hand, contains the dynamical in-
its equation of motion. This is a gauge symmetry because iformation. The radial component, together with the gauge
contains an arbitrary function of time. The transformationcondition (13), allows the Lagrange multiplieA? to be
(11) corresponds to rigid €-independent time-dependent  solved. We find thaf? does not depend an which is also
rotations of the surfaceX. , [1]. The generator of these ro- consistent with the boundary conditi¢8). The angular com-
tations is the zero mode g, AZA? which should then van-  ponent of Eq(4) gives the dynamics A2 . Projecting to the
ish because its associated transformation is a gauge symmgoundary and using E@8), it reads

try. Going back to Eq(9), we see that the vanishing of

d

Kk . aAazw(t)&wAa. (15
Lo= 5 GarAZA; =0 (12)

zero mode This equation, together with the constraii®), defines the

also ensures the differentiability of the actiomith B=0).  dynamics at the boundary. The values’dfat B, cannot be

In summary, the group of transformations that leave the®t €qual to zero by an allowed gauge transformation.
boundary conditior(8) invariant is given by the semidirect  Equation(15) has the symmetries of the boundary condi-
product of the Kac-Moody symmetry times th@ime- tions. Indeed, Eq(15) is invariant under the gauge transfor-
dependentrigid translations alongp. Note thatL, is the =~ Mation

zero-mode Virasoro operator of the theof@nly the zero-
mode Virasoro constraint appears becan$g does not de-
pend one.]

SA=€(1)d, A%, dw(t)=—e(t), (16)

where e(t) is an arbitrary function of. As stressed above,
_ the generator of this gauge transformation is the zero-mode
C. The induced theory at the boundary Virasoro constraink ;= 0, defined in Eq(12). Equation(15)

Having chosen the boundary conditions, we can nowpas also the Kac-Moody global symmetry given by the trans-
study the induced theory at the boundary. As it is wellformation
known, Chern-Simons theory in+2L dimensions does not
possess local degrees of freedoso fixing the gauge will

leave us only with some global degrees of freedom. These - Ce .
global degrees of freedom can be of two types. On the Ong/here)\ safisfies the equatian=wd,\ [see Eq(10)] butis

hand, there may be nontrivial holonomies. This is certainIy()ther\"”se arbitrary. Fmally,' Eq15) has also a global sym-
our case because the spatial manifold has the topology of gnetry given by the translation

annulus. Another set of degrees of freedom are the boundary A2 A%+ g (18)
values of the gauge field which cannot be set equal to zero '

by an allowed gauge transformation. The number of thesghereqa? is a constant Lie-algebra-valued element. The con-
states is infinite and for a fixed value of the black hole aréageryved quantities associated with this Symmetry are the zero
Carlip has shown that their degeneracy gives rise to the COmodes OﬁAa(cp) as can bhe direcﬂy verified from the Hq_s)

rect value for the 2.1 black hole entropy1]. Equation (15) is already in the Hamiltonian form. We

Let us thus fix the gauge in order to isolate the boundaryjefine the(noncanonical Poisson brackets
degrees of freedom. As it is well known, the theory at the

boundary is described by a WZW modéi3,14]. However, a b 27 bre ab )

it is instructive to obtain it directly from the equations of ~ [A%(¢).A%(¢")]= 7 ~[T"cA () +kg™d,]6(¢,¢"),
motion projected to the boundary. An appropridte7] (19)
gauge-fixing condition s

SA%= g N +[ANTY,  Sw(t)=0, (17)

and it is straightforward to check that E45) can be written

AZ=0. (13)  in the form
This gauge-fixing condition, together with the constraBt dA(e)®
simply implies that the tangential component of the connec- dt =[A%(¢).H], (20)
tion AZ does not depend on the radial component. Thus,
hereafter, we define where the Hamiltonian is
AR(t,r,@)=A%t,0). 14 k

2It has been proved ifL6] that this property is not carried over to ~ 1h€ symmetries of Eq(15) can also be written in the
higher-dimensional Chern-Simons theories. Eor3, the gauge Hamiltonian form. The generator of the gauge symmetry
symmetries are not enough to kill all the degrees of freedom and16) is the Hamiltonian itself, while the generator of the Kac-
local excitations do exist. Moody symmetry(17) is K(\) = f\3APg,,,. Note thatK is a

3Here, we fix the gauge in the interior. The residual gauge freeconserved quantity, and thus a symmetry only whérbe-
dom of the boundary conditionél1) is not fixed by this gauge longs to the boundary group, that is, it satisfies
condition. NE=wd %
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We can now make contact with the well-known fact that . (2+1)-DIMENSIONAL GRAVITY
the dynamics at the boundary of a Chern-Simons theory is AND BLACK HOLE ENTROPY
described by a WZW mode]13,14. Making the usual

change of variableA=U ~1dU, the above equations of mo-
tion can be derived from thel1 action

In this section we shall apply the results of the last section
to the special case @2+ 1)-dimensional gravity. As we shall
see, this leads directly to Carlip’s formulation of the-2
1 black hole entropy{1]. The Chern-Simons formulation of
=] U+ — | dtde w(t)La. 29 (2+1)-d|menS|qnaI grawty consists of the sum of two copies

wzw(U) f ¢ Wit)lo 22 of the Chern-Simons action for the group SO(2,13,15,

Note thatw(t) enters in the action as a Lagrange multiplier. I =kWA]—kWA]+B, (28)
This action can thus be interpreted as a constrained WZW
model in which the variation of with respect tow(t) im-
poses the constraity,=0 among the Kac-Moody fields.
The reader may notice that we have somehow rederive
the well-known relation between the WZW action and et e
Chern-Simons theory. We have chosen not to start with the Al=ol+—, Al=w)— I—” (29
WZW action from the very beginning to stress the fact that,
in principle, the method followed here could be applied to
(3+1)-dimensional gravity. The boundary theory can be
found solely from the boundary conditions and the equation
of motion. The real problem is the quantization of the result-
ing theory. The simplicity of the 21 theory relies in the fact |
that the quantization of a WZW model is well understood for k= FTe (30
compact groups and that there are no bulk degrees of free-

freedom in a simple way. o _ use units in whichG=1/8 and henc&=1.
The quantization of the above action is straightforward.

The canonical commutation relatio%9) can be promoted
to quantum commutators without any trouble. The Hamil-
tonianH is more delicate because it has to be regularized. Consider the Chern-Simons action for the group
Fortunately, this problem has been extensively studied in th&0(2,1)xS0O(2,1). We apply the boundary conditi¢8) to

where the Chern-Simons function& was defined in Eq.
(3). The connections are related to the triad and spin connec-
Hon through

where A2 and A2 are both S0O(2,1) connections ahds a
arameter with dimensions of length. The Chern-Simons
oupling constant is related to Newton'’s constant by

A. Boundary conditions: A 1+1 generally covariant theory

literature. The correct quantum Virasoro operator is each SO(2,1) copy; thus, we impose
1 . AS=WAS, AG=WA?. (31
a
Lo= 2k+Aq hq + 2 T=nTnGan | 23 The boundary term coming from the variation of the Chern-
Simons action is
whereq is the second Casimir in the adjoint representation K _
and theT?3's are the Fourier components Af(¢), 4—f (SWA?— SWA?) + 5B. (32
T
A%(0)= =3 Tegine, (24) We shall shortly impose some conditions over the functions
ks " w andw. However, it is convenient to keep them as arbitrary

functions in order to clarify their geometrical meaning. If
w andw are arbitrary functions of time, we get at the bound-

The commutator between the Fourier componéritss . . ;
ponait ary the two Virasoro constraint equations

(T3 TRl=if e Th st km@®8, s (25) L=(k/2)A2=0, L=(—k/2)A2=0, (33)
and the normal-ordered Virasoro operator satisfies the confSuring the vanishing of the boundary tex32), with
mutation relation B=0. Itis a standard result thatlif andL satisfy the Vira-

soro algebra, then the combinationsi=L—-L and
[Lo,T3]=—nT2. (26) H,=L+L satisfy the Dirac 1 deformation algebra. This

means that the induced theory at the boundary is diffeomor-

phism invariantH represents the generator of timelike de-

formations(conveniently densitizgcandH , is the generator

of diffeomorphisms alongp. The induced theory is then

given by the two copies of the SO(2,1) Kac-Moody currents

C=0apToTo (27 subject to the constraints equatiof@3) or, equivalently

H=0 andH,=0. The boundary action can thus be written

andN is the number operator. as

This commutation relation implies thdt, has the form
=C/(2k+#%q)+ N where
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~ " plus the condition that the eigenvaluesLQj—to are unde-
(39 The states of the theory are then defined by representa-
. | _ _ tions of the two Kac-Moody algebrdd 3, T3} subject to the
with N*==(w-w)/2 and N*=(w+w)/2. The theory de- constraint(39). It is standard to consider only highest weight
scribed by the actior{34), which can be understood as a representations which are determined by a representation of
non-Abell_an_strlng th_eory in six dimensions, is certainly in- y,o subalgebrdT2 T2} [the two copies of SO(2,3) which
teresting in its own right{Unitary representations fdone 5.5 a5 vacuum state, and the value of the central ctiarge

copy 90 the aboye action have been foupd[rm].] How- We shall parametrize the Casimir operat@sandC in the
ever, in our application to black hole physics we shall mak

some simplifications and consider only a special case. Firs Pr
we ;hall .|mpose that, at the horizon, the lapse funchion C=277abTST8=2(r+—r7)2,
vanishes:

NL=0. (35) C=2napTgTo=2(r +r_)2 (40)
The parameters, andr_ can be identified, on shell, with
%he outer and inner horizons of the black hole solufiah
They are also related with the SO(24$0(2,1) holonomy
existing in the black hole topology20]. Of course, the area
of the outer horizon is equal to7& , . Note thatr, and
r _ are also related to the mass and angular momentum of the

This condition is quite natural for a black hole. Indeed, at th
horizon (in these coordinatgsthe lapseN* vanishes on
shell. Second, sinck , is the generator of diffeomorphisms
along ¢, N¥ represents the angular velocity of the horizon.
We use the same condition as in the last sectigiN*=0,

and define solution throughM =(ri+r2_)ll2 andJ=(2r,r_)/l. How-
Ne=w(t) (36) ever, mass and angular momentum are concepts defined at
' infinity while r, andr_ depend only on the topology.
Under conditiong35) and(36), not all the equation33) are Using Eq.(40) and the normal-ordered expression for the

imposed at the boundary. Actually, only one of them is im- Virasoro operatorg23), the constraint equatio89) reads

posed, namely, the zero mod@etal) Virasoro operator
2

_ ~ 4r
~ k ~ _ 2t _
L0+L0:§(A2—A2) =0. (37) L0+Lo—h(N+N)+Q 7 =0 (41)
zero mode _
d th binatioh y— L d

Since N* is fixed by Eq.(35) and the nonzero modes of o ¢ ¢ COMPINAHORo™Lo reads
N¢ are fixed by Eq(36), the other modes of Eq$33) are _ - hQ? 212
not imposed. The boundary action appropriate to the bound- Lo—Lo=A(N—N)+ W+TEH' (42

ary conditions(36) and (35) is a modification of Eq(34):
Here, N and N are number operators for each affine

~ 1 ~ .
|:|WZW(U)_|WZW(U)+2_f dtde w(t)(Lo+Lg). SO(2,1) algebra, an@? is a shorthand for
au
(38) , Al [2kr, 2 23
C=dew\Tm 43

This is Carlip’s boundary action and its quantization gives

rise to the 21 black hole entropy. We showed at the end of last section that the opetétds

Before going to the quantization of this action, let us ; ; ; ;

. ) ' canonically conjugate to the lapse functibit and since
::Ialr_:|fy s??4mehof the differences between E¢34) anﬁ_(iS). N at the horizon has been set equal to zero, the eigenvalues
n Eq. (34), there are two constraints per point which are a ¢ |1 - .o indetermined.

ccinsequence of the arbitrariness of the Lagrange multipliers We now count states with a fixed valueraf . In the limit

N+ and N¢. In Eg. (38), on the other hand, the Lagrange . hich th b 1ol andN | the diff

multipliers are severely restricted by Eq86) and (35), ih-which e num eLoperao an' arg ?,rged’ ed ! .er-

hence there is only one constraiht)+L,=0. Furthermore, enceN—N approaches _to ZEr0. Sincg IS Tixed an H IS

from Eq. (32) we see thaN* andL “ T are coniugate pairs undetgrmmed, Eq(42) implies thatr _ is undetermined.

. gt . 0 =09 njugate p Equation(41), on the other hand, expresses the number op-

(in a radial quantization thus fixing N-=0 implies that ~7. . .

LT determined. This will h i sant eratorN+N in terms ofr . andr_. Sincer_ is undeter-
0o—LolS ut?] € err{une t: IS will have an important CoNSe-,inaq, we have to sum over its possible values. In the ther-

quence In the next section. modynamical limit, the largest contribution to the number

o _ operator comes fror®=0 (r_=2kr, /#) and one obtains

B. Quantization and counting of states N=(2r, /%)?. As shown in[1] the logarithm of the degen-

The quantization of this system is implemented with the€racy of states produces an entropy given by

guantum version of Eq.37):
_ 27,

(Lo+Lo)$)=0 (39 S=— (44)
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which coincides exactly with the Bekenstein-Hawking valuethe limit k—« at the very beginning, we would not have
for the 2+1 black hole entropy. obtained the right value for the black hole entrdpy.

In this calculation there is one point that deserves special
attention. The boundary theory was defined for any value of
the levelk. However, the calculation of the entropy makes
use of the limitk—oo. This limit is necessary because the
SL(25,%) WZW model is not completely understoo@l- During this work we benefitted from many conversations
though unitary representations have been fourfd @)). Itis  with Claudio Teitelboim and Ricardo Troncoso. We also ac-
rather odd that at the very end we need to use that limit sincknowledge useful correspondence with Steve Carlip and
we do not know how to count states in the full non-AbelianMiguel Ortiz. This work was partially supported by Grant
theory. A striking feature of this calculation is the fact that Nos. 1960065, 1940203, and 3960008, from FONDECYT
the non-Abelian nature of the theory does play a central rol¢Chile), and institutional support by a group of Chilean com-
anyway. Indeed, the resu4) depends crucially in the shift panies EMPRESAS CMPC, CGE, COPEC, CODELCO,
of the coupling constank—k+#%q/2 induced by the non- MINERA LA ESCONDIDA, NOVAGAS, ENERSIS,
Abelian Sugawara constructi¢see Eq(23)]. Had we taken BUSINESS DESIGN ASS. and XEROX Chjle
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