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I. INTRODUCTION

In the last two years there has been major progress in the
understanding of the quantum mechanics of black holes. On
the one hand, Carlip@1# has given a statistical description for
the entropy of the~211!-dimensional black hole@2#. More
recently, string theory has also provided a statistical descrip-
tion of the black hole entropy for extremal and near extremal
black holes@3#. Despite the success of these new formula-
tions, much work remains to be done. In fact, Carlip’s ap-
proach relies heavily on the Chern-Simons formulation of
~211!-dimensional gravity and, therefore, its generalization
to higher dimensions is not an easy task@4#. The formulation
given in @3#, on the other hand, can be implemented in vari-
ous dimensions but only for extremal and near-extremal
black holes. The real four-dimensional nonextremal black
hole still seems far from being completely understood.

In this paper we address some issues concerning Carlip’s
derivation for the entropy of the Minkowskian 211 black
hole. It was shown in@1# that the degeneracy of boundary
degrees of freedom of~211!-dimensional gravity gives the
correct value for the black hole entropy. However, the ex-
plicit form of the boundary action was not written in@1#
because it involved a complicated Jacobian. It was argued
instead that in the limitk→`, the boundary degrees of free-
dom should be described by Kac-Moody currents subject to
the constraintL050 ~this constraint was imposed because
L0 generates a gauge symmetry at the boundary!. Here, we
shall prove that the Kac-Moody currents are indeed the rel-
evant degrees of freedom for any value ofk, and the con-
straintL050 is also necessary to ensure differentiability of
the three-dimensional action. We also find the explicit for-
mula for the Wess-Zumino-Witten~WZW! action that gives
rise to the boundary degrees of freedom for any value ofk.
Our analysis is simple and relies only on some general con-
siderations of Chern-Simons theory formulated in a manifold
with a boundary. However, the quantization of the resulting
boundary theory~which is classically well defined for all
values ofk) will be possible only in the limitk→`. The
reason is that the WZW action for the group SO(2,1) is not
completely understood. In particular, we do not know how to
count states in the full non-Abelian theory.

Carlip’s analysis has two main ingredients. First, it is as-
sumed that the entropy can be associated to a field theory

lying at the horizon. This assumption has been extensively
discussed in the last few years by Carlip himself@5# and by
others @6,7#. One can further justify it by resorting to the
zeroth law of black hole mechanics which states that the
surface gravityk is constant over the horizon. Therefore, the
thermodynamic objectis the horizon and it is thus natural to
look for microscopic states defined on that surface. Second,
the horizon is assumed to rotate with a rigid angular velocity
and that parameter, which only depends on time, is varied in
the boundary action principle. Given these two assumptions,
the rest is done by the dynamics of~211!-dimensional grav-
ity. It only remains to set appropriate boundary conditions to
ensure the existence of a black hole, find the boundary ac-
tion, and quantize it.1

In this paper we shall mainly be concerned with the issue
of imposing the correct boundary conditions and finding the
boundary action; we shall not attempt to clarify or further
analyze the two assumptions described above. As we shall
see, the method followed here to find the boundary action is
remarkably simple and may be, in principle, applicable to
311 dimensions.

For notational simplicity and to gain some generality, we
shall start by analyzing the problem of boundary conditions
in Chern-Simons theory for a general Lie groupG. Once the
general case is understood, the application to~211!-
dimensional gravity will be straightforward.

II. CLASSICAL CHERN-SIMONS THEORY
ON A MANIFOLD WITH A BOUNDARY

A. The action

In this section we introduce some general aspects of
Chern-Simons theory on a manifold with a boundary. We
consider a Chern-Simons action formulated on a manifold
M with the topologyS3R and the ‘‘spacelike’’ surfaceS
has the topology of an annulus. The manifoldM has thus
two disconnected ‘‘timelike’’ boundaries given by

B15]S13R, B`5]S`3R, ~1!

1As stressed in@1#, because of the noncompact nature of the sym-
metry group and the lack of a full diffeomorphism invariance, the
resulting Hilbert space has states with negative norm.
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where ]S1 and ]S` are the boundaries ofS. Since both
]S1 and]S` are topologically circles,B1 andB` are cyl-
inders.

An important difference between the inner (B1) and
outer (B`) boundaries is thatB` is located at an infinite
distance whileB1 is located at a fixed finite distance. As it
has been proved in@8#, the asymptotic group~the group of
transformations that leave the asymptotic conditions invari-
ant! at B` has a classical central charge. This central charge
is absent at the inner boundary becauseB1 is located at a
finite distance and, therefore, diffeomorphisms normal to the
boundary, responsible for the central charge, are not accepted
@9#.

The Chern-Simons~CS! action is given by

ICS5kW@A#1B, ~2!

where

W@A#5
1

4pEMTr~AdA1 2
3A

3! ~3!

is the Chern–Simons functional, andB is a boundary term.
Its variation gives rise to the equations of motionF50,
whereF5dA1A`A is the Yang-Mills curvature two-form.
These equations can be split in the convenient~211!-form

Ȧi
a5DiAt

a , ~4!

Fi j
a50, ~5!

showing that the time evolution is generated by a gauge
transformation with parameterAt

a . Equation ~5! is a con-
straint over the initial conditions. Here, we have denoted by
x05t the coordinate running alongR, andxi are local coor-
dinates onS.

An important point to ensure the validity of the above
equations is the cancellation of the boundary term

2
k

4pE]M
Tr A`dA1dB50, ~6!

which appears when Eq.~2! is varied. As usual, at the initial
and final boundaries, Eq.~6! is canceled by imposing
dA50 andB50. However, in our present case there are two
other timelike boundaries, namely,B1 andB` . The treat-
ment of the outer boundary (B`) is standard and we shall not
repeat it here. The interested reader can consult@8,10,11# for
the case of gravity and@12,9# for the general case. We will
concentrate on the inner boundary which in the next section
will be associated to the black hole horizon.

B. Boundary conditions

Let w be an angular coordinate running along]S1 and
x05t, then the boundary term~6! at the inner boundary reads

2
k

4pEB1

dtdw Tr~AtdAw2AwdAt!1dB50. ~7!

A simple way to cancel Eq.~7! is by imposing the boundary
conditionAt50 andB50. The group of gauge transforma-

tions leaving these boundary conditions invariant are those
whose parameters do not depend on time. These transforma-
tions are global symmetries and are generated by Kac-
Moody currents@13,14#. A second possibility to ensure the
vanishing of Eq.~7! is to setAt

a equal to a fixed given value,
i.e., dAt

a50 atB1 . We then setB5(k/4p)*Tr(AtAw), pro-
ducing an action which has well-defined variations. The re-
sidual group in this case is given by the set of parameters
la satisfyingD0l

a5l̇a1@At ,l#a50. Thus, in this case the
parameters can depend on time but their dependence is not
arbitrary becauseAt is fixed. Again, these transformations
are generated by Kac-Moody currents and are global trans-
formations.

In our application to black hole physics, we will need a
different set of boundary conditions. Consider the case on
which the surface]S1 ~which is topologically a circle! ro-
tates with angular velocityw(t). Since the time evolution is
generated by a gauge transformation with parameterAt

a @see
Eq. ~4!#, the appropriate boundary condition is

At5w~ t !Aw ~8!

because, in Chern-Simons theory, a displacement inw with
parameterw(t) is equivalent to a gauge transformation with
parameterw(t)Aw

a @15#.
Having chosen the boundary conditions, we now have to

address two remaining things: Whether the boundary condi-
tions ~8! are enough to ensure the differentiability of the
action and what is the set of gauge transformations that leave
Eq. ~8! invariant. These two issues are connected.

Under Eq.~8! the boundary term~7! reduces to

k

4pEB1

dtdw Tr~Aw
2 !dw~ t !1dB50. ~9!

To ensure the vanishing of this boundary term we have two
possibilities. One could imposedw(t)50 andB50. In this
case, the surface rotates with a given, fixed, angular velocity.
A second possibility, which will be the relevant boundary
condition for the black hole, is to vary with respect to
w(t). This implies that the coefficient ofdw(t) in Eq. ~9!
must vanish, which in turn ensures the differentiability of the
action ~with B50!.

Indeed, ifw(t) is varied, there exists agaugesymmetry at
the boundary whose generator is the coefficient ofdw(t) in
Eq. ~9!. This can be seen as follows. We look at the most
general set of gauge transformationsdAm

a52Dmla leaving
Eq. ~8! invariant. This group will be called ‘‘the boundary
group’’ at B1 . One finds the condition overla:

l̇a52dw~ t !Aw
a1w~ t !]wla. ~10!

Note that, sincew(t) is not fixed, we have allowed for trans-
formations withdwÞ0.

The boundary group has two pieces. First, for those trans-
formations withdw(t)50, one finds that the time derivative
of la is completely determined by Eq.~10!. These are global
symmetries and are generated by Kac-Moody currents. A
different solution to Eq.~10! is provided by

dw~ t !52 ė~ t !, la5e~ t !Aw
a , ~11!
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wheree(t) is anarbitrary function of time andAw satisfies
its equation of motion. This is a gauge symmetry because it
contains an arbitrary function of time. The transformation
~11! corresponds to rigid (w-independent! time-dependent
rotations of the surface]S1 @1#. The generator of these ro-
tations is the zero mode ofgabAw

aAw
b which should then van-

ish because its associated transformation is a gauge symme-
try. Going back to Eq.~9!, we see that the vanishing of

L0[
k

2
gabAw

aAw
bU

zero mode

50 ~12!

also ensures the differentiability of the action~with B50).
In summary, the group of transformations that leave the
boundary condition~8! invariant is given by the semidirect
product of the Kac-Moody symmetry times the~time-
dependent! rigid translations alongw. Note thatL0 is the
zero-mode Virasoro operator of the theory.@Only the zero-
mode Virasoro constraint appears becausew(t) does not de-
pend onw.#

C. The induced theory at the boundary

Having chosen the boundary conditions, we can now
study the induced theory at the boundary. As it is well
known, Chern-Simons theory in 211 dimensions does not
possess local degrees of freedom2 so fixing the gauge will
leave us only with some global degrees of freedom. These
global degrees of freedom can be of two types. On the one
hand, there may be nontrivial holonomies. This is certainly
our case because the spatial manifold has the topology of an
annulus. Another set of degrees of freedom are the boundary
values of the gauge field which cannot be set equal to zero
by an allowed gauge transformation. The number of these
states is infinite and for a fixed value of the black hole area,
Carlip has shown that their degeneracy gives rise to the cor-
rect value for the 211 black hole entropy@1#.

Let us thus fix the gauge in order to isolate the boundary
degrees of freedom. As it is well known, the theory at the
boundary is described by a WZW model@13,14#. However,
it is instructive to obtain it directly from the equations of
motion projected to the boundary. An appropriate@17#
gauge-fixing condition is3

Ar
a50. ~13!

This gauge-fixing condition, together with the constraint~5!,
simply implies that the tangential component of the connec-
tion Aw

a does not depend on the radial component. Thus,
hereafter, we define

Aw
a~ t,r ,w!5Aa~ t,w!. ~14!

Equation~4!, on the other hand, contains the dynamical in-
formation. The radial component, together with the gauge
condition ~13!, allows the Lagrange multiplierAt

a to be
solved. We find thatAt

a does not depend onr , which is also
consistent with the boundary condition~8!. The angular com-
ponent of Eq.~4! gives the dynamics ofAw

a . Projecting to the
boundary and using Eq.~8!, it reads

d

dt
Aa5w~ t !]wA

a. ~15!

This equation, together with the constraint~12!, defines the
dynamics at the boundary. The values ofAa atB1 cannot be
set equal to zero by an allowed gauge transformation.

Equation~15! has the symmetries of the boundary condi-
tions. Indeed, Eq.~15! is invariant under the gauge transfor-
mation

dAa5e~ t !]wA
a, dw~ t !52 ė~ t !, ~16!

wheree(t) is an arbitrary function oft. As stressed above,
the generator of this gauge transformation is the zero-mode
Virasoro constraintL050, defined in Eq.~12!. Equation~15!
has also the Kac-Moody global symmetry given by the trans-
formation

dAa5]wla1@A,l#a, dw~ t !50, ~17!

wherel satisfies the equationl̇5w]wl @see Eq.~10!# but is
otherwise arbitrary. Finally, Eq.~15! has also a global sym-
metry given by the translation

Aa→Aa1aa, ~18!

whereaa is a constant Lie-algebra-valued element. The con-
served quantities associated with this symmetry are the zero
modes ofAa(w) as can be directly verified from the Eq.~15!.

Equation ~15! is already in the Hamiltonian form. We
define the~noncanonical! Poisson brackets

@Aa~w!,Ab~w8!#5
2p

k
@ f c

abAc~w!1kgab]w#d~w,w8!,

~19!

and it is straightforward to check that Eq.~15! can be written
in the form

dA~w!

dt

a

5@Aa~w!,H#, ~20!

where the Hamiltonian is

H5
k

4pE dw w~ t !A2. ~21!

The symmetries of Eq.~15! can also be written in the
Hamiltonian form. The generator of the gauge symmetry
~16! is the Hamiltonian itself, while the generator of the Kac-
Moody symmetry~17! is K(l)5*laAbgab . Note thatK is a
conserved quantity, and thus a symmetry only whenla be-
longs to the boundary group, that is, it satisfies
l̇a5w]wla.

2It has been proved in@16# that this property is not carried over to
higher-dimensional Chern-Simons theories. ForD.3, the gauge
symmetries are not enough to kill all the degrees of freedom and
local excitations do exist.
3Here, we fix the gauge in the interior. The residual gauge free-

dom of the boundary conditions~11! is not fixed by this gauge
condition.
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We can now make contact with the well-known fact that
the dynamics at the boundary of a Chern-Simons theory is
described by a WZW model@13,14#. Making the usual
change of variablesA5U21dU, the above equations of mo-
tion can be derived from the 111 action

I5IWZW~U !1
1

2pE dtdw w~ t !L0 . ~22!

Note thatw(t) enters in the action as a Lagrange multiplier.
This action can thus be interpreted as a constrained WZW
model in which the variation ofI with respect tow(t) im-
poses the constraintL050 among the Kac-Moody fields.

The reader may notice that we have somehow rederived
the well-known relation between the WZW action and
Chern-Simons theory. We have chosen not to start with the
WZW action from the very beginning to stress the fact that,
in principle, the method followed here could be applied to
~311!-dimensional gravity. The boundary theory can be
found solely from the boundary conditions and the equations
of motion. The real problem is the quantization of the result-
ing theory. The simplicity of the 211 theory relies in the fact
that the quantization of a WZW model is well understood for
compact groups and that there are no bulk degrees of free-
dom. This allowed us to isolate the boundary degrees of
freedom in a simple way.

The quantization of the above action is straightforward.
The canonical commutation relations~19! can be promoted
to quantum commutators without any trouble. The Hamil-
tonianH is more delicate because it has to be regularized.
Fortunately, this problem has been extensively studied in the
literature. The correct quantum Virasoro operator is

L05
1

2k1\q S T021 (
n51

`

T2n
a Tn

bgabD , ~23!

whereq is the second Casimir in the adjoint representation
and theTn

a’s are the Fourier components ofAa(w),

Aa~w!5
1

k(n Tn
aeinw. ~24!

The commutator between the Fourier componentsTn
a is

@Tn
a ,Tm

b #5 i f c
abTn1m

c 1kmgabdn1m ~25!

and the normal-ordered Virasoro operator satisfies the com-
mutation relation

@L0 ,Tn
a#52nTn

a . ~26!

This commutation relation implies thatL0 has the form
L05C/(2k1\q)1N where

C5gabT0
aT0

b ~27!

andN is the number operator.

III. „211…-DIMENSIONAL GRAVITY
AND BLACK HOLE ENTROPY

In this section we shall apply the results of the last section
to the special case of~211!-dimensional gravity. As we shall
see, this leads directly to Carlip’s formulation of the 211
black hole entropy@1#. The Chern-Simons formulation of
~211!-dimensional gravity consists of the sum of two copies
of the Chern-Simons action for the group SO(2,1)@18,15#,

I5kW@A#2kW@Ã#1B, ~28!

where the Chern-Simons functionalW was defined in Eq.
~3!. The connections are related to the triad and spin connec-
tion through

Am
a5vm

a1
em
a

l
, Ãm

a5vm
a2

em
a

l
, ~29!

whereAa and Ãa are both SO(2,1) connections andl is a
parameter with dimensions of length. The Chern-Simons
coupling constant is related to Newton’s constant by

k5
l

8G
. ~30!

In order to agree with the conventions followed in@2#, we
use units in whichG51/8 and hencek5 l .

A. Boundary conditions: A 111 generally covariant theory

Consider the Chern-Simons action for the group
SO(2,1)3SO(2,1). We apply the boundary condition~8! to
each SO(2,1) copy; thus, we impose

A0
a5wAw

a , Ã0
a5w̃Ãw

a . ~31!

The boundary term coming from the variation of the Chern-
Simons action is

k

4pE ~dwA22dw̃Ã2!1dB. ~32!

We shall shortly impose some conditions over the functions
w andw̃. However, it is convenient to keep them as arbitrary
functions in order to clarify their geometrical meaning. If
w andw̃ are arbitrary functions of time, we get at the bound-
ary the two Virasoro constraint equations

L5~k/2!A250, L̃5~2k/2!Ã250, ~33!

ensuring the vanishing of the boundary term~32!, with
B50. It is a standard result that ifL and L̃ satisfy the Vira-
soro algebra, then the combinationsH5L2L̃ and
Hw5L1L̃ satisfy the Dirac 111 deformation algebra. This
means that the induced theory at the boundary is diffeomor-
phism invariant.H represents the generator of timelike de-
formations~conveniently densitized! andHw is the generator
of diffeomorphisms alongw. The induced theory is then
given by the two copies of the SO(2,1) Kac-Moody currents
subject to the constraints equations~33! or, equivalently,
H50 andHw50. The boundary action can thus be written
as
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I5IWZW~U !2IWZW~Ũ !1E dtdw~N'H1NwHw!,

~34!

with N'5(w2w̃)/2 and Nw5(w1w̃)/2. The theory de-
scribed by the action~34!, which can be understood as a
non-Abelian string theory in six dimensions, is certainly in-
teresting in its own right.@Unitary representations for~one
copy of! the above action have been found in@19#.# How-
ever, in our application to black hole physics we shall make
some simplifications and consider only a special case. First,
we shall impose that, at the horizon, the lapse functionN'

vanishes:

N'50. ~35!

This condition is quite natural for a black hole. Indeed, at the
horizon ~in these coordinates!, the lapseN' vanishes on
shell. Second, sinceHw is the generator of diffeomorphisms
alongw, Nw represents the angular velocity of the horizon.
We use the same condition as in the last section,]wN

w50,
and define

Nw[w~ t !. ~36!

Under conditions~35! and~36!, not all the equations~33! are
imposed at the boundary. Actually, only one of them is im-
posed, namely, the zero mode~total! Virasoro operator

L01L̃05
k

2
~A22Ã2!U

zero mode

50. ~37!

SinceN' is fixed by Eq.~35! and the nonzero modes of
Nw are fixed by Eq.~36!, the other modes of Eqs.~33! are
not imposed. The boundary action appropriate to the bound-
ary conditions~36! and ~35! is a modification of Eq.~34!:

I5IWZW~U !2IWZW~Ũ !1
1

2pE dtdw w~ t !~L01L̃0!.

~38!

This is Carlip’s boundary action and its quantization gives
rise to the 211 black hole entropy.

Before going to the quantization of this action, let us
clarify some of the differences between Eqs.~34! and ~38!.
In Eq. ~34!, there are two constraints per point which are a
consequence of the arbitrariness of the Lagrange multipliers
N' andNw. In Eq. ~38!, on the other hand, the Lagrange
multipliers are severely restricted by Eqs.~36! and ~35!,
hence there is only one constraint,L01L̃050. Furthermore,
from Eq.~32! we see thatN' andL02L̃0 are conjugate pairs
~in a radial quantization!, thus fixing N'50 implies that
L02L̃0 is undetermined. This will have an important conse-
quence in the next section.

B. Quantization and counting of states

The quantization of this system is implemented with the
quantum version of Eq.~37!:

~L01L̃0!uc&50 ~39!

plus the condition that the eigenvalues ofL02L̃0 are unde-
termined.

The states of the theory are then defined by representa-
tions of the two Kac-Moody algebras$Tn

a ,T̃n
a% subject to the

constraint~39!. It is standard to consider only highest weight
representations which are determined by a representation of
the subalgebra$T0

a ,T̃0
a% @the two copies of SO(2,1)#, which

acts as vacuum state, and the value of the central chargek.
We shall parametrize the Casimir operatorsC and C̃ in the
form

C52habT0
aT0

b52~r12r2!2,

C̃52habT̃0
aT̃0

b52~r11r2!2. ~40!

The parametersr1 and r2 can be identified, on shell, with
the outer and inner horizons of the black hole solution@2#.
They are also related with the SO(2,1)3SO(2,1) holonomy
existing in the black hole topology@20#. Of course, the area
of the outer horizon is equal to 2pr1 . Note thatr1 and
r2 are also related to the mass and angular momentum of the
solution throughM5(r1

2 1r2
2 )/ l 2 andJ5(2r1r2)/ l . How-

ever, mass and angular momentum are concepts defined at
infinity while r1 and r2 depend only on the topology.

Using Eq.~40! and the normal-ordered expression for the
Virasoro operators~23!, the constraint equation~39! reads
@1#

L01L̃05\~N1Ñ!1Q22
4r1

2

\
50 ~41!

and the combinationL02L̃0 reads

L02L̃05\~N2Ñ!1
\Q2

2k
1
2r2

2

k
[H. ~42!

Here, N and Ñ are number operators for each affine
SO(2,1) algebra, andQ2 is a shorthand for

Q25
4\

4k22\2 S 2kr1

\
2r2D 2. ~43!

We showed at the end of last section that the operatorH is
canonically conjugate to the lapse functionN' and since
N' at the horizon has been set equal to zero, the eigenvalues
of H are undetermined.

We now count states with a fixed value ofr1 . In the limit
in which the number operatorsN andÑ are large, the differ-
enceN2Ñ approaches to zero. Sincer1 is fixed andH is
undetermined, Eq.~42! implies that r2 is undetermined.
Equation~41!, on the other hand, expresses the number op-
eratorN1Ñ in terms of r1 and r2 . Since r2 is undeter-
mined, we have to sum over its possible values. In the ther-
modynamical limit, the largest contribution to the number
operator comes fromQ50 (r252kr1 /\) and one obtains
N5(2r1 /\)2. As shown in@1# the logarithm of the degen-
eracy of states produces an entropy given by

S5
2pr1

4\
, ~44!
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which coincides exactly with the Bekenstein-Hawking value
for the 211 black hole entropy.

In this calculation there is one point that deserves special
attention. The boundary theory was defined for any value of
the levelk. However, the calculation of the entropy makes
use of the limitk→`. This limit is necessary because the
SL(2,R) WZW model is not completely understood~al-
though unitary representations have been found in@19#!. It is
rather odd that at the very end we need to use that limit since
we do not know how to count states in the full non-Abelian
theory. A striking feature of this calculation is the fact that
the non-Abelian nature of the theory does play a central role
anyway. Indeed, the result~44! depends crucially in the shift
of the coupling constantk→k1\q/2 induced by the non-
Abelian Sugawara construction@see Eq.~23!#. Had we taken

the limit k→` at the very beginning, we would not have
obtained the right value for the black hole entropy@1#.
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