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Particle creation via high frequency dispersion
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We investigate the particle creation caused by a nonlinear dispersion relation for a massless scalar field
propagating on a background curved spacetime in two dimensions. The dispersion relation adopted agrees with
the standard dispersion relation at long wavelengths but is modified at short wavelengths, the division being
characterized by a new length scal&lMWe consider both spacetimes with and without a black hole. Those
without contain instead a uniformly moving “bump.” The black hole cases considered have Hawking tem-
peraturesT,;>Kky/100. We find that the particle creation arises in all cases from two effecsdtering and
mode conversianThe latter was identified by Corley and Jacobson as the phenomenon responsible for the
Hawking effect.[S0556-282(97)04910-2

PACS numbdss): 04.70.Dy, 04.60.Kz, 04.62.v

[. INTRODUCTION not the only source of particle creation, but rather that mode
conversion is also important, even when no black hole is
In an effort to understand the role of high frequencies inpresent. Roughly, the low frequency particle creation arises
derivations of the Hawking effect, see, for instanf®3],  from scattering only, whereas the high frequency particle
Unruh studied the particle creation for a quantum scalar fiel@reation arises from both scattering and mode conversion.
satisfying a wave equation with high frequency dispersiorEssentially mode conversion does not turn on until a critical
and propagating on a black hole spacetinsee[4]. Further ~ frequency is reached. This frequency is determined by the
investigations of similar models were considered by Broutspeed of a freefall observer passing through the bump. The
Massar, Parentani, and Spin{ié], and by Corley and Jacob- larger the speed, the smaller the critical frequency until it
son[1]. In [1] it was realized that the particle creation in reaches zero when the bump becomes a black hole.
such models comes from two sources. The expected Hawk- We also extend the analysis ff] to high temperature
ing particles are produced by a phenomenon known as mod#éack holes. Although we do not expect our model to be a
conversion, in this case a high frequency, ingoing wavedood approximation to physics in the presence of such a
packet is converted into a low frequency, outgoing waveblack hole, it nevertheless is of interest for the following
packet with the same sign wave vector. The second source 6¢ason. We expect our model to predict a particle flux very
particle creation is scattering. different from the thermal Hawking specttat all frequen-
The fact that particle creation could occur by scattering iscies for a high temperature black hofi contrast to a black
hardly surprising. The quantum state of the field was taken tfiole with T;<ko). We show that this is indeed the case by
be the freefall vacuum, that is, the state annihilated by anniconsidering a few black hole spacetimes all having a Hawk-
hilation operators for positive freefall frequency modes.ing temperaturel;>ky/100. We find that the “transition
However, the particles were measured relative to the Killinglemperature” where the entire particle spectrum begins to
vacuum at infinity. Similar types of particle creation occur deviate from the thermal prediction occurs roughly around
elsewhere; for instance, in de Sitter spacetime. What maked&/100.
the result somewhat surprising in this case is that it does not This paper is organized as follows. In Secs. Il and Ill we
occur with the standard wave equation. very briefly introduce the model for the scalar field and dis-
In this paper we further investigate the particle creationcuss the method employed to compute the particle creation,
caused by scattering for a class of metrics containing 4he details have been given|ib]. In Sec. IV we present the
“spacetime bump,” butno black hole, moving uniformly results of the computations. In Sec. V we discuss the results
relative to an asymptotic freefall observer. The source of th@nd in Sec. VI we make some concluding remarks. We use
bump could be, for instance, a cosmic string travelingunits wherec=%=1.
through space. We find that scattering in such spacetimes is

Il. THE MODEL AND ITS QUANTIZATION

*Electronic address: corley@umdhep.umd.edu We adopt the following equation of motion for the scalar
Actually he motivated the modified wave equation by consider-field:
ing the sonic hole analogyé], in which one looks at fluid pertur-
bations about an irrotational background flow. In this case, small 1
perturbations may be described using an effective scalar field (d¢+ dyv) (it vdy) p= ﬂfdﬂr P&id). D)
theory. The dispersion relation for such a field is modified at short 0
wavelengthgin the frame of the background flgwlue to finite size
effects of the atoms. From the sonic-hole—black-hole analogy, thi¢f we throw away the fourth derivative term, we recover the
may be immediately mapped to the black hole case. standard wave equation in the curved spacetime metric:
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1.0 : , ‘ , by the freefall observers locatedxat-0. We take the ground
state of the theory to be the state annihilated by positive
freefall frequency annihilation operators.

o5 | Before ending this section, we introduce the background

’ geometries[v(x)’s] that we shall study. There are two
classes that we shall consider. The first are given by
olk, 09 B Vo— U1 P tanh «|x—a/2|)%\ ¥
Ub(x)—vo+ 2 Sgr(x a ) tanlﬁ(Ka/Z)é\
0.5t tanh x|x+a/2])°\ ¥°
—sgnx+ al2) W (5)
-1.0 : ; ‘ - and the second by
-0.75 -0.25 0.25 0.75
k/k,, votvy vo—

ven(X) =~ + = tsgrix)[tanh(x]x) 1Y%, (6)

FIG. 1. Plot of the curved spacetime dispersion relation for two
different values ofy(x). The intersection points of the two curves They are characterized by the real, constant parametgrs
are the mode solutions to the wave equation whenyy, x, and§, andv(x) also contains the free parameter
v(x)=constant From left to right we label the wave vectors as \We shall aIway%takev(): —0.5, although the results are not
k-1, k_s, Kis, andk,. For the larger slope straight line, the independent of this, the general features that we shall de-

ks andk,, have become degenerate. scribe are. We shall also always takel<v;<v,<O for
) 5 the v,(x) metrics andv;<—1 for thevgy(x) metrics. The
ds’=dt?~[dx—v(x)dt]?. (2)  first class describes smoothed out spacetime bumps and the

. o — . . second black holes. In both cases the parameteontrols
This metric is a generalization of the Schwarzschild MetriGha maximum value of the derivative ofx) and & controls
written in Lemaitre coordinates. We follow the convention s, sharnness of the transition regions. For the first class, the

thhatv(x)b|<0l.(II] vl(x) becomes Ie_sr? :]ha.ﬂ 1 some_whire, we parameten controls the width of the spacetime bump. In the
ave a black hole spacetime with horizongk) = —1. limit xk—o, vgu(X) reduces ta, for positivex andv, for

The dispersion relation for Eql) is given by negative x. Similarly, vy(x) reduces to v, for

—al2<x<al2 andv, otherwise. Hence, in this limit both

, (3)  the bump and black hole metrics contain discontinuities. All
of these geometries are static, but relative to the freefall
frame atx> + the bump and/or black hole is moving to the
right at speed .

k 2
[w—v(x)k]2=k2[1—(—)
Ko
where we define

o' =w—v(X)k. (4)
Ill. SOLVING THE EQUATION OF MOTION

We refer tow’ as the freefall frequency as it is the frequency
measured by a freefall observer in the above metric. A plot Our goal is to compute the particle production resulting
of the dispersion relation in the freefall frame is shown infrom the scattering of vacuum fluctuations off the back-
Fig. 1. The curved line corresponds to the square root of thground geometry. This requires in one way or another solv-
right-hand side of Eq(3), while the straight line is the free- Ing Eg. (1). By choosing to work with fixed Killing fre-
fall frequency(4). The intersection points are the allowed quency solutions only[that is, solutions of the form
wave vectors for the givem. In increasing order of their € '“'f(x)], we can reduce the problem to solving the ordi-
values, we shall refer to them &s,, k_g, k.5, andk,,.  nary differential equatiolODE)
The +/— subscript refers to the sign of the wave vector and
the s/l subscript to its magnitude, “small” or “large,” re-
spectively. Furthermore, for a given valuewdfx), there is a
corresponding value ab such thak =k, (an example is
shown in Fig. 1. We refer to this value asg[v(x)]. If However, this requires boundary conditions. In the time de-
0> wgi(vy) andv(x)=v4, thenk, s andk,, become com- pendent picture the appropriate boundary conditions are that
plex conjugates, whilé&_¢ andk_, remain real. one has at late times a positive Killing frequency, right-

Quantization of this model is carried out [i], so we moving wave packet located a&0. We would like the
shall not repeat the details. However, an important propertgorresponding boundary conditions for the ODE. We now
we shall need later is the following. There are two naturaldiscuss these conditions.
sets of positive norm modes used in a normal mode decom-
position of the field. The first are positive Killing frequency
modes which are defined by the Killing frame observers lo- ?We would like to takev,=0; however, our wave equaticap-
cated at infinity who measure the particle creation. The segearsto break down in this limit. This is discussed in detail[ij
ond are positive freefall frequency modes which are definednd[7].

; - 2, 1 4
(mlw+dw)(—iwtvd)f(x)= f7x+Pf9x>f(X)- 7
0



55 PARTICLE CREATION VIA HIGH FREQUENCY DISPERSION 6157

In the bump background geometpy,(x) ~v for x>0 or 0.50
x<0. In these regions Ed1) possesses wave packet solu-
tions composed of modes™'T“t=kK(@)X] The wave vector

k(w) is a root of the curved spacetime dispersion relation. 0.40 1
These wave packets travel at a group velocity

030}
dw 3
Vg=—— (8) >
9 dk 2 ol
relative to a Killing observer. Using this one may show that 0.10
the k, ¢ wave vector produces right-moving wave packets,
and thek_,, k_g, andk,; wave vectors produce left-moving
i ight- 0.00 : : :
wave packets. Ther(_afore, in ord_er to havg only a right ) 00 0.05 010 015 0.20
moving wave packet in the>0 region at late time, we must o'k
o

only ever have a right-moving wave packet in th&0 re-

gion. Hence, our boundary condition is that the solution be-

comese'k+s* agx— — . FIG. 2. Number expectation value as a function of Killing fre-
The relevant boundary condition for black hole geom-quency for the bump metric. The parameter sets ware —0.9,

etries was discussed [i]. It was shown there that the rel- ==, andak,=1, 2, 3, 5, 7, and 9. The peakteftmost for

evant mode solution grows exponentially with increasing @ko=9) move towards decreasing asak, increases.

inside the horizon, and, in fact, that the solution outside the

horizon is quite insensitiveup to an overall scale factpto For finite xk the results are qualitatively the same. We

the boundary condition. illustrate this for two cases. In Fig. 4 we plot the number
Given the above boundary conditions, the equation caexpectation value for the two parameter setsk,/10 and

now be solved numericalff,or in the special case where k; (larger x produces more particlesThe other parameters

r— oo, exactly, for either metric. With the solution in hand, it areak,=1, v;=—0.9, andé=5 in both cases. The respec-

is a simple matter to compute the number expectation valugye Juminosities are 0.000 0&% and 0.000 3K3. Because of

for wave packets narrowly pegked about a_given_KiIIi_ng fre-the finite «, the length of the bump is not given y We

quency. The relevant expressions along with derivations cafhstead define an effective length as the distance between the

be found in[1]. two v,(x)=—0.7 locations. We obtain approximate values

of 2/, for the k=k, case and 2@, for the k=ky/10 case.

The relevance of this length is that it seems to determine the

frequency of oscillation in the spectrum. This is evident after

A. Bump comparing the«= o, aky=2 metric spectrum in Fig. 2 with

We begin by describing the results of the exactly solvabldhe x= ko metric spectrum of Fig. 4. A similar comparison of
cases. In Fig. 2 we plot the number expectation value as §1€ K=Ko/10 metric spectrum of Fig. 4 with that of the
function of frequency formk,=1, 2, 3, 5, 7, and 9, where =%, ako=20 metric spectrumnot shown also agrees
k=% andv,=—0.9 in all cases. The maxima of the curves With this.
move toward smallew with increasinga (for ak,=9 we
refer to the leftmost local maximum The respective

IV. RESULTS

luminosities are 0.000 X, 0.000 442, 0.000 4&2, 0.40
0.000 2k3, 0.0002%k3, and 0.000 25, Because of the
natural scale Xj in the problem, we expect different particle 030 |

spectra for the extreme limitaky<<1 and aky>1. This
graph illustrates exactly this poirtve have plotted only
aky~1 since theaky<1 case is qualitatively the same @

A further increase inak, produces a particle number = 020}
spectra as in Fig. 3. The parameters in this case are <
aky=50,v,=—0.9, andk=00. The luminosity for this case
is 0.000 243 . If we further increasea, more oscillations 0.10 t
appear over the same frequency range. However, the spec-
trum above w~0.0165 remains almost exactly the same.

Furthermore, we note that varying, and v, leaves the 0.00 ; s s
qualitative features unchanged. 0.00 0.05 0.10 0.15
w/k,
3We consider only frequencias such that all roots to the disper- FIG. 3. Number expectation value as a function of Killing fre-
sion relation are real for the given value . quency for the bump metric. The parameter setvis=—0.9,

“We usedvATHEMATICA to solve Eq.(7). k=2, andak,=50.
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FIG. 4. Number expectation value as a function of Killing fre-  FIG. 6. Number expectation value as a function of Killing fre-
quency for the bump metric. The parameter sets akg=1, quency for the black hole metrics. The parameter setskareo,
v,=-—0.9,6=5, andk=ky/10 andk,. The largerx produces more andv,=—1.25 and—1.5. The larger amplitude curve corresponds
particles. to the largefv,|.

For the other finitec parameters, we shall just summarize amplitude of oscillation. We see a similar behavior of the

the qualitative features of the spectra. We define as above afiminosity as the other parametets,(vo, k, 8) are varied.
effective lengtha.; as the distance between the two locations

wherev,(X)=(vo+v41)/2. Whenax>1 andé=1, a.z~a;
otherwise we haves>a. We find that the shape of the ) o i
particle flux spectrum is qualitatively that of the= bump We again begin with the e>'<actly solvable cases. In Fig. 6
metric with the same, andv, and with lengtha.. Thatis, We plot the number expectation value versus frequency for
the number of oscillations is the same, and their respectivé® black hole metrics with parameter sets=>, and
peaks occur at approximately the same frequencies. The§n=—1.25 and—1.5 (larger|v,| produces more particles
differ in the amount of particle creation though. If The respective luminosities are 0.00kg3nd 0.002 OR;.
klko>1, ax>1, and 5=1 this difference is fairly small; If we further increasgv,|, the particle creation per Killing
otherwise, the amount of particle creation for the smoothedrequency increases. However it does not increase without
out bump metrics is significantly smaller. bound with increasingp |, but rather asymptotes to an upper

To see the behavior of the amount of particle creation, wéound.
plot in Fig. 5 the luminosity as a function of bump length We are also interested in large, but finite, temperature
a for the k=0 bump metrics withv;=—0.9. The luminos- black holes. In Fig. 7 we plot the numerically generated
ity starts oscillating with a large amplitude until the bump number expectation value for a pair of black hole metrics
reaches a sufficient lengtlak,>1). After that it continues and the corresponding thermal prediction for each. In in-
to oscillate about a fixed luminosity with a much smaller creasing order of the amount of particle creation the curves
are a black hole metric witify=kg/5, a black hole metric
with T,=kg, the thermal prediction foil y=Kky/5, and the
thermal prediction foil y=Kg. For the black hole metrics the
other parameters were setig= —1.5 andé=1. If we fur-
ther increase the temperature of the black hole metrics we
find very little change in the number expectation value, while
the thermal prediction increases without bound. In fact, there
is less than a percent difference betweentie — 1.5 curve
of Fig. 6 and theT =k, black hole metric of Fig. 7.

If we instead decrease the black hole temperature, we find
that the numerically calculated number expectation value and
the thermal prediction begin converging. For instance, keep-
ing all the parameters for the black hole metric as above, but
lowering the temperature 6, =ky/10, we find that the de-

‘ ‘ . . viation from the thermal prediction for a black hole of the
20.0 40.0 60.0 80.0  100.0 same temperature remains less than roughly 30% out to

a ko w~1/2T. In [1] even lower temperature black holes were
considered. In one case for a black hole of temperature

FIG. 5. Plot of the luminosity for the bump metric with=co T,4~0.000%,, they found that the percent difference be-
andv,=—0.9 as a function of the bump lenggtk,. tween the computed and thermal number expectation values

B. High temperature black holes
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FIG. 7. Number expectation value as a function of Killing fre- -a/2 a/2

quency for black hole metrics with temperaturég=k, and
Th=Ko/5, along with the thermal predictions for the respective tem-  FIG. 8. Diagram of the wave packets produced by scattering
peratures. The other parameters for the black hole metrics ahen an outgoing wave packetxat0 is propagated backward in
v,=—15ands=1. In increasing order of the amount of particle time. The rightward pointing arrow at>a/2 is the outgoing wave
creation, the curves correspond to the lower temperature black holeacket. The leftward pointing arrows &t-a/2 and the rightward
metric, higher temperature black hole metric, lower temperaturgointing arrows ak<<—a/2 are the resulting ingoing packets. The
thermal prediction, and higher temperature thermal prediction.  former contain a negative freefall frequency part which gives rise to
the particle creation.

remained less that 0.1% for frequenciesi43T .
zero, and oscillate witlw with a “frequency” proportional
V. DISCUSSION to a. In Fig. 3 we saw such an oscillation, and it was noted
there that the number of oscillations increasedhasas in-
creased, in agreement with our findings here.

We begin by discussing qualitatively the source of the What happens wher is finite? Qualitatively nothing
particle creation. We start with the=c bump metrics, changes. A new length scalexl/enters the problem, which
wherevy(x)=v; for —a/2<x<a/l2, and isv, otherwise. would seem to make the oscillation more complicated, but
The standard method of computing the particle creation of ave nevertheless obsenéor the few cases that we have
positive Killing frequency packet, which we take to be right looked a} that the “frequency” of spectrum oscillations is
moving and located at>0 in this case, involves propagat- proportional toae (defined in the results sectiprThat is to
ing it backward in time. To describe this motion in words is say, if we consider a bump metric with—=o anda=a.,
complicated, but with a picture the qualitative features areve get approximately the same frequency of oscillations in
obvious. In Fig. 8 we display the motion of such a packetthe spectrum as with a finite bump metric with effective
One sees that scattering occurxat=a/2, and results in an lengthag.
infinite number of left moving packets located»a+0 and So far we have had to assume that the wave vector roots
an infinite number of right moving packets locatedka&0. to the dispersion relatiof3) are real in thev,(x)=v, re-
The packets at<<0 are composed of purely positive freefall gion. This is only true ifo<wqy(v,), see Sec. Il. When
frequencies, but the ones @0 contain both positive and > wi(v1) andv,(X)=v,, two of the wave vector roots
negative freefall frequencies. The negative freefall frequencyre real and the other two complex conjugates, i.e., see Sec.
packets give rise to particle creation, the amount of which idl. A positive Killing frequency packet centered about a fre-
proportional to the norm of their sum. The support of thesequencyw> w¢i(v4) (and is right moving and located some-
packets will overlap if they are sufficiently spread out in where atx>0) behaves very differently when propagated
space(which will be the case if the original right moving backward in time. For the general bump metric, i«efinite,
packet is narrowly peaked in frequencyurthermore, it is a piece of this packet will be reflected and will propagate
clear that any two packets are phase shifted from one anotheack out towardk= as before(it also contains both posi-
by an amount proportional taw (up to an additive tive and negative freefall frequencjeslowever, the remain-
constank,” arising from one packet propagating an extra dis-der of the packet continues to propagate toward smaller
tance proportional ta. Therefore, the cross terms in the until it reaches a point where its group velocity vanishes, i.e.,
norm of the net negative freefall frequency packet are nona classical turning point. Around this point the packet under-

goes a process known as mode conversion, and turns around
and propagates out towapd=<« in the form of a packet
SActually each packet also picks up a phase from scattering, butontaining both positive and negative freefall frequencies.
that is proportional taw/k, and is negligible compared tow when Mode conversion, as the name implies, is a process
a>1/k,. whereby one type of mods is converted into another type

A. Bump
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of modds). In this case, a right moving mode has been contemperature black holes, we take the liffijf— . The num-
verted into a pair of left moving, shorter wavelength modesber expectation value for such a case was plotted in Fig. 6.
This sounds like an ordinary reflection process, but it differsOne can also show analytically that the low frequency spec-
in one way. The sign of the wave vector of the right movingtrum is given byT/w to leading order inw, where

packet is the same as that of one of the left moving packets.
1+U0 U1+1 Ul+Uo

What makes this particularly interesting is that exactly this To=kn/1—02 _ 9)
behavior was discovered by Unr{#i] in the case of a back- e 7o %1-vovi—1v;-vg

ground black hole geometry.

How can this same behavior then appear without a blackince the thermal prediction is an infinite number expecta-
hole present? T_he answer is that the role of the event _honzogibn value for all frequencies, we have an example where the
as a causal horizon has been replaced by that @ffi@ative o predictions are very different for all frequencies. One
horizon The equation of motiortl) of the field is not Lor- might worry that the frequency where the two number ex-
entz invariant and the propagation of wave packets is Nopectation values begin to deviate significantly simply de-
causal in the background metric. Nevertheless, wave packeggeases with increasing Hawking temperature, converging to
peaked in frequency about an> w(v,) have a vanishing  zero asT— . This is unlikely though. If we smooth out the
group velocity at some spatial coordinate, i.e., a classicablack hole of Fig. 6, but still keeg>k,, we expect essen-
turning point. Beyond this point the wave packet is no longettially the same number expectation value spectrum. The rea-
propagating, but rather tunneling. The classical turning poinson is that all the modes that enter the problem have a wave-
therefore is a sort of effective horizon, and is the placelength>2/k,. Therefore, to them the background appears
around which mode conversion occurs, in both spacetimejgist as in the infinite Hawking temperature black hole. One
with and without black holes. In fact, the only special prop-can check this by numerical calculation also, and indeed one
erty of the event horizon in these models is that it is thefinds almost identical spectra under the above conditions,
infimum of positions of all effective horizons, i.e., the effec- see, for instance, Fig. 7.
tive horizon for any wave packet occurs at|aifx)|<1. Where do the modified wave equation and the standard

What is not clear, however, is how the amount of particlewave equation begin to predict the same Hawking spectra?
creation depends on the effective horizon versus the evemtor instance, when do their predictions differ by less than
horizon for a black hole spacetime. This will be discussed a% atw=T,? From dimensional analysis we would expect
little more in the next section. the transition to occur arounty~ 1/k,. From Fig. 7 we see

Above we said that a piece of a wave packet that reachesat this is roughly correct. As stated in the text, for a black
its effective horizon will tunnel through the bump. When hole with T,;=Kk,/10 the numerical and thermal expectation
a~1/k, or smaller, this is important; however, when number values differed by less than 30% for T, /2. At
a>1/k, and a>1/k, this effect is negligible. This implies T,=k,/100 the relative difference is less than 0.2% for all
that the number expectation value spectrum aboyg(vi)  frequenciesn<Ty. Therefore the transition occurs roughly
becomes independent affor largea. This explains why the  aroundT,~k,/100. We have considered only “smoothed”
luminosity in Fig. 5 settled down to approximately a constantout metrics to produce the above data, that is metrics with
value (up to a small oscillationfor large enougha. 6=1 or 2. The agreement gets worse as we incre@se

Finally, recall that even in the> w.(v,) case just dis- though and hence the “transition” temperature would de-
cussed, there were multiple negative freefall frequency packerease.
ets produced. Just as in the<w(v,) case, these packets
should interfere and produce oscillations in the number ex-
pectation value spectrum. Indeed this is the case. This same VI. CONCLUSION

behavior was noted, and discussed in detailli We have studied the particle creation occuring in space-

times containing a uniformly moving bump. Qualitatively we
have been able to understand the cause of the particle cre-
We now turn to a discussion of high temperature blackation, either purely by scattering of wave packets or also by
holes. These are unphysical because we do not expect physode conversion, and the basic shape of the corresponding
ics to be described in the manner we are using at such largapectrum, i.e., the oscillations. We have also briefly consid-
Hawking temperatures. However, they are of interest in theered some high temperature black holes to probe the behav-
context of understanding the behavior of the modified waveor of the modified wave equation. We have shown that a
equation that we have adopted as our model. Specifically wiansition in the number expectation value spectrum occurs
would like to know where the spectrum begins to deviatearoundT~ky/100. At smaller temperatures, the lower part
from the thermal prediction for all frequencies. For exampleof the spectrum agrees rather wgll4,6], with the thermal
for the lower temperature black holes considerefdlinlarge  prediction. At larger temperatures however, the entire spec-
deviations from thermality were found at frequenciestrum deviates significantly from the thermal prediction.
w>Ty while the low frequency spectrum was within at least  Unfortunately we are still lacking more quantitative pre-
(Th/ko)® of the thermal prediction fow=<T, for certain  dictions. For instance, we would like to understand how the
metrics[1]. luminosity for the class of bump metrics considered scales
The first step is to make sure that there is a black holavith the various parameters, i.e., v, x, anda. Further-
whose spectrum differs significantly at all frequencies frommore, we would like a better estimate of the frequency of
the thermal prediction. Since we expect this to occur for highoscillations in the spectrum. However, even a very rough

B. High temperature black holes
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calculation is a formidable task in these models. For in-luid flow analogue developed by Unr{ii]. Here the bump
stance, just computing the wave vector roots of the disperis easily generated as a spatial gradient in the flow velocity
sion relation in some reasonable approximation wherof a fluid. This would present a possibly realistic place to
w=~Ky is difficult. measure the particle creation by a mode conversion process.
We are also still lacking a good understanding of whatObviously the sonic hole case is the most interesting, but as

determines the amount of particle creation by mode converthe above analysis shows, a sonic hole is not needed in order
sion. For instance, what is the relat|0n5h|p between th% create partides by mode conversion.

amount of particle creation via mode conversion in a non-

black-hole spacetime as compared to a black hole spacetime?

Conversely we can ask what is so ;pemal about the event ACKNOWLEDGMENTS
horizon of a black hole for our modified wave equation?

We end with two applications of this work. One possible | would like to thank the University of Utrecht, where
source of the curvature making up the bump metric is a unimuch of this work was done, for their hospitality. | would
formly moving cosmic string. The above analysis gives amalso especially like to thank Ted Jacobson for many helpful
estimate, for a few cases anyway, of the amount of particlesriticisms. This work was supported by the University of
produced from its motion. Another source is to consider theMaryland.

[1] S. Corley and T. Jacobson, Phys. Revsd) 1568(1996. [4] W. G. Unruh, Phys. Rev. 1, 2827(1995.
[2] S. W. Hawking, NaturgLondon 248 30 (1974; Commun. [5] W. G. Unruh, Phys. Rev. Letti6, 1351(1981).

Math. Phys43, 199 (1975. [6] R. Brout, S. Massar, R. Parentani, and Ph. Spindel, Phys. Rev.
[3] K. Fredenhagen and R. Haag, Commun. Math. Phgg, 273 D 52, 4559(1995.

(1990. [7] T. Jacobson, Phys. Rev. B8, 7082(1996.



