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We investigate the particle creation caused by a nonlinear dispersion relation for a massless scalar field
propagating on a background curved spacetime in two dimensions. The dispersion relation adopted agrees with
the standard dispersion relation at long wavelengths but is modified at short wavelengths, the division being
characterized by a new length scale 1/k0. We consider both spacetimes with and without a black hole. Those
without contain instead a uniformly moving ‘‘bump.’’ The black hole cases considered have Hawking tem-
peraturesTH.k0/100. We find that the particle creation arises in all cases from two effects:scattering and
mode conversion. The latter was identified by Corley and Jacobson as the phenomenon responsible for the
Hawking effect.@S0556-2821~97!04910-2#

PACS number~s!: 04.70.Dy, 04.60.Kz, 04.62.1v

I. INTRODUCTION

In an effort to understand the role of high frequencies in
derivations of the Hawking effect, see, for instance,@2,3#,
Unruh studied the particle creation for a quantum scalar field
satisfying a wave equation with high frequency dispersion
and propagating on a black hole spacetime,1 see@4#. Further
investigations of similar models were considered by Brout,
Massar, Parentani, and Spindel@6#, and by Corley and Jacob-
son @1#. In @1# it was realized that the particle creation in
such models comes from two sources. The expected Hawk-
ing particles are produced by a phenomenon known as mode
conversion, in this case a high frequency, ingoing wave
packet is converted into a low frequency, outgoing wave
packet with the same sign wave vector. The second source of
particle creation is scattering.

The fact that particle creation could occur by scattering is
hardly surprising. The quantum state of the field was taken to
be the freefall vacuum, that is, the state annihilated by anni-
hilation operators for positive freefall frequency modes.
However, the particles were measured relative to the Killing
vacuum at infinity. Similar types of particle creation occur
elsewhere; for instance, in de Sitter spacetime. What makes
the result somewhat surprising in this case is that it does not
occur with the standard wave equation.

In this paper we further investigate the particle creation
caused by scattering for a class of metrics containing a
‘‘spacetime bump,’’ butno black hole, moving uniformly
relative to an asymptotic freefall observer. The source of the
bump could be, for instance, a cosmic string traveling
through space. We find that scattering in such spacetimes is

not the only source of particle creation, but rather that mode
conversion is also important, even when no black hole is
present. Roughly, the low frequency particle creation arises
from scattering only, whereas the high frequency particle
creation arises from both scattering and mode conversion.
Essentially mode conversion does not turn on until a critical
frequency is reached. This frequency is determined by the
speed of a freefall observer passing through the bump. The
larger the speed, the smaller the critical frequency until it
reaches zero when the bump becomes a black hole.

We also extend the analysis of@1# to high temperature
black holes. Although we do not expect our model to be a
good approximation to physics in the presence of such a
black hole, it nevertheless is of interest for the following
reason. We expect our model to predict a particle flux very
different from the thermal Hawking spectra~at all frequen-
cies! for a high temperature black hole~in contrast to a black
hole withTH!k0). We show that this is indeed the case by
considering a few black hole spacetimes all having a Hawk-
ing temperatureTH.k0/100. We find that the ‘‘transition
temperature’’ where the entire particle spectrum begins to
deviate from the thermal prediction occurs roughly around
k0/100.

This paper is organized as follows. In Secs. II and III we
very briefly introduce the model for the scalar field and dis-
cuss the method employed to compute the particle creation,
the details have been given in@1#. In Sec. IV we present the
results of the computations. In Sec. V we discuss the results
and in Sec. VI we make some concluding remarks. We use
units wherec5\51.

II. THE MODEL AND ITS QUANTIZATION

We adopt the following equation of motion for the scalar
field:

~] t1]xv !~] t1v]x!f5]x
2f1

1

k0
2 ]x

4f. ~1!

If we throw away the fourth derivative term, we recover the
standard wave equation in the curved spacetime metric:

*Electronic address: corley@umdhep.umd.edu
1Actually he motivated the modified wave equation by consider-

ing the sonic hole analogue@5#, in which one looks at fluid pertur-
bations about an irrotational background flow. In this case, small
perturbations may be described using an effective scalar field
theory. The dispersion relation for such a field is modified at short
wavelengths~in the frame of the background flow! due to finite size
effects of the atoms. From the sonic-hole–black-hole analogy, this
may be immediately mapped to the black hole case.
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ds25dt22@dx2v~x!dt#2. ~2!

This metric is a generalization of the Schwarzschild metric
written in Lemaitre coordinates. We follow the convention
thatv(x),0. If v(x) becomes less than21 somewhere, we
have a black hole spacetime with horizon atv(x)521.

The dispersion relation for Eq.~1! is given by

@v2v~x!k#25k2F12S kk0D
2G , ~3!

where we define

v85v2v~x!k. ~4!

We refer tov8 as the freefall frequency as it is the frequency
measured by a freefall observer in the above metric. A plot
of the dispersion relation in the freefall frame is shown in
Fig. 1. The curved line corresponds to the square root of the
right-hand side of Eq.~3!, while the straight line is the free-
fall frequency ~4!. The intersection points are the allowed
wave vectors for the givenv. In increasing order of their
values, we shall refer to them ask2 l , k2s , k1s , andk1 l .
The1/2 subscript refers to the sign of the wave vector and
the s/ l subscript to its magnitude, ‘‘small’’ or ‘‘large,’’ re-
spectively. Furthermore, for a given value ofv(x), there is a
corresponding value ofv such thatk1s5k1 l ~an example is
shown in Fig. 1!. We refer to this value asvcrit@v(x)#. If
v.vcrit(v1) andv(x)5v1, thenk1s andk1 l become com-
plex conjugates, whilek2s andk2 l remain real.

Quantization of this model is carried out in@1#, so we
shall not repeat the details. However, an important property
we shall need later is the following. There are two natural
sets of positive norm modes used in a normal mode decom-
position of the field. The first are positive Killing frequency
modes which are defined by the Killing frame observers lo-
cated at infinity who measure the particle creation. The sec-
ond are positive freefall frequency modes which are defined

by the freefall observers located atx@0. We take the ground
state of the theory to be the state annihilated by positive
freefall frequency annihilation operators.

Before ending this section, we introduce the background
geometries@v(x)’s# that we shall study. There are two
classes that we shall consider. The first are given by

vb~x!5v01
v02v1
2 Fsgn~x2a/2!S tanh~kux2a/2u!d

tanh~ka/2!d D 1/d
2sgn~x1a/2!S tanh~kux1a/2u!d

tanh~ka/2!d D 1/dG ~5!

and the second by

vBH~x!5
v01v1
2

1
v02v1
2

sgn~x!@ tanh~kuxu!d#1/d. ~6!

They are characterized by the real, constant parametersv0,
v1, k, andd, andvb(x) also contains the free parametera.
We shall always2 takev0520.5, although the results are not
independent of this, the general features that we shall de-
scribe are. We shall also always take21,v1,v0,0 for
the vb(x) metrics andv1,21 for thevBH(x) metrics. The
first class describes smoothed out spacetime bumps and the
second black holes. In both cases the parameterk controls
the maximum value of the derivative ofv(x) andd controls
the sharpness of the transition regions. For the first class, the
parametera controls the width of the spacetime bump. In the
limit k→`, vBH(x) reduces tov0 for positivex andv1 for
negative x. Similarly, vb(x) reduces to v1 for
2a/2,x,a/2 andv0 otherwise. Hence, in this limit both
the bump and black hole metrics contain discontinuities. All
of these geometries are static, but relative to the freefall
frame atx@1` the bump and/or black hole is moving to the
right at speedv0.

III. SOLVING THE EQUATION OF MOTION

Our goal is to compute the particle production resulting
from the scattering of vacuum fluctuations off the back-
ground geometry. This requires in one way or another solv-
ing Eq. ~1!. By choosing to work with fixed Killing fre-
quency solutions only@that is, solutions of the form
e2 ivt f (x)#, we can reduce the problem to solving the ordi-
nary differential equation~ODE!

~2 iv1]xv !~2 iv1v]x! f ~x!5S ]x
21

1

k0
2 ]x

4D f ~x!. ~7!

However, this requires boundary conditions. In the time de-
pendent picture the appropriate boundary conditions are that
one has at late times a positive Killing frequency, right-
moving wave packet located atx@0. We would like the
corresponding boundary conditions for the ODE. We now
discuss these conditions.

2We would like to takev050; however, our wave equationap-
pearsto break down in this limit. This is discussed in detail in@1#
and @7#.

FIG. 1. Plot of the curved spacetime dispersion relation for two
different values ofv(x). The intersection points of the two curves
are the mode solutions to the wave equation when
v(x)5constant. From left to right we label the wave vectors as
k2 l , k2s , k1s , and k1 l . For the larger slope straight line, the
k1s andk1 l have become degenerate.
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In the bump background geometry,vb(x)'v0 for x@0 or
x!0. In these regions Eq.~1! possesses wave packet solu-
tions composed of modese2 i [vt2k(v)x] . The wave vector
k(v) is a root of the curved spacetime dispersion relation.3

These wave packets travel at a group velocity

vg[
dv

dk
~8!

relative to a Killing observer. Using this one may show that
the k1s wave vector produces right-moving wave packets,
and thek2 l , k2s , andk1 l wave vectors produce left-moving
wave packets. Therefore, in order to have only a right-
moving wave packet in thex@0 region at late time, we must
only ever have a right-moving wave packet in thex!0 re-
gion. Hence, our boundary condition is that the solution be-
comeseik1sx asx→2`.

The relevant boundary condition for black hole geom-
etries was discussed in@1#. It was shown there that the rel-
evant mode solution grows exponentially with increasingx
inside the horizon, and, in fact, that the solution outside the
horizon is quite insensitive~up to an overall scale factor! to
the boundary condition.

Given the above boundary conditions, the equation can
now be solved numerically,4 or in the special case where
k→`, exactly, for either metric. With the solution in hand, it
is a simple matter to compute the number expectation value
for wave packets narrowly peaked about a given Killing fre-
quency. The relevant expressions along with derivations can
be found in@1#.

IV. RESULTS

A. Bump

We begin by describing the results of the exactly solvable
cases. In Fig. 2 we plot the number expectation value as a
function of frequency forak051, 2, 3, 5, 7, and 9, where
k5` andv1520.9 in all cases. The maxima of the curves
move toward smallerv with increasinga ~for ak059 we
refer to the leftmost local maximum!. The respective
luminosities are 0.000 21k0

2, 0.000 44k0
2, 0.000 48k0

2,
0.000 27k0

2, 0.000 21k0
2, and 0.000 22k0

2. Because of the
natural scale 1/k0 in the problem, we expect different particle
spectra for the extreme limitsak0!1 and ak0@1. This
graph illustrates exactly this point~we have plotted only
ak0'1 since theak0!1 case is qualitatively the same!.

A further increase inak0 produces a particle number
spectra as in Fig. 3. The parameters in this case are
ak0550, v1520.9, andk5`. The luminosity for this case
is 0.000 24k0

2 . If we further increasea, more oscillations
appear over the same frequency range. However, the spec-
trum abovev'0.0165 remains almost exactly the same.
Furthermore, we note that varyingv0 and v1 leaves the
qualitative features unchanged.

For finite k the results are qualitatively the same. We
illustrate this for two cases. In Fig. 4 we plot the number
expectation value for the two parameter setsk5k0/10 and
k0 ~largerk produces more particles!. The other parameters
areak051, v1520.9, andd55 in both cases. The respec-
tive luminosities are 0.000 021k0

2 and 0.000 37k0
2. Because of

the finitek, the length of the bump is not given bya. We
instead define an effective length as the distance between the
two vb(x)520.7 locations. We obtain approximate values
of 2/k0 for the k5k0 case and 20/k0 for the k5k0/10 case.
The relevance of this length is that it seems to determine the
frequency of oscillation in the spectrum. This is evident after
comparing thek5`, ak052 metric spectrum in Fig. 2 with
thek5k0 metric spectrum of Fig. 4. A similar comparison of
the k5k0/10 metric spectrum of Fig. 4 with that of the
k5`, ak0520 metric spectrum~not shown! also agrees
with this.

3We consider only frequenciesv such that all roots to the disper-
sion relation are real for the given value ofv0.
4We usedMATHEMATICA to solve Eq.~7!.

FIG. 2. Number expectation value as a function of Killing fre-
quency for the bump metric. The parameter sets arev1520.9,
k5`, and ak051, 2, 3, 5, 7, and 9. The peaks~leftmost for
ak059) move towards decreasingv asak0 increases.

FIG. 3. Number expectation value as a function of Killing fre-
quency for the bump metric. The parameter set isv1520.9,
k5`, andak0550.
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For the other finitek parameters, we shall just summarize
the qualitative features of the spectra. We define as above an
effective lengthaeff as the distance between the two locations
wherevb(x)5(v01v1)/2. Whenak@1 andd>1, aeff'a;
otherwise we haveaeff.a. We find that the shape of the
particle flux spectrum is qualitatively that of thek5` bump
metric with the samev0 andv1 and with lengthaeff . That is,
the number of oscillations is the same, and their respective
peaks occur at approximately the same frequencies. They
differ in the amount of particle creation though. If
k/k0@1, ak@1, and d>1 this difference is fairly small;
otherwise, the amount of particle creation for the smoothed
out bump metrics is significantly smaller.

To see the behavior of the amount of particle creation, we
plot in Fig. 5 the luminosity as a function of bump length
a for thek5` bump metrics withv1520.9. The luminos-
ity starts oscillating with a large amplitude until the bump
reaches a sufficient length (ak0@1). After that it continues
to oscillate about a fixed luminosity with a much smaller

amplitude of oscillation. We see a similar behavior of the
luminosity as the other parameters (v1, v0, k, d) are varied.

B. High temperature black holes

We again begin with the exactly solvable cases. In Fig. 6
we plot the number expectation value versus frequency for
the black hole metrics with parameter setsk5`, and
v1521.25 and21.5 ~larger uv1u produces more particles!.
The respective luminosities are 0.001 23k0

2 and 0.002 02k0
2.

If we further increaseuv1u, the particle creation per Killing
frequency increases. However it does not increase without
bound with increasinguv1u, but rather asymptotes to an upper
bound.

We are also interested in large, but finite, temperature
black holes. In Fig. 7 we plot the numerically generated
number expectation value for a pair of black hole metrics
and the corresponding thermal prediction for each. In in-
creasing order of the amount of particle creation the curves
are a black hole metric withTH5k0/5, a black hole metric
with TH5k0, the thermal prediction forTH5k0/5, and the
thermal prediction forTH5k0. For the black hole metrics the
other parameters were set tov1521.5 andd51. If we fur-
ther increase the temperature of the black hole metrics we
find very little change in the number expectation value, while
the thermal prediction increases without bound. In fact, there
is less than a percent difference between thev1521.5 curve
of Fig. 6 and theTH5k0 black hole metric of Fig. 7.

If we instead decrease the black hole temperature, we find
that the numerically calculated number expectation value and
the thermal prediction begin converging. For instance, keep-
ing all the parameters for the black hole metric as above, but
lowering the temperature toTH5k0/10, we find that the de-
viation from the thermal prediction for a black hole of the
same temperature remains less than roughly 30% out to
v'1/2TH . In @1# even lower temperature black holes were
considered. In one case for a black hole of temperature
TH'0.0008k0, they found that the percent difference be-
tween the computed and thermal number expectation values

FIG. 4. Number expectation value as a function of Killing fre-
quency for the bump metric. The parameter sets areak051,
v1520.9,d55, andk5k0/10 andk0. The largerk produces more
particles.

FIG. 5. Plot of the luminosity for the bump metric withk5`
andv1520.9 as a function of the bump lengthak0.

FIG. 6. Number expectation value as a function of Killing fre-
quency for the black hole metrics. The parameter sets arek5`,
andv1521.25 and21.5. The larger amplitude curve corresponds
to the largeruv1u.
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remained less that 0.1% for frequenciesv,43TH .

V. DISCUSSION

A. Bump

We begin by discussing qualitatively the source of the
particle creation. We start with thek5` bump metrics,
where vb(x)5v1 for 2a/2,x,a/2, and isv0 otherwise.
The standard method of computing the particle creation of a
positive Killing frequency packet, which we take to be right
moving and located atx@0 in this case, involves propagat-
ing it backward in time. To describe this motion in words is
complicated, but with a picture the qualitative features are
obvious. In Fig. 8 we display the motion of such a packet.
One sees that scattering occurs atx56a/2, and results in an
infinite number of left moving packets located atx@0 and
an infinite number of right moving packets located atx!0.
The packets atx!0 are composed of purely positive freefall
frequencies, but the ones atx@0 contain both positive and
negative freefall frequencies. The negative freefall frequency
packets give rise to particle creation, the amount of which is
proportional to the norm of their sum. The support of these
packets will overlap if they are sufficiently spread out in
space~which will be the case if the original right moving
packet is narrowly peaked in frequency!. Furthermore, it is
clear that any two packets are phase shifted from one another
by an amount proportional toav ~up to an additive
constant!,5 arising from one packet propagating an extra dis-
tance proportional toa. Therefore, the cross terms in the
norm of the net negative freefall frequency packet are non-

zero, and oscillate withv with a ‘‘frequency’’ proportional
to a. In Fig. 3 we saw such an oscillation, and it was noted
there that the number of oscillations increased asa was in-
creased, in agreement with our findings here.

What happens whenk is finite? Qualitatively nothing
changes. A new length scale, 1/k, enters the problem, which
would seem to make the oscillation more complicated, but
we nevertheless observe~for the few cases that we have
looked at! that the ‘‘frequency’’ of spectrum oscillations is
proportional toaeff ~defined in the results section!. That is to
say, if we consider a bump metric withk5` anda5aeff ,
we get approximately the same frequency of oscillations in
the spectrum as with a finitek bump metric with effective
lengthaeff .

So far we have had to assume that the wave vector roots
to the dispersion relation~3! are real in thevb(x)5v1 re-
gion. This is only true ifv,vcrit(v1), see Sec. II. When
v.vcrit(v1) and vb(x)5v1, two of the wave vector roots
are real and the other two complex conjugates, i.e., see Sec.
II. A positive Killing frequency packet centered about a fre-
quencyv.vcrit(v1) ~and is right moving and located some-
where atx@0) behaves very differently when propagated
backward in time. For the general bump metric, i.e.,k finite,
a piece of this packet will be reflected and will propagate
back out towardx5` as before~it also contains both posi-
tive and negative freefall frequencies!. However, the remain-
der of the packet continues to propagate toward smallerx
until it reaches a point where its group velocity vanishes, i.e.,
a classical turning point. Around this point the packet under-
goes a process known as mode conversion, and turns around
and propagates out towardx5` in the form of a packet
containing both positive and negative freefall frequencies.

Mode conversion, as the name implies, is a process
whereby one type of mode~s! is converted into another type

5Actually each packet also picks up a phase from scattering, but
that is proportional tov/k0 and is negligible compared toav when
a@1/k0 .

FIG. 7. Number expectation value as a function of Killing fre-
quency for black hole metrics with temperaturesTH5k0 and
TH5k0/5, along with the thermal predictions for the respective tem-
peratures. The other parameters for the black hole metrics are
v1521.5 andd51. In increasing order of the amount of particle
creation, the curves correspond to the lower temperature black hole
metric, higher temperature black hole metric, lower temperature
thermal prediction, and higher temperature thermal prediction.

FIG. 8. Diagram of the wave packets produced by scattering
when an outgoing wave packet atx@0 is propagated backward in
time. The rightward pointing arrow atx.a/2 is the outgoing wave
packet. The leftward pointing arrows atx.a/2 and the rightward
pointing arrows atx,2a/2 are the resulting ingoing packets. The
former contain a negative freefall frequency part which gives rise to
the particle creation.
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of mode~s!. In this case, a right moving mode has been con-
verted into a pair of left moving, shorter wavelength modes.
This sounds like an ordinary reflection process, but it differs
in one way. The sign of the wave vector of the right moving
packet is the same as that of one of the left moving packets.
What makes this particularly interesting is that exactly this
behavior was discovered by Unruh@4# in the case of a back-
ground black hole geometry.

How can this same behavior then appear without a black
hole present? The answer is that the role of the event horizon
as a causal horizon has been replaced by that of aneffective
horizon. The equation of motion~1! of the field is not Lor-
entz invariant and the propagation of wave packets is not
causal in the background metric. Nevertheless, wave packets
peaked in frequency about anv.vcrit(v1) have a vanishing
group velocity at some spatial coordinate, i.e., a classical
turning point. Beyond this point the wave packet is no longer
propagating, but rather tunneling. The classical turning point
therefore is a sort of effective horizon, and is the place
around which mode conversion occurs, in both spacetimes
with and without black holes. In fact, the only special prop-
erty of the event horizon in these models is that it is the
infimum of positions of all effective horizons, i.e., the effec-
tive horizon for any wave packet occurs at anuv(x)u,1.

What is not clear, however, is how the amount of particle
creation depends on the effective horizon versus the event
horizon for a black hole spacetime. This will be discussed a
little more in the next section.

Above we said that a piece of a wave packet that reaches
its effective horizon will tunnel through the bump. When
a'1/k0 or smaller, this is important; however, when
a@1/k0 and a@1/k, this effect is negligible. This implies
that the number expectation value spectrum abovevcrit(v1)
becomes independent ofa for largea. This explains why the
luminosity in Fig. 5 settled down to approximately a constant
value ~up to a small oscillation! for large enougha.

Finally, recall that even in thev.vcrit(v1) case just dis-
cussed, there were multiple negative freefall frequency pack-
ets produced. Just as in thev,vcrit(v1) case, these packets
should interfere and produce oscillations in the number ex-
pectation value spectrum. Indeed this is the case. This same
behavior was noted, and discussed in detail, in@1#.

B. High temperature black holes

We now turn to a discussion of high temperature black
holes. These are unphysical because we do not expect phys-
ics to be described in the manner we are using at such large
Hawking temperatures. However, they are of interest in the
context of understanding the behavior of the modified wave
equation that we have adopted as our model. Specifically we
would like to know where the spectrum begins to deviate
from the thermal prediction for all frequencies. For example,
for the lower temperature black holes considered in@1#, large
deviations from thermality were found at frequencies
v@TH while the low frequency spectrum was within at least
(TH /k0)

3 of the thermal prediction forv<TH for certain
metrics@1#.

The first step is to make sure that there is a black hole
whose spectrum differs significantly at all frequencies from
the thermal prediction. Since we expect this to occur for high

temperature black holes, we take the limitTH→`. The num-
ber expectation value for such a case was plotted in Fig. 6.
One can also show analytically that the low frequency spec-
trum is given byTeff /v to leading order inv, where

Teff5k0A12v0
211v0
12v0

v111

v121

v11v0
v12v0

. ~9!

Since the thermal prediction is an infinite number expecta-
tion value for all frequencies, we have an example where the
two predictions are very different for all frequencies. One
might worry that the frequency where the two number ex-
pectation values begin to deviate significantly simply de-
creases with increasing Hawking temperature, converging to
zero asTH→`. This is unlikely though. If we smooth out the
black hole of Fig. 6, but still keepk@k0, we expect essen-
tially the same number expectation value spectrum. The rea-
son is that all the modes that enter the problem have a wave-
length.2p/k0. Therefore, to them the background appears
just as in the infinite Hawking temperature black hole. One
can check this by numerical calculation also, and indeed one
finds almost identical spectra under the above conditions,
see, for instance, Fig. 7.

Where do the modified wave equation and the standard
wave equation begin to predict the same Hawking spectra?
For instance, when do their predictions differ by less than
1% atv5TH? From dimensional analysis we would expect
the transition to occur aroundTH'1/k0. From Fig. 7 we see
that this is roughly correct. As stated in the text, for a black
hole withTH5k0/10 the numerical and thermal expectation
number values differed by less than 30% forv,TH/2. At
TH5k0/100 the relative difference is less than 0.2% for all
frequenciesv,TH . Therefore the transition occurs roughly
aroundTH'k0/100. We have considered only ‘‘smoothed’’
out metrics to produce the above data, that is metrics with
d51 or 2. The agreement gets worse as we increased
though and hence the ‘‘transition’’ temperature would de-
crease.

VI. CONCLUSION

We have studied the particle creation occuring in space-
times containing a uniformly moving bump. Qualitatively we
have been able to understand the cause of the particle cre-
ation, either purely by scattering of wave packets or also by
mode conversion, and the basic shape of the corresponding
spectrum, i.e., the oscillations. We have also briefly consid-
ered some high temperature black holes to probe the behav-
ior of the modified wave equation. We have shown that a
transition in the number expectation value spectrum occurs
aroundTH'k0/100. At smaller temperatures, the lower part
of the spectrum agrees rather well@1,4,6#, with the thermal
prediction. At larger temperatures however, the entire spec-
trum deviates significantly from the thermal prediction.

Unfortunately we are still lacking more quantitative pre-
dictions. For instance, we would like to understand how the
luminosity for the class of bump metrics considered scales
with the various parameters, i.e.,v0, v1, k, anda. Further-
more, we would like a better estimate of the frequency of
oscillations in the spectrum. However, even a very rough
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calculation is a formidable task in these models. For in-
stance, just computing the wave vector roots of the disper-
sion relation in some reasonable approximation when
v'k0 is difficult.

We are also still lacking a good understanding of what
determines the amount of particle creation by mode conver-
sion. For instance, what is the relationship between the
amount of particle creation via mode conversion in a non-
black-hole spacetime as compared to a black hole spacetime?
Conversely we can ask what is so special about the event
horizon of a black hole for our modified wave equation?

We end with two applications of this work. One possible
source of the curvature making up the bump metric is a uni-
formly moving cosmic string. The above analysis gives an
estimate, for a few cases anyway, of the amount of particles
produced from its motion. Another source is to consider the

fluid flow analogue developed by Unruh@4#. Here the bump
is easily generated as a spatial gradient in the flow velocity
of a fluid. This would present a possibly realistic place to
measure the particle creation by a mode conversion process.
Obviously the sonic hole case is the most interesting, but as
the above analysis shows, a sonic hole is not needed in order
to create particles by mode conversion.
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