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For quantum fields on a curved spacetime with a Euclidean section, we derive a general expression for the
stress-energy tensor two-point function in terms of the effective action. The renormalized two-point function is
given in terms of the second variation of the Mellin transform of the trace of the heat kernel for the quantum
fields. For systems for which a spectral decomposition of the wave operator is possible, we give an exact
expression for this two-point function. Explicit examples of the variance to the mean ratio
D85(^r2&2^r&2)/^r&2 of the vacuum energy densityr of a massless scalar field are computed for the spatial
topologies ofRd3S1 andS3, with results ofD8(Rd3S1)5(d11)(d12)/2, andD8(S3)5111, respectively.
The large variance signifies the importance of quantum fluctuations and has important implications for the
validity of semiclassical gravity theories at sub-Planckian scales. The method presented here can facilitate the
calculation of stress-energy fluctuations for quantum fields useful for the analysis of fluctuation effects and
critical phenomena in problems ranging from atom optics and mesoscopic physics to early universe and black
hole physics.@S0556-2821~97!02410-7#

PACS number~s!: 04.62.1v, 05.40.1j, 42.50.Lc, 98.80.Hw

I. INTRODUCTION

Many important physical processes involve vacuum fluc-
tuations of quantum fields. Famous examples are the Casimir
effect @1# and Lamb shift. These effects shed light on some
basic issues of quantum field theory, and guide the beginning
probes and queries into establishing a viable theory of quan-
tum fields, in curved or topologically nontrivial spacetimes
~see, e.g.,@2#!. Basic issues such as the ambiguity in the
definition of vacuum states, particles, energy, and the regu-
larization of the energy-momentum tensor occupied the cen-
tral attention of investigators in the 1970s. Amongst the
many formalisms developed, thez-function @3,4# and point-
separation@5,6# regularizations are particularly relevant to
our problem. In the 1980s, two directions were noteworthy in
this field: the back reaction of particle creation on the dy-
namics of the Universe@7# and the fate of black hole collapse
@8#, and the study of symmetry breaking and critical phe-
nomena via interacting field theory in curved spacetime~see,
e.g., @9#!. These studies are needed for understanding the
dynamics of the inflationary universe, such as spinodal de-
composition and nucleation, and from it, astrophysical con-
sequences such as entropy generation and galaxy formation.
Since particle creation stems from amplification of vacuum
fluctuations, and galaxy formation have them as seeds, both
directions share a common need to understand better the
properties of vacuum fluctuations of quantum fields and how
they affect the dynamics of spacetime in the early universe
and state of the matter at the observable classical domains or
epochs. In the 1990s, the theoretical underpinning of this
issue was taken up afresh in the work of Ford and co-
workers @10,11#, who investigated amongst other problems
the effect of vacuum fluctuations in a quantum field on the
causal structure of a quantum field theory, and in the work of
Hu and co-workers@12,13#, who introduced nonequilibrium
statistical mechanical concepts and techniques for the study

of noise and fluctuations associated with a quantum field,
with applications to back reaction problems in semiclassical
gravity @14,15# and structure formation problems in infla-
tionary cosmology@16,17#.

In this paper, we aim to set up the basic framework for the
calculation of the fluctuations of energy and momentum for
quantum fields in curved spacetimes, focusing on the gener-
alization of the zeta-function regularization method@18#. El-
egant and powerful, its application is unfortunately limited to
spacetimes which admit an Euclidean section. But this al-
ready includes many cases of physical importance, such as
the de Sitter universe~in theS4 coordination!, Kaluza-Klein
theory (M43BD), and finite temperature theory~in the
imaginary-time formulationR33S1). Later we intend to
connect it with the point-separation method, which, as one of
us has anticipated, actually contains untapped useful infor-
mation about the statistical mechanical~or kinetic theory!
properties of systems of particles interacting with fields in a
curved spacetime. The result obtained here is also useful for
the calculation of fluctuations of Casimir energy relevant in
atom optics@19#, mesoscopic physics@20#, and correlations
of quantum fields@21,22# relevant to black hole fluctuations
@23–25# and possible Planck scale phase transitions@26#.

The goal of this paper is to develop a regularized expres-
sion for the stress-energy tensor two-point function of a
quantum field in a curved spacetime. This is done by first
expressing the two-point function solely in terms of the
quantum field effective action and its variations with respect
to the metric. The effective action is derived by using the
trace of the heat kernel that corresponds to the field action.
Since the effective action can be expressed as a function of
the Mellin transform of the heat kernel, the needed variations
of the effective action can be evaluated by considering the
variations of the heat kernel. The variations of the heat ker-
nel can be related to variations of an operator acting on the
heat kernel in the varied heat equation.
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In Sec. II we relate the stress-energy two-point function to
the second metric variation of the effective action. In Sec. III
we show how to express this second variation in terms of the
generalized zeta function for the system. Section IV presents
the specialization of these expressions to the Klein-Gordon
scalar field. In particular, we derive the expression for the
variance of the energy density, and discuss the need for regu-
larization. In Secs. V and VI we explicitly compute the en-
ergy density variance for a flat spacetime with one periodic
dimension and for the Einstein universe, respectively. We
give a brief discussion of our results in Sec. VII.

II. STRESS ENERGY TWO-POINT FUNCTION

We start by considering the generating functional~or par-
tition function! of a scalar fieldf in the Euclidean section
S of a spacetime manifoldM,

Z5E Dfe2S[f]5^0,outu0,in& ~2.1!

and its functional derivatives with respect to the metric:

dZ

dgab~x!
52E Df

dS

dgab~x!
e2S52 K 0,outU dS

dgab~x!
U0,inL ,

d2Z

dgab~x!dgcd~y!
5E DfF dS

dgab~x!

dS

dgcd~y!
2

d2S

dgab~x!dgcd~y!Ge2S

5 K 0,outU dS

dgab~x!

dS

dgcd~y!
U0,inL 2 K 0,outU d2S

dgab~x!dgcd~y!
U0,inL ~2.2!

whereu0in,out& are the vacuua defined at the in and out states. In terms of the effective actionW5 ln Z, this becomes

d2W

dgab~x!dgcd~y!
5
1

Z

d2Z

dgab~x!dgcd~y!
2

dW

dgab~x!

dW

dgcd~y!
. ~2.3!

The expectation value of the quantum stress-energy tensor is given by

^Tab&5
^0,outuTabu0,in&

^0,outu0,in&
52

2

Ag~x!

^0,outudS/dgab~x!u0,in&
^0,outu0,in&

52
2

Ag~x!

dW

dgab~x!
. ~2.4!

In analogue with this, we define the correlation function for the stress-energy tensor as

^Tab~x!Tcd~y!&5
^0,outuTab~x!Tcd~y!u0,in&

^0,outu0,in&
5

4

Ag~x!g~y!

1

Z K 0,outU dS

dgab~x!

dS

dgcd~y!
U0,in&

5
4

Ag~x!g~y!
F d2W

dgab~x!dgcd~y!
1

dW

dgab~x!

dW

dgcd~y!
1 K d2S

dgab~x!dgcd~y!L G . ~2.5!

For any local action the last term will not contribute to the
final expression for the stress-energy correlation function.
For such an action, this expression will depend onx,y as a
d function: d(x2y). Thus it need not be considered when
computing the correlation function forxÞy. The autocorre-
lation is understood as resulting from this by taking the
y→x or coincidence limit. Recognizing the second term in
the last line as a product of expectation values of the stress-
energy tensor, we can define the bitensor

DTabcd
2 ~x,y![^Tab~x!Tcd~y!&2^Tab~x!&^Tcd~y!&

5
4

Ag~x!g~y!

d2W

dgab~x!dgcd~y!
. ~2.6!

III. SECOND VARIATION OF THE EFFECTIVE ACTION

The classical action of a scalar fieldf(x) is

S@f#5
1

2E dxf~x!Hf~x!, ~3.1!

whereH is a second-order elliptic operator. From the spec-
tral decomposition of this operator,H5(nlnun&^nu, where
n denotes the collective indices of the spectrum, the effective
action can be expressed as

W52
1

2
ln det~H/m!52

1

2
Tr ln

H

m
52

1

2(n ln
ln

m
,

~3.2!
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where we assume the zero modes ofH have been projected
out andm is a normalization constant with dimensions of
mass squared. This expression for the effective action is only
formal sinceH is not trace class. We regularize the effective
action and the expressions derived from it via the
z-function method@3,4#.

The z function for this system is defined as

zH~s!5Tre2sln H/m5ms(
n

ln
2s . ~3.3!

For 2s.dimM5d, this sum is convergent. Then an analytic
continuation ins is found such that it includes a neighbor-
hood ofs50. From this analytic continuation the regularized
effective action is given as

WR5
1

2

dz~s!

ds U
s50

5
1

2
z8~0!. ~3.4!

For positiveH the definition of theG function yields

zH~s!5
ms

G~s!
E
0

`

ts21TrU0~ t !dt, U0~ t !5e2tH;

~3.5!

i.e., thez function is given as the Mellin transform of the
trace of the heat kernelU0(t). We know TrU0(t);t2d/2 for
t→0. Hence for Eq.~3.5! to be convergent, we have the
condition s.d/2. This is most often the expression from
which an analytic continuation is derived. In fact, one of the
main points of thez function idea is that formal expressions

such as TrU0(t) need be modified by the introduction of a
factor tn. Then, once the analytic continuation is found, one
takesn50.

We now consider the effect of two small metric perturba-
tionsd1 andd2 on the effective action.~They are assumed to
be independent of the order with which they act.! The re-
sponse of the effective action to these perturbations is

d2d1WR@g#5WR@g1d11d2#1WR@g#2WR@g1d1#

2WR@g1d2#

5
1

2

d

ds
@d2d1zH~s!#us50 , ~3.6!

d2d1zH~s!5
ms

G~s!
E
0

`

dt ts21Tr$e2t~H1d1H1d2H !

2e2t~H1d1H !2e2t~H1d2H !1e2tH%.

~3.7!

To evaluate this, we use the Schwinger perturbative expan-
sion @28#. ForU(t)5e2t(H1H1), whereH15d1H!H,

TrU~ t !5TrU0~ t !2tTr@H1U0~ t !#1
t2

2E0
1

du1

3Tr@H1U0„~12u1!t…H1U0~u1t !#1•••.

~3.8!

Using this, we can write the response of thez function to
these perturbations as

d2d1zH~s!5
ms

2G~s!
E
0

`

dt ts11E
0

1

du1$Tr@~d1H !U0„~12u1!t…~d2H !U0~u1t !#1Tr@~d2H !U0„~12u1!t…~d1H !U0~u1t !#%.

~3.9!

As it stands, it is not finite. When the traces are taken involvingU0„(12u1)t… and U0(u1t), the divergences at
(12u1)t,u1t→0 are present. At this point, we modify the above expression for the second variation of thez function by
introducing the factor@u1(12u1)t

2#n. At the end of the calculation, once the analytic continuation is found, we setn50. We
view the introduction of this factor as an extention of thez-function method to the situation where the second variation is
needed. The replacement ofU0(t)→tnU0(t) is the spirit of the usualz-function method and reproduces the usual results when
applied to the traditional problems, such as finding the first variation, which produces the expectation value of the quantum
stress-energy tensor. After the change of variables

u5~12u1!t, v5u1t ~3.10!

the twice-variedz function transforms to

d2d1zH~s!5
ms

2G~s!
E
0

`

duE
0

`

dv~u1v !s~uv !n$Tr@~d1H !U0~u!~d2H !U0~v !#1Tr@~d2H !U0~u!~d1H !U0~v !#%.

~3.11!

Considering the first trace in the above expression, we find

Tr@~d1H !U0~u!~d2H !U0~v !#5 (
n,n8

^n8u~d1H !e2uHun&^nu~d2H !e2vHun8&5 (
n,n8

e2uln2vlm8^n8u~d1H !un&^nu~d2H !un8&.

~3.12!

By defining
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Tab@fn~x!,fn8* ~x!#[2
2

Ag~x!
K n8U dH

dgab~x!
UnL 52

2

Ag~x!
Edz fn8* ~z!

dH

dgab~x!
fn~z!, ~3.13!

we can now write the stress-energy correlation bitensor as

DTabcd
2 ~x,y!5

1

2

d

dsF ms

G~s!
E
0

`

duE
0

`

dv~u1v !s~uv !n(
n,n8

e2uln2vln8Tab@fn~x!,fn8
* ~x!#Tcd@fn8~y!,fn* ~y!#G , ~3.14!

where thes,n→0 limit is understood.
For the rest of this paper, we will specialize to the cases of homogeneous spacetimes. This impliesDTabcd

2 (x,y) will only
depend onr5x2y. We find it convenient to average over allx. We can do this while leaving the points separated byr . Also,
the homogeneity will usually lead to a degeneracy of the eigenvalues. Thus the collective quantum numbern can be split into
principal and degenerate partsn→n,m and the eigenvalues only depend onn: lnm→ln . This allows the sum over the
degenerate indices to be done before evaluation of thez function. Putting all these together the stress-energy two-point
function becomes

DTabcd
2 ~r !5

1

2V

d

dsF ms

G~s!
E
0

`

duE
0

`

dv~u1v !s~uv !nS (
n,n8

e2uln2vln8 (
mm8

E
M
dx Tab@fnm~x!,fn8m8

* ~x!#

3Tcd@fn8m8~x1r !,fnm* ~x1r !# D G , ~3.15!

whereV5*Mdx, the volume of the manifold. If the mani-
fold is noncompact, it is understood to be the unit volume.

IV. FORM FOR THE KLEIN-GORDON FIELD

We now develop the general form for the second variation
of the z function for the Klein-Gordon field. In the Lorentz-
ian sector, we use the Misner-Thorne-Wheeler~MTW! sig-
nature convention (21,1, . . . ), and thus in the Euclidean
sector, we have the signature (1,1,. . . ). We assume the
metric can be given the form

gab5S 1 0

0 hi j
D , ~4.1!

wherehi j is the metric for the spatial section. We denote the
time and spatial variables byx5(t,x), the invariant spatial
volume form bydx, and the spatial manifold byS ~thus
M5S13S).

The wave operator for the Klein-Gordon field is given by

H52h1jR1m252
]2

]t2
2SD1jR1m2. ~4.2!

Let un(x) be the eigenfunctions of SD: SDun(x)
52kn

2un(x), where n denotes the~collective! quantum
numbers for the spatial part of the spectrum. We assume the
un(x) are orthonormal. The Euclidean time is made periodic
with a peroid ofb51/T, whereT can be interpreted as a
temperature. The eigenfunctions are thus given by

fk0,n
~x!5

e2 ik0t

Ab
un~x!, k05

2pn0
b

, n050,61,62, . . . ,

~4.3a!

and the eigenvalues by~see, e.g.,@27#!

lk0 ,n
5k0

21kn
21jR1m2. ~4.3b!

From our definition of the stress-energy tensor~3.13! we
find

Tab@c,f#~x![
2

Ag~x!
E Ag~x8!c~x8!S dHx8f~x8!

dgab~x! Ddx8
522¹ac¹bf1gab~¹cc¹cf1c¹c¹

cf!

12jcfRab . ~4.4!

This differs from the usual definition ofTab@c,f#, but this is
to be expected. The eigenvalues used are themselves differ-
ent, since we have the extrat degree of freedom.

In this paper, we wish to concentrate on computing the
autocorrelation of the energy density

Dr2~x![ lim
y→x

„^r~x!r~y!&2^r~x!&^r~y!&…, r5T00.

~4.5!

This will give a measure for the magnitude of the fluctua-
tions of the stress-energy vacuum expectation value. This
choice yields

r@f,c#52~]tf]tc2c]t
2f!1~¹ ic¹ if1cSDf!,

~4.6!

wherei is summed over the spatial degrees of freedom only.
This becomes

r@fn ,fn8
* #52~k0

21k0k081kn
2!fnfn8

* 1~¹ ifn!~¹ ifn8
* !
~4.7!
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when we specialize to eigenmodes~4.3!. When we considerur@fn ,fn8
* #u2 the contribution from thefn*fn8¹ ifn¹

ifn8
* and its

conjugate will vanish when summed over. This will be shown case by case. This assumption provides

ur@fn ,fn8
* #u25~k0

21k0k081kn
2!~k08

21k0k081kn8
2

!ufnu2ufn8
* u21u~¹ifn!~¹

ifn8
* !u2. ~4.8!

At this point, we wish to take the zero-temperature limit, i.e.,b→` whereby(n052`
` →(b/2p)*2`

` dk0. We can now do

these sums and/or integrals easily, since they amount to calculating the moments of Gaussians. We find

(
n052`

`

e2~2pn0 /b!2u→
b

2pE2`

`

e2uk0
2
dk05

b

2Ap
u21/2,

(
n052`

` S 2pn0
b D 2e2~2pn0 /b!2u→

b

2pE2`

`

k0
2e2uk0

2
dk05

b

4Ap
u23/2, ~4.9!

and there is zero contribution for any odd power ofk0 or k08 . The normalization offn andfn8 provide a factor ofb
22 which

cancels the powers ofb introduced in approaching theb→` limit. Introducing the functions

Jnn8~u,v !5
1

8pV~uv !1/2
H 1

uv
1

kn
2

v
1

kn8
2

u
12kn

2kn8
2 J (

mm8
E

S
uunmu2uun8m8u

2dx, ~4.10a!

Qnn8~u,v !5
1

8pV~uv !1/2S 1u12kn
2D (

mm8
E

S
unm~¹ iunm* !un8m8

* ¹ iun8m8dx, ~4.10b!

Pnn8~u,v !5
1

4pV~uv !1/2(mm8
E

S
u~¹ iunm!~¹ iun8m8

* !u2dx, ~4.10c!

and

Cnn8~u,v !5Jnn8~u,v !1Qnn8~u,v !1Qn8n~v,u!1Pnn8~u,v !, ~4.11!

we define thez function

zC~s,n!5 (
n,n8

E
0

`E
0

`

~u1v !s~uv !nCnn8~u,v !e2lnu2ln8vdvdu. ~4.12!

From it, we derive an expression for the regularized autocorrelation of the energy density as

Dr25
1

2

d

dsF ms

G~s!
zC~s,n!GU

s50,n50

5
1

2
lim
n→0

zC~0,n!, ~4.13!

where we have used 1/G(s);s1gs210(s3) (g is Euler’s constant! for s;0. We have assumedn.d/211, in which case
both zC(0,n) anddzC(s,n)/dsus50 are finite. Thus to find the regularized expression forDr2, we need to find the analytic
continuation ofzC(0,n) in n such that it is finite atn50.

V. FLUCTUATIONS FOR S5RD3S1

As the first application, we calculate in this section the variance of the energy density for a massless (m50) minimally
coupled (j50) scalar field on a (d12)-dimensional flat (R50) spacetime which is periodic on one spatial dimension with
periodL. For this geometry, the spatial eigenfunctions are

ukn~x,z!5
eik•x1 i lz

A~2p!dL
, kPRd, n50,61,62, . . . , ~5.1!

with l52p/L. Denoting byx5(x1 , . . . ,xd) the coordinates for the open dimensions andz for the one compact dimension, we
haveSD5( j51

d ]xj
2 1]z

2 and hencekk,n
2 5k21 l 2n2 (k25uku2). From this we see we should takek andn as the principal indices

and the angular degeneracy ofk as the degenerate indices, i.e.,(m→*dVd21, integration over the unitd21 sphere. Where
there is no confusion, we will denote the volume of the sphere asSd21.

To evaluate Eq.~4.10! we sum over the degenerate indices and perform the volume average
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E dVd21E dVd218
1

Vol~S!
E dxdzuuknu2uuk8n8u

25S Sd21

~2p!dL D 2 ~5.2!

from which Eq.~4.10a! becomes

Jknk8n8~u,v !5
1

8pS Sd21

~2p!dL D 2 1

~uv !1/2H 1

uv
1
k21 l 2n2

2v
1
k821 l 2n82

2u
12~k21 l 2n2!~k821 l 2n82!J . ~5.3!

Also, since¹ iukn¹
iuk8n8
* 5(kk8cosg1l2nn8)uknuk8n8

* where cosg5k̂• k̂8, the momentum correlation term~4.10c! is

Pknk8n8~u,v !5
1

8pS Sd21

~2p!dL D 2 2

~uv !1/2H k2k82d
1 l 4n2n82J . ~5.4!

Here we have used*dVd21*dVd218 cosg50 and Eq.~A7! from the Appendix:*dVd21*dVd218 cos2g5(Sd21)2/d. Also, when
summed overn andn8, Qknk8n8 vanishes.

We now turn to the principal index sums fork and k8. First consider the case whenn50 ~or n850), this leads us to
evaluate

E
0

`

dkkd21E
0

`

duun2akbe2k2u. ~5.5!

Here (a,b)5(3/2,0) or (1/2,2), and 2a1b2350. We assume a boundary on the nonperiodic dimensions at large distance
and moved to infinity. This is effected by having*0

`dk→ lime→0*e
` . Then Eq.~5.5! becomes

E
e

`

dkkd21E
0

`

duun2akbe2k2u5G~n2a11!E
e

`

dkkd22n ——→
n→0

2
G~12a!
d11 ed11 ——→

e→0
0, ~5.6!

where we have usedn.d/2 in evaluating thek integration. Thus we find there is no contribution from then50 or n850
terms inzC .

Turning to the case wheren andn8 do not vanish, we consider the function

Cnn8~u,v !5E
0

`

kd21dkE
0

`

k8d21dk8Cknk8n8~u,v !e2uk22vk82. ~5.7!

In the integrand, there are terms with either factors ofkd21 or kd11, similiarly for k8. Using

E
0

`

kd21dke2uk25
1

2
GS d2Du2d/2 and E

0

`

kd11dke2uk25
1

2
GS d2Du2d/2

d

2u
, ~5.8!

we have the rule that upon doing thek,k8 integrations, we get an overall factor of@G(d/2)/2#2(uv)2d/2 and each factor of
k2 becomesd/2u, andk82 becomesd/2v. Applying this rule, Eq.~4.11! has been determined

Cnn8S ul 2 , vl 2D5
1

8pFSd21l d13

2~2p!dL
GS d2D G

2S 1

uv D
~d13!/2H ~d11!~d12!

2
1~11d!~un21vn82!14uvn2n82J ~5.9!

and the correspondingz function is

zC~0,n!5B (
n,n851

` E
0

`

duE
0

`

dv~uv !n2~d13!/2H ~d11!~d12!

2
1~11d!~un21vn82!14uvn2n82J e2n2u2n82v, ~5.10!

where

B5
1

8pFSd21l d1122n

~2p!dL
GS d2D G

2

. ~5.11!

This form of thez function now allows us to perform the needed analytic continuation. We make use of the relation

(
n51

`

naE
0

`

ts21e2n2t5G~s!zR~2s2a!, ~5.12!

wherezR(s) is the Riemann zeta function. Recalling Eq.~4.13!, the variance of the energy density is
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Dr25
B

2
zR„2~d11!…2H ~d11!~d12!

2
GS 2

d11

2 D 212~d11!GS 2
d11

2 DGS 2
d21

2 D14GS 2
d21

2 D 2J . ~5.13!

SinceG„2(d21)/2…52@(d11)/2#G„2(d11)/2…, the second and third terms in the above expression cancel, leaving,

Dr25
~d11!~d12!

2 F Sd21

2pd11Ld12GS d2DGS d12

2 D zR~d12!G2 ~5.14!

by way of the Riemann zeta function reflection formula,

GS s2D zR~s!5ps21/2GS 12s

s D zR~12s!. ~5.15!

This is our result for the zero-temperature variance of the
vacuum energy density for a massless minimally coupled
quantum scalar field on a (d12)-dimensional spacetime pe-
riodic in one spatial dimension. To get a measure of the
fluctuations, we consider the dimensionless quantity

D85
^r2&2^r&2

^r&2
. ~5.16!

For the system at hand, the energy density is@18#

^r&52
Sd21

2pd11Ld12GS d2DGS d12

2 D zR~d12!.

~5.17!

Thus we get one of the main results of this paper:

D8~S5Rd3S1!5
~d11!~d12!

2
. ~5.18!

Kuo and Ford@11# computed the same measure of the
fluctuations for the case ofS5R23S1 via a different
method. Their result ofD856 is obtained here ford52. It is
interesting to note that the relative amount of fluctuation in-
creases quadratically with the dimension of the spacetime.

VI. FLUCTUATIONS FOR S5S3

As a second example, we calculate the fluctuations of
energy density for a massless (m50) conformally coupled
(j51/6) scalar field on a three-dimensional space of con-
stant curvatureS3 with radiusa. The spacetimeM is then
the Einstein universe.

We start by writing the spatial metric as@29#

ds25gabs
asb5 (

a51

3

l a
2~sa!2, ~6.1!

where thesa’s are the basis one-forms on the three sphere
satisfying the structure relations

dsa5
1

2
ebc
a sbsc. ~6.2!

Here ebc
a , components of the totally antisymmetric tensor,

are the structure constants for the rotation group SO~3!. The
gab5 l a

2dab are constants of the space~the principal curva-
ture radii in a static mixmaster universe@30#! and for the
Einstein universeS5S3 we havel 15 l 25 l 35a/2. The cur-
vature scalar isR56/a and the volume isV52p2a3.

Using the Euler angle parametrization, the basis forms are

s152sincdu1coscsinudf,

s25coscdu1sincsinudf,
~6.3!

s35dc1cosudf,

0<u<p, 0<f<2p, 0<c<4p.

Takingea as the invariant vectors dual tos
a and defining the

angular momentum operatorsLa5 iea , the spatial Laplacian
becomes

SD5 (
a51

3

l a
22~ea!

252
4

a2
~L1

21L2
21L3

2!52
4L2

a2
.

~6.4!

For the harmonic functions onS3 we can use the SO~3!
representation ~Wigner! functions DKM

J (u,c,f), where
J50,12,1,

3
2, . . . are the principal quantum numbers and

K,M52J,2J11, . . . , J21, J are the degenerate quan-
tum numbers. We will also find it convenient to use the
SO~4! representation functions, the hyperspherical harmon-
ics with principal quantum numbern52J. From
L2DKM

J 5J(J11)DKM
J we find

kn
25

4J~J11!

a2
5
n~n12!

a2
, ln5kn

21jR5
~n11!2

a2

~6.5!

along with the spatial eigenmodes

uJKM5An11

V
DKM
J ~u,c,f! ~6.6!

for S3.
To compute Jnn8, we first use the sum rule

(M9DMM9
J (DM8M9

J )*5dM ,M8 to get (MKDMK
J (DMK

J )*
52J11. Since
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(
angular

E dxuunKMun8K8M8u
25

~n11!~n811!

V E dx(
KM

uDKM
J u2(

KM
uDK8M8

J8 u25
~n11!2~n811!2

V
, ~6.7!

Eq. ~4.10a! is given by

Jnn85
~n11!2~n811!2

8pV2~uv !1/2 F 1uv 1
n~n12!

a2v
1
n8~n812!

a2u
1
2n~n12!n8~n812!

a4 G . ~6.8!

We now turn to the momentum correlation termPnn8. To facilitate the evaluation of the spatial derivative terms, we use
properties of the generators of the Lie algebra, which for SO~3!, is just the quantum theory of angular momentum~see, e.g.
@31#!. We have

¹ iunm¹ iun8m8
* 5gabea~unm!eb~un8m8

* !5S 2aD
2 1

V
A~n11!~n811! (

a51

3

La~DKM
J !La~DK8M8

J8* !. ~6.9!

We also recast the spatial volume measure:

E
M
dx5

a3

4 E0
2p

dfE
0

p

sinuduE
0

2p

dc5
a3

4 E dV, ~6.10!

where we use the notation of@31# for dV. We assume the integrand is invariant underc→c12p. This condition is satisfied
by DKM

J .
Defining

BJJ85 (
K,M52J

J

(
K8,M852J8

J8 EdVU(
a51

3

La~DKM
J !La~DK8M8

J8* !U2, ~6.11!

the momentum term~4.10c! becomes

Pnn85
~n11!~n811!

8pV2~uv !1/2
4

a4p2BJJ8. ~6.12!

Returning to Eq.~6.11!, we can express it in terms of the angular momentum operators as

BJJ85 (
KMK8M8

EdVU12 L1DKM
J L2DK8M8

J8 1
1

2
L2DKM

J L1DK8M8
J8 1L3DKM

J L3DK8M8
J8 U2, ~6.13!

whereL65L16 iL 2 are the raising and lowering operators. Introducing the convenient notationLa , aP(1,2,0) where
L0 replacesL3 and the symbols

CK
65AJ~J11!2K~K61!, CK

05K, ~6.14!

the action of the angular momentum operators on the harmonic functions is neatly given by

LaDKM
J 5~2 i !2aCK

2aDK2a,M
J , LaDKM

J* 52 i2aCK
aDK1a,M

J . ~6.15!

Introducing

^ab;de&5 (
K,M52J

J

(
K8,M852J8

J8 EdV LaDKM
J LbDKM

J* LdDK8M8
J8 LeDK8M8

J8* , ~6.16!

we can express Eq.~6.11! as

BJJ85^00;00&1
1

4
~^11;22&1^22;11&1^12;12&1^21;21&!

1
1

2
~^02;10&1^01;20&1^10;02&1^20;01&!. ~6.17!

Using Eq.~6.15!, we can write Eq.~6.16! as
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^ab;de&5~21!b1ei a1b1d1e (
KMK8M8

CK
2aCK

bCK8
2dCK8

e EdV DK1b,M
J* DK81e,M8

J8* DK2a,M
J DK82d,M8

J8* . ~6.18!

The integral of the fourfold products of the Wigner function is given by

E dV DK1M1

J1 DK2M2

J2 D
K3M3

J3* D
K4M4

J4* 58p2(
JKM

~2J11!S J1 J2 J

K1 K2 K D S J1 J2 J

M1 M2 M D S J3 J4 J

K3 K4 K D S J3 J4 J

M3 M4 M D .
~6.19!

This can readily be seen by two applications of the sum rule

DK1M1

J1 DK2M2

J2 5 (
JKM

~2J11!S J1 J2 J

K1 K2 K D S J1 J2 J

M1 M2 M DDKM
J* ~6.20!

and the orthogonality property

E dV DKM
J* DK8M8

J8 5
8p2

2J11
dJJ8dKK8dMM8. ~6.21!

Utilizing this result, Eq.~6.16! has the form

^ab;de&58p2~21!b1ei a1b1d1e (
K,M52J

J

(
K8,M852J8

J8

CK
2aCK

bCK8
2dCK8

e (
J9,K9,M9

~2J911!S J J8 J9

K1b K81e K9
D

3S J J8 J9

K2a K82d K9
D S J J8 J9

M M 8 M 9
D S J J8 J9

M M 8 M 9
D . ~6.22!

Using the orthogonality property of the 3-j symbols,

(
M ,M8

S J J8 J1

M M 8 m1
D S J J8 J2

M M 8 m2
D 5~2J111!21dJ1 ,J2dm1 ,m2

, ~6.23!

we can reduce the above fourfold product of 3-j symbols to a twofold product by doing theM ,M 8,M 9 sums to find the final
form that is most useful to us:

^ab;de&58p2~21!b1e(
J9

~2J911! (
KK8K9

CK
2aCK

bCK8
2dCK8

e S J J8 J9

K1b K81e K9
D S J J8 J9

K2a K82d K9
D . ~6.24!

The triangularity of the 3-j symbols implies the conditiona1b1d1e50 for ^ab;de& not to vanish.
With this relation, we can evaluate the terms we need for Eq.~6.17!:

^00;00&58p2(
J9

~2J911! (
KK8K9

FKK8S J J8 J9

K K8 K9
D G2 ~6.25a!

^11;22&58p2(
J9

~2J911! (
KK8K9

CK
2CK

1CK8
1 CK8

2 S J J8 J9

K11 K821 K9
D S J J8 J9

K21 K811 K9
D ~6.25b!

5^11;22&, ~6.25c!

^12;12&58p2(
J9

~2J911! (
KK8K9

FCK
2CK8

2 S J J8 J9

K21 K821 K9
D G2, ~6.25d!

^21;21&58p2(
J9

~2J911! (
KK8K9

FCK
1CK8

1 S J J8 J9

K11 K811 K9
D G2, ~6.25e!

^02;10&58p2(
J9

~2J911! (
KK8K9

KK8CK
2C2K8S J J8 J9

K21 K8 K9
D S J J8 J9

K K821 K9
D ~6.25f!

5^10;02&, ~6.25g!
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^01;20&58p2(
J9

~2J911! (
KK8K9

KK8CK
1C1K8S J J8 J9

K11 K8 K9
D S J J8 J9

K K811 K9
D ~6.25h!

5^10;02&. ~6.25i!

We expectBJJ8 to assume the form

BJJ858p2~aJ31bJ21cJ1d!~aJ831bJ821cJ81d!. ~6.26!

Determining the coefficients by evaluatingBJJ8 for four different pairs ofJ,J8, we find

BJJ858p2J~J11!~J12!J8~J811!~J812!5
p2

2
n~n11!~n12!n8~n811!~n812! ~6.27!

and

Pnn85
~n11!2~n811!2

8pV2~uv !1/2
2

a4
n~n12!n8~n812!, ~6.28!

along with

Cnn85
~n11!2~n811!2

8pV2~uv !1/2 F 1uv 1
n~n12!

a2v
1
n8~n812!

a2u
1
4n~n12!n8~n812!

a4 G . ~6.29!

Combining these results, the neededz function is

zC~0,n!5
1

8pV2a224n (
n,n851

`

n2n82E
0

`

duE
0

`

dv~uv !n23/2~11~n221!u1~n8221!v14~n221!~n8221!uv !e2n2u2n82v.

~6.30!

Using relation~5.12!, the analytic continuation takes the form

zC~0,n!5
1

8pV2a224nH GS n2
1

2D
2

zR~2n23!212GS n2
1

2DGS n1
1

2D zR~2n23!„zR~2n23!2zR~2n21!…

14GS n1
1

2D
2

„zR~2n23!2zR~2n21!…2J . ~6.31!

Settingn50, we get finally the variance of the energy den-
sity of a scalar field on the Einstein universe:

Dr25
37

76 800p4a8
. ~6.32!

Using the result@32# for the energy density,

r5
1

480p2a4
, ~6.33!

we find the dimensionless measure of the fluctuations in the
energy density~5.16! is given by

D8~S5S3!5111. ~6.34!

Thus for the Einstein universe, the fluctuations in the energy
density are indeed quite large. Effects due to the fluctuations
of the metric will become importantbefore the size of the
Universe approaches that of the Planck scale.

VII. DISCUSSION

In this paper we have shown how the correlation function
for the quantum stress-energy tensor is related to the second
metric variation of the effective action. This parallels the
definition of the expectation value of the quantum stress-
energy as the first metric variation of the effective action. A
physically meaningful expectation value is derived from a
regularized or renormalized effective action. Likewise, the
correlation function is defined here in terms of the second
variation of the regularized effective action. The correlation
of the stress-energy tensor computed for two distinct points
is finite regardless of whether the effective action is regular-
ized or not~excluding lightlike seperated points for a mass-
less quantum field!. It is only when the autocorrelation is
computed that the issue of regularization arises. Nonetheless,
we choose to use the correlation function defined in terms of
the regularized effective action. This is a consistent approach
since then it is defined as the second variation of the same
object for which the expectation value is the first variation.

Since we have only considered geometries for which an
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Euclidean section exists, we can regularize the effective ac-
tion via the z-function method. For a quantum system its
generalizedz function is given as the Mellin transform of the
trace of its heat kernel. The effective action is then given by
the derivative of thez function. This constituted our starting
point for computing the second variation. The key to the
z-function method is to control the divergence of the heat
kernel present when the Schwinger proper time vanishes.
This is done by introducing positive powers of the proper
time and then performing an analytic continuation in powers
of the proper time. At the end of the calculation, the variable
of analytic continuation is set to zero. This is consistent in
that the introduced power can be relaxed to zero at any point
of the calculation to recover the initial formal expression.

The second variation of the generalizedz function is fa-
cilitated by the Schwinger perturbative expansion, which
shows how the trace of the heat kernel responses. Once we
have this response, we only need the trace of a pair of heat
kernels. To make this resultant expression meaningful, the
key idea of thez function is for each of these traces we
introduce a power of the proper time variable for that trace.
The stress-energy correlation function is expressed in terms
of traces of the system’s heat kernel, regularized via the gen-
eralizedz-function method. This is one of the main results of
this paper. Thez-function method allows us to relax the
introduced powers at any time and recover the formal ex-
pression for the correlation function.

For geometries admitting a mode decomposition of the
invariant operator, we display the correlation function ex-
plicitly in terms of these modes. The specialization to homo-
geneous geometries is considered and the simplification this
entails is explored.

Resent results@11,19# have suggested that quantum fluc-
tuations of the energy density may be significant for systems
with nonzero vacuum energy density. Our result confirms
this assertion and goes beyond. In particular, the variance of
the energy density for a massless scalar field is found.~The
variance is the coincidence limit of the energy-energy corre-
lation function.! This measure of the quantum fluctuations is
calculable since we have developed the correlation function
in terms of the zeta function regularized effective action. Our
results are in excellent agreement with the results of@11# for
Minkowski spacetime with one compact dimension. We
have extended this work to flat spacetimes of arbitrary di-
mension with one periodic dimension and found that the
variance grows quadratically with the dimension of space-
time. This may have unexpected implications for Kaluza-
Klein theory. We also found the fluctuations for the Einstein
universe, which turns out to be more than ten times larger
than the energy density. This shows that quantum fluctua-
tions will become important at energy scales below the
Planck scale and supports the suggestion@26# that critical
dynamics at such scales could reveal interesting new phe-
nomena. Knowledge of the higher order correlation functions
of the quantum stress energy may be necessary to account for
the full back reaction effect of these large fluctuations of the
quantum fields on the dynamics of the geometry~see, e.g.,
@22#! and for investigating the issue of the viability of semi-
classical theories@12,13# at the Planck scale@33#.
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APPENDIX: CALCULATION OF *DVD*DVD8 cos
2g

In this appendix, we calculateb defined by

Bd5E
Sd
dVdE

Sd
dVd8cos

2g5bVol2~Sd!, ~A1!

wheredVd is the volume measure on thed sphereSd and
cosg5uxW•xW8u. Here xW and xW8 are unit vectors inRd11 ~i.e.,
they are ‘‘points’’ onSd). If we parametrizeSd with the
Euler angles u i , i51, . . .d with 0<u1<2p and
0<u j<p, jÞ1, we have

dVd5sind21ud•••sinu2dud•••du1 . ~A2!

Using

E
0

p

sink21udu5
ApG~k/2!

G@~k11!/2#
~A3!

we get

Vol~Sd!5E
Sd
dVd5

2p~d11!/2

G@~d11!/2#
. ~A4!

Let xW8 be a point on Sd and define
a(xW8)5*dVduxW•xW8u2. We havea(xW8) is independent ofxW8
and hence

Bd5E
Sd
dVd8a~xW8!5Vol~Sd!a~xW0! any xW0PSd.

~A5!

We take xW05(0, . . . ,x0,d1151). Then uxW•xW8u2
5cos2ud512sin2ud and

a~xW0!5E
Sd
dVd2E

Sd
dVdsin

2ud

5Vol~Sd!F12
*0

psind11uddud
*0

psind21uddud
G

5Vol~Sd!F12
G@~d12!/2#

G@~d/2!#

G@~d11!/2#

G@~d13!/2#G
5Vol~Sd!

1

d11
. ~A6!

Thus we get

b5
1

d11
. ~A7!
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