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Fluctuations of the vacuum energy density of quantum fields in curved spacetime
via generalized{ functions
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For quantum fields on a curved spacetime with a Euclidean section, we derive a general expression for the
stress-energy tensor two-point function in terms of the effective action. The renormalized two-point function is
given in terms of the second variation of the Mellin transform of the trace of the heat kernel for the quantum
fields. For systems for which a spectral decomposition of the wave operator is possible, we give an exact
expression for this two-point function. Explicit examples of the variance to the mean ratio
A'=({p? —{p)?)I{p)? of the vacuum energy densityof a massless scalar field are computed for the spatial
topologies ofRYx S' and S®, with results of A’ (RIX SY)=(d+1)(d+2)/2, andA’(S®) =111, respectively.

The large variance signifies the importance of quantum fluctuations and has important implications for the
validity of semiclassical gravity theories at sub-Planckian scales. The method presented here can facilitate the
calculation of stress-energy fluctuations for quantum fields useful for the analysis of fluctuation effects and
critical phenomena in problems ranging from atom optics and mesoscopic physics to early universe and black
hole physics[S0556-282(97)02410-7

PACS numbg(s): 04.62:+v, 05.40:+j, 42.50.Lc, 98.80.Hw

[. INTRODUCTION of noise and fluctuations associated with a quantum field,
with applications to back reaction problems in semiclassical
Many important physical processes involve vacuum fluc-gravity [14,15 and structure formation problems in infla-

tuations of quantum fields. Famous examples are the Casimiionary cosmology16,17.
effect[1] and Lamb shift. These effects shed light on some In this paper, we aim to set up the basic framework for the
basic issues of quantum field theory, and guide the beginningalculation of the fluctuations of energy and momentum for
probes and queries into establishing a viable theory of quamguantum fields in curved spacetimes, focusing on the gener-
tum fields, in curved or topologically nontrivial spacetimesalization of the zeta-function regularization metHd@]. El-
(see, e.g.[2]). Basic issues such as the ambiguity in theegant and powerful, its application is unfortunately limited to
definition of vacuum states, particles, energy, and the reguspacetimes which admit an Euclidean section. But this al-
larization of the energy-momentum tensor occupied the cerready includes many cases of physical importance, such as
tral attention of investigators in the 1970s. Amongst thethe de Sitter universén the S* coordination, Kaluza-Klein
many formalisms developed, thefunction[3,4] and point- theory (M*xBP), and finite temperature theorfin the
separation[5,6] regularizations are particularly relevant to imaginary-time formulationR®xS'). Later we intend to
our problem. In the 1980s, two directions were noteworthy inconnect it with the point-separation method, which, as one of
this field: the back reaction of particle creation on the dy-us has anticipated, actually contains untapped useful infor-
namics of the Universg7] and the fate of black hole collapse mation about the statistical mechanidal kinetic theory
[8], and the study of symmetry breaking and critical phe-properties of systems of particles interacting with fields in a
nomena via interacting field theory in curved spacetisee, curved spacetime. The result obtained here is also useful for
e.g.,[9]). These studies are needed for understanding ththe calculation of fluctuations of Casimir energy relevant in
dynamics of the inflationary universe, such as spinodal deatom opticg19], mesoscopic physid®0], and correlations
composition and nucleation, and from it, astrophysical conof quantum field§21,22 relevant to black hole fluctuations
sequences such as entropy generation and galaxy formatidi23—25 and possible Planck scale phase transiti@t.
Since particle creation stems from amplification of vacuum The goal of this paper is to develop a regularized expres-
fluctuations, and galaxy formation have them as seeds, bottion for the stress-energy tensor two-point function of a
directions share a common need to understand better tlguantum field in a curved spacetime. This is done by first
properties of vacuum fluctuations of quantum fields and howexpressing the two-point function solely in terms of the
they affect the dynamics of spacetime in the early universguantum field effective action and its variations with respect
and state of the matter at the observable classical domains twr the metric. The effective action is derived by using the
epochs. In the 1990s, the theoretical underpinning of thigrace of the heat kernel that corresponds to the field action.
issue was taken up afresh in the work of Ford and coSince the effective action can be expressed as a function of
workers[10,11, who investigated amongst other problemsthe Mellin transform of the heat kernel, the needed variations
the effect of vacuum fluctuations in a quantum field on theof the effective action can be evaluated by considering the
causal structure of a quantum field theory, and in the work of/ariations of the heat kernel. The variations of the heat ker-
Hu and co-worker$12,13, who introduced nonequilibrium nel can be related to variations of an operator acting on the
statistical mechanical concepts and techniques for the studyeat kernel in the varied heat equation.
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In Sec. Il we relate the stress-energy two-point function to Il. STRESS ENERGY TWO-POINT FUNCTION
the second metric variation of the effective action. In Sec. ll| We start by considering the generating functiofelpar-
we show how to express this second variation in terms of th tion functiongl of a scalargfieldg in the Iguclidean sepction
generalized zeta function for the system. Section IV presen% f i ifold\t
the specialization of these expressions to the Klein-Gordo ot a spacetime maniiola\,
scalar field. In particular, we derive the expression for the
variance of the energy density, and discuss the need for regu-
larization. In Secs. V and VI we explicitly compute the en- Z=J Dgpe191=(0,0ut0,in) 271
ergy density variance for a flat spacetime with one periodic
dimension and for the Einstein universe, respectively. We

give a brief discussion of our results in Sec. VII. and its functional derivatives with respect to the metric:
|
5S |
s~ | Do _<°’°“+W °"”>’
57 B 5S 5S 5°S s
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where|0in,ou} are the vacuua defined at the in and out states. In terms of the effective AttiemZ, this becomes

5°W 1 57 SW SW

0,in> 2.2

5070 00°y) | Z 507080 y) | 8g7x) 847 (y) =9
The expectation value of the quantum stress-energy tensor is given by
(Tu)= (0,0ufT,p/0,in) 2 (0,0utsS/697°(x)[0,in) 2 SW 2.4
A (o0uf0in) T g(x) (0,0ut0,in)  Jg(x) 897°(x)” '
In analogue with this, we define the correlation function for the stress-energy tensor as
(0,0ut T 4p(X) Teg(Y)]0, |n> 4 1< * 5S 5S _
Tap(X)T = 0,in
< ab( ) cd(y)> (O,outo,ln) g(x)g(y Z 5ga (X) 5gc (y) >
B 4 W . SW W +< 5°S H 25
g g(y)l 89%°(x)8g°%y) ~ 892°(x) 8g°%y) | 897°(x) 8g°%(y) '

For any local action the last term will not contribute to the lll. SECOND VARIATION OF THE EFFECTIVE ACTION

final expression for the stress-energy correlation function.

For such an action, this expression will dependxoyn as a The classical action of a scalar fied(x) is

S function: §(x—vy). Thus it need not be considered when

computing the correlation function for#y. The autocorre- 1

Iatioﬁ is ?Jnderstood as resulting fromythis by taking the S[d’]zﬁf dx$(x)H ¢(x), 3.1

y—X or coincidence limit. Recognizing the second term in

the last line as a product of expectation values of the stressvhereH is a second-order elliptic operator. From the spec-

energy tensor, we can define the bitensor tral decomposition of this operataf ==\ ,/n)(n|, where
n denotes the collective indices of the spectrum, the effective
action can be expressed as

AT ped %Y) =(Tap(X) Tea(¥)) —(Tap() ) Tea(y))

4 S2W W=——In de(H/,u)——lTr In—:——E In—
Jg(x)g(y) 89*°(x)8g°Uy)” (2.6 (3.2
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where we assume the zero modesHohave been projected such as TWy(t) need be modified by the introduction of a
out andu is a normalization constant with dimensions of factort”. Then, once the analytic continuation is found, one
mass squared. This expression for the effective action is onlgakesy=0.

formal sinceH is not trace class. We regularize the effective  We now consider the effect of two small metric perturba-
action and the expressions derived from it via thetionsd, andé, on the effective actionThey are assumed to

Z-function method 3,4]. be independent of the order with which they adthe re-
The ¢ function for this system is defined as sponse of the effective action to these perturbations is
0,61 WR[g]=WR[g+ 61+ 6]+ Wg[g]—WR[g+ 6]
Lu(s)=Tre s Hlu= s> \ 5. (3.3
n —Wg[g+ 9]

For 2s>dimM=d, this sum is convergent. Then an analytic
continuation ins is found such that it includes a neighbor- =5 gal %2018n(9)]ls-0, (3.9
hood ofs=0. From this analytic continuation the regularized

effective action is given as S (=
5,810n(S) = I‘IL(Ls) fo dt 5 1Tr{e (H+ o1H+oH)

~1di(s) 1, 0 3.4

R™92 ds s=0—2§ (0). : _e—t(H+§1H)_e—t(H+52H)+e—tH}.
For positiveH the definition of thel” function yields 3.7

— To evaluate this, we use the Schwinger perturbative expan-

gH(S): F":S)J‘ ts_lTon(t)dt, Uo(t):e—tH; sion [28] For U(t)zeit(H+H1), WherEle 51H<H,
0 (35 e
’ TI‘U(t)=Ton(t)—tTI‘[H1Uo(t)]+ Efo dul

i.e., the{ function is given as the Mellin transform of the
trace of the heat kernély(t). We know TiJy(t) ~t~ 92 for XTI HUo((1—up)t)H Ug(ut) ]+ - - .
t—0. Hence for Eq.3.5 to be convergent, we have the 3.9

condition s>d/2. This is most often the expression from
which an analytic continuation is derived. In fact, one of theUsing this, we can write the response of thdunction to
main points of the, function idea is that formal expressions these perturbations as

S 0 1
5251§H(5)=—’u j dt tSHJ du{Tr{ (61H)Uo((1—u)t)(5,H)Ug(urt) 1+ Tr{ (8,H)Uo((1—u)t)(61H) Ug(ust) 1}
2I'(s) Jo 0
(3.9

As it stands, it is not finite. When the traces are taken involvig((1—u;)t) and Ugy(ust), the divergences at
(1—uy)t,u;t—0 are present. At this point, we modify the above expression for the second variation ffuhetion by
introducing the factofu,(1—u;)t?]”. At the end of the calculation, once the analytic continuation is found, we=sét We

view the introduction of this factor as an extention of #wunction method to the situation where the second variation is
needed. The replacementdf(t) —t"Uy(t) is the spirit of the usua-function method and reproduces the usual results when
applied to the traditional problems, such as finding the first variation, which produces the expectation value of the quantum
stress-energy tensor. After the change of variables

u=(1-ujt, v=uyt (3.10

the twice-varied! function transforms to

320161(9) =515 | du [ dulu+0)%(u0) (T8 HI U0 (5H)Uol0) 1+ TH(53H) U 51H) Ug(o) -
(3.11

Considering the first trace in the above expression, we find

TrL(81H)Uo(W)(32H)Uo(v)]= 2 (n'[(8:H)e M [n)(n|(8;H)e " [n") =3 e~ n'(n’|(8,H)[n)(n|(5zH)|n’).
n,n n,n (3.13
By defining
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x _ 2 / oH
Tab[¢n(x)r¢n (X)]:_m\ 5gab(x)‘ > g( f ¢ 5g (X) ¢n(z) (313

we can now write the stress-energy correlation bitensor as

S)J duf dv(u+v)¥(uv)” 2 e T T o dn(X), by (O Ted b (V). 07 (W)]{, (314

2
AT de(X y) 2 dS

where thes,v—0 limit is understood.

For the rest of this paper, we will specialize to the cases of homogeneous spacetimes. ThisAfffjigsx,y) will only
depend orr =x—y. We find it convenient to average over gllWe can do this while leaving the points separated 4lso,
the homogeneity will usually lead to a degeneracy of the eigenvalues. Thus the collective quantummuarbbe split into
principal and degenerate pams—n,m and the eigenvalues only depend on\,,—\, . This allows the sum over the
degenerate indices to be done before evaluation of{tlienction. Putting all these together the stress-energy two-point
function becomes

INFWOE ZQ Is F(S)j duf do(u+v)%(uv)” (2 R 2 fdx Tatl $om(X), Bp (¥)]

XTcd[¢n’m’(X+r)a¢:m(x+r)]

}, @19

where Q= [ ,,dx, the volume of the manifold. If the mani- and the eigenvalues Hgee, e.9.[27])
fold is noncompact, it is understood to be the unit volume.
Mo,n=k3+ K2+ ER+m?, (4.3b
IV. FORM FOR THE KLEIN-GORDON FIELD

o From our definition of the stress-energy tens(®.13 we
We now develop the general form for the second variatiorfing

of the ¢ function for the Klein-Gordon field. In the Lorentz-

ian sector, we use the Misner-Thorne-WhedMiTW) sig- ¢( D)
nature convention{1,1,...), andthus in the Euclidean T, ¢,¢](x VI(X") (X’ )( X )dx’
sector, we have the signature (1,1,). We assume the Vg - 8gT(x)
metric can be given the form _ —ZVa¢Vb¢+9ab(Vc¢V°¢+ YV Vo)

1 0 + 2Ry (4.9

This differs from the usual definition &f, [ ¢, ¢], but this is
whereh;; is the metric for the spatial section. We denote the fo be expected. The eigenvalues used are themselves differ-

time and spatial variables by=(7,x), the invariant spatial ent, smpe we have the' extradegree of freedom. .
volume form bydx, and the spatial manifold b¥. (thus In this paper, we wish to concentrate on computing the

M=5'x3) autocorrelation of the energy density
The wave operator for the Klein-Gordon field is given by Ap2(x)=lim ((p()p(¥)) = (pNp(Y)))s  p=Too-
y—X
0—,2
H=—0+Rmi=— -5 —*A+{R+m?. (42 (4.5

This will give a measure for the magnitude of the fluctua-

= — k2u,(X), where n denotes the(collective quantum  Cchoice yields

numbers for the spatial part of the spectrum. We assume the _ 2 ; s

u,(x) are orthonormal. The Euclidean time is made periodic pld.Y1=—(0:004—¢d7¢)+(ViyVig+y~Ad),
with a peroid of 3=1/T, whereT can be interpreted as a (4.6

temperature. The eigenfunctions are thus given by wherei is summed over the spatial degrees of freedom only.

) This becomes
7|kOT 27Tn0

o) =g W00 Kom T MoTOELER g gt1= — (4 ko i) by + (Vi) (V')
(4.39 4.7)
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when we specialize to eigenmodds3). When we COﬂSiddI‘p[d)n,(,‘b:,“z the contribution from thep; d)n,VianViqS:, and its
conjugate will vanish when summed over. This will be shown case by case. This assumption provides

|l 12=(K+ Kok + k2 (Kg2+kokd+ k2| ol [P+ (Vi) (Vi 57 2. (4.9

At this point, we wish to take the zero-temperature limit, i@ o wherebyEﬁoz_mﬂ(ﬁlzﬂﬁmd ko. We can now do
these sums and/or integrals easily, since they amount to calculating the moments of Gaussians. We find

©

S eeminie £ [* g Py
ng=-—= 27) s 2\/;

>

ng=—=

(277”0

B
B 4

2 o
~(2mng/B)%u_, ﬁJ 20— UK e — -3/2
) e o _wkoe dky \/;u ) (4.9

and there is zero contribution for any odd powekgfor k. The normalization of,, and ¢,,, provide a factor of3~2 which
cancels the powers @# introduced in approaching the—co limit. Introducing the functions

2
_ 1 1 K2k ) 2 , ,
_,nn/(u,v)—W[E—F?-FT-FZKnKn, %’ L|unm| |un’m’| dx, (4.103

1 2 * * i
@nnr(u,v):W U+2Kn E, Eunm(Viunm)un,m,V UnrmrdX, (410b
mm
My (u,0)= ! > J|(V-u )(Viu%, )|2dx (4.100
nn’{t, Wmm’ s iYinm n’'m’ ) :
and

U (U0)=Enn (U,0)+ 0,0 (U,0)+ 0, (v,u)+11,,(u,v), (4.1)

we define thel function
Lo(s,v)=2, f f (U+v)S(uv) "W,y (u,v)e MU= dydu. (4.12

nn’ J0 Jo

From it, we derive an expression for the regularized autocorrelation of the energy density as

el ~L im0 4.1

p _Ed_ﬁg‘l’(s’v) s:O,vzo_E V'T()(«p( ), (4.13
where we have used[(s)~s+ ys?+0(s®) (y is Euler's constantfor s~0. We have assumeg>d/2+ 1, in which case
both £(0,v) andd{y(s,v)/ds|s_ are finite. Thus to find the regularized expression£@?, we need to find the analytic
continuation of{y(0,v) in v such that it is finite at=0.

V. FLUCTUATIONS FOR 3=RPxS!

As the first application, we calculate in this section the variance of the energy density for a masstesp rhinimally
coupled ¢=0) scalar field on ad+ 2)-dimensional flat R=0) spacetime which is periodic on one spatial dimension with
periodL. For this geometry, the spatial eigenfunctions are

eik~x-¢—i|z
Uen(X,2)= ——, keRY, n=0,+1,%+2,..., (5.2
kn( ) (27T) L
with | =27/L. Denoting byx= (x4, ... Xg) the coordinates for the open dimensions affidr the one compact dimension, we

have*A=3{_ 1(951_ + % and hencexg ,=k?+12n? (k?=k|?). From this we see we should takendn as the principal indices

and the angular degeneracylofis the degenerate indices, i.E,,— [dQ4_;, integration over the unii—1 sphere. Where
there is no confusion, we will denote the volume of the spherg’as.
To evaluate Eq(4.10 we sum over the degenerate indices and perform the volume average
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1 Sd—l 2
f deflj dﬂé,lm‘[ dXleUkn|2|Ukrnr|2:(m) (52)
from which Eq.(4.108 becomes

_ 1/ st 1 (1 KPHIPn® K241 (K2 122 (124 1202 53
'—*knk’n'(uav)_ﬁ (27T)d|_ (uU)l/ZlE_'— 2v + 2u + ( +1°n )( +1°n ) . ( )

Also, sinceV;u,,V'uy, ., = (Kk’ cosy+12nn’)u,uy, where cog=k-k’, the momentum correlation tern{4.109 is

1 Sd71 ? 2 Jk2k,2 4.2~12

e (U0) = o— 2] W™ +1%n2n’2}. (5.4)

Here we have usefildQy_,/dQ/_,cosy=0 and Eq(A7) from the AppendixyfdQg_,/dQ}_,;cogy=(S"1Zd. Also, when
summed oven andn’, O, vanishes.

We now turn to the principal index sums ferandk’. First consider the case when=0 (or n’=0), this leads us to
evaluate

JO olkkd—lfO duu’—2kPe Ky, (5.5

Here (@,b)=(3/2,0) or (1/2,2), and 2+ b—3=0. We assume a boundary on the nonperiodic dimensions at large distance
and moved to infinity. This is effected by havig§dk—lim._of7 . Then Eq.(5.5 becomes

” -1 F w—apba—ku_ 1 ” Kd-2v 0 Tl-a) 4, 0
dk duu k e I'(v—a+1) dk —— T d+1 € — 0, (56)
€ 0 €

where we have used>d/2 in evaluating thek integration. Thus we find there is no contribution from tire 0 orn’ =0
terms inly .
Turning to the case whem andn’ do not vanish, we consider the function

\Ifnn/(u,v)=j kd‘lko K'9 1K W o (U, 0) @~ UK 0K 2, (5.7)
0 0
In the integrand, there are terms with either factor&bf* or k9*2, similiarly for k’. Using

» 1 /d
d-1 —ukl_ T 2
fo ké"tdke =3 (2

we have the rule that upon doing thek' integrations, we get an overall factor [df (d/2)/2]?(uv) %2 and each factor of
k? becomesd/2u, andk’? becomesd/2v. Applying this rule, Eq(4.11) has been determined

* 1 /d d
—dr d+1 ~ulkl_ Tl 2, -di2
u and fo kd*1ldke Zr(z)u o (5.9

XI/ E 2 —i Sd_l|d+31" g ? i e w"‘(l"‘d)(unz‘i‘ n!2)+4u n2n72 (5 9)
"2 12) T 8q22m L \ 2] \uw 2 v v '
and the corresponding function is
(e (™ d+1)(d+2 ,

{y(0)=B X duf do(uy)?~(@+972 %+(1+d)(un2+vn’2)+4Uvn2n’2]e‘“zu‘”2". (5.10

nn'=1J0 0
where
1 Sd71|d+172v d 2
Bzﬁ —d_(27T) L r E (5.11)

This form of the{ function now allows us to perform the needed analytic continuation. We make use of the relation

nzl naj:ts‘le‘”zEF(s){R(Zs— a), (5.12

whereg(s) is the Riemann zeta function. Recalling E4.13), the variance of the energy density is
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2

2

d+1 d-1
+2(d+1)F( —T)F( _T) +4I

2
]. (5.13

(d+1)(d+2) ( d+1
I ==

ApP=a La( (@+ 1))
2°R 2

Sincel'(—(d—1)/2)= —[(d+1)/2]T"'(— (d+1)/2), the second and third terms in the above expression cancel, leaving,

_(d+1)(d+2)] gi-t (d

d+2 2
> lzwd+1|_d+2r 5 r - {r(d+2)

Ap?

(5.19

by way of the Riemann zeta function reflection formula,  Here €},, components of the totally antisymmetric tensor,
are the structure constants for the rotation groug3»Qrhe
S 1-s Yan=128,p are constants of the spacee principal curva-
_ s ab, o .
F(E) {r(S)=7° ZF( S )ZR(l_S)- (5.19  ture radii in a static mixmaster univer§a0]) and for the
Einstein univers& =S® we havel,=1,=I3=a/2. The cur-
- _ . _ 2 3
This is our result for the zero-temperature variance of th¢/ature scalar iR=6/a and the volume i) =2m"a".
vacuum energy density for a massless minimally coupled Using the Euler angle parametrization, the basis forms are
guantum scalar field on a{-2)-dimensional spacetime pe- . _
riodic in one spatial dimension. To get a measure of the ot=—sinyd#+ cospsindd ¢,
fluctuations, we consider the dimensionless quantity

o?=cosyd 6+ sinysindd ¢,

2\ __ 2
A,:<p ) <Zp> _ (5.16 (6.3
(p)
a=dy+cod g,
For the system at hand, the energy densitylB]
) O<Osmw, O0s¢<2wm Osy<in.
- d
(py== 27Ta+1|_a+2f(§> F( 2 )gR(d+2), Takinge, as the invariant vectors dual & and defining the
(5.17 angular momentum operatotg=ie,, the spatial Laplacian
becomes
Thus we get one of the main results of this paper:
3 2
(d+1)(d+2) A= 15200 = — p(L24134 1Y =— 1
A’(Eszxsl)zf. (5.18 Fe a a 64
6.4

Kuo and Ford[11] computed the same measure of theFor the harmonic functions 08® we can use the S@)

fluctuations .for the case OE: sz Sl via a differe-nt representation(Wigneo functions Di](M(a’l//, d)), where
method. The|r reSU|t OA’ :6 IS 0bta|ned here f(Ili=2 It IS \]:0,%'1’%, ... are the principal quantum numbers and

interesting to note that the relative amount of fluctuation in-k \=—3 —J3+1,..., J—1, J are the degenerate quan-
SQ(4) representation functions, the hyperspherical harmon-
VI. FLUCTUATIONS FOR X=S§° ics with principal quantum numbern=2J. From

2nd J -
As a second example, we calculate the fluctuations of Dkm=J(J+1)Diy we find

energy density for a masslessi€0) conformally coupled

(¢=1/6) scalar field on a three-dimensional space of con- , 4J(J+1) n(n+2) o, (nt1)?

stant curvatures® with radiusa. The spacetimeM is then K=z T g MTKatéER= 0

the Einstein universe. (6.5
We start by writing the spatial metric §29]

along with the spatial eigenmodes

3
ds?=yapoo®= 2 13(0%)?, 6. n+1_,
a=t Uskm= TDKM(all//: ) (6.6)
where thes®'s are the basis one-forms on the three sphere 5
satisfying the structure relations for S°.

To compute Z,,, we first use the sum rule
J J
SuDymr (D) * =8 10 get D (Di)*

1
a___,a b _c
do?=7 €0 ©2 %341 Since

2
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(n+1)%(n"+1)2

n+1)(n"+1
( ) )f dx 2 |DKM|22 |DK’M’|2:T’ 6.7

2_
J dX|UpkmUnrk e |“=
angular

Eq. (4.103 is given by

(n+1)2(n’+1)2[1 n(n+2) n'(n"+2) 2n(n+2)n'(n’+2)
8mQ%(uw)? |uww ' a% T a* ' ©.8

—
—
—

nn’

We now turn to the momentum correlation tefy .. To facilitate the evaluation of the spatial derivative terms, we use
properties of the generators of the Lie algebra, which fof330s just the quantum theory of angular moment(see, e.g.
[31]). We have

ViunmViu 7 ea(unm)eb(un mr ( ) \/ n+l) +1 2 La(D |v|)|— ( K’M’) (6-9)
We also recast the spatial volume measure:
2w
J dx— dd)J sinfd 6 dz,b— —J dQ, (6.10
where we use the notation 1] for dQ2. We assume the integrand is invariant ungees s+ 2. This condition is satisfied
by Dty
Defining
J J' 3 2
Byy= > > dQ 2 La(Dw)La(DYE )| (6.1
KM=—-3 g/ mi=—y'
the momentum ternt4.109 becomes
(n+1)(n"+1) 4
' g0 (Up) T2 @bl DN (6.12
Returning to Eq(6.11), we can express it in terms of the angular momentum operators as
B 1 3 5 1 5 5 5 |2
Byy= 2 dQ §L+DKM|——DKer+EL—DKML+DKer+LsDKMLsDKer , (6.13

KMK'M’

whereL.=L;=*iL, are the raising and lowering operators. Introducing the convenient notatonx e (+,—,0) where
L, replaced ; and the symbols

F=VJ(A+1)-K(K+1), CZ=K, (6.14

the action of the angular momentum operators on the harmonic functions is neatly given by

LoDim=(=1)"“Cx “Dk—am: LaDk=—1"“CkDisam- (6.15
Introducing
J
(aﬁ;56>=K"\A2:_J . M’E?J, dQ LDyl DL Dy L DR, (6.16

we can express E@6.11) as
BJJ,=<OO;00)+%(<++;——>+<——;++>+<+—;+—)+<—+;—+))
+%((0—;+0>+<0+;—0)+<+0;0—>+(—0;0+)). (6.17

Using Eq.(6.15, we can write Eq(6.16) as
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(af;dey=(—1)Prejatprote c;“cﬁc;fc;,fdﬂ D DR DR aDR s (6.18
KMK'M’

The integral of the fourfold products of the Wigner function is given by

. Ji Jp V(I 3y IN\(JIs I, I\ [I3 3, 3
dQ D} D2 D3 =872 > (2J+1 .
f KiMy KMszMsKNu "2( Nk, k, k/lM, M, M Ks Ky K/\Ms M, M
(6.19
This can readily be seen by two applications of the sum rule
Ji J, J\(J I J
J; b _ 1 2 1 2 I%
DKlMlDK2M2 \]%A (2J+1) Ki Ky K)(Ml M, M)DKM 6.29
and the orthogonality property
87 2
jdﬂ DYDYy = 5337 29k S (6.21)
Utilizing this result, Eq.(6.16) has the form
J J! J' JH
[ 0€)=8m?(—1)Freathrote Cy“CEC’Cy., 20"+1
(@f;oe)=8m (1) K,MEZ-JK,‘MZ;J, KKK KJ,,,KE,,,M,,( )K+/3 K'+e K"
J JI J!I J JI JH J J! JH 62
X . .
K—a K'-6 K'/\M M’ M"J\M M’ M 6.22
Using the orthogonality property of the j3symbols,
J Y J3\J Y I i
2 v m M my) T @D 0,000, (6.23

we can reduce the above fourfold product of 8ymbols to a twofold product by doing thd,M’,M" sums to find the final
form that is most useful to us:

(aB;de)=8m%(—1)B*<>, (23"+1) >, C °Cfc.’CE R v (6.24

' < ki KKK K+ B K'+e K'J\K—a K'—8 K"]"

The triangularity of the 3-symbols implies the conditior+ 8+ 6+ €=0 for (a3; de) not to vanish.
With this relation, we can evaluate the terms we need for(&4.7):
J J J” 2
(00;00=872, (2J"+1) > |KK’ S (6.253
& KTy K K' K
J JI J// J JI J/I

++;——)=872D, (20"+1 «CriCr.Cy, 2
(Fim=) 8”2( ) )KKZ,K,,CKCKCKCK K+1 K'-1 K”)(K—l K'+1 K”) (6.250
=(++;——) (6.250

8m2> (2J'+1) 2, |C c( ? yonr 6.25

+—+ - "+ kCx: , :
< > ™ JH ( ) K’K” K K K_l K,_l K” ( d

8m2>, (23"+1) >, |CiCy, oy 6.25

— 4 —+\= //+ .
(ZHimt)=8m 2 ) 2, 1S<Clkrr ke k) (6259

J J/ J/I J J/ J"

—:+0)=872D, (2"+1 KK'C,C K’ 2

(0=:+0) 8”2( ) )KKZ,K,, G C (K—l K’ K" (K K'—1 K”) (6.259

=(+0;0-), (6.259
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. o , o J J J\[J J’ J’
(0+,—0>—81-r§,(2J +1)KK2,K" KK'CC K| 1 o K,,)(K Kol K,,) (6.25h
=(+0;0-). (6.25i)
We expectB;; to assume the form
Byy=8m%(al+bJ+cJ+d)(al 3+bd'?+cJ +d). (6.26)

Determining the coefficients by evaluatilg; for four different pairs of],J’, we find

2

BJJ,=8772J(J+1)(J+2)J’(J’+1)(J’+2)=%n(m—1)(n+2)n’(n’+1)(n’+2) (6.27)
and
- _(n+1)A(n'+1)% 2 (1 42 6.2
nn'—w(w)l/z—gn(nﬂL )n’(n"+2), (6.29
along with

(n+1)2(n’+1)2[1 n(n+2) n’(n"+2) 4n(n+2)n'(n’+2)
nn’ = 870 %(uv)? [E a‘v * a‘u * a’ ' (6.29

Combining these results, the needeélinction is

1 - w (e :
L9(00)= c—mr >, nzn'zf duf do(uv)” 341+ (n2—1)u+(n'2—1)v+4(n2—1)(n'2—1)up)e "u""*,
87TQ a nn'=1 0 0
(6.30
Using relation(5.12), the analytic continuation takes the form
1 1\2 ) 1 1
Lo =g—qo || v— 5| Lr(2v=3)"+ 20| v=5|T| v+ 5| {r(2v=3)({r(2rv—3) ~ {r(2v—1))
2
+4T| v+ 5 (gR(zv—a)—gR(zy—l))z]. (6.30)
|
Settingvy=0, we get finally the variance of the energy den- VIl. DISCUSSION

sity of a scalar field on the Einstein universe: In this paper we have shown how the correlation function

37 for the quantum stress-energy tensor is related to the second
Ap?=—— . (6.32 metric variation of the effective action. This parallels the
76 800m"a definition of the expectation value of the quantum stress-
energy as the first metric variation of the effective action. A
physically meaningful expectation value is derived from a
regularized or renormalized effective action. Likewise, the
1 correlation function is defined here in terms of the second
variation of the regularized effective action. The correlation
of the stress-energy tensor computed for two distinct points
we find the dimensionless measure of the fluctuations in thés finite regardless of whether the effective action is regular-
energy density5.16) is given by ized or not(excluding lightlike seperated points for a mass-
less quantum field It is only when the autocorrelation is
A'(3S=8S%)=111. (6.39  computed that the issue of regularization arises. Nonetheless,
we choose to use the correlation function defined in terms of
Thus for the Einstein universe, the fluctuations in the energyhe regularized effective action. This is a consistent approach
density are indeed quite large. Effects due to the fluctuationsince then it is defined as the second variation of the same
of the metric will become importartteforethe size of the object for which the expectation value is the first variation.
Universe approaches that of the Planck scale. Since we have only considered geometries for which an

Using the resul{32] for the energy density,

P= 2802 (633
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Euclidean section exists, we can regularize the effective ac- ACKNOWLEDGMENTS
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{-function method is to control the divergence of the heat
kernel present when the Schwinger proper time vanishes.
This is done by introd_ucing positive powers ef the Proper  AppENDIX: CALCULATION OF /DQLIDO,coLy
time and then performing an analytic continuation in powers
of the proper time. At the end of the calculation, the variable In this appendix, we calculatg defined by
of analytic continuation is set to zero. This is consistent in
that the introdgced power can bel re!axed to zero at any point By= f def dQ/cogy=BVol}(S?), (A1)
of the calculation to recover the initial formal expression. L s
The second variation of the generalizédunction is fa- .
cilitated by the Schwinger perturbative expansion, whichVnered(q is the volume measure on thiesphereS? and
shows how the trace of the heat kernel responses. Once #@Sy=/x-X|. Herex and x’ are unit vectors irR** (i.e.,
have this response, we only need the trace of a pair of hedfi€y are “points” on s9). If we perametrizesd with the
kernels. To make this resultant expression meaningful, thEuler angles ¢;, i=1,...d with 0<¢; <27 and
key idea of thel function is for each of these traces we 0=0j=7, j#1, we have
introduce a power of the proper t|m_e venable for thaF trace. dQg=sirf16y- - -sind,d6y- - -6, (A2)
The stress-energy correlation function is expressed in terms
of traces of the system’s heat kernel, regularized via the 9eM3sing
eralized{-function method. This is one of the main results of
this paper. The/-function method allows us to relax the ™ Jnl(k/2)
introduced powers at any time and recover the formal ex- f Slnk710d0=m (A3)
pression for the correlation function. 0
For geometries admitting a mode decomposition of th
invariant operator, we display the correlation function ex-
plicitly in terms of these modes. The specialization to homo- 2 pld+1)2
geneous geometries is considered and the simplification this Vol(s)= f dde:m- (Ad)
entails is explored. S
R_esent resultf11,19 have suggested_ th_a_t guantum fluc- X be a point on S and define
tuations of the energy density may be significant for systems - =~ > 212 S 2,
with nonzero vacuum energy density. Our result confirms® X") =/ dQq|x-x'|%. We havea(x) is independent ok
this assertion and goes beyond. In particular, the variance d hence
the energy density for a massless scalar field is fo(hde R R R
variance is the coincidence limit of the energy-energy corre-  By= f ddQc’,a(x’)=VoI(Sd)a(x0) any xpe S°.
lation function) This measure of the quantum fluctuations is S (A5)
calculable since we have developed the correlation function
in terms of 'Fhe zeta function regulariz_ed effective action. OURye  tgke )20:(0, o Xoge1=1). Then |>Z~)Z’|2
re_sults are in exce!lent agreement with the re_sult[sld_a} for =co§0d=1—sin20d and ’
Minkowski spacetime with one compact dimension. We
have extended this work to flat spacetimes of arbitrary di- .
mension with one periodic dimension and found that the a(Xo)ZdeQd—deQdSinzﬁd
variance grows quadratically with the dimension of space-

e get

time. This may have unexpected implications for Kaluza- Jgsin?*1g4d 6y

Klein theory. We also found the fluctuations for the Einstein =Vol(s") 1_fgsind*10dd 64

universe, which turns out to be more than ten times larger

than the energy density. This shows that quantum fluctua- =V0I(Sd){1—r[(d+2)/2] I'[(d+ 1)/2]}
tions will become important at energy scales below the I'((d/i2)] T[(d+3)/2]
Planck scale and supports the suggesf{i®] that critical

dynamics at such scales cquld reveal interesti_ng new_phe- =VoI(Sd)L. (AB)
nomena. Knowledge of the higher order correlation functions d+1

of the quantum stress energy may be necessary to account for

the full back reaction effect of these large fluctuations of thel hus we get

quantum fields on the dynamics of the geomdsge, e.g.,

[22]) and for investigating the issue of the viability of semi- B= L (A7)
classical theoriefl12,13 at the Planck scalg33]. d+1°
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