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Graphical evolution of spin network states
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The evolution of spin network states in loop quantum gravity can be defined with respect to a time variable,
given by the surfaces of constant value of an auxiliary scalar field. We regulate the Hamiltonian, generating
such an evolution, and evaluate its action both on edges and on vertices of the spin network states. The
analytical computations are carried out completely to yield a finite, diffeomorphism-invariant result. We use
techniques from the recoupling theory of colored graphs with trivalent vertices to evaluate the graphical part of
the Hamiltonian action. We show that the action on edges is equivalent to a diffeomorphism transformation,
while the action on vertices adds new edges and reroutes the loops through the vertices. A remaining unre-
solved problem is to take the square root of the infinite-dimensional matrix of the Hamiltonian constraint and
to obtain the eigenspectrum of the “clock field” Hamiltonidis0556-282(97)06208-5

PACS numbd(s): 04.60.Ds

I. INTRODUCTION edges occurs such that the new graph is a spin network again.
The content of the paper is as follows. In Sec. Il we define
In canonical quantum gravity the notion of evolution re- the Hamiltonian and regulate it to show that it has a well-
quires a careful definition because the translations in the timdefined action on the spin network states. We also introduce
direction can be interpreted as diffeomorphism transformaa modification in the way the loop operators are defined,
tions [1]. To be able to talk about evolution, we can usebetter suited for our calculations. Technically, the action of
“relational constructions.” Some physical fields can be in-the Hamiltonian operator can be split into analytical and
troduced as a reference frame with respect to which the ev@raphical parts. The analytical part includes various prefac-
lution can be defined2,5,6. In loop quantum gravity3],  tors and integrals. The graphical part expresses the topologi-
Smolin and Rovelli[6,7] define a time variable by the sur- ca| transformations occurring in the spin networks. In Sec.
faces of constant value of an auxiliary scalar field. By fixing || we compute the analytical action of the Hamiltonian sepa-
a gauge in thi_s construction, an infinite number of Ham"'rately on edges and on vertices. We show that to a great
tonian constraint¢one per space pointeduces to one con-  gytent the action on edges is equivalent to diffeomorphism
straint which can be interpreted as a Sfinger equation . nstormation. Using some techniques from recoupling

and a Hgmﬂtonla}n operator can be |Qent|f|gd. We use th?heory of knots and links with trivalent vertices, we perform
Hamiltonian obtained in this model to investigate the evolu-

tion of quantum gravitational states. In loop quantum grav_the graphical computation of the action of the Hamiltonian in

ity, spin network state§8—10] furnisH a complete basis of Sec. IV. The result from the graphical calculation tells us

qu’antum kinematical states whether the diffeomorphism class of the spin network or the
There exist411,12 already a well-established procedure color.ing of certain edg‘?s changes. We conclude with a dis-

for expressing different quantities from quantum gravity in CUSSion of some open issues.

terms of the loop variabldgl]. Then operator versions of the

gravitational quantities can be defined by replacing the loop

variables with the corresponding operators. Thus it is rela- Il. HAMILTONIAN OF THE THEORY

tively straightforward to introduce a loop version for the Because of the absence of external time with respect to

Hamiltonian operator. We use the results frf@hand[7] as . : . h
a starting point for our calculations. Our purpose is to deterVhich the evolution can be defined, we need some additional

mine in detail the way the spin network states evolve undef°nstruction. As has been shown [8], to define time we
the Hamiltonian introduced if6]. As we will see, the result &N Use the physical degrees of freedom of an auxiliary field.

of the evolution can be split into two parts. First, there is aVVe start by introducing a scalar fielf(x). To serve as a
multiplicative factor which is finite and diffeomorphism in- clock, this field should be monotonically increasing every-
variant. Second, the spin network states evolve topologicalhere on the space manifoki” Then we can use its three-
ly: The new state is a sum of terms, each term being base¥/rfaces of constant vallg(x) = const to represent the time
on the original spin network with an added extra edge ofwith respect to which thg evolution WI!| be defined. The sca-
color 1. The added edge connects pairs of the original edge&" “clock” field can be incorporated in the theory through
meeting at a vertex. Also, some change of coloring of théhe standard Klein-Gordon Lagrangian

*Present address: Center for Gravitational Physics and Geometry,'We use the standard notatiay** and q®® are, respectively, the
The Pennsylvania State University, University Park, Pennsylvanidour-metric onM =3, X R and the three-metric oB. a,b, ... are
16802. Electronic address: borissov@phys.psu.edu spatial and,j, ... internal indices; they all run from 1 to 3.
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m The above expression vanishes when we smear the Hamil-
Lr=7 g#"()NV=9(X)d,T(X)9,T(X). (1) tonian constrainC(x’) usingN(x) from Eq. (6). Thus the
only constraint which remains to be imposed on the wave
In this expression plays the role of a coupling constant functionals of the theory is the integral of the Hamiltonian
between the scalar field and the gravitational field. Later ongonstraint with the lapse function:
we will treatT(x) as time so that, from dimensional analysis,

the constantu should have dimensions of energy density. - d3x [ 7(x) -
The momentum conjugate to the fieldx) will be f d3x L\l(x)C(x)za(t),uf = ——+V—Cg(X)
s s (X)) \V2u
(X) o~ Ng*9,T 2 e
X)=——= ) =
= 5(aT) M " | T ZE0 | =o.

V2u

Because we are going to impose this integral as a con-
= straint operator, we can think 6&(x) as being equal to

Performing a Legendre transformation, we get, for the
total Lagrangian,

= NN E 2has _=n\pb =
L=mdoT—N 21 N5 Q70" 0aTopT—7N(pT) V—2uCg(x). Thus the expression in the first set of paren-
theses can be replaced RY2/u)7(x) and the whole inte-
+ Loravity- (3 gral reduces to
The Euler-Lagrange equations we obtain from this La-
grangian are a [ 70— \-2ulet01=0. @
3
O T N% N°(3,T)=0 (4)
om0 S ot Note that we assume that the Hamiltonian constraint
Cas(x) satisfies the weak energy conditigt8], which in this
and case requires thats(x)=<0.
SC In the process of quantization we promote this constraint
— = — 9o+ udn(NGPCAT) + ap(NOT). (5)  into an operator equation. We require that in the loop repre-
al sentation the spin network states, depending also on the

. . . - . clock variableT, be annihilated by the constraint operator:
At this point we impose a gauge fixing, restricting the

freedom of choosing the time coordinate. The gauge we use —
is d,T(x) =0, which, because of Eq4), implies that (S,T|a(t)f d3x['7°r(x)— \/—Z,MC:G(X)}=0. @)
s

a
doT=N ﬁ We interpret the integral
Thus the lapse functioN(x) should satisfy the relation R
J d3x (x)
a(t)u %
N(x) = ER (6)

asif times a derivative with respect to the “clock” field and
wherea(t) is an arbitrary function ofthe coordinatetime.  thus we arrive at the Schdinger equation
For the Hamiltonian constraint, we get

J -
= ’7;2 = |h_ S,T: S,TH, 9
C00 = 5 +Co(), g7 (STI=(ST] ©
2u
where where the HamiltonianH corresponds to the classical
. observablé (we have restored the constants
Ca(X) = €ijk EYEPIFS,— Ag=Ceinstein A G
)72
is the gravitational Hamiltonian constraint in terms of the H= N f d*xy=C(x) +Aq(x), (10
Ashtekar variables and is the cosmological constant. Ac- 4nG Jx

cording to the general prescription for gauge fixing in con-
straint systems, we have to compute the Poisson bracketgere
between the gauge and existing constraints to check for sec-
ondary constraints. Thus we get

72(x") ]:aa['fr(x’)

2The same result can be obtaingd by imposing gauge fixing at
C(x! T =di——, T —_—

the Lagrangian level and after that performing the Legendre trans-
formation.

53(x’ ,x)
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—C(X)+AqQ(x)=— eijk[ FK E2ED]

1 TaiEbjEck
_aAEabcE EE*";. (11

We will omit the overall factor of (/u/\/47G) in what fol-
lows, as it is not important for our considerations.

Because of the product of distributional quantities in the
Hamiltonian, we have to regulate the above expression. Us-
ing an arbitrary, e.g., Euclidian, background metjg,(x),
we divide the space manifolll into cubes of siz& , labeled
R,. In the calculations we will leL to go to zero as the
number of cubes goes to infinity. Then we can write &4)

as
FIG. 1. Loop 7;’2[56]#'yxyx#'yxzx on which theT operator is
* —C(x)+Aq(x) based.
H=Ilim d3xvVh(x) \| ———
LHOEI R, ( ) h(X)
” C A C l 4L3f d fd3 f5(X,y)
—C(x)+Aq(x =—1Ilim y TsX.y
=lim>, |_3\/ (x)+Ad( '), (12) a0 Jrvh R 0
L—0 | h(x,)
3 > k Tai
whereh(x) is the determinant of the background metric and X led z 15(X.2) T Fap(X) 7U Vl(x’y)Eal(y) i
X, in the last expression is a point in the cuBg. Now _
putting L2 inside the square root and going back to integral Xnyl(y,X)Uyz(X,Z)Eb](Z) 7iU,-1(Z,X)]. (16
form, we get ' 2
- d* T lete the regularizati Iso replace th t
H= lim \/L3 e+ Ad(x o complete the regularization, we also replace the curvature
LHOZ R Vh(x) [=Cx) (] F';b(x) by its approximation by a holonomy:
=lim >, V-C,+AVZ (13) 1 ,
o] K T = €
L—0 Fab(x)Tk—llTo 52 U(Vx,[éb])'

All of the above manipulations are correct in the limit
L—0. The last step in Eq13) is a definition ofC, . V, is the
classical volume of théth cube. e . 5. . .

Let us now focus on the first term of the expression unde?’vhere Yxraby 'S @ loop W'th area |n.the @.b) coq@nate
the square root in Eq13). We introduce a regulating point- Plane, based at the poirt We have included explicitly the
splitting function f 5(X,y), which is a density of weight 1 antisymmetrization with respect ta and b to ensure the
with respect to its first argument. This function satisfies thevanishing of first term in the expansion of the holonomy

requirement that for any smooth functi@f(x): U(),;Z[éﬁ]) in powers ofe2. Thus forC, we get
|imJ d® p(x)f 5(X,y)=(Y). (14
5—0J Ry L3

d3x
Ci=—Ilimlim — f —— | &Py f4Xy)
Using the regulating function we can wri@ as 000 26 Jr h(x) IRy

. d®x = x| a3z X DTIUG U, (xy)EX(Y)
— .13 k 3 ai 3 x,[ab]’ ~ 71

C ;IinoeljkL fR. —h(x) Fab(X)led y fs(X,Y)ET(Y) fR. B
Xinl(y,X)U72(X,Z)Eb(Z)U7£1(Z,X)],

X J d3z f4X,2)EP(2). (15)
R

where we have used the conventioEaQ(y) Ti:Ea(y). The

. . . xpression under the tr is exactl molin-R i
last expression, we connect the poirtsy, andz with ho- ® pression under the trace is exactly a Smo ovel

2
lonomies of the Ashtekar connection along some smoothop variable—Ttl(y, .- #yyy#¥x,,) based on the loop
pathsy,; andy, connecting the points. We also use the iden-shown in Fig. 1. Thus finally we get, for the regulated ver-
tity €j;x=—4 T 7,7;7] to write Eq.(15) as sion of C;,
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C,=limlimCp <, Pi , P

e—06—0

Where é { |’2Y(8) = (167l'l%al)piAa[ei,’y(s)] 2

L3 d3x 7ab
Choe=— | —— f d3y f4X, f d3z 5%,z
| 262 R \/W R, y 5( y) R, 6( ) i
FIG. 2. Action of a “hand” of theT?° operator.
62 A~
x> T[ab](yx‘ég#yxyx#yxzx). (17 the spin network, on whicli®” is based, by edges of color 2
kS to the original spin network. At the place of each grasping,

o the action creates new trivalent vertices. Also, we multiply
Now we promote the last expression into an operator b3by a factor of 16r|,2,|p~Aa[e< ¥(s)] whenever a “hand”
I 1

replacing the loop variabfé!*"! with the corresponding 100p gt ated aty(s), corresponding to a indexd” of the loop
operator. Thus for the Hamiltonian operatérwe get operator, grasps an edge of color p; from the spin network
Ip is the Planck length, and?e;,y(s)] is the standard
distributional expression:

H=1lim >, \/— lim lim C-2 €+ AV?, (18
L—o | e—06—0
~ a — P 3
whereV, is the volume operator, as defined[i2]. As was Afeiv(s)]= % dt &) 5°(y(s).& (V).

shown in[12], the spin network states are eigenstates of the

volume operator, and so we can replagewith the corre- . . . ~ b .
sponding eigenvalue for the volume of thié cube. The action of one of the “hands” of th&" operator is

Thus we have a regulated version of the Hamiltonian opSnOWn in Fig. 2. Now we are in position to apply the Hamil-
erator with which we act on the spin network states. weonian operator to the spin network states. We also assume

follow the standard procedure of regularization in which wethat the spin network states are normalized d4.8). For the
apply the Hamiltonian on the states, perform all integrationsction of the Hamiltonian oS, T|, we get
and at the end take the limits.

Definitions of the spin network states can be found in L se
[8-10,13. For our purposes it suffices to recall just the basic (S TIC;"”
components of the definition. The spin networks are defined
by a closed graplt in three-space, labeling of the edges by L3 d3x
irreducible representations of &) (we can interpret the o2 fR \/W
labels as giving the number of loop segments along the cor- :
responding edge and intertwiners at the vertices, defining ,

o €
m?o\ggr{ mg Ivo;[;)eit.agments coming from the edges are routed % % { Z <ei|T[ab]('yx’éf)#7xyx#')’xzx)
For a rigorous description of the way the spin networks

| oy Gy | @z
R R

are projected on a plane, we would need some additional A 2

details, but for simplicity in our calculations we will assume +> > (e ,e}k)|T[ab](YX,éf,#nyx#szQ}-
that the spin network we are using has been already pro- kT

jected. (19)

In our work we introduce a modification of the definition
of the loop operators. In their standard definition, the loop
operators:l\'ab[ v] are based on a loopand corresponding to In the first term of the above, the sumuns over all edges in
every index there is a “hand” attached to the logpin our ~ the Ith cube. In the second term, the indexuns over all
case, because the loop on WhigRP is based shrinks to a Vertices inside théth cube and the indiceésandj run over
point, we have the freedom of modifying the attachment oféll edges joined at thkth vertex. We get two types of terms:
the “hands” in a way convenient for our calculations. We €dge terms and vertex terms. In an edge term, the two
consider the base loop to be a planar loop with “hands” “hands_” of the Hamiltonian grasp one and the same edge of
based on spin network edges of infinitesimal lengtlat-  the spin network, labele@;, having colorp;. In vertex
tached toy. These edges have color 2 and are dengtggd ~ terms the two “hands” grasp two different edgef’ and
and yy,in Eq. (17). It will be also convenient for us to split €{), joined at a vertex. The two edges in general have
the points at which the “hands” are attached to the lgogp  different colorsp; and p;. We divide the vertex terms fur-
that there is a distance of ordébetween them. This can be ther into two subcases: Either the tangents to the edges at
thought of as a choice of decomposition of the four-valenthe common vertex are collinear, or there is some argle
vertex positioned at the pointinto two trivalent vertices. different from 0° and 180°, between the tangents.

With such a definition it can be easily shown that the We will assume that the cubes have been shrunk enough
standard action of the “hands” is represented by connectingo that in a single cube there is at most one vertex. The
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evaluation of the action in any case can be split into two Ill. ANALYTICAL ACTION OF THE HAMILTONIAN
different parts—we have an analytical part, coming from cal- OPERATOR ON SPIN NETWORK STATES
culating the prefactors in the action of the “hands” and
evaluating the integrals, and a graphical part in which we
complete the limiting procedure by shrinking the attached For the first type of terms in the last set of brackets in Eq.
loops. (19), we get

A. Action on a single edge

3
LZ f d3y f&(x y)f d*z fﬁ(x Z)E <e |T[ab]('y #'}’xyx#')’xzx)
2€ R /h(x x,ab

3

L ) ) &2
= 5z (16715)%p f dsf at], J_ fo(X.ei(s)f (%, eit )Eb el*(s)el ((ety 5t Yy raad - (20)

2 - - . - -
The meaning of the notation i(ﬂ?.#?’e ag#nyx#szxl can €Xpansion will make the whole expression vanishing, be-

be understood from Fig. 3. The dashed circle denotes th%[iuse of the —antisymmetrization of ~the product

b]
region which will be shrunk to a point. To proceed further © (s)&"(s). Also, the distancal can be replaced by(t
we have to specify the regulating functibg(X,y). We use a —s)||e(s)|. Combining Eqs(20) and (22, we get, to the

normalized, weighted function: lowest order ing,
~ L* 3
5%, y) = VRO T s(x,y) = ( )Jh(x YL 5— |5 y]1. s T (167137 jdsf dt
(21
> 3
After evaluation of the space integral in EQO), we get X[Z— (= S;|¢|$e i(s)| (|(t—s;|;ei(s)|) }
3
o o0 fs(X,ei(s)f (X, e (1)) xS [t-slel*(s)8)(s) (e, ab#'}’xyx#')’xle
ab
3 3d [d)\? 23
__8w53{2_§75+ 2_5) : (22)

The limits of integration with respect tb are determined

for d=d(s,t)=|&(s)—€&(t)| less than 2 and zero other- again by the expansion af(s,t) and are given by

wise. We have assumed also tiéat L.

As we are going to leb to go to zero, this will force also 2855 255"
the separation betwee(s) andé;(t) to approach zero. This te|s— — S+ — ,
is why we keep one of the parameters, sayfixed and lei(s)] lei(s)]

expandéi(t) in power series abow. The first term in the

where §*=1+0(6) and 6 =1+0(5). As the integrals
with respect tos andt are reparametrization invariant, we

can choose a parametrization such tlfa(s)|=1. In this
parametrization we set

and

where7 andn are the unit tangent and normal vectors to the
loop andp(s) is the curvature radius of the loop. Now we
FIG. 3. Grasping of the Hamiltonian on a single edge. can perform the integration with respectttand get
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st+255" l(t=9)] (l(t=9)]\3
Lz&sdt|t—3|{2—3 26 +( 25

=85%(3+0(9)).

Thus for Eq.(23) we obtain

L3

3 2 a
%m(l%lPl)szJ (S) 2 ! (S)nb]( )

2
X(&HYS - # Yyt Vxan -
(&#y 4 Py Yo FIG. 4. Grasping of the Hamiltonian on two edges meeting at a

vertex and having collinear tangents.
Using the corresponding expression from connection repre-
sentation in terms of holonomies, it can be shown that up to
terms of ordere the last sum can be written as C(N)=1m >, lim lim = E d3x N3(x)
L—0 | 5-0e—0 € ab

2
T3(s)API(s)(ettys . #yy # — A &
% ( ) ( )< i yx,ab Vxy7 7XZ><| XJR d3y f&(xuy)Tb['}’X’ab#'}’xyx]l (26)
{

2
= <ei#'}’>€<,}ﬁ#7xyx#7xzx| , (29 ) .
on a single smooth edge of the spin network state. The result,
up to finite numerical factors, is the same as &) if the
where now the I00|o/X m#yxyx#yxzX is in a plane defined by  shift vectorN?(x) is given by
the tangent and the normal to the edgat the points. Note
that this loop is well defined as in the terms where the edge
is a straight line and the normal is not defined the curvature
radius becomes infinite and such terms vanish. In the general
case since the sizk of the cubes goes to zero, we can
replace the integral with respect $dby its mean value:

3

p(s)d’

N?(s)=n?(s)

(27)

This is not surprising since a similar result is true for the
calculation in the connection representation. To obtain this
p(s) (& #7’x m#nyx#szxl result, one also must perform the graphical evaluation of the

loop yf(,z;ﬁ#yxyx#yxzx from Eq. (25 and of the loop

2
K &2 Yy 5i# Yxyx from the calculation of the action of the diffeo-
= (e, si# Yy Vxadi morphism constraint, which shrink at the end of the calcula-
tions. We show in detail this evaluation later in the paper in

. ; . . Sec. IVA.
wherex is a number of order 1, depending on the orientation Thus the action of the Hamiltonian on smooth edges of

of the e_dge inside the_ cube. We fmal!y get the analytlcakhe spin network states can be interpreted as diffeomorphism
expression for the action of the Hamiltonian on a S'ngletransformation in a direction defined by H@7). This means
smooth edge: that if we act on diffeomorphism-invariant states, the action
of the Hamiltonian on edges annihilates them. As we assume
4 that the states we act on a diffeomorphism invariant, we will

wb (16712)%p <ei#7;2}ﬁ#7xyx#7xlel . (25  discard the action on smooth edges from the final result.

ep51077

B. Action on two edges meeting at a vertex

This expression is a product of a prefactor, containing a com- . i
with collinear tangents

bination of regulating parameters and the original spin net-
work with attached additional loops, subject to graphical An example of the grasping of the Hamiltonian on two
evaluation. The prefactor will determine the way in which edges meeting at a vertex and having collinear tangents is
we take the three limite—0, §—0, andL—0 to make the shown in Fig. 4. The analytical calculation in this case is
whole expression finite. almost the same as with the case of a single edge. The only

To understand the above intermediate result, we computdifference comes from the fact that the grasped edges could
the action of the regulated diffeomorphism constraint: have different colors, and so instead of E25) we have
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xL* 3 ) 2 C. Action on two edges meeting at a vertex
o5 107 (16715)pipi((e; DY i# Yy Yok - with noncollinear tangents

(28) - _
In this case we cannot interpret the action of the Hamiltonian |€t the Hamiltonian grasps the edggsande; with colors
as a diffeomorphism transformation. As discusseflL#l, in ~ Pi @ndp;, respectively. Let; and e; meet at some vertex
such cases the action can change the diffeomorphism class @f- We denote the part of the spin network state correspond-
the spin network. But as we will see later in the paper, sucting to the edges under consideration {(g; ;)|. For the
terms are of ordet and they vanish after taking all limits. ~action of the Hamiltonian we have

€2

L® d*x 3 = 3 ~ \Tlab]
((& yej)| 2¢2 R W R|d y fs(X,y) R|d z f5(X,2)T ('yxvéb#')’xyx#')’xzx)

L3 d3x s &2
o2 (:|-67T|I23|)2pipjJ‘ICISJ‘IdtJRI W f&&aei(s))féayej(t))%) ei[ (S)ejb](t)<(ei :ej)#')’x,ég#'yxyx#')’ng- (29

2
Again ((e ,ej)#yi éB#yxyx#'yXZ)J denotes the action of grasping of the Hamiltonian. Using @8), we can evaluate the
spatial integral to get

L® 3 l&(s) =&  (16(9-&1]\ ] .1a, . 2
2% 167 (1677||23|)2pipjjld5‘[|dt{2—3 | 55 J + | 55 j Z ei[a(s)e]_b](t)«ei 1ej)#7’x'56#7xyx#7xlel _
ab
(30
We use a parametrization such tﬁuélj=|§j|=1, and so the distanad(s,t) =|€(s) — €;(t)| becomes simplyl(s,t)=|s

—t|. Also, let » and { be the unit tangent vectors at the vertex, and let the angle between the. beerforming the
integration with respect te andt we get, for Eq.(30),

L® 36 o 2
25 10m IsJina (1613)%pip; 2 71°°(er )y, st vy vend -
@b

Again, we can use a formula which can be proved by using the corresponding expression in the connection representa-
tion: namely,

A 52 . 62
Z n[agb]«ei vej)#'yxﬁél;#')’xyx#yxlel :Sm0<(ei vej)#'}’x’,‘?z#')’xyx#')’xlel )
ab

to transform the sum in Eg30). In the last expression, different ways. First, the prefactors in Eq28) and (31

752“ contain combinations of the regulating parameters. The lim-
Xl , i . its should be taken in such a way so that these combinations

tors 7 and{. Thus finally we get for the action of the Hamil- yield finite results. Second, the loop on which the loop op-

tonian on a vertex: erator 720 is based shrinks to a point, together with its

is a loop in the plane defined by the two tangent vec

3 3¢, ) “hands,” and this leads to the graphical evaluation.
25 r.; (16wl,23,)2pipj((ei ,ej)#y;;]z#yxyx#yxz)J, . The combinations of parameters are
(31 kL4 g L3 32
In the obtained expression, we can separate between the €6 €6

prefactor and loop-deformed spin network state. The prefac-
tor contains a combination of the regulating parameters an
an implicit dependence on the arbitrary background metri
through the anglé;; . The loop deformation will be subject
to a graphical evaluation later in the paper.

or Egs.(28) and (31), respectively. To ensure finiteness of
our expressions, let us take the three lingits 0, 5—0, and
L—0 along a plane in thel( e, 5) parameter space, defined

by
D. Taking the limits

Now we are in position to take the limits in the computa- = —7
tion. Basically, the limits appear in our calculation in two €5
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whereZ is an arbitrary constant, chosen in such a way so the
relative order of taking the limits is satisfied. This order is

determined by the conditions thatL and §<e. We have
to be careful about the way the limits inand § are taken, as
the diffeomorphism vectof27) contains the ratid.3/ 8, and
so we would not likesto go to zero much faster thdn If

we setL3/ 6= const, then this will be enough to prevent the

diffeomorphism from becoming infinite.

We can now write the general formula for the analytical
action of the Hamiltonian on diffeomorphism-invariant spin

network states. All the cubes which are empty give zero.
The result from the action on different edges meeting at
vertex with collinear tangent®8) can be written as

3kZL

62
10mp, (167l l%l)zpi pj<(ei aej)#yx,}ﬁ#')’xyx#'ysz |

and vanishes as goes to zero.
Adding up all contributions from the vertices with non-
collinear tangents, we get

- 3z
S,T|Ch* == (16m2)>, pip;6;
< | I 1077( ) IEJ Pip; t;;

0) ak)yg0 €
X((e" € )#'yx‘;?z#')’xyx#')’xle- (33
In the above sums, the indicésand j run over all edges
joined at the vertex, which is in thelth cube. The sum
contains the arbitrary but finite constahtand the angle;

between the edges at the vertex. The bar over the state

ROUMEN BORISSOV

IV. GRAPHICAL ACTION OF THE HAMILTONIAN

To evaluate the deformed spin network state from Eq.
(33), we use some techniques from the recoupling theory of
colored trivalent links and knots. First, let us consider a gen-
eral situation in which a loop attached to a spin network is
shrunk to a point. An important observation is that the evalu-
ation is local, in the sense that whatever result we obtain, it is
independent of the way the spin network is connected out-
side of the circle denoting the shrinking region.

To evaluate the attached loop we have to do the follow-
ing: Expand all the edges which are entirely in the shrink-
%g region as an antisymmetrized sum with all possible
crossings between the loop segments; resolve each crossing
of single loop segments in the shrinking region according to
the binor Mandelstam identitysee[12] for a discussio)
associate to each closed single loop the “loop value’'2);
smooth the obtained graph to get if possible the original spin
network.

But these are exactly the operations which occur in the
evaluation of the Kauffman brackgil5]. The Kauffman
bracket is an invariant of the regular isotopy of colored knots
and links with trivalent vertices. Thus, for the evaluation of
the graphical action of the loop operators, we can use the
techniques of recoupling theory, developed for computing
the Kauffman brackdtl5,16,18,12 What makes these tech-
nigues powerful is the fact that we do the computations
blockwise. First, we work out the analytical expressions for
the most simple graphs. Then in more complicated calcula-
tions we identify the simple graphs and replace them with
the corresponding analytical expressions. This is possible be-

represents the fact that we still have to perform the shrinkingause the evaluation of the graphs is local—we can shrink to

of the attached loops and thus to evaluate the graph.

a point just a portion of the whole graph, keeping the remain-

We get an overall action which is finite but backgrounding parts fixed. The basic formulas of the recoupling theory

dependent because of the presence of the ahgleThis is a

are summarized in the Appendix. With the use of these for-

problem which can be solved by redefining the way we apmulas, we compute the graphical action of the Hamiltonian

proximate the curvatur€,,. Let the holonomy which ap-

on smooth edges and on vertices.

proximates the curvature be based on a loop with area

6;; €” instead ofe?. Then all the calculations go through, but

at the end there is an extra factor&f in the denominator of

Eq. (33) to cancel the corresponding factor from the numera-
tor. It is important to notice that although the explicit inclu-

sion of the factor of;; formally solves the problem of back-
ground dependence,

the situation is not completely’@nsformation.

A. Evaluation of the graphical action for edges

We perform the graphical evaluation for the grasp of a
smooth edge to show that the graphical action of the Hamil-
tonian on smooth edges is equivalent to a diffeomorphism
We start from the expression

satisfactory. The computation of the evolution of the spin{ei#v; ;:#¥xy<#¥xzd- The grasping is shown in Fig. 3. First,
network states involves at each step measuring the anglee use the basic recoupling formulal) from the Appendix
6;; between each pair of tangent vectors. Technically, thion one of the edges. As a result, a new link of cofor

might require the introduction in the definition of the Hamil-

tonian of an operator, measuring the ang|g. This issue
requires further investigation.

/151'
2 /
<ei#7;,+ﬁ#7o:y:c#7xza:‘ = ‘.\

appears in the new configuration. The allowed valuesfor
are determined by the basic properties of the trivalent
vertices—the only values it can take grg+1:

On the right-hand side appears the §ymbol, as defined ifil5]. We repeat the same step with the other “hand” and get
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To continue further we have to make a more careful analysis of the way the limit is taken, when the states are diffeomor-
phism invariant. As this is not relevant for our considerations, we will stop here and show that the above expression is
analogous to the result from the action of the diffeomorphism constraint. To this aim we act witt6Egn a smooth edge.

There, the loop deformation is given by the expressj@igﬁ#yxyx. To evaluate graphically this expression, we use the basic
recoupling formula/Al) and immediately get

-

2 /
(et = |

Thus we see that in both cases of the action of the Hamiltonian and of the diffeomorphism constraints, the graphical
evaluation leads to the a “bubble” on the smooth edge with different numerical factors. This proves that the two graphical
actions are equivalent, and thus we can disregard all terms in the action of the Hamiltonian on smooth edges of
diffeomorphism-invariant states.

B. Evaluation of the graphical action for vertices

We apply the techniques from the recoupling theory of colored graphs also to evaluate the action of the Hamiltonian when
it grasps two edges meeting at a vertex. For simplicity, we consider only the action on one pair of edges joint at a trivalent

2
vertex. We have initially the expressid(e; ,ej)#y;%#yxyx#yng, which can be transformed with the use of the recoupling
formula (A1), given in the Appendix. We obtain the result

bi pi n

2
((6,', ej)#’)’:,'ﬁc‘ #'7a:y:c #7.1:,27: l =

Then we repeat the same step with the other “hand” of Theperator to get

pi pi n p;i p; m

n=piklm=p;El | 1 1 9 1 1 2

The inner triangular diagram of the above graph can be evaluated with the use of one recoupling formula and one “bubble”
removal(see the Appendijx
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) pi pion || p piom
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The last step in the graphical calculation requires more careful consideration. As discud$&ddvifnen we act on
diffeomorphism-invariant states, the spin network remains in its knot class, although the area of the last remaining loop goes
to zero. To understand this situation, let us discuss the action of the Hamiltonian from the point of view of diffeomorphism
invariance. We start with a state which is diffeomorphism class of spin network and a Hamiltonian, also based on a class of
diffeomorphism-invariant smooth loops with “hands.” To perform the action, we introduce a background metric, break the
diffeomorphism invariance, and introduce notions of lengths and areas. It is in this noninvariant sense in which we can talk
about “loops of some area shrinking to a fixed point” and about “hands of infinitesimal length.” Also, all the formulas we
apply from the recoupling theory are based on the ideas of replacing loops by their loop values and recoupling, which are
diffeomorphically noninvariant operations. We assume that we can perform these operations as far as we recover at the end of
the “right” diffeomorphism class. What we expect at the end is the original spin network attached through two “hands” to
a loop which in the nondiffeomorphism limit shrinks to a vertex.

We can choose the attached loop in different way, but we want our choice to be consistent with the operations we perform
in a noninvariant fashion. One possible such choice is the attached loop to connect two edges joined at a vertex and then to run
along the edges of the original spin network. This means that when the state we are acting on is diffeomorphism invariant,
taking the last limit is trivial—the graph does not change. Thus finally we get

AL 6e 37 pi ppon
(8, TICH = T-(16x1}) szpj DI

n=p;+1 m=p;*1 1 1 2

pi pj m noPi P | (=1)P9(pi, p;, Pk)
pr+1

(34

where the vertex having the additional edge attached to it is inlttheube. The statéS,T| we acted on is normalized
according to the normalization introduced[it2]. If the final states are also to be normalized, we have to introduce some
additional factors in Eq(34). As the old trivalent vertex has been transformed into a new one, and an edge and two new
vertices have been added, we get, for the final normalized sum of states,

3Z(1671%,))?

T L&E:
(9 |C 107

—29(p;:, p;,
szzpj Z Z \‘ 3(1,pi, n) (® - pk)AnAm

n=pitl m=p;+1 n ﬁ(lvpbm)ﬁ(nam,pk)

pi pi n pi p; m noPi P | (=1)P9(p;, p;, k)
pr+1

11 2 1 1 2 pj m 1

(35
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The action of the Hamiltonian constraié{ as part of the works on which the state is based from one knot class of

physical HamiltoniarH can be described as follows: When graphs with vertices into another one. In this transition the
the Hamiltonian constrair€ acts on edges, the action can be €°l0ring of certain edges changes, and so the requirements

interpreted as a diffeomorphism transformation. Thus thd®" 1€ graph to be a spin network remain satisfied. At the

Hamiltonian constraint acts nontrivially on diffeomorphism- same time, each new state Is mult|pI|ed_ by a fact_or which
invariant states only when it acts on the vertices of the spiﬁ:ames the appropriate dimensions, contains an arbitrary con-

network. The action on vertices amounts to adding a neywtant, and also includes the result from the computation in

edge attached through new trivalent vertices to each pair dgcoupling theory. . . . . .
edges at each vertex. Each new edge has color 1. Also the In the paper we colnsu;iered n FJeta|I only tnvalent_vertl—'
colors of the edges connecting the new vertices and the origﬁes’ but the generalization to higher valence vertices is

nal one change. This change can be explained with the res_traightforward. As discussed [a1,12, any higher-valence

qguirement that the new graph is again a spin network. Theertex can be decomposed into a _set of infinitgsimally dis-
obtained states are multiplied by finite factors, which, al-Placed trivalent ones. The analytical calculation we per-

though cumbersome, are straightforward to compute. fqrmed did not depend_ to the valen.ce of the' vertex. Th?
difference with the considered case will appear in the graphi-

cal evaluation where we again can apply the recoupling

theory. It can be shown that as a result in the same way as

V. HAMILTONIAN EIGENSPECTRUM with the trivalent vertices, edges of color 1 are added, rerout-

Let us recall that the Hamiltonian defined through theing of the loops through the vertices occurs, and one can

“clock” field has the form(18): compute the corresponding prefactors.
Also, the evaluation presented in the paper can be applied

.S — 5 to the g-deformed spin networks[16,18. In the
H= lim >, \/— limlim C €+ AVy. (36)  g-deformed theory, all the formulas we used have their coun-
L—0 | €-05-0 terparts. Thus in that case one should simply replace the

To find the eigenspectrum of the Hamiltonian operator, We];?gr::[lig]we derived with the correspondiqgleformed ver-

have to handle in a satisfactory manner the square root in E
(36). Since we have not been able to complete this task,
will only describe the directions for future work.

Since both the Hamiltonian constraint and the volume op
erator in Eq.(36) give nonzero results only when acting on
vertices, the above sum reduces to a sum only over the cub
in which there is a vertex. Thus the sum in E86) becomes
finite. Also, all the terms coming from the action on different

vert'lces are independent of.each other. ThIS.JUStIf!es the fo'broposal[?] involves a different procedure, which also al-
lowing strategy for computing the Hamiltonian CIGENSPEC 4 vs the square root to be expressed as a series. In any case

;lcj)w:un(\j/\(/e? t?]aensui?artgeroroetsgrl: \tg?cgge iﬁgogcggahgf?ﬁgrﬁrs' e have to settle this set of problems before trying to solve
q - or the eigenvalues of the Hamiltonian operator.

term is given by Eq(35), and the action of the volume piece
has been computed for example[it2]. To proceed further
we might have to distinguish between the action on bivalent
and trivalent vertices, on the one hand, as having zero vol- ACKNOWLEDGMENTS

ume, and the action on higher-valence vertices. In any case This work would be impossible without the numerous dis
we will have to diagonalize the expressi . The problem . ; . . i
9 P @%) P cussions | had with Lee Smolin and Carlo Rovelli. | also

's thata priori we cannot expect the matrix defined by Eq'would like to thank Don Neville and Seth Major for their

(35 to be diagonalizable. Since the expression for the o o
Hamiltonian constraint we start with is a real one, we Cancomments and criticism and the Center for Gravitational

assume that there exists an appropriate symmetrizatioﬁhys.'cs.and Geometry, where this work was started, for the
which can make the constraint operator self-adjoint and it?ospltahty.

matrix symmetric. To make the matrix in the right-hand side

of Eq. (35) diagonalizable we could replace it by one-half of APPENDIX: BASIC FORMULAS

the sum of the matrix and its transposed. Then we will have OF THE RECOUPLING THEORY

to diagonalize the sum of the Hamiltonian and volume ma- ) )

trices and to take the square root. The result will be an infi- One of the main results of the recoupling theory of col-

nite dimensional diagonal matrix with the Hamiltonian ei- Ored knots and links with trivalent vertic¢s5] is the com-
genvalues as its elements. putation of the Kauffman brackets for different framed spin

networks. The framing refers to the fact that in the compu-
tations one keeps track of overcrossings and undercrossing.
In our work we do not make this distinction, and so we use a
simplified version of the recoupling theory; namely, we re-
The action of the Hamiltonian constraint on a spin net-place the deformation parametgrby its “classical” value
work state can be described as a transition of the spin net= 1, relevant to our case. As a result, in most of the formulas

wq. As we discussed before, to get rid of the background de-
Bendence of the prefactor, we have to know the angle be-
tween each pair of tangents, which requires modification of
the regularization. Another set of problems occurs when we
try to make sense of the square root involved in the definition
%%(the Hamiltonian. There are certain proposals in this direc-
tion: One[17] is to use an expansion in inverse powers of
A and to find an approximation to the square root. Another

VI. CONCLUSION
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from [15], theg-deformed(or quantunintegers are replaced The basic relation in this theory expresses the relation
by ordinary ones. We list here the basic formulas, which webetween the different ways in which three angular momenta,

use, with the mentioned corrections made. For more detailsay,j,, j,, andjs can couple to form a fourth ong,. The
see[15]. two possible recouplings are related by the formula

(A1)

where on the right-hand side is tlge-6j symbol, as defined ifil5] for the value of the deformation parametgequal to
—1. Again, the dashed line denotes the fact that the recoupling occurs in a region which shrinks to a point; it is not extended

in space.
Closed loops which have been shrunk to a point are replaced by their loop value, wifich assingle loop with zero

self-linking) equal to— 2. The evaluation of a single unknotted loop with cafois [15]

&) = (1rmen=a, #2)

The small rectangle in the above diagram denotes the antisymmetrization roflitree

The next graph we consider is the “bubble” diagram. Upon shrinking the “bubble,” this diagram will reduce to a single
edge, so that the evaluation will be different from zero only if the colors of both ends of the “bubble” are the same. Thus the
“bubble” diagram equals some numerical factor times a single edge. By closing the free ends of the diagram, it is straight-

forward to show that

I/ v
] n \
\ 1 (A3)
A ]
LY ,I

- ~
~~~~~~~~~~~

-

.

_ (p)lertrg (aF bt et Dlalbld
(a+b)!(b+c)(a+c)

f(m,n,l) = (A4)

~ el

wherea+b=m, a+c=n, andb+c=1.
A basic element in most of the formulas of the recoupling theory of colored graphs i§ therthol. It is defined through

the so-called tetrahedral net via the relation

. a e
(-1 (e+1)TeC 4 i

a b e_
c d f| J(a,d,e)d(c,b,e)

(A5)
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The tetrahedral net is represented by the diagram

Upon evaluation, the tetrahedral net yields a,=(c+d+f),
T t{a b el Z (—1)S(s+1)!
e d |78 nktn M(s—al(b,—s)!’ m=maxa}, M=min{b},
where

a;=3(a+d+e), b;=3(b+d+e+f),

a,=3(b+c+e), b,=3(a+ct+e+f), These formulas are sufficient for the computations performed
in the paper. I115], one can find a detailed derivation of all
az=3(a+b+f), bz=3(a+b+c+d), of them.
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