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The evolution of spin network states in loop quantum gravity can be defined with respect to a time variable,
given by the surfaces of constant value of an auxiliary scalar field. We regulate the Hamiltonian, generating
such an evolution, and evaluate its action both on edges and on vertices of the spin network states. The
analytical computations are carried out completely to yield a finite, diffeomorphism-invariant result. We use
techniques from the recoupling theory of colored graphs with trivalent vertices to evaluate the graphical part of
the Hamiltonian action. We show that the action on edges is equivalent to a diffeomorphism transformation,
while the action on vertices adds new edges and reroutes the loops through the vertices. A remaining unre-
solved problem is to take the square root of the infinite-dimensional matrix of the Hamiltonian constraint and
to obtain the eigenspectrum of the ‘‘clock field’’ Hamiltonian.@S0556-2821~97!06208-5#

PACS number~s!: 04.60.Ds

I. INTRODUCTION

In canonical quantum gravity the notion of evolution re-
quires a careful definition because the translations in the time
direction can be interpreted as diffeomorphism transforma-
tions @1#. To be able to talk about evolution, we can use
‘‘relational constructions.’’ Some physical fields can be in-
troduced as a reference frame with respect to which the evo-
lution can be defined@2,5,6#. In loop quantum gravity@3#,
Smolin and Rovelli@6,7# define a time variable by the sur-
faces of constant value of an auxiliary scalar field. By fixing
a gauge in this construction, an infinite number of Hamil-
tonian constraints~one per space point! reduces to one con-
straint which can be interpreted as a Schro¨dinger equation
and a Hamiltonian operator can be identified. We use the
Hamiltonian obtained in this model to investigate the evolu-
tion of quantum gravitational states. In loop quantum grav-
ity, spin network states@8–10# furnish a complete basis of
quantum kinematical states.

There exists@11,12# already a well-established procedure
for expressing different quantities from quantum gravity in
terms of the loop variables@4#. Then operator versions of the
gravitational quantities can be defined by replacing the loop
variables with the corresponding operators. Thus it is rela-
tively straightforward to introduce a loop version for the
Hamiltonian operator. We use the results from@6# and@7# as
a starting point for our calculations. Our purpose is to deter-
mine in detail the way the spin network states evolve under
the Hamiltonian introduced in@6#. As we will see, the result
of the evolution can be split into two parts. First, there is a
multiplicative factor which is finite and diffeomorphism in-
variant. Second, the spin network states evolve topological-
ly: The new state is a sum of terms, each term being based
on the original spin network with an added extra edge of
color 1. The added edge connects pairs of the original edges,
meeting at a vertex. Also, some change of coloring of the

edges occurs such that the new graph is a spin network again.
The content of the paper is as follows. In Sec. II we define

the Hamiltonian and regulate it to show that it has a well-
defined action on the spin network states. We also introduce
a modification in the way the loop operators are defined,
better suited for our calculations. Technically, the action of
the Hamiltonian operator can be split into analytical and
graphical parts. The analytical part includes various prefac-
tors and integrals. The graphical part expresses the topologi-
cal transformations occurring in the spin networks. In Sec.
III we compute the analytical action of the Hamiltonian sepa-
rately on edges and on vertices. We show that to a great
extent the action on edges is equivalent to diffeomorphism
transformation. Using some techniques from recoupling
theory of knots and links with trivalent vertices, we perform
the graphical computation of the action of the Hamiltonian in
Sec. IV. The result from the graphical calculation tells us
whether the diffeomorphism class of the spin network or the
coloring of certain edges changes. We conclude with a dis-
cussion of some open issues.

II. HAMILTONIAN OF THE THEORY

Because of the absence of external time with respect to
which the evolution can be defined, we need some additional
construction. As has been shown in@6#, to define time we
can use the physical degrees of freedom of an auxiliary field.
We start by introducing a scalar fieldT(x). To serve as a
clock, this field should be monotonically increasing every-
where on the space manifoldS.1 Then we can use its three-
surfaces of constant valueT(x)5const to represent the time
with respect to which the evolution will be defined. The sca-
lar ‘‘clock’’ field can be incorporated in the theory through
the standard Klein-Gordon Lagrangian

*Present address: Center for Gravitational Physics and Geometry,
The Pennsylvania State University, University Park, Pennsylvania
16802. Electronic address: borissov@phys.psu.edu

1We use the standard notation:gmn andqab are, respectively, the
four-metric onM5S3R and the three-metric onS. a,b, . . . are
spatial andi , j , . . . internal indices; they all run from 1 to 3.
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LT5
m

2
gmn~x!A2g~x!]mT~x!]nT~x!. ~1!

In this expressionm plays the role of a coupling constant
between the scalar field and the gravitational field. Later on,
we will treatT(x) as time so that, from dimensional analysis,
the constantm should have dimensions of energy density.
The momentum conjugate to the fieldT(x) will be

p̃~x!5
]L

]~]0T!
5mqNg0m]mT. ~2!

Performing a Legendre transformation, we get, for the
total Lagrangian,

L5p̃]0T2N>
p̃2

2m
2N>

m

2
q2qab]aT]bT2p̃Nb~]bT!

1Lgravity. ~3!

The Euler-Lagrange equations we obtain from this La-
grangian are

dL
dp̃

5]0T2N>
p̃

m
2Nb~]bT!50 ~4!

and

dL
]T

52]0p̃1m]b~N> q5
bc]cT!1]b~N

bp̃ !. ~5!

At this point we impose a gauge fixing, restricting the
freedom of choosing the time coordinate. The gauge we use
is ]aT(x)50, which, because of Eq.~4!, implies that

]0T5N>
p̃

m
.

Thus the lapse functionN> (x) should satisfy the relation

N> ~x!5
a~ t !m

p̃~x!
, ~6!

wherea(t) is an arbitrary function of~the coordinate! time.
For the Hamiltonian constraint, we get

C5~x!5
p̃2

2m
1C5G~x!,

where

C5G~x!5e i jk Ẽ
aiẼb jFab

k 2Lq5CEinstein2Lq

is the gravitational Hamiltonian constraint in terms of the
Ashtekar variables andL is the cosmological constant. Ac-
cording to the general prescription for gauge fixing in con-
straint systems, we have to compute the Poisson brackets
between the gauge and existing constraints to check for sec-
ondary constraints. Thus we get

$C5~x8!,]aT~x!%5]aH p̃2~x8!

2m
,T~x!J 5]aF p̃~x8!

m
d3~x8,x!G .

The above expression vanishes when we smear the Hamil-
tonian constraintC5 (x8) usingN> (x) from Eq. ~6!. Thus the
only constraint which remains to be imposed on the wave
functionals of the theory is the integral of the Hamiltonian
constraint with the lapse function:

E
S
d3x N> ~x!C5~x!5a~ t !mE

S

d3x

p̃~x!
S p̃~x!

A2m
1A2C5G~x!D

3S p̃~x!

A2m
2A2C5G~x!D >0.

Because we are going to impose this integral as a con-
straint operator, we can think ofp̃(x) as being equal to

A22mC5 G(x). Thus the expression in the first set of paren-
theses can be replaced byA(2/m)p̃(x) and the whole inte-
gral reduces to

a~ t !E
S
d3x@p̃~x!2A22mC5G~x!#>0. ~7!

Note that we assume that the Hamiltonian constraint
CG(x) satisfies the weak energy condition@13#, which in this
case requires thatCG(x)<0.

In the process of quantization we promote this constraint
into an operator equation. We require that in the loop repre-
sentation the spin network states, depending also on the
clock variableT, be annihilated by the constraint operator:

^S,Tua~ t !E
S
d3xF p̂̃~x!2A22mC5̂G~x!G50. ~8!

We interpret the integral

E
S
d3x p̂̃~x!

asi\ times a derivative with respect to the ‘‘clock’’ field and
thus we arrive at the Schro¨dinger equation

i\
]

]T
^S,Tu5^S,TuĤ, ~9!

where the HamiltonianĤ corresponds to the classical
observable2 ~we have restored the constants!

H5
Am

A4pG
E

S
d3xA2C~x!1Lq~x!, ~10!

where

2The same result can be obtained@7# by imposing gauge fixing at
the Lagrangian level and after that performing the Legendre trans-
formation.
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2C~x!1Lq~x!52e i jk HFab
k ẼaiẼb j

2
1

3!
LeabcẼ

aiẼb jẼckJ . ~11!

We will omit the overall factor of (Am/A4pG) in what fol-
lows, as it is not important for our considerations.

Because of the product of distributional quantities in the
Hamiltonian, we have to regulate the above expression. Us-
ing an arbitrary, e.g., Euclidian, background metrichab(x),
we divide the space manifoldS into cubes of sizeL, labeled
RI . In the calculations we will letL to go to zero as the
number of cubes goes to infinity. Then we can write Eq.~10!
as

H5 lim
L→0

(
I

` E
RI

d3xAh~x!A2C~x!1Lq~x!

h~x!

5 lim
L→0

(
I

`

L3A2C~xI !1Lq~xI !

h~xI !
, ~12!

whereh(x) is the determinant of the background metric and
xI in the last expression is a point in the cubeRI . Now
putting L3 inside the square root and going back to integral
form, we get

H5 lim
L→0

(
I

` AL3E
RI

d3x

Ah~x!
@2C~x!1Lq~x!#

5 lim
L→0

(
I

`

A2CI1LVI
2. ~13!

All of the above manipulations are correct in the limit
L→0. The last step in Eq.~13! is a definition ofCI . VI is the
classical volume of theI th cube.

Let us now focus on the first term of the expression under
the square root in Eq.~13!. We introduce a regulating point-
splitting function f d( x̃,y), which is a density of weight 1
with respect to its first argument. This function satisfies the
requirement that for any smooth functionf(x):

lim
d→0

E
RI{y

d3x f~x! f d~ x̃,y!5f~y!. ~14!

Using the regulating function we can writeCI as

CI5 lim
d→0

e i jkL
3E

RI

d3x

Ah~x!
Fab
k ~x!E

RI

d3y fd~ x̃,y!Ẽai~y!

3E
RI

d3z fd~ x̃,z!Ẽb j~z!. ~15!

To ensure proper contractions of the internal indices in the
last expression, we connect the pointsx, y, andz with ho-
lonomies of the Ashtekar connection along some smooth
pathsg1 andg2 connecting the points. We also use the iden-
tity e i jk524 Tr@t it jtk# to write Eq.~15! as

CI52 lim
d→0

4L3E
RI

d3x

Ah~x!
E
RI

d3y fd~ x̃,y!

3E
RI

d3z fd~ x̃,z!Tr@Fab
k ~x!tkUg1

~x,y!Ẽai~y!t i

3Ug
1
21~y,x!Ug2

~x,z!Ẽb j~z!t jUg
2
21~z,x!#. ~16!

To complete the regularization, we also replace the curvature
Fab
k (x) by its approximation by a holonomy:

Fab
k ~x!tk5 lim

e→0

1

2e2
U~g

x,@ âb̂#

e2
!,

whereg
x,@ âb̂#

e2
is a loop with areae2 in the (â,b̂) coordinate

plane, based at the pointx. We have included explicitly the
antisymmetrization with respect toâ and b̂ to ensure the
vanishing of first term in the expansion of the holonomy

U(g
x,@ âb̂#

e2
) in powers ofe2. Thus forCI we get

CI52 lim
e→0

lim
d→0

L3

2e2 ERI
d3x

Ah~x!
E
RI

d3y fd~ x̃,y!

3E
RI

d3z fd~ x̃,z!Tr@U~g
x,@ âb̂#

e2
!Ug1

~x,y!Ẽa~y!

3Ug
1
21~y,x!Ug2

~x,z!Ẽb~ z̄!Ug
2
21~z,x!#,

where we have used the convention 2Ẽai(y)t i5Ẽa(y). The
expression under the trace is exactly a Smolin-Rovelli@4#

loop variable2T@ab#(g
x,@ âb̂#

e2
#gxyx#gxzx) based on the loop

shown in Fig. 1. Thus finally we get, for the regulated ver-
sion ofCI ,

FIG. 1. Loop g
x,@ âb̂#

e2
#gxyx#gxzx on which theT operator is

based.
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CI5 lim
e→0

lim
d→0

CI
L,d,e ,

where

CI
L,d,e5

L3

2e2 ERI
d3x

Ah~x!
E
RI

d3y fd~ x̃,y!E
RI

d3z fd~ x̃,z!

3(
âb̂

T@ab#~g
x,âb̂

e2
#gxyx#gxzx!. ~17!

Now we promote the last expression into an operator by
replacing the loop variableT@ab# with the corresponding loop
operator. Thus for the Hamiltonian operatorĤ we get

Ĥ5 lim
L→0

(
I

`

A2 lim
e→0

lim
d→0

ĈI
L,d,e1LVI

2, ~18!

whereV̂I is the volume operator, as defined in@12#. As was
shown in@12#, the spin network states are eigenstates of the
volume operator, and so we can replaceV̂I with the corre-
sponding eigenvalue for the volume of theI th cube.

Thus we have a regulated version of the Hamiltonian op-
erator with which we act on the spin network states. We
follow the standard procedure of regularization in which we
apply the Hamiltonian on the states, perform all integrations,
and at the end take the limits.

Definitions of the spin network states can be found in
@8–10,12#. For our purposes it suffices to recall just the basic
components of the definition. The spin networks are defined
by a closed graphG in three-space, labeling of the edges by
irreducible representations of SU~2! ~we can interpret the
labels as giving the number of loop segments along the cor-
responding edge!, and intertwiners at the vertices, defining
the way the loop segments coming from the edges are routed
through the vertex.

For a rigorous description of the way the spin networks
are projected on a plane, we would need some additional
details, but for simplicity in our calculations we will assume
that the spin network we are using has been already pro-
jected.

In our work we introduce a modification of the definition
of the loop operators. In their standard definition, the loop
operatorsT̂ab@g# are based on a loopg and corresponding to
every index there is a ‘‘hand’’ attached to the loopg. In our
case, because the loop on whichT̂ab is based shrinks to a
point, we have the freedom of modifying the attachment of
the ‘‘hands’’ in a way convenient for our calculations. We
consider the base loopg to be a planar loop with ‘‘hands’’
based on spin network edges of infinitesimal lengthd at-
tached tog. These edges have color 2 and are denotedgxyx
andgxzx in Eq. ~17!. It will be also convenient for us to split
the points at which the ‘‘hands’’ are attached to the loopg so
that there is a distance of orderd between them. This can be
thought of as a choice of decomposition of the four-valent
vertex positioned at the pointx into two trivalent vertices.

With such a definition it can be easily shown that the
standard action of the ‘‘hands’’ is represented by connecting

the spin network, on whichT̂ab is based, by edges of color 2
to the original spin network. At the place of each grasping,
the action creates new trivalent vertices. Also, we multiply
by a factor of 16p lPl

2 piD
a@ei ,g(s)# whenever a ‘‘hand’’

situated atg(s), corresponding to a index ‘‘a’’ of the loop
operator, grasps an edge,ei of colorpi from the spin network
lPl is the Planck length, andDa@ei ,g(s)# is the standard
distributional expression:

Da@ei ,g~s!#5 R dt ėi~ t !d
3
„g~s!,ei~ t !….

The action of one of the ‘‘hands’’ of theT̂ab operator is
shown in Fig. 2. Now we are in position to apply the Hamil-
tonian operator to the spin network states. We also assume
that the spin network states are normalized as in@12#. For the
action of the Hamiltonian on̂S,Tu, we get

^S,TuĈI
L,d,e

5
L3

2e2 ERI
d3x

Ah~x!
E
RI

d3y fd( x̃,y)E
RI

d3z fd( x̃,z)

3(
â b̂

H(
i

^ei uT̂@ab#(g
x,âb̂

e2
#gxyx#gxzx)

1(
k

(
i , j

^ei
~k! ,ej

~k!uT̂@ab#(g
x,âb̂

e2
#gxyx#gxzx)J .

~19!

In the first term of the above, the sumi runs over all edges in
the I th cube. In the second term, the indexk runs over all
vertices inside theI th cube and the indicesi and j run over
all edges joined at thekth vertex. We get two types of terms:
edge terms and vertex terms. In an edge term, the two
‘‘hands’’ of the Hamiltonian grasp one and the same edge of
the spin network, labeledei , having color pi . In vertex
terms the two ‘‘hands’’ grasp two different edgesei

(k) and
ej
(k) , joined at a vertexvk . The two edges in general have
different colorspi andpj . We divide the vertex terms fur-
ther into two subcases: Either the tangents to the edges at
the common vertex are collinear, or there is some angleu,
different from 0° and 180°, between the tangents.

We will assume that the cubes have been shrunk enough
so that in a single cube there is at most one vertex. The

FIG. 2. Action of a ‘‘hand’’ of theT̂ab operator.
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evaluation of the action in any case can be split into two
different parts—we have an analytical part, coming from cal-
culating the prefactors in the action of the ‘‘hands’’ and
evaluating the integrals, and a graphical part in which we
complete the limiting procedure by shrinking the attached
loops.

III. ANALYTICAL ACTION OF THE HAMILTONIAN
OPERATOR ON SPIN NETWORK STATES

A. Action on a single edge

For the first type of terms in the last set of brackets in Eq.
~19!, we get

L3

2e2 ERI
d3x

Ah~x!
E
RI

d3y fd~ x̃,y!E
RI

d3z fd~ x̃,z!(
â b̂

^ei uT̂@ab#~g
x,âb̂

e2
#gxyx#gxzx!

5
L3

2e2
~16p lPl

2 !2pi
2E

I
dsE

I
dtE

RI

d3x

Ah~x!
f d„x̃,ei~s!…f d„x̃,ei~ t !…(

â b̂

ėi
[a~s!ėi

b]~ t !^ei#g
x,âb̂

e2
#gxyx#gxzxu. ~20!

The meaning of the notation in̂ei#g
x,âb̂

e2
#gxyx#gxzxu can

be understood from Fig. 3. The dashed circle denotes the
region which will be shrunk to a point. To proceed further
we have to specify the regulating functionf d( x̃,y). We use a
normalized, weightedu function:

f d~ x̃,y!5Ah~x! f d~x,y!5S 3

4pd3DAh~x!u@d2uxW2yW u#.

~21!

After evaluation of the space integral in Eq.~20!, we get

E
RI

d3x

Ah~x!
f d„x̃,ei~s!…f d„x̃,ei~ t !…

5
3

8pd3 F22
3

2

d

d
1S d

2d D 3G , ~22!

for d5d(s,t)5ueW i(s)2eW i(t)u less than 2d and zero other-
wise. We have assumed also thatd,L.

As we are going to letd to go to zero, this will force also
the separation betweeneW i(s) andeW i(t) to approach zero. This
is why we keep one of the parameters, say,s, fixed and

expandėW i(t) in power series abouts. The first term in the

expansion will make the whole expression vanishing, be-
cause of the antisymmetrization of the product
ėi
[a(s)ėi

b] (s). Also, the distanced can be replaced byu(t
2s)uuėW i(s)u. Combining Eqs.~20! and ~22!, we get, to the
lowest order ind,

L3

e2d3
3

16p
~16p lPl

2 !2pi
2E

I
dsE dt

3F223
u~ t2s!uuėW i~s!u

2d
1S u~ t2s!uuėW i~s!u

2d
D 3G

3(
â b̂

ut2suėi
[a~s!ëi

b]~s!^ei#g
x,âb̂

e2
#gxyx#gxzxu.

~23!

The limits of integration with respect tot are determined
again by the expansion ofd(s,t) and are given by

tPFs2
2dd2

uėW i~s!u
,s1

2dd1

uėW i~s!uG ,
where d1511O(d) and d2511O(d). As the integrals
with respect tos and t are reparametrization invariant, we

can choose a parametrization such thatuėW i(s)u51. In this
parametrization we set

ėW i~s![t̂

and

ëW i~s!5
n̂

r~s!
,

wheret̂ andn̂ are the unit tangent and normal vectors to the
loop andr(s) is the curvature radius of the loop. Now we
can perform the integration with respect tot and getFIG. 3. Grasping of the Hamiltonian on a single edge.
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E
s22dd2

s12dd1

dtut2suF223
u~ t2s!u
2d

1S u~ t2s!u
2d D 3G

58d2„151O~d!….

Thus for Eq.~23! we obtain

L3

e2d

3

10p
~16p lPl

2 !2pi
2E

I

ds

r~s! (
âb̂

t̂ @a~s!n̂b#~s!

3^ei#g
x,âb̂

e2
#gxyx#gxzxu.

Using the corresponding expression from connection repre-
sentation in terms of holonomies, it can be shown that up to
terms of ordere the last sum can be written as

(
âb̂

t̂ @a~s!n̂b#~s!^ei#g
x,âb̂

e2
#gxyz#gxzxu

5^ei#gx,t̂n̂
e2 #gxyx#gxzxu, ~24!

where now the loopgx,t̂n̂
e2 #gxyx#gxzx is in a plane defined by

the tangent and the normal to the edgeei at the points. Note
that this loop is well defined as in the terms where the edge
is a straight line and the normal is not defined the curvature
radius becomes infinite and such terms vanish. In the general
case since the sizeL of the cubes goes to zero, we can
replace the integral with respect tos by its mean value:

E
I

ds

r~s!
^ei#gx,t̂n̂

e2 #gxyx#gxzxu

5
kL

r I
^ei#gx,t̂n̂

e2 #gxyx#gxzxu I ,

wherek is a number of order 1, depending on the orientation
of the edge inside the cube. We finally get the analytical
expression for the action of the Hamiltonian on a single
smooth edge:

kL4

e2r Id

3

10p
~16p lPl

2 !2pi
2^ei#gx,t̂n̂

e2 #gxyx#gxzxu I . ~25!

This expression is a product of a prefactor, containing a com-
bination of regulating parameters and the original spin net-
work with attached additional loops, subject to graphical
evaluation. The prefactor will determine the way in which
we take the three limitse→0, d→0, andL→0 to make the
whole expression finite.

To understand the above intermediate result, we compute
the action of the regulated diffeomorphism constraint:

Ĉ~NW !5 lim
L→0

(
I

lim
d→0

lim
e→0

1

e2 (
ab

E
RI

d3x Na~x!

3E
RI

d3y fd~ x̃,y!T̂b@gx,ab
e2 #gxyx#, ~26!

on a single smooth edge of the spin network state. The result,
up to finite numerical factors, is the same as Eq.~25! if the
shift vectorNa(x) is given by

Na~s!5n̂a~s!
L3

r~s!d
. ~27!

This is not surprising since a similar result is true for the
calculation in the connection representation. To obtain this
result, one also must perform the graphical evaluation of the

loop gx,t̂n̂
e2 #gxyx#gxzx from Eq. ~25! and of the loop

gx,t̂n̂
e2 #gxyx from the calculation of the action of the diffeo-

morphism constraint, which shrink at the end of the calcula-
tions. We show in detail this evaluation later in the paper in
Sec. IV A.

Thus the action of the Hamiltonian on smooth edges of
the spin network states can be interpreted as diffeomorphism
transformation in a direction defined by Eq.~27!. This means
that if we act on diffeomorphism-invariant states, the action
of the Hamiltonian on edges annihilates them. As we assume
that the states we act on a diffeomorphism invariant, we will
discard the action on smooth edges from the final result.

B. Action on two edges meeting at a vertex
with collinear tangents

An example of the grasping of the Hamiltonian on two
edges meeting at a vertex and having collinear tangents is
shown in Fig. 4. The analytical calculation in this case is
almost the same as with the case of a single edge. The only
difference comes from the fact that the grasped edges could
have different colors, and so instead of Eq.~25! we have

FIG. 4. Grasping of the Hamiltonian on two edges meeting at a
vertex and having collinear tangents.
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kL4

e2r Id

3

10p
~16p lPl

2 !2pipj^~ei ,ej !#gx,t̂n̂
e2 #gxyx#gxzxu I .

~28!
In this case we cannot interpret the action of the Hamiltonian
as a diffeomorphism transformation. As discussed in@14#, in
such cases the action can change the diffeomorphism class of
the spin network. But as we will see later in the paper, such
terms are of orderL and they vanish after taking all limits.

C. Action on two edges meeting at a vertex
with noncollinear tangents

Let the Hamiltonian grasps the edgesei andej with colors
pi and pj , respectively. Letei andej meet at some vertex
vk . We denote the part of the spin network state correspond-
ing to the edges under consideration by^(ei ,ej )u. For the
action of the Hamiltonian we have

^~ei ,ej !u
L3

2e2 ERI
d3x

Ah~x!
E
RI

d3y fd~ x̃,y!E
RI

d3z fd~ x̃,z!T̂@ab#~g
x,âb̂

e2
#gxyx#gxzx!

5
L3

2e2
~16p lPl

2 !2pipjE
I
dsE

I
dtE

RI

d3x

Ah~x!
f d„x̃,ei~s!…f d„x̃,ej~ t !…(

â b̂

ėi
[a~s!ėj

b]~ t !^~ei ,ej !#g
x,âb̂

e2
#gxyx#gxzxu. ~29!

Again ^(ei ,ej )#g
x,âb̂

e2
#gxyx#gxzxu denotes the action of grasping of the Hamiltonian. Using Eq.~22!, we can evaluate the

spatial integral to get

L3

e2d3
3

16p
~16p lPl

2 !2pipjE
I
dsE

I
dtF223

ueW i~s!2eW j~ t !u
2d

1S ueW i~s!2eW j~ t !u
2d D 3G(

â b̂

ėi
[a~s!ėj

b]~ t !^~ei ,ej !#g
x,âb̂

e2
#gxyx#gxzxu I .

~30!

We use a parametrization such thatueẆ i u5ueẆ j u51, and so the distanced(s,t)5ueW i(s)2eW j (t)u becomes simplyd(s,t)5us
2tu. Also, let h and z be the unit tangent vectors at the vertex, and let the angle between them beu i j . Performing the
integration with respect tos and t we get, for Eq.~30!,

L3

e2d

3u i j
10p sinu

~16p lPl
2 !2pipj(

â b̂

ĥ [aẑb]^~ei ,ej !#g
x,âb̂

e2
#gxyx#gxzxu I .

Again, we can use a formula which can be proved by using the corresponding expression in the connection representa-
tion: namely,

(
â b̂

ĥ [aẑb]^~ei ,ej !#g
x,âb̂

e2
#gxyx#gxzxu I5sinu^~ei ,ej !#g

x,ĥ ẑ

e2
#gxyx#gxzxu I ,

to transform the sum in Eq.~30!. In the last expression,

g
x,ĥ ẑ

e2
is a loop in the plane defined by the two tangent vec-

tors ĥ andẑ. Thus finally we get for the action of the Hamil-
tonian on a vertex:

L3

e2d

3u i j
10p

~16p lPl
2 !2pipj^~ei ,ej !#g

x,ĥ ẑ

e2
#gxyx#gxzxu I .

~31!

In the obtained expression, we can separate between the
prefactor and loop-deformed spin network state. The prefac-
tor contains a combination of the regulating parameters and
an implicit dependence on the arbitrary background metric
through the angleu i j . The loop deformation will be subject
to a graphical evaluation later in the paper.

D. Taking the limits

Now we are in position to take the limits in the computa-
tion. Basically, the limits appear in our calculation in two

different ways. First, the prefactors in Eqs.~28! and ~31!
contain combinations of the regulating parameters. The lim-
its should be taken in such a way so that these combinations
yield finite results. Second, the loop on which the loop op-
erator T̂ab is based shrinks to a point, together with its
‘‘hands,’’ and this leads to the graphical evaluation.

The combinations of parameters are

kL4

e2d
and

L3

e2d
~32!

for Eqs. ~28! and ~31!, respectively. To ensure finiteness of
our expressions, let us take the three limitse→0, d→0, and
L→0 along a plane in the (L,e,d) parameter space, defined
by

L3

e2d
5Z,
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whereZ is an arbitrary constant, chosen in such a way so the
relative order of taking the limits is satisfied. This order is
determined by the conditions thatd,L andd!e. We have
to be careful about the way the limits inL andd are taken, as
the diffeomorphism vector~27! contains the ratioL3/d, and
so we would not liked to go to zero much faster thanL. If
we setL3/d5const, then this will be enough to prevent the
diffeomorphism from becoming infinite.

We can now write the general formula for the analytical
action of the Hamiltonian on diffeomorphism-invariant spin
network states. All the cubes which are empty give zero.

The result from the action on different edges meeting at a
vertex with collinear tangents~28! can be written as

3kZL

10pr I
~16p lPl

2 !2pipj^~ei ,ej !#gx,t̂n̂
e2 #gxyx#gxzxu I

and vanishes asL goes to zero.
Adding up all contributions from the vertices with non-

collinear tangents, we get

^S,TuĈI
L,d,e5

3Z

10p
~16p lPl

2 !2(
i , j

pipju i j

3^~ei
~k! ,ej

~k!!#g
x,ĥ ẑ

e2
#gxyx#gxzxu. ~33!

In the above sums, the indicesi and j run over all edges
joined at the vertexvk which is in the I th cube. The sum
contains the arbitrary but finite constantZ and the angleu i j
between the edges at the vertexvk . The bar over the state
represents the fact that we still have to perform the shrinking
of the attached loops and thus to evaluate the graph.

We get an overall action which is finite but background
dependent because of the presence of the angleu i j . This is a
problem which can be solved by redefining the way we ap-
proximate the curvatureFab . Let the holonomy which ap-
proximates the curvature be based on a loop with area
u i j e

2 instead ofe2. Then all the calculations go through, but
at the end there is an extra factor ofu i j in the denominator of
Eq. ~33! to cancel the corresponding factor from the numera-
tor. It is important to notice that although the explicit inclu-
sion of the factor ofu i j formally solves the problem of back-
ground dependence, the situation is not completely
satisfactory. The computation of the evolution of the spin
network states involves at each step measuring the angle
u i j between each pair of tangent vectors. Technically, this
might require the introduction in the definition of the Hamil-
tonian of an operator, measuring the angleu i j . This issue
requires further investigation.

IV. GRAPHICAL ACTION OF THE HAMILTONIAN

To evaluate the deformed spin network state from Eq.
~33!, we use some techniques from the recoupling theory of
colored trivalent links and knots. First, let us consider a gen-
eral situation in which a loop attached to a spin network is
shrunk to a point. An important observation is that the evalu-
ation is local, in the sense that whatever result we obtain, it is
independent of the way the spin network is connected out-
side of the circle denoting the shrinking region.

To evaluate the attached loop we have to do the follow-
ing: Expand all the edges which are entirely in the shrink-
ing region as an antisymmetrized sum with all possible
crossings between the loop segments; resolve each crossing
of single loop segments in the shrinking region according to
the binor Mandelstam identity~see @12# for a discussion!;
associate to each closed single loop the ‘‘loop value’’~22!;
smooth the obtained graph to get if possible the original spin
network.

But these are exactly the operations which occur in the
evaluation of the Kauffman bracket@15#. The Kauffman
bracket is an invariant of the regular isotopy of colored knots
and links with trivalent vertices. Thus, for the evaluation of
the graphical action of the loop operators, we can use the
techniques of recoupling theory, developed for computing
the Kauffman bracket@15,16,18,12#. What makes these tech-
niques powerful is the fact that we do the computations
blockwise. First, we work out the analytical expressions for
the most simple graphs. Then in more complicated calcula-
tions we identify the simple graphs and replace them with
the corresponding analytical expressions. This is possible be-
cause the evaluation of the graphs is local—we can shrink to
a point just a portion of the whole graph, keeping the remain-
ing parts fixed. The basic formulas of the recoupling theory
are summarized in the Appendix. With the use of these for-
mulas, we compute the graphical action of the Hamiltonian
on smooth edges and on vertices.

A. Evaluation of the graphical action for edges

We perform the graphical evaluation for the grasp of a
smooth edge to show that the graphical action of the Hamil-
tonian on smooth edges is equivalent to a diffeomorphism
transformation. We start from the expression

^ei#gx,t̂n̂
e2 #gxyx#gxzxu. The grasping is shown in Fig. 3. First,

we use the basic recoupling formula~A1! from the Appendix
on one of the edges. As a result, a new link of colorn
appears in the new configuration. The allowed values forn
are determined by the basic properties of the trivalent
vertices—the only values it can take arepi61:

On the right-hand side appears the 6j symbol, as defined in@15#. We repeat the same step with the other ‘‘hand’’ and get
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As a next step, we remove the internal ‘‘bubble’’ using theq net from Eq.~A4! from the Appendix to obtain

To continue further we have to make a more careful analysis of the way the limit is taken, when the states are diffeomor-
phism invariant. As this is not relevant for our considerations, we will stop here and show that the above expression is
analogous to the result from the action of the diffeomorphism constraint. To this aim we act with Eq.~26! on a smooth edge.

There, the loop deformation is given by the expressiongx,t̂n̂
e2 #gxyx . To evaluate graphically this expression, we use the basic

recoupling formula~A1! and immediately get

Thus we see that in both cases of the action of the Hamiltonian and of the diffeomorphism constraints, the graphical
evaluation leads to the a ‘‘bubble’’ on the smooth edge with different numerical factors. This proves that the two graphical
actions are equivalent, and thus we can disregard all terms in the action of the Hamiltonian on smooth edges of
diffeomorphism-invariant states.

B. Evaluation of the graphical action for vertices

We apply the techniques from the recoupling theory of colored graphs also to evaluate the action of the Hamiltonian when
it grasps two edges meeting at a vertex. For simplicity, we consider only the action on one pair of edges joint at a trivalent

vertex. We have initially the expression^(ei ,ej )#g
x,ĥ ẑ

e2
#gxyx#gxzxu, which can be transformed with the use of the recoupling

formula ~A1!, given in the Appendix. We obtain the result

Then we repeat the same step with the other ‘‘hand’’ of theT operator to get

The inner triangular diagram of the above graph can be evaluated with the use of one recoupling formula and one ‘‘bubble’’
removal~see the Appendix!:
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The last step in the graphical calculation requires more careful consideration. As discussed in@6#, when we act on
diffeomorphism-invariant states, the spin network remains in its knot class, although the area of the last remaining loop goes
to zero. To understand this situation, let us discuss the action of the Hamiltonian from the point of view of diffeomorphism
invariance. We start with a state which is diffeomorphism class of spin network and a Hamiltonian, also based on a class of
diffeomorphism-invariant smooth loops with ‘‘hands.’’ To perform the action, we introduce a background metric, break the
diffeomorphism invariance, and introduce notions of lengths and areas. It is in this noninvariant sense in which we can talk
about ‘‘loops of some area shrinking to a fixed point’’ and about ‘‘hands of infinitesimal length.’’ Also, all the formulas we
apply from the recoupling theory are based on the ideas of replacing loops by their loop values and recoupling, which are
diffeomorphically noninvariant operations. We assume that we can perform these operations as far as we recover at the end of
the ‘‘right’’ diffeomorphism class. What we expect at the end is the original spin network attached through two ‘‘hands’’ to
a loop which in the nondiffeomorphism limit shrinks to a vertex.

We can choose the attached loop in different way, but we want our choice to be consistent with the operations we perform
in a noninvariant fashion. One possible such choice is the attached loop to connect two edges joined at a vertex and then to run
along the edges of the original spin network. This means that when the state we are acting on is diffeomorphism invariant,
taking the last limit is trivial—the graph does not change. Thus finally we get

~34!

where the vertex having the additional edge attached to it is in theI th cube. The statêS,Tu we acted on is normalized
according to the normalization introduced in@12#. If the final states are also to be normalized, we have to introduce some
additional factors in Eq.~34!. As the old trivalent vertex has been transformed into a new one, and an edge and two new
vertices have been added, we get, for the final normalized sum of states,

~35!
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The action of the Hamiltonian constraintĈ as part of the
physical HamiltonianĤ can be described as follows: When
the Hamiltonian constraintĈ acts on edges, the action can be
interpreted as a diffeomorphism transformation. Thus the
Hamiltonian constraint acts nontrivially on diffeomorphism-
invariant states only when it acts on the vertices of the spin
network. The action on vertices amounts to adding a new
edge attached through new trivalent vertices to each pair of
edges at each vertex. Each new edge has color 1. Also the
colors of the edges connecting the new vertices and the origi-
nal one change. This change can be explained with the re-
quirement that the new graph is again a spin network. The
obtained states are multiplied by finite factors, which, al-
though cumbersome, are straightforward to compute.

V. HAMILTONIAN EIGENSPECTRUM

Let us recall that the Hamiltonian defined through the
‘‘clock’’ field has the form ~18!:

Ĥ5 lim
L→0

(
I

`

A2 lim
e→0

lim
d→0

ĈI
L,d,e1LV̂I

2. ~36!

To find the eigenspectrum of the Hamiltonian operator, we
have to handle in a satisfactory manner the square root in Eq.
~36!. Since we have not been able to complete this task, we
will only describe the directions for future work.

Since both the Hamiltonian constraint and the volume op-
erator in Eq.~36! give nonzero results only when acting on
vertices, the above sum reduces to a sum only over the cubes
in which there is a vertex. Thus the sum in Eq.~36! becomes
finite. Also, all the terms coming from the action on different
vertices are independent of each other. This justifies the fol-
lowing strategy for computing the Hamiltonian eigenspec-
trum: We can use the result from the action of the expres-
sion under the square root on vertices—the action of the first
term is given by Eq.~35!, and the action of the volume piece
has been computed for example in@12#. To proceed further
we might have to distinguish between the action on bivalent
and trivalent vertices, on the one hand, as having zero vol-
ume, and the action on higher-valence vertices. In any case
we will have to diagonalize the expression~35!. The problem
is thata priori we cannot expect the matrix defined by Eq.
~35! to be diagonalizable. Since the expression for the
Hamiltonian constraint we start with is a real one, we can
assume that there exists an appropriate symmetrization
which can make the constraint operator self-adjoint and its
matrix symmetric. To make the matrix in the right-hand side
of Eq. ~35! diagonalizable we could replace it by one-half of
the sum of the matrix and its transposed. Then we will have
to diagonalize the sum of the Hamiltonian and volume ma-
trices and to take the square root. The result will be an infi-
nite dimensional diagonal matrix with the Hamiltonian ei-
genvalues as its elements.

VI. CONCLUSION

The action of the Hamiltonian constraint on a spin net-
work state can be described as a transition of the spin net-

works on which the state is based from one knot class of
graphs with vertices into another one. In this transition the
coloring of certain edges changes, and so the requirements
for the graph to be a spin network remain satisfied. At the
same time, each new state is multiplied by a factor which
carries the appropriate dimensions, contains an arbitrary con-
stant, and also includes the result from the computation in
recoupling theory.

In the paper we considered in detail only trivalent verti-
ces, but the generalization to higher valence vertices is
straightforward. As discussed in@11,12#, any higher-valence
vertex can be decomposed into a set of infinitesimally dis-
placed trivalent ones. The analytical calculation we per-
formed did not depend to the valence of the vertex. The
difference with the considered case will appear in the graphi-
cal evaluation where we again can apply the recoupling
theory. It can be shown that as a result in the same way as
with the trivalent vertices, edges of color 1 are added, rerout-
ing of the loops through the vertices occurs, and one can
compute the corresponding prefactors.

Also, the evaluation presented in the paper can be applied
to the q-deformed spin networks @16,18#. In the
q-deformed theory, all the formulas we used have their coun-
terparts. Thus in that case one should simply replace the
formulas we derived with the correspondingq-deformed ver-
sions@15#.

As we discussed before, to get rid of the background de-
pendence of the prefactor, we have to know the angle be-
tween each pair of tangents, which requires modification of
the regularization. Another set of problems occurs when we
try to make sense of the square root involved in the definition
of the Hamiltonian. There are certain proposals in this direc-
tion: One@17# is to use an expansion in inverse powers of
L and to find an approximation to the square root. Another
proposal@7# involves a different procedure, which also al-
lows the square root to be expressed as a series. In any case
we have to settle this set of problems before trying to solve
for the eigenvalues of the Hamiltonian operator.
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APPENDIX: BASIC FORMULAS
OF THE RECOUPLING THEORY

One of the main results of the recoupling theory of col-
ored knots and links with trivalent vertices@15# is the com-
putation of the Kauffman brackets for different framed spin
networks. The framing refers to the fact that in the compu-
tations one keeps track of overcrossings and undercrossing.
In our work we do not make this distinction, and so we use a
simplified version of the recoupling theory; namely, we re-
place the deformation parameterq by its ‘‘classical’’ value
21, relevant to our case. As a result, in most of the formulas
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from @15#, theq-deformed~or quantum! integers are replaced
by ordinary ones. We list here the basic formulas, which we
use, with the mentioned corrections made. For more details
see@15#.

The basic relation in this theory expresses the relation
between the different ways in which three angular momenta,
say, j 1 , j 2 , and j 3 can couple to form a fourth one,j 4 . The
two possible recouplings are related by the formula

~A1!

where on the right-hand side is theq26 j symbol, as defined in@15# for the value of the deformation parameterq equal to
21. Again, the dashed line denotes the fact that the recoupling occurs in a region which shrinks to a point; it is not extended
in space.

Closed loops which have been shrunk to a point are replaced by their loop value, which is~for a single loop with zero
self-linking! equal to22. The evaluation of a single unknotted loop with colorn is @15#

~A2!

The small rectangle in the above diagram denotes the antisymmetrization of then line.
The next graph we consider is the ‘‘bubble’’ diagram. Upon shrinking the ‘‘bubble,’’ this diagram will reduce to a single

edge, so that the evaluation will be different from zero only if the colors of both ends of the ‘‘bubble’’ are the same. Thus the
‘‘bubble’’ diagram equals some numerical factor times a single edge. By closing the free ends of the diagram, it is straight-
forward to show that

~A3!

in which the functionu(a,b,n) is given, in general, by

~A4!

wherea1b5m, a1c5n, andb1c5 l .
A basic element in most of the formulas of the recoupling theory of colored graphs is the 6j symbol. It is defined through

the so-called tetrahedral net via the relation

H a b e

c d fJ 5

~21!e~e11!TetFa b e

c d fG
q~a,d,e!q~c,b,e!

. ~A5!
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The tetrahedral net is represented by the diagram

Upon evaluation, the tetrahedral net yields

TetFac b
d

e
f G5 IE (

m<s<M

~21!s~s11!!

P i~s2ai !!P j~bj2s!!
,

where

a15
1
2 ~a1d1e!, b15

1
2 ~b1d1e1 f !,

a25
1
2 ~b1c1e!, b25

1
2 ~a1c1e1 f !,

a35
1
2 ~a1b1 f !, b35

1
2 ~a1b1c1d!,

a45
1
4 ~c1d1 f !,

m5max$ai%, M5min$bj%,

E5a!b!c!d!e! f !, I5P i j ~bj2ai !!.

These formulas are sufficient for the computations performed
in the paper. In@15#, one can find a detailed derivation of all
of them.
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