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We confirm recent numerical results of echoing and mass scaling in the gravitational collapse of a spherical
Yang-Mills field by constructing the critical solution and its perturbations as an eigenvalue problem. Because
the field equations are not scale invariant, the Yang-Mills critical solution is asymptotically, rather than
exactly, self-similar, but the methods for dealing with discrete self-similarity developed for the real scalar field
can be generalized. We find an echoing periodD50.7378460.00002 and a critical exponent for the black hole
massg50.196460.0007.@S0556-2821~97!05010-8#

PACS number~s!: 04.25.Dm, 04.20.Dw, 04.40.Nr, 64.60.Ht

I. INTRODUCTION

Recently, Choptuik, Chmaj, and Bizon´ @1# ~CCB! have
studied the gravitational collapse of an SU~2! Yang-Mills
~YM ! field restricted to spherical symmetry. They were in-
terested in what is now commonly known as ‘‘critical phe-
nomena in gravitational collapse,’’ and their method of in-
vestigation was the numerical time evolution of a great
number of initial data sets. The purpose of the present paper
is to confirm some of their results by a different method
which does not involve time evolution of initial data, and to
calculate two important numbers, the ‘‘echoing period’’D
and ‘‘critical exponent’’g, to higher precision. We confirm
what is now becoming a standard picture of critical phenom-
ena in gravitational collapse, and generalize that picture to
matter models which are not scale invariant.

Critical phenomena occur at the boundary in phase space
between initial data which eventually form a black hole and
data which do not. Choptuik@2# pioneered the method of
numerically evolving initial data taken from one-parameter
families of initial data that cross this boundary. Such families
are not hard to find. It is enough that they form a black hole
for large values of their parameterp ~strong data! but not for
small values~weak data!. In a bisection search, one can then
numerically determine the critical valuep* of p for a given
family, such that a black hole forms forp.p* , but not for
p,p* .

For the spherically symmetric massless scalar field, Chop-
tuik found that the black hole mass could be made arbitrarily
small, and scaled likeM;(p2p* )

g, with g.0.37 the same
for all families of data. Furthermore, the time evolution of all
data with up2p* u sufficiently small, from all families, ap-
proaches one universal solution. This solution has the strange
property of being periodic in the logarithm of bothr andt, or
f(r ,t)5f(eDr ,eDt), with a period ofD.3.44. @See Eq.
~10! below for the definition of the coordinates (r ,t). The
metric componentsa anda show the same scaling behavior
as f.# In geometric terms, this symmetry is a discrete

self-similarity @3#. The smallerup2p* u, the more ‘‘echos’’
were visible before the black hole formed or before the fields
dispersed to infinity. For introductory reviews on critical
phenomena in gravitational collapse, see@4–6#.

CCB investigated the spherical Einstein-Yang-Mills
~EYM! system because it promised a richer structure than the
Einstein-scalar system. The matter field equations are non-
linear, and the combined matter and Einstein equations con-
tain a preferred scale formed from the YM couplinge, New-
ton’s constantG, andc. Proceeding as Choptuik did for the
scalar field, they found two regions in phase space with
qualitatively different behavior. In what they call ‘‘region
I,’’ they found a ‘‘mass gap’’: Atp5p* the black hole mass
begins discontinuously at a finite value. This minimum black
hole mass is the same for all one-parameter families, and is
equal to the mass of the well-known Bartnik-McKinnon
~BM! solution @7#. The time evolution in fact approximates
the BM solution over some finite time, and this time is the
longer, the closerp is to p* . In ‘‘region II’’ they found the
mass scaling and echoing familiar from critical collapse of
the scalar field and other matter models, here withD.0.74
andg.0.20. The two kinds of behavior are reminiscent of
first- and second-order phase transitions, with the black hole
mass changing either continuously or discontinuously at the
critical point.

In the next section we shall see that each type of behavior
can be understood, in dynamical systems terms, through the
presence of an intermediate attractor. The intermediate at-
tractor in region I is the BM solution, which is static and
asymptotically flat. The region II intermediate attractor is
~asymptotically! self-similar and was not known before. It is
the technical task of this paper to calculate the type II attrac-
tor and its linear perturbations.

Our analytic and numerical methods are a generalization
of those developed for the spherical scalar field in@8,3#.
There one proceeds as follows. We assume that a solution to
the field equations exists which is exactly self-similar. In
suitable coordinates, self-similarity is equivalent to periodic-
ity of the conformal metric@see Eq.~21! below#. This pro-
vides periodic boundary conditions in one coordinate.
Boundary conditions in the other coordinate are obtained by
demanding regularity at the center of spherical symmetry,
r50, and at the past light cone of the singularity. We thus
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obtain a nonlinear boundary value problem for a system of
hyperbolic and elliptic equations, with the self-similarity pe-
riod D determined as an eigenvalue. To enforce periodicity
in the ansatz, we expand the metric and matter fields in a
Fourier series. As the field equations are only~111!-
dimensional because of spherical symmetry, the equations
for the Fourier components~with respect to the periodic co-
ordinate! become ordinary differential equations~ODE’s! ~in
the other coordinate!. The periodD now appears as an ad-
justable parameter in the equations. The Fourier expansion is
truncated, so that one deals with a large but finite number of
equations, and this ODE eigenvalue problem is solved nu-
merically.

The collapse solutions that CCB study are asymptotically
flat ~because they choose asymptotically flat initial data!, and
either have no singularity, or a black hole region. In contrast,
the exactly self-similar, critical solution has a naked singu-
larity, and is not asymptotically flat. Nevertheless, it can play
the role of an intermediate attractor, as it only has to be a
good approximation to collapse solutions in a compact re-
gion which includes neither the naked singularity nor infin-
ity. Figures 1–3 clarify this relation between collapse solu-
tions and the critical solution.

In order to check locally that the exactly self-similar so-

lution is an intermediate attractor, we calculate the spectrum
of its linear perturbations and show that there is only one
growing mode. ‘‘Growing’’ here means growing towards the
naked singularity, but in the region where collapse solutions
agree with the self-similar solution this also means growing
with t at constantr ~see Fig. 1!. As a last step, it can be
shown, essentially by dimensional analysis, that the growth
rate of the one unstable mode is related to the critical expo-
nentg, which governs the scaling of the black hole mass in
marginally supercritical collapse. This allows an indepen-
dent, semianalytical calculation of the critical exponent.

An extension of the formalism is required for YM, or
indeed any generic, non-scale-invariant matter@9#. In con-
trast to the scalar field system, the field equations contain a
mass and length scalee21 ~in unitsc5G51), wheree is the
coupling constant in the YM-covariant derivative
Da5¹a1 ieAa . The presence of a scale in the field equa-
tions excludes the existence of an exactly self-similar solu-
tion. Instead, we make a series ansatz for a solution which
becomes self-similar asymptotically on spacetime scales
much smaller thane21 or, equivalently, for curvatures much
greater thane2. The echoing periodD is determined by the
leading term of the expansion alone. For the linearized equa-
tions we also make a series ansatz, but the spectrum$l i% of
Lyapunov exponents is once more determined by the first
term of that series alone. Moreover, to calculate the first term
of the perturbation expansion one only needs to know the
first term of the background expansion. Therefore, the higher
terms of either expansion are not required in order to calcu-
late both the echoing periodD and critical exponentg ex-

FIG. 1. Global structure of the exactly self-similar solution. The
spacetime is spherically symmetric, and the left edge isr50. A:
Naked curvature singularity. B: Past Cauchy horizon. C: Future
Cauchy horizon. This may be a curvature singularity, or the curva-
ture may be finite except in point A. In that case there is no unique
continuation beyond C, but a natural candidate is a self-similar
continuation with regularr50 ~apart from point A!. This is indi-
cated as region D. Note that the spacetime is not asymptotically flat.
The arrows give the direction (t→2`), in which one linear per-
turbation mode grows and all others decrease. E is a schematic
indication of the region of the critical solution that is visible as an
intermediate attractor in collapse simulations~see also Figs. 2 and
3!.

FIG. 2. Global structure of a subcritical collapse solution. F1:
Regular, asymptotically flat initial data. G1: Past development~ir-
relevant for our purposes!. E1: In this spacetime region all fields
approximate those in region E of the self-similar solution.
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actly, and will not be calculated here.
The remainder of the paper is organized as follows. Sec-

tion II is a more detailed review, motivating the remaining
technical sections. By reviewing type I and type II phenom-
ena in parallel, in similar notation, we hope to make the
essential mechanism of critical phenomena stand out more
clearly from the technical complications. In Sec. III, we give
the field equations for the spherically symmetric EYM sys-
tem, and go over to coordinates and field variables adapted to
self-similarity. In Sec. IV, we construct the type II, self-
similar, critical solution as a nonlinear eigenvalue problem.
In Sec. V we construct its linear perturbations in another,
now linear, eigenvalue problem and verify that only one of
them is growing. This allows us to calculate the critical ex-
ponent governing the mass scaling semianalytically, without
numerical collapse simulations. In Sec. VI we summarize
our results, which are in good agreement with collapse simu-
lations, discuss how the EYM system differs from other sys-
tems in which critical collapse has previously been studied,
and put the present paper into perspective.

II. TYPE I AND TYPE II CRITICAL PHENOMENA

All critical phenomena found in gravitational collapse so
far, including the new type I phenomena, can be explained in
terms of an intermediate attractor in a dynamical system, as
was first suggested by Evans and Coleman@10#. Here we
motivate the more technical calculations in the following
sections in this language. In order to stress the basic ideas
and the mathematical similarities between type I and type II
critical behavior, we shall simplify type II in two aspects.

We begin by introducing a compact notation that is used
throughout the paper: letZ stand for the vector of variables

of some first-order form of the field equations, such that, for
example, the complete field equations in spherical symmetry
can be compactly written asF(Z,Z,r ,Z,t)50.

The type I critical phenomena are dominated by the BM
solution @7#. It is static, spherically symmetric, and asymp-
totically flat. Let us call itZ

*
(I) (r ). As it does not depend on

t, its general linear perturbationdZ obeys an equation of the
form

dZ,t1A~r !dZ,r1B~r !dZ50. ~1!

Therefore,dZ must be of the form

dZ5(
i51

`

Ci
~ I!el i

~ I!td iZ
~ I!~r !, ~2!

where theCi
(I) are free constants. Because the background is

real, the l i and d iZ form complex-conjugate pairs. Of
course, we consider only real combinationsdZ. We restrict
ourselves to the ansatz~12! below for the YM field. The BM
solution has exactly one unstable perturbation mode within
that ansatz @11#, that is, Rel1.0 and Rel i,0 for
i52,3, . . . .This makes it an intermediate attractor~of codi-
mension 1! in dynamical systems terms. Furthermore, it is
known that the final state arising from initial data
Z0(r ,e)[Z

*
(I) (r )1ed1Z

(I) (r ) is a black hole for one sign of
e, and flat space with outgoing waves for the other. Letp be
the parameter of a one-parameter family of initial data such
that for p.p* a black hole forms, and forp,p* the solu-
tion disperses. Then, for (p2p* ) sufficiently small, the time
evolution of data from the family enters an intermediate
asymptotic regime of the form

Z~r ,t !.Z
*
~ I!~r !1

]C1
~ I!

]p
~p* !~p2p* !el1

~ I!td1
~ I!Z~r !. ~3!

Here the decaying perturbations (i>2) have been neglected
because they are already small by assumption, and we have
approximated C15C1(p) to leading order, with
C1(p* )50 by definition. This solution leaves the intermedi-
ate asymptotic regime to form a black hole or disperse at a
time t5T when the amplitude of the perturbations,
]C1 /]p(p2p* )e

l1T, has reached some small fiducial value
e. This gives a lifetime

T52l ln~p2p* !1c ~4!

of the metastable state, wherec depends on the one-
parameter family through]C1 /]p, but wherel51/l1

(I) is
universal. This was in fact observed by CCB, and used to
estimatel1

(I) , in good agreement with perturbation theory
@11#.

The critical phenomena in regime II are dominated by an
intermediate attractor that is self-similar instead of static.
Here we pretend that it is continuously, rather than dis-
cretely, self-similar. This cuts down unessential detail of no-
tation, and clarifies the similarity with the type I critical so-
lution, which also has a continuous symmetry~it is static!.
We also disregard the fact that the self-similarity holds only

FIG. 3. Global structure of a supercritical solution. The data F2
can be chosen almost equal to F1, in which case G2 will be almost
the same as G1, and E2 almost the same as E1 and E, but at late
times the solution is qualitatively different, nevertheless. H is the
black hole region.
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asymptotically on small scales, and pretend that it is an exact
symmetry.~Both simplifications will be dropped in the fol-
lowing sections.!

If Z
*
(II) is continuously self-similar, in suitable coordinates

it depends only onr /t. Its general linear perturbationdZ(II)

then obeys an equation of the form

dZ,t1AS rt D dZ,r1BS rt D dZ50. ~5!

Therefore,dZ must be of the form

dZ5(
i51

`

Ci
~ II !tl i

~ II !
d iZ

~ II !S rt D . ~6!

Once more, there is exactly one growing mode.~We will
demonstrate that explicitly in Sec. IV.! The intermediate
asymptotic regime for type II behavior is

Z~r ,t !.Z
*
~ II !~r /t !1

]C1
~ II !

]p
~p* !~p2p* !tl1

~ II !
d1Z

~ II !~r /t !.

~7!

Once more, letT be the value oft where the amplitude of the

perturbation, ]C1
(II) /]p(p* )(p2p* )t

l1
(II)
, has reached a

small fiducial valuee. One now argues from scale invariance
via dimensional analysis@12–14,3# that the black hole mass
M is proportional toT, and obtains for the black hole mass

lnM5g ln~p2p* !1c, ~8!

whereg521/l1
(II) is universal, andc is a family-dependent

constant.
If the scale invariance is only asymptotic, as it is for sca-

lar electrodynamics or EYM, the scaling argument to calcu-
late the black hole mass goes through unchanged@9#. If the
critical solution is discretely self-similar, as for the scalar
field or the model considered here, with an echoing period of
D in the logarithm of the length and time scales, the analysis
is also unchanged in its basic idea, but a periodic ‘‘wiggle’’
@3# or ‘‘fine structure’’ @15# is found to be superimposed on
the mass scaling law, which becomes

lnM5g ln~p2p* !1c1C@ ln~p2p* !1c/g#, ~9!

where C is a universal periodic function with period
D/(2g). ~Note that the one family-dependent constantc ap-
pears twice in the formula.! The form of the critical solution
and its perturbations is also more complicated, and will be
discussed in Secs. IV A and V A, respectively.

III. FIELD EQUATIONS AND SCALING VARIABLES

In this section we write down the field equations for the
spherically symmetric EYM system, and then introduce co-
ordinates and field variables that are adapted to type II be-
havior, where scale invariance plays a crucial role. In the
following we consider only type II behavior, and no longer
write the index~II !. We adopt the conventions and notation
of CCB, which include making both the YM field and the
coordinatesr andt dimensionless by absorbing suitable fac-
tors ofG, c, ande into them.

The spherically symmetric spacetime metric is written as

ds2[2a2dt21a2dr21r 2~du21sin2udw2!, ~10!

wherea anda depend only onr and t. The most general
spherically symmetric ansatz for the SU~2! YM connection
is @7,16#

A5A0t3dt1A1t3dr1~f1t11f2t2!du

1~2f2sinut11f1sinut21cosut3!dw, ~11!

where thet i are the generators of SU~2!, that is, the Pauli
matrices. The fieldsA0, A1, f1, andf2 depend only onr
andt. One can always setA050 by a gauge transformation.
Moreover, in the BM solution onlyf1 does not vanish. The
perturbations of the BM solution decouple into two classes:
in one of them, the ‘‘gravitational sector,’’f2 andA1 remain
strictly zero, and onlyf1 and the metric are perturbed. In the
other, the ‘‘sphaleron sector,’’f1 and the metric remain un-
perturbed. The BM solution has one unstable mode in each
sector. ~In fact, ‘‘the’’ BM solution is only the first of a
discrete family of static, asymptotically flat EYM solutions,
the nth of which has 2n unstable modes,n each in the
sphaleron and gravitational sectors@16#.! It is a consistent
truncation to setA05A15f250 and retain onlyf1, as CCB
have done. This means that one includes the BM solution,
and one of its two unstable modes. In order to reproduce
CCB’s results for type II critical phenomena, we make the
same restriction. After renamingf1 to W(r ,t), we have for
the YM connection

A5W~t1du1t2sinudw!1t3cosudw ~12!

and the YM field strength is

F5dA1A`A

5dW`~t1du1t2sinudw!2~12W2!t3du`sinudw.

~13!

In order to write the field equations in first-order form, we
define

F[W,r , P[
a

a
W,t . ~14!

The complete field equations, reduced to spherical symme-
try, are

rF ,t5r S a

a
P D

,r

, ~15!

rP ,t5r S a

a
F D

,r

1aar21W~12W2!, ~16!

r
a,r
a

5 1
2 ~12a2!1F21P21 1

2a
2r22~12W2!2, ~17!

r
a ,r

a
5 1

2 ~a221!1F21P22 1
2a

2r22~12W2!2, ~18!
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r
a,t
a

52PF. ~19!

These equations are the YM equation, and three of the four
algebraically independent components of the Einstein equa-
tions. The fourth component is obtained by combining de-
rivatives of the other three and is, therefore, redundant.

In order to construct a discretely self-similar solution, we
follow @8,3# in defining new coordinates

t[ ln~2t !, z[ lnS 2
r

t D2j0~t!, ~20!

wherej0 is a periodic function to be determined, with period
D. ~This definition differs slightly from@3# in that t andr are
dimensionless, and thatt is negative.! The resulting space-
time metric is

ds25e2t$2a2dt21e2~z1j0!@a2„dz1~11j08!dt…21du2

1sin2udw2#%, ~21!

wherea and a are now functions ofz and t, and where
j0[j0(t) and j08[dj0 /dt. As discussed in@3#, discrete
self-similarity is equivalent toa anda being periodic int. In
the field equations we make the replacements

r
]

]r
5

]

]z
, r

]

]t
5ez1j0~t!F2

]

]t
1„11j08~t!…

]

]z G ,
r5et1z1j0~t! ~22!

to transform to the new coordinates.
We shall be looking for a solution in whicha anda are

periodic. What does this mean for the matter variablesF,
P, andW? The Einstein equations suggest thatF andP
should be periodic too, butW cannot be periodic because of

the explicit presence of the factorset in the equations. Nor
can we simply absorb such a factor into the definition ofW
to make it periodic. This means that the equations have no
nontrivial self-similar~periodic! solutions. The physical rea-
son is the presence of the length scalee21 in the problem,
which is only hidden by the dimensionless variables. Follow-
ing a suggestion by Choptuik@17#, we define a new fieldS
by

W[12rS. ~23!

With this definition, the two potential terms arising in the
field equations

r21W~12W2!5~12rS!~22rS!S,

r22~12W2!25~22rS!2S2 ~24!

split into the sum of a term which no longer containsr ex-
plicitly, plus terms containing only positive powers ofr ,
which become negligible on small spacetime scales~as
r→0 or ast→2`). What we have done here is to expand
around the vacuum solutionW51, because we expect our
self-similar solution to oscillate aroundW on smaller and
smaller scales. The explicit factor ofr expresses our expec-
tation that the amplitude of the oscillations inW will de-
crease as they occur on smaller scales, whileS oscillates
with constant amplitude.

Two further definitions, namely,P6[P6F and
g[a/a, will be useful becauseg alone determines the ingo-
ing and outgoing null geodesics, andP1 andP2 are the
components of the matter field propagating along them.

In the following, we use the coordinatesz andt, and the
fieldsZ[$a,g,P1 ,P2 ,S%. In these variables, the complete
field equations, including the definitions ofP1 andP2 in
terms ofS, are

P6,z5
7ez1j0gP6,t1CP67a2~12et1z1j0S!~22et1z1j0S!S

17~11j08!ez1j0g
, ~25!

a,z5
a

2
~C1P1

2 1P2
2 !, ~26!

g,z5Cg, ~27!

S,z52S2 1
2 ~P12P2!, ~28!

05a,t1e2~z1j0!g21
a

2
~P1

2 2P2
2 !

2~11j08!
a

2
~C1P1

2 1P2
2 !, ~29!

05S,t2e2~z1j0!g21 12~P11P2!

1~11j08!@S1 1
2 ~P12P2!#, ~30!

where

C[12a21a2~22et1z1j0S!2S2. ~31!

As suggested by the way we have written the equations, Eqs.
~25!–~28! can be treated as evolution equations inz, with
periodic boundary conditions int, and Eqs.~29! and~30! as
constraints which are propagated by the evolution equations.
Note that now only positive powers ofet appear explicitly,
so that in the limitt→2` we are left with a set of non-
trivial, scale-invariant equations forZ. The terms multiplied
by et are ‘‘irrelevant’’ in the language of renormalization
group theory@18#.

The equations are invariant underW→2W, and both
W51 andW521 are vacuum, or pure gauge, solutions,
with F50. In Eq. ~23! we have implicitly assumed that
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W→1 asymptotically. A solution tending toW521 can be
trivially obtained from one tending toW51 by changing the
sign ofW, F, andP, while leavingS, a, anda unchanged.
The field equations are left unchanged.

IV. BACKGROUND SOLUTION

A. The eigenvalue problem

In this section we construct the solutionZ* (r ,t) which
dominates type II behavior. In the last section we noted that
the field equations do not admit an exactly self-similar solu-
tion. Physically, this follows from the presence of a preferred
scale in the equations. In the dimensionless variables we
have introduced, this scale survives, hidden in the factors
et that appear at several places in the field equations. The
physical interpretation ofet is the scale on which the fields
echo, divided by the underlying scale of the equations. In the
limit et→0, on very small spacetime scales, the equations
become scale invariant. We want to find the solution that
becomes self-similar in that limit. This leads us to the ansatz

Z* ~z,t!5 (
n50

`

entZ* n~z,t!, ~32!

where eachZ* n is periodic int with periodD. In the limit
et→0, Z* 0 dominates the solution, which then becomes
self-similar. Z* 0 is the solution of a nonlinear eigenvalue
problem, with eigenvalueD, and boundary conditions arising
from certain regularity requirements.Z* 1 is the solution of
an inhomogeneous nonlinear boundary value problem, with
source terms depending onZ* 0. Similar boundary value
problems completely determine all higherZ* n recursively,
so that the ansatz is consistent.

In the following we are interested only in the equations
for Z* 0, and from now on we suppress the suffix* 0 on the
components ofZ* 0, denotingP1* 0 simply byP1 , etc.~In
the compact formal notationZ* 0 we keep the suffix.! The
equations forZ* 0 are derived from those forZ above by
setting the factoret equal to zero at each explicit occurrence.
We choose to evolve onlyP1 , P2 , andg in z, with Eqs.
~25! and~27!, and to determinea andS at each new value of
z from the constraints, Eqs.~29! and ~30!. The set of equa-
tions we solve numerically is then, in simplified notation,

P6,z5
7ez1j0gP6,t1~12a214a2S2!P672a2S

17~11j08!ez1j0g
,

~33!

g,z5~12a214a2S2!g, ~34!

05a,t1e2~z1j0!g21
a

2
~P1

2 2P2
2 !

2~11j08!
a

2
~12a214a2S21P1

2 1P2
2 !, ~35!

05S,t2e2~z1j0!g21 1
2 ~P11P2!

1~11j08!@S1 1
2 ~P12P2!#. ~36!

All fields are periodic int with a periodD that is to be
determined as an eigenvalue. Here as in the example of the
scalar field @3#, the field equations are complemented by
regularity conditions at the centerr50 ~for t,0), and at the
past self-similarity horizon@the past light cone of the point
(r50, t50), or r.2t#. One can solve these boundary con-
ditions in terms of free parameters.

To make r50⇔z52` a regular center, we impose
a51 andg51 there. We expand in powers ofez, and notice
thata, g, andP are even in that expansion~because they are
even in r at r50), while S andF are odd. We label the
orders of this expansion by a suffix in parentheses to distin-
guish them from the orders in the expansion~32!. The ex-
pansion coefficients can be given recursively in terms of one
free periodic functionS(1)(t). To ordere3z they are, giving
P andF instead ofP1 andP2 ,

a~0!~t !51, ~37!

g~0!~t !51, ~38!

P~0!~t !50, ~39!

S~1!~t !5free, ~40!

F~1!~t !522S~1! , ~41!

a~2!~t !52S~1!
2 , ~42!

g~2!~t !50, ~43!

P~2!~t !5ej0@S~1!8 2~11j08!S~1!#, ~44!

S~3!~t !5
1

10
$ej0@P~2!8 22~11j08!P~2!#18S~1!

3 %, ~45!

F~3!~t !524S~3! . ~46!

These expressions are used to impose the asymptotic bound-
ary condition atz→2` at some small value ofz, say
z5z left .

We use the remaining coordinate freedom, the choice of
j0(t), to move the self-similarity horizon to the coordinate
surfacez50 by means of the coordinate condition

@12~11j08!ej0g#z5050, ~47!

which means thatz50 is null, and impose analyticity there
by the condition

@2ej0gP1,t1~12a214a2S2!P122a2S#z5050.
~48!

~This is a regular and sufficient condition, by the same argu-
ment already used in@3#.!

These two constraints can be solved recursively after ex-
panding, this time in powers ofz. We denote the components
of this expansion also by subscripts in parentheses. The two
free parameters here are the periodic functionsg(0)(t) and
P2(0)(t). From Eq.~47!, one obtains the algebraic identity

g~0!5@ej0~11j08!#21. ~49!
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To obtain the leading-order coefficients of the other fields,
we substitute Eq.~49! into Eqs.~36!, ~35!, and ~33! ~upper
sign!,

S~0!8 1~11j08!S~0!2~11j08!P2~0!50, ~50!

a~0!8 2~11j08!@P2~0!
2 1 1

2 #a~0!2~11j08!@2S~0!
2 2 1

2 #a~0!
3 50,

~51!

P1~0!8 2~11j08!@12a~0!
2 14a~0!

2 S~0!
2 #P1~0!

1~11j08!2a~0!
2 S~0!50, ~52!

and consider these as linear ODE’s forS(0) , @a(0)#
22, and

P1(0) , respectively.
As in the scalar field case, we make the assumption that

the metric variablesa andg contain only even frequencies in
t, and the matter variablesP1 , P2 , andS only odd fre-
quencies. This is compatible with the equations forZ* 0, al-
though it is not with the equations for the generalZ. If this
symmetry did not hold, the right-hand side of Eq.~30! would
contain even terms int, and among them generically a term
constant int. ThenS would not be periodic int, but would
have a term linear int, and through the Einstein equations
this would be in contradiction to the periodicity ofa and
g, and hence the self-similarity ofZ* 0.

The equivalent of the fieldS here is the scalar fieldf in
the scalar field model, and for a massive or self-interacting
f a similar argument holds. The equations for a massless
f, however, do not containf itself but only its derivatives
P6 . Therefore, a linear dependence off on t would not
clash with spacetime self-similarity. Such solutions exist,
and have been investigated by Brady@19#, but surprisingly
the critical solution for the massless field is not of this kind,
and the massless and massive~or self-interacting! scalar field
are, therefore, in the same universality class.

B. Numerical construction

Our numerical method has been described in detail else-
where @3#, and can be applied to the EYM system without
modification: By decomposing all fields in Fourier compo-
nents with respect tot, the partial differential equations
~PDE’s! in t andz go over into a~large! system of ODE’s in
the variablez for the Fourier components. ODE’s int alone,
in the boundary conditions and the constraints, go over into
algebraic equations which can be solved in closed form.D
now appears as a parameter in the Fourier transformation of
the t derivatives. The boundary value problem is solved nu-
merically by relaxation.

A solution of the field equations and boundary conditions
exists only for isolated values ofD, and we have found pre-
cisely one. The convergence radius of our relaxation algo-
rithm is smaller than for the scalar field, probably because of
the shorter periodD, and instead of anad hoc initial guess
we had to use collapse data kindly provided by Choptuik
@17# to obtain a good enough starting value for the relaxation
algorithm.

We find good agreement ofZ* 0 with the Z of a critical
collapse simulation for23.00&t&22.22@17#, which is not
very surprising as we started our numerical search with these
data but, nevertheless, confirms that the ansatz~32! for Z* is

consistent and converges for small enought, with Z* 0 thedominant term.
To obtain error bars on the solution, we have checked

convergence with the numerical parametersz left , the number
N of Fourier components, and the grid spacingDz, by vary-
ing one of them at a time.

Figure 4 demonstrates quartic convergence with expzleft ,
as expected from our expansion to orderO(exp3zleft). This
convergence breaks down at very small values of expzleft ,
because all fields become very small.

Figure 5 demonstrates quadratic convergence with grid
spacing inz, as expected from centered differencing of the
z derivatives. This convergence breaks down at very small
values ofDz, probably because grid points get very close to
76the regular singular pointz50.

Convergence withN is rapid: The difference between re-
sults for N564 and N5128 is already of order 1026.
N564 is surprisingly small, given that it means only 16 odd
Fourier components each to representP1(t) and P2(t)
and 16 even components forg(t) and 15 forj0(t). @The
component cos(4p/D) of j0(t) is taken to be zero to fix the
translation invariance int of the equations forZ* 0.#

For the production run we have chosenz left526.4,
Dz5(1/80) ~that is, 513 grid points!, andN5128. The so-
lution Z* 0(z,t) has an estimated maximal error of
62.331024 and root-mean-square error of63.631025, in
the region26.4<z<0. We obtainD50.7378460.00002.
All three error estimates are dominated by the error from
finite differencing inz, with the estimated error from ex-
panding aroundz52` somewhat smaller, and the error
from using a finite number of Fourier components int much
smaller.

C. Global structure

We have explicitly constructed the critical solution only
in the past light cone of the point (t50, r50). In this paper

FIG. 4. Quartic convergence ofZ* 0 with expzleft . Assuming
that the error is due to a finite value ofz left is E.Aexp4z left , the
difference between two numerical solutions obtained withz left and
z left1Dz left is DE.4ADz leftexp4zleft . Therefore, we plot here
DE/(4Dz left).E, against expzleft . Circles denote the maximal er-
ror, over all grid points and Fourier components, squares the root-
mean-square error, and triangles the error inD. N564 and
Dz50.1. The production valuez left526.4 corresponds to the fifth
point from the left.
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we are not concerned with its global structure, only its exis-
tence, echoing period, and perturbation spectrum. From the
ansatz~21! for the metric and periodicity int it follows that
the point (t50, r50) is a curvature singularity, with curva-
ture blowing up as exp(22t). It is also clear that the space-
time cannot be asymptotically flat. Neither fact is relevant
for its role as an intermediate attractor. We can guess that the
global structure is the same as that of the scalar field critical
solution @3#. Assuming analyticity at the past light cone,
there is a unique self-similar continuation up tot50. We
expect that continuation to agree with the critical solution
found by CCB. The linet50 is expected to reveal itself as
coordinate singularity, with a unique analytic continuation
up to the future light cone. The future light cone could
a priori be a null curvature singularity. In the scalar field
case it turns out to be a very mild singularity, with all com-
ponents of the Riemann tensor finite, and only limited differ-
entiability of the metric components and matter fields. We
are not aware of any reason why the same behavior should
apply to all kinds of matter, however.

V. LINEAR PERTURBATIONS AND CRITICAL
EXPONENT

A. The eigenvalue problem

In this section we construct the one linear perturbation of
the critical solution that grows with decreasing spacetime
scale, ast→2`, with the purpose of calculating the critical
exponent for the black hole mass in critical collapse.

The linearized evolution equations for a linear perturba-
tion dZ of any background solution are of the general form

dZ,z5AdZ,t1~B1etC1e2tD !dZ. ~53!

Here the explicit powers ofet are the same that appear in the
full field equations. The linearized constraints are of the
same general form, but with the left-hand side equal to zero,
and the following considerations apply equally to them as

well. The perturbation equations differ from those for the
scalar field model through the explicit appearance ofet in
the equations, and the fact that the coefficientsA, B, C, and
D are not periodic int even if the background solution we
perturb around is the critical solutionZ* , becauseZ* is not
periodic. However, the coefficientsA, B, C, andD admit an
expansion of the form

A5 (
n50

`

entAn~z,t!, ~54!

where theAn are periodic. In this expansion, the leading
termsA0, B0, etc. depend only on the leading termZ* 0 of
the background expansion.

As for the scalar field model, we make the ansatz@3#

dZ~z,t!5(
i51

`

Cie
l itd iZ~z,t!, ~55!

where theCi are free coefficients, and thel i are a discrete
set of complex numbers, which are determined as eigenval-
ues of a new, linear boundary value problem. Clearly, the
d iZ obey the equation

d iZ,z5Ad iZ,t1~B1l iA1etC1e2tD !d iZ. ~56!

In the massless scalar field model, thed iZ could be assumed
to be periodic int. In the presence of a scale, this is no
longer possible, and we have to expand eachd iZ once more
as @9#

d iZ~z,t!5 (
n50

`

entd inZ~z,t!, ~57!

where only the individual coefficientsd inZ are periodic. This
expansion is exactly analogous to Eq.~32!. Thed inZ obey a
coupled set of equations which can be derived from Eq.~56!
in a straightforward bookkeeping exercise, after inserting the
expansion~54!. These equations are complemented by regu-
larity conditions atz52` andz50. The equations for the
d i0Z are simply

d i0Z,z5A0d i0Z,t1~B01l iA0!d i0Z. ~58!

This equation, together with the boundary conditions, al-
ready determines the spectrum$l i%. The otherd inZ obey
inhomogeneous equations and can be determined recur-
sively, but here we are interested only in the spectrum. This
also means that we only need the leading termZ* 0 of the
background expansion.

Writing down the field equation~58! for the d i0Z is
straightforward. As we have seen, one simply linearizes Eqs.
~33!–~36! for Z* 0, and then makes the replacements
dZ* 0→dZi0, but dZ* 0,t→d i0Z,t1l id i0Z,t , which follow
from the definition~55!. Writing a for a* 0, etc., andda for
d i0a, etc., to keep the notation simple, we obtain

FIG. 5. Quadratic convergence ofZ* 0 with the numerical grid
spacingDz. As a measure of the error atDz, we compare it with
Dz/2. Circles denote the maximal error, over all grid points and
Fourier components, squares the root-mean-square error, and tri-
angles the error inD. N564 andz left526.4. The production value
Dz5(1/80) corresponds to the second point from the left.
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dP6,z5@17~11j08!ez1j0#21

3$7ez1j0@P6,tdg1g~dP6,t1l idP6!#

1~12a214a2S2!dP612a~4S221!P6da

18a2SP6dS72a2dS74aSda

6~11j08!ez1j0P6,zdg%, ~59!

dg,z5~12a214a2S2!dg12a~4S221!gda18a2SgdS,
~60!

05da,t1@l i1
1
2e

2~z1j0!g21~P1
2 2P2

2 !2 1
2 ~11j08!

3~123a2112a2S21P1
2 1P2

2 !#da

1$e2~z1j0!@2 1
2 ~P1

2 2P2
2 !g22adg

1g21a~P1dP12P2dP2!#2~11j08!@4a3SdS

1a~P1dP11P2dP2!#%, ~61!

05dS,t1~l i111j08!dS

1
1

2
$e2~z1j0!@g22~P11P2!dg2g21~dP11dP2!#

1~11j08!~dP12dP2!%. ~62!

Similarly, we obtain the expansion aroundz52` of the
d i0Z by linearizing Eqs.~37!–~46! and then making the same
replacement, at each order inez. The nonvanishing expan-
sion coefficients toO(e3z) are

dS~1!~t !5free, ~63!

dF~1!~t !522dS~1! , ~64!

da~2!~t !54S~1!dS~1! , ~65!

dP~2!~t !5ej0@dS~1!8 1~l212j08!dS~1!#, ~66!

dS~3!~t !5
1

10
$ej0@dP~2!8 1~l2222j08!dP~2!d#

124S~1!
2 dS~1!%, ~67!

dF~3!~t !524dS~3! . ~68!

As the linearized regularity condition atz50 we impose
the vanishing of the numerator of Eq.~59!, ~upper sign!.
There is no linearized equivalent of the coordinate condition
~47!, as we have already fixed the coordinate system when
the background was calculated.~This means thatz50 is
exactly null in the background spacetime, but not in the per-
turbed spacetime.! The one boundary condition atz50 can
be solved recursively in terms of two free periodic functions
dg(0)(t) anddP2(0)(t), from

dS~0!8 1~l i111j08!dS~0!1~11j08!

3@2dP2~0!1
1
2g

21~P1~0!1P2~0!!dg~0!#50, ~69!

da~0!8 1@l i1~11j08!~2P2~0!
2 2 1

21 3
2a~0!

2 26a~0!
2 S~0!

2 !#da~0!

2~11j08!@ 1
2g~0!

21a~0!~P1~0!
2 2P2~0!

2 !dg~0!14a~0!
3 S~0!

3dS~0!12a~0!P2~0!dP2~0!#50, ~70!

dP1~0!8 1@l i2~11j08!~12a~0!
2 14a~0!

2 S~0!
2 !#dP1~0!

1g~0!
21@P1~0!8 2~11j08!P1~1!#dg~0!

1~11j08!$2a~0!@~124S~0!
2 !P1~0!12S~0!#da~0!

12a~0!
2 @124S~0!P1~0!#dS~0!%50. ~71!

The suffix (0) denotes the leading term in an expression in
powers of z around z50. We still need to calculate the
background term (P1,z)(0)5P1(1) in Eq. ~72!. To do this,
we expand Eqs.~33!, ~lower sign!, ~28!, and ~30! to O(z),
and evaluate the resulting algebraic expressions

g~1!5C~0!g~0! , whereC~0![12a~0!
2 14a~0!

2 S~0!
2 ,

~72!

P2~1!5
1

2
@~11j08!21P2~0!8 1C0P2012a~0!

2 S~0!#,

~73!

S~1!52S~0!2
1
2 ~P1~0!2P2~0!!, ~74!

a~1!5
a~0!

2
~C~0!1P1~0!

2 1P2~0!
2 !, ~75!

@alternatively, we could have obtainedS(1) and a(1) from
expanding the constraints~61! and ~62!#, and finally solve
the linear ODE

P1~1!8 2~11j08!~112C~0!!P1~1!1~11C~0!!P1~0!8 ~76!

1~11j08!$2a~0!@~124S~0!
2 !P1~0!12S~0!#a~1!

12a~0!
2 @124S~0!P1~0!#S~1!%50 ~77!

for P1(1) .
Linear perturbations which have the samet symmetry as

that of the backgroundZ* 0 (S andP6 odd frequencies,a
andg even frequencies!, decouple from those with the op-
posite symmetry. We call them even and odd perturbations,
respectively, and can treat them separately in the numerical
calculation of the spectrum$l i%.

B. Numerical construction

Our numerical method is the same as in@3#. We evolve a
basis of all linear perturbations compatible with the con-
straints at either one of the boundaries to a matching point,
and look for zeros of the determinant of the combined bases
as a function ofl. A zero indicates the existence of a per-
turbation consistent with both sets of boundary conditions
for that value ofl. We have implemented this algorithm for
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both real and complexl. We have checked our results, for
real l and even perturbations, with a relaxation algorithm
that is partially independent numerically, and in whichl
figures as an additional variable, which is balanced by fixing
the perturbations as an additional boundary condition. The
determinant in question is in fact a holomorphic function of
l ~because the field equations are real!, and this can be used
to find its zeros and poles efficiently.

We expect certain zeros and poles in thel plane from the
following considerations.Z* 0 is scale invariant and, there-
fore, invariant under the infinitesimal transformation

Z* 0~r ,t !→Z* 0@~11e!r ,~11e!t#.Z* 0~z,t1e!

.Z* 0~z,t!1eZ* 0,t . ~78!

This corresponds to a gauge linear perturbation mode with
l i50 and d iZ5Z* 0,t . Z* 0 is also invariant under time
translation,

Z* 0~r ,t !→Z* 0~r ,t1e!

.Z* 0~z,t!1ee2t@~11j08!Z* 0,z2Z* 0,t#,

~79!

corresponding to a gauge mode withl i521. Both gauge
modes are even according to our classification.

The ODE’s, Eqs. ~69!–~71!, are all of the form
f 81g f1h50, where f stands for dS(0) , da(0) , and
dP1(0) , respectively. In all three equationsg depends only
on the background solution and is even, whileh is linear in
the perturbations, and has the samet symmetry as that of
f . It can be shown@3# that this type of equation has no
solution when the average value~in t) of the coefficientg
vanishes. As g in each case is of the form
l1(background fields), this corresponds to a simple pole in
the l plane. These poles are there not just because of the
breakdown of a particular numerical method but indicate that
for these values ofl no perturbations exist which obey the
boundary condition atz50. The poles arise only when the
inhomogeneous termh, and in consequence the unknown
f , have a nonvanishing average, that is when they are even.
Calculating the average value ofg for each of the three

equations, we find that they vanish forl521,
l5212A, andl52A, respectively, whereA is the aver-
age value of 2(11j08)P2(0)

2 , with numerical value
A.0.1726.„We have used the fact that

~ lna~0!!85~11j08!@P2~0!
2 1 1

21~2S~0!
2 2 1

2 !a~0!
2 # ~80!

has a vanishing average value, as it is the derivative of a
periodic function, to simplify the averages.… In summary, for
even perturbations we expect zeros atl50 and l521
~gauge modes!, one more zero on the negative real line~the
unstable mode!, and a pole atl.21.17. For odd perturba-
tions we expect poles atl521 andl.20.17.

The numerical calculation of the perturbation determinant
as a function ofl largely confirms the predictions: For even
perturbations, on the negative real line we find a zero at
l1.25.0, corresponding to the expected physical unstable
mode, with a critical exponent of21/l1.0.2, as found in
collapse simulations. We also find the expected zero at

l250. We have verified that the correspondingd iZ}Z* 0,t
to high precision. We find the expected pole atl.21.17,
but accompanied by a zero very close by. For odd perturba-
tions, on the negative real line we find the expected pole at
l.20.17.

At l521, for both even and odd perturbations, we do
not find the expected zero and pole, respectively, because of
a numerical problem which is discussed in the appendix. It
does not affect our calculation of the perturbation determi-
nant for values ofl not close to21. The unstable mode at
l.25.0 and gauge mode atl50 are clear enough, and we
can use their convergence properties to obtain an estimate of
the numerical error.

Table I gives the values ofl for the unstable model1 and
the scale change gauge model2 as a function of the step size
Dz. The deviation of the numerical value ofl2 from zero
serves as one estimate of numerical error. It is larger than the
other estimate, from the convergence ofl1 and we, there-
fore, adopt it as our definitive error estimate forl1. We
obtain l1525.09160.017, from which we obtain for the
critical exponentg521/l150.196460.0007.

VI. CONCLUSIONS

We have obtained the asymptotic form of the type II criti-
cal solution of EYM collapse, its echoing period, and the
critical exponent for the black hole mass, in a calculation
similar to the one we made for the massless scalar field@8,3#.
The major new feature is the presence of the length scale in
the EYM field equations. In consequence, the critical solu-
tion and its linear perturbations are no longer self-similar,
but become so only asymptotically on spacetime scales much
smaller than the length scale of the field equations~on the
order of mass of the BM solution!. Here we have only cal-
culated the leading term in the asymptotic expansions for the
critical solution and its perturbations, but this is sufficient to
calculate both the echoing periodD and critical exponentg
exactly. We find D50.7378460.00002 and
g50.196460.0007, while Choptuik, Chmaj, and Bizon´ @1#
find D.0.74 andg.0.20 in collapse simulations.1

1
Data files of the background and unstable mode from the produc-

tion run are available through the WWW address http://www.aei-
potsdam.mpg.de/;gundlach.

TABLE I. Convergence ofl with step size inz. l1 is the
Lyapunov exponent of the one growing mode. Its negative inverse
is the critical exponentg. l2 is the exponent of the scale change
(t-translation! gauge mode. It must be zero and serves as a check
on the numerical error. Note that the numerical grid~and number of
steps! is the same for the background as that for the perturbations in
each case. The range ofz is 26.4<z<0 in each case.

Number of steps l1 l2

32 25.1318584162589 0.13720816860828
64 25.082819492487321.493210208091231022

128 25.089181649559821.151969700169331022

256 25.0910562847918 4.706119068416331023

512 25.0913625725286 1.675861103767731022
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As explained in Sec. II, following@1# we have not made
the most general ansatz for the YM field in spherical sym-
metry, but a consistent restriction. For the type I critical so-
lution, the BM solution, one misses one unstable perturba-
tion mode in doing this. In the full phase space it is an
attractor of codimension two, and one would have to fine-
tune two parameters in the initial data to make the time evo-
lution approximate it for a long time. Similarly, the type II
critical solution we have found here may be an attractor of
higher codimension than one in the full phase space.

In the formalism we have developed to deal with the pres-
ence of a length scale in the equations, both the background
solution, and its linear perturbations, are expanded in powers
of that length scale. The leading term of the latter series
obeys field equations which are simply the linearization of
the field equations for the leading term of the former series.
Both sets of equations, therefore, consistently describe one
new physical system which is scale invariant, and which is
obtained from the original, scale-dependent model in the
limit where all fields vary on spacetime scales much smaller
than the intrinsic scale of the field equations. In the language
of renormalization group theory, these equations are the
short-scale fixed point of a renormalization group transfor-
mation acting on the original field equations.

What matter system is described by the renormalized
equations? In the case of a massless or self-interacting scalar
field the fixed point is the massless scalar field@13#. For
scalar electrodynamics, it is the massless complex scalar
without electromagnetism@9#. For YM matter, the fixed
point field equations do not seem to describe a previously
known model. They could best be described as an Abelian
YM model which acquires a mass through symmetry break-
ing. In the small-scale limit, the effective YM equation is
linear in the rescaled gauge potentialS, and the effective
stress tensor is quadratic inS. The effective theory is no
longer full YM theory, with up to quartic self-interaction
terms, but it retains a quadratic self-interaction term inS,
which one must think of as an expansion of the original
cubic and quartic self-interactions of YM matter around the
vacuum background solutionW51, with higher than second
powers ofS suppressed in the small-scale limit.

The example of EYM collapse shows that one does not
need scale invariance of the field equations to have critical
phenomena with the famous relationM;(p2p* )

g. Rather,
they can be found in some region of phase space for any
system, when the typical scales of the initial data are much
smaller than the typical scales of the Einstein-matter field
equations. For astrophysical matter, these initial data are
simply not realized in astrophysical collapse.

In the present paper we have developed a general formal-
ism for dealing with critical collapse restricted to spherical
symmetry, allowing for discrete self-similarity and the pres-
ence of a length scale. The generalization to more than one
scale is trivial: the various scales can be written as a single
scale times dimensionless numbers. The general formalism
has already given rise to new physics: the calculation of criti-
cal exponents not only for the black hole mass but also its
charge in critical collapse of scalar electrodynamics@9#.

Most remaining questions in critical phenomena go be-
yond the restriction to spherical symmetry. Do the spherical
critical solutions found so far act also as critical solutions for

generic, nonspherical, initial data? What is the angular mo-
mentum of the black hole formed from data with angular
momentum in the limit where the black hole mass is fine-
tuned to zero? Are there qualitatively new phenomena away
from spherical symmetry?
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APPENDIX A: NUMERICAL PROBLEMS AT l.21

Calculating the determinant of even perturbations as a
function ofl, we do not find the expected zero but a pole at
l521, with an alternating series of poles and zeros accu-
mulating towards21 from below. There are no further poles
or zeros immediately above. The positions of the poles are
the same in the real and complex algorithms, but depend on
the values of the numerical parametersN anddz. A qualita-
tively similar picture arises for odd perturbations. These fea-
tures can be explained as a numerical artifact as follows.

We have checked explicitly that the gauge mode~79!
obeys the constraint~61!. When we try to reconstructda of
this mode from the constraint, however, the numerical result
blows up at smallz. To understand this, consider the equa-
tion da81gda1h50, with g and h defined by Eq.~61!.
This equation has no solutiona that is periodic int if the
average int of g vanishes. The Fourier algorithm that we
use to solve this forda at eachz needs to divide the average
of h by the average ofg. As z→2`, the average ofg over
t as a function ofl andz is l111O(e2z), where the last
term is positive. Asl→21 from below, this goes through
zero at some small value ofz. In the exact perturbation mode
~79!, the average value ofh vanishes at the same rate with
z as that ofg, but with small numerical errors this cancella-
tion fails, and small numerical errors are magnified. In the
calculation of the perturbation determinant this results in the
observed, essentially random behavior forl&21. For
l.21 the problem does not arise, as then the average value
of g does not vanish for anyz.

We have not found a simple way of fixing this problem,
as our algorithm relies in an essential way on reconstructing
Sanda anddSandda from the constraints at eachz. It does
not affect numerical results, however, unless where the av-
erage values of both the coefficientsg andh are very small,
that is, forl&21. ~If only the average value ofg is small,
the resulting blowup in the perturbations is physical, as in the
other poles we have discussed.! Calculating the perturbation
determinant is not a goal in itself, but only a means of find-
ing the spectrum of linear perturbations. With the present
method we can say with confidence that there is a zero at
l.25.0, and no other zeros for negative reall, apart from
the two gauge modes. We could in principle be missing a
zero ~physical growing mode! at l&21, where the code is
unreliable and, therefore, we have to rely on evidence from
collapse simulations that there is only one unstable mode.
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