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Echoing and scaling in Einstein-Yang-Mills critical collapse
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We confirm recent numerical results of echoing and mass scaling in the gravitational collapse of a spherical
Yang-Mills field by constructing the critical solution and its perturbations as an eigenvalue problem. Because
the field equations are not scale invariant, the Yang-Mills critical solution is asymptotically, rather than
exactly, self-similar, but the methods for dealing with discrete self-similarity developed for the real scalar field
can be generalized. We find an echoing peiod0.73784+ 0.00002 and a critical exponent for the black hole
massy=0.1964+ 0.0007.[S0556-282(97)05010-8

PACS numbg(s): 04.25.Dm, 04.20.Dw, 04.40.Nr, 64.60.Ht

I. INTRODUCTION self-similarity [3]. The smallelp—p, |, the more “echos”
Recently, Choptuik, Chmaj, and Bizdid] (CCB) have were visible before the black hole formed or before the fields

studied the gravitational collapse of an @ Yang-Mills dispersed to infinity. For introductory reviews on critical

. ) i . phenomena in gravitational collapse, $de6].
(YM) field restricted to spherical symmetry. They were in- CCB investigated the spherical Einstein-Yang-Mills

terested n What_ IS now commonl,),/ known as “critical ph_e- (EYM) system because it promised a richer structure than the
nomena in gravitational collapse,” and their method of in-gjnstein-scalar system. The matter field equations are non-
vestigation was the numerical time evolution of a grealjjnear, and the combined matter and Einstein equations con-
number of initial data sets. The purpose of the present papggin 4 preferred scale formed from the YM coupliegNew-
is to confirm some of their results by a different methodiony's constanG, andc. Proceeding as Choptuik did for the
which does not involve time evolution of initial data, and to scalar f|e|d, they found two regions in phase space with
calculate two important numbers, the “echoing period”  qualitatively different behavior. In what they call “region
and “critical exponent”y, to higher precision. We confirm | ” they found a “mass gap”: Atp=p, the black hole mass
what is now becoming a standard picture of critical phenombegins discontinuously at a finite value. This minimum black
ena in gravitational collapse, and generalize that picture t@ole mass is the same for all one-parameter families, and is
matter models which are not scale invariant. equal to the mass of the well-known Bartnik-McKinnon
Critical phenomena occur at the boundary in phase spag@M) solution[7]. The time evolution in fact approximates
between initial data which eventually form a black hole andthe BM solution over some finite time, and this time is the
data which do not. Choptuik2] pioneered the method of |onger, the closep is to p, . In “region II” they found the
numerically evolving initial data taken from one-parametermass scaling and echoing familiar from critical collapse of
families of initial data that cross this boundary. Such familiesthe scalar field and other matter models, here ita0.74
are not hard to find. It is enough that they form a black holeand =0.20. The two kinds of behavior are reminiscent of
for large values of their parametpr(strong databut not for  first- and second-order phase transitions, with the black hole
small valuesweak data In a bisection search, one can then mass changing either continuously or discontinuously at the
numerically determine the critical valys, of p for a given  critical point.
family, such that a black hole forms f@>p, , but not for In the next section we shall see that each type of behavior
P<Py . can be understood, in dynamical systems terms, through the
For the spherically symmetric massless scalar field, Choppresence of an intermediate attractor. The intermediate at-
tuik found that the black hole mass could be made arbitrarilytractor in region | is the BM solution, which is static and
small, and scaled lik ~(p—p,)?, with y=0.37 the same asymptotically flat. The region Il intermediate attractor is
for all families of data. Furthermore, the time evolution of all (asymptotically self-similar and was not known before. It is
data with|p—p, | sufficiently small, from all families, ap- the technical task of this paper to calculate the type Il attrac-
proaches one universal solution. This solution has the stranger and its linear perturbations.
property of being periodic in the logarithm of batfandt, or Our analytic and numerical methods are a generalization
#(r,t) = p(er,ett), with a period of A=3.44.[See Eq. of those developed for the spherical scalar field[&3].
(10) below for the definition of the coordinates,f). The  There one proceeds as follows. We assume that a solution to
metric componenta anda show the same scaling behavior the field equations exists which is exactly self-similar. In
as ¢.] In geometric terms, this symmetry is a discretesuitable coordinates, self-similarity is equivalent to periodic-
ity of the conformal metridsee Eq.(21) below]. This pro-
vides periodic boundary conditions in one coordinate.
*Present address: Max-Planck-Institufr fGravitationsphysik, Boundary conditions in the other coordinate are obtained by
Albert-Einstein-Institut, Schlaatzweg 1, 14473 Potsdam, Germanydemanding regularity at the center of spherical symmetry,
Electronic address: gundlach@aei-potsdam.mpg.de r=0, and at the past light cone of the singularity. We thus
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FIG. 1. Global structure of the exactly self-similar solution. The
spacetime is spherically symmetric, and the left edge=9. A:
Naked curvature singularity. B: Past Cauchy horizon. C: Future » )
Cauchy horizon. This may be a curvature singularity, or the curva- G- 2. Global structure of a subcritical collapse solution. F1:
ture may be finite except in point A. In that case there is no uniquéiegular, asymptotically flat initial data. G1: Past developnignt
continuation beyond C, but a natural candidate is a self-similaf€/€vant for our purposgsEL: In this spacetime region all fields
continuation with regular =0 (apart from point A. This is indi- approximate those in region E of the self-similar solution.
cated as region D. Note that the spacetime is not asymptotically flat.

The arrows give the directionr~ —), in which one linear per- |ution is an intermediate attractor, we calculate the spectrum
turbation mode grows and all others decrease. E is a schematisf its linear perturbations and show that there is only one
indication of the region of the critical solution that is visible as an growing mode. “Growing” here means growing towards the
intermediate attractor in collapse simulatidisee also Figs. 2 and naked singularity, but in the region where collapse solutions
3. agree with the self-similar solution this also means growing
with t at constant (see Fig. 1L As a last step, it can be
obtain a nonlinear boundary value problem for a system ofhown, essentially by dimensional analysis, that the growth
hyperbolic and elliptic equations, with the self-similarity pe- rate of the one unstable mode is related to the critical expo-
riod A determined as an eigenvalue. To enforce periodicitynenty, which governs the scaling of the black hole mass in
in the ansatz, we expand the metric and matter fields in &arginally supercritical collapse. This allows an indepen-
Fourier series. As the field equations are orli+1)-  dent, semianalytical calculation of the critical exponent.
dimensional because of spherical symmetry, the equations An extension of the formalism is required for YM, or
for the Fourier componenisvith respect to the periodic co- indeed any generic, non-scale-invariant maf&r In con-
ordinaté become ordinary differential equatiof@DE’s) (in  trast to the scalar field system, the field equations contain a
the other coordinaje The periodA now appears as an ad- mass and length scaée * (in unitsc=G=1), wheree is the
justable parameter in the equations. The Fourier expansion goupling constant in the YM-covariant derivative
truncated, so that one deals with a large but finite number dP,=V,+ieA,. The presence of a scale in the field equa-
equations, and this ODE eigenvalue problem is solved nutions excludes the existence of an exactly self-similar solu-
merically. tion. Instead, we make a series ansatz for a solution which

The collapse solutions that CCB study are asymptoticalljpecomes self-similar asymptotically on spacetime scales
flat (because they choose asymptotically flat initial feaad ~ much smaller thae ™! or, equivalently, for curvatures much
either have no singularity, or a black hole region. In contrastgreater thare®. The echoing perioa is determined by the
the exactly self-similar, critical solution has a naked singu-eading term of the expansion alone. For the linearized equa-
larity, and is not asymptotically flat. Nevertheless, it can playtions we also make a series ansatz, but the spediyjnof
the role of an intermediate attractor, as it only has to be d.yapunov exponents is once more determined by the first
good approximation to collapse solutions in a compact reterm of that series alone. Moreover, to calculate the first term
gion which includes neither the naked singularity nor infin-of the perturbation expansion one only needs to know the
ity. Figures 1-3 clarify this relation between collapse solu-first term of the background expansion. Therefore, the higher
tions and the critical solution. terms of either expansion are not required in order to calcu-

In order to check locally that the exactly self-similar so- late both the echoing period and critical exponenty ex-
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of some first-order form of the field equations, such that, for
example, the complete field equations in spherical symmetry
H can be compactly written &s(Z,Z ,Z )=0.
The type | critical phenomena are dominated by the BM
solution[7]. It is static, spherically symmetric, and asymp-

totically flat. Let us call itz{"(r). As it does not depend on
t, its general linear perturbatiofZ obeys an equation of the

form
8Z +A(r)S8Z,+B(r)62=0. (1)
E2 F2
Therefore,6Z must be of the form
5z=" cheN"t5.z0(r), )
i=1
G2

where theC" are free constants. Because the background is
real, the \; and §;Z form complex-conjugate pairs. Of
course, we consider only real combinatiofis. We restrict
ourselves to the ansatt2) below for the YM field. The BM
solution has exactly one unstable perturbation mode within
FIG. 3. Global structure of a supercritical solution. The data F2;[h=a£ 3ansatz_r[rillii],m ;rllzts i;sz;m ﬁ?el;g di:tn ed at?r:é(fnp c ofdoit
can be chosen almost equal to F1, in which case G2 will be almost en’si'o.n. 1 'in dynamical systems terms. Furthermore, it is
the same as G1, and E2 almost the same as E1 and E, but at Iegge ' !

times the solution is qualitatively different, nevertheless. H is the nown that the final state arising from initial data

black hole region. Zo(r,e)=2{(r)+€5,2"(r) is a black hole for one sign of
€, and flat space with outgoing waves for the other. jLéte
actly, and will not be calculated here. the parameter of a one-parameter family of initial data such

The remainder of the paper is organized as follows. Secthat forp>p, a black hole forms, and fap<p, the solu-
tion Il is a more detailed review, motivating the remaining tion disperses. Then, fop(- p,.) sufficiently small, the time
technical sections. By reviewing type | and type II phenom_evolution of data from the family enters an intermediate
ena in parallel, in similar notation, we hope to make theasymptotic regime of the form
essential mechanism of critical phenomena stand out more
clearly from the technical complications. In Sec. Ill, we give I C(ll) "“)‘5“)
the field equations for the spherically symmetric EYM sys-  Z(I0)=Z,(r)+ W(p*)(p—p*)e 116°2(r). (3
tem, and go over to coordinates and field variables adapted to

self-similarity. In Sec. IV, we construct the type II, self- o0 the decaying perturbations<2) have been neglected

similar, critical solution as a nonlinear eigenvalue problem.yo e they are already small by assumption, and we have
In Sec. V we construct its linear perturbations in anmherapproximated C,=C,(p) to leading order, with

now linear, eigenvalue problem and verify that only one of , y— g by definition. This solution leaves the intermedi-

them is growing. This allows us to calcqlate th.e C”t'ca.l eX-ate asymptotic regime to form a black hole or disperse at a
ponent governing the mass scaling semianalytically, Wlthou{ime f=T when the amplitude of the perturbations,

numerical collapse simulations. In Sec. VI we SUmMMarize; - 50(n—p, )eMT, has reached some small fiducial value

our results, which are in good agreement with collapse simu- S e

X > . . This gives a lifetime
lations, discuss how the EYM system differs from other sys-e g
tems in which critical collapse has previously been studied,

and put the present paper into perspective. T==AIn(p=p,)+c )

of the metastable state, where depends on the one-
parameter family througiC,/ap, but wherex=1/\{" is
All critical phenomena found in gravitational collapse so universal. This was in fact observed by CCB, and used to
far, including the new type | phenomena, can be explained iestimateN{" , in good agreement with perturbation theory
terms of an intermediate attractor in a dynamical system, alsl1].
was first suggested by Evans and Colemaé]. Here we The critical phenomena in regime 1l are dominated by an
motivate the more technical calculations in the followingintermediate attractor that is self-similar instead of static.
sections in this language. In order to stress the basic ideddere we pretend that it is continuously, rather than dis-
and the mathematical similarities between type | and type Icretely, self-similar. This cuts down unessential detail of no-
critical behavior, we shall simplify type 1l in two aspects. tation, and clarifies the similarity with the type | critical so-
We begin by introducing a compact notation that is usedution, which also has a continuous symmefityis statig.
throughout the paper: l&t stand for the vector of variables We also disregard the fact that the self-similarity holds only

II. TYPE | AND TYPE Il CRITICAL PHENOMENA
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asymptotically on small scales, and pretend that it is an exact The spherically symmetric spacetime metric is written as
symmetry.(Both simplifications will be dropped in the fol-
lowing sections. ds?=— a?dt®+a%dr?+r?(d#?+sirfode?), (10

It z(" is continuously self-similar, in suitable coordinates

it depends only on/t. Its general linear perturbatiofiz(")
then obeys an equation of the form

wherea and o depend only orr andt. The most general
spherically symmetric ansatz for the &Y YM connection
is [7,16]

r
f) 52:0 (5) A:AOngt+Angdr+(¢lTl+ ¢27'2)d0

+(— ¢oSinf7,+ Pp1Sinf1o+cob3)de, (1)

r
5ZYt+A( E) §Z,+B

Therefore,6Z must be of the form
- where ther; are the generators of $2), that is, the Pauli
_ ™ o San r matrices. The field®\,, A;, ¢4, and ¢, depend only orr
oz .21 Gt ez t)” ® andt. One can always s&,=0 by a gauge transformation.
Moreover, in the BM solution onlyp; does not vanish. The

Once more, there is exactly one growing mo@éle will  perturbations of the BM solution decouple into two classes:
demonstrate that explicitly in Sec. IVThe intermediate in one of them, the “gravitational sector $, andA; remain
asymptotic regime for type Il behavior is strictly zero, and onlyp, and the metric are perturbed. In the
st other, the “sphaleron sector,$, and the metric remain un-
(n erturbed. The BM solution has one unstable mode in each
Z(r,)=2W(r/t) + —— —p )t 8, ZMW(r1t). P > OIS .
(rO=Z,7(r/) d (P)(P=Py) 12511y sector. (In fact, “the” BM solution is only the first of a

(7) discrete family of static, asymptotically flat EYM solutions,

) the nth of which has 2 unstable modesn each in the

Once more, leT be the value of wherﬁl)the amplitude of the - gnpaleron and gravitational sectdts].) It is a consistent

perturbation, 9C{"/dp(p,)(p—p,)t"1 , has reached a truncation to sef,=A;= ¢,=0 and retain onlys,, as CCB
small fiducial values. One now argues from scale invariance have done. This means that one includes the BM solution,
via dimensional analysigl2—14,3 that the black hole mass and one of its two unstable modes. In order to reproduce
M is proportional toT, and obtains for the black hole mass CCB's results for type Il critical phenomena, we make the

same restriction. After renaming, to W(r,t), we have for

InM = yIn(p—p,)+c, (8 the YM connection

wherey=—1/\{" is universal, and is a family-dependent A=W(7,d6+ 7sinfde) + rsc089d e (12)
constant.
If the scale invariance is only asymptotic, as it is for sca-and the YM field strength is
lar electrodynamics or EYM, the scaling argument to calcu-
late the black hole mass goes through unchangédf the F=dA+AANA
critical solution is discretely self-similar, as for the scalar : 2 .
field or the model considered here, with an echoing period of =dWA(7,d6+ 75sinfde) — (1— W) 75d6/\sindd .
A in the logarithm of the length and time scales, the analysis (13
is also unchanged in its basic idea, but a periodic “wiggle”
[3] or “fine structure” [15] is found to be superimposed on In order to write the field equations in first-order form, we
the mass scaling law, which becomes define

INM = yIn(p—p,) +c+¥[In(p—p,)+c/yl, (9 a
nM=yIn(p—p,)+c+¥[in(p—p,)+cly], (9 o=w,, 1=2w,. (14)

where ¥ is a universal periodic function with period
A/(2y). (Note that the one family-dependent constarp-  The complete field equations, reduced to spherical symme-
pears twice in the formulaThe form of the critical solution 4y are
and its perturbations is also more complicated, and will be
discussed in Secs. IV A and V A, respectively. @
rd=r| 10|, (15
Ill. FIELD EQUATIONS AND SCALING VARIABLES !

In this section we write down the field equations for the
spherically symmetric EYM system, and then introduce co-
ordinates and field variables that are adapted to type Il be-
havior, where scale invariance plays a crucial role. In the a
following we consider only type Il behavior, and no longer r—L=1(1—a?)+ P2+ 112+ 1a2r "2(1-W32, (17
write the index(Il). We adopt the conventions and notation a
of CCB, which include making both the YM field and the
coordinates andt dimensionless by absorbing suitable fac- Ar 1,2 2 2 1,.2.-2/4 222
tors of G, ¢, ande into them. My ~2@ DI (1 -WH%, - (18

+aar TW(1-W?), (16)

T

o
ril tzr(—(I)
' a
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¢ the explicit presence of the factoe$ in the equations. Nor
r—, =2le. (19 can we simply absorb such a factor into the definition\bf
to make it periodic. This means that the equations have no
These equations are the YM equation, and three of the fourontrivial self-similar(periodig solutions. The physical rea-
algebraically independent components of the Einstein equaon is the presence of the length scalé in the problem,
tions. The fourth component is obtained by combining dewhich is only hidden by the dimensionless variables. Follow-
rivatives of the other three and is, therefore, redundant.  ing a suggestion by Choptuik.7], we define a new fiel®
In order to construct a discretely self-similar solution, weby
follow [8,3] in defining new coordinates

W=1-rS. (23
r
=In(—t), §E|n< - f) —&o(7), (20 with this definition, the two potential terms arising in the
field equations
whereé, is a periodic function to be determined, with period L )
A. (This definition differs slightly froni3] in thatt andr are r—W(1-W9)=(1-rS)(2-rS)S,
dimensionless, and thatis negative. The resulting space-
time metric is r2(1-W?)?=(2—-rS)?s? (24)
ds’=e{— a?d7?+e? ¢ a(d{ + (1+ &) d7)*+d6? split into the sum of a term which no longer contamex-
+sirfade?]), 21) plicitly, plus terms containing only positive powers of

which become negligible on small spacetime scalas
wherea and a are now functions of and 7, and where [—0 or asT——). What we have done here is to expand
£o=£&0(7) and &)=d&y/dr. As discussed i3], discrete around the vacuum solutiow/=1, because we expect our

self-similarity is equivalent ta ande being periodic inr. In ~ S€lf-similar solution to oscillate around on smaller and
the field equations we make the replacements smaller scales. The explicit factor ofexpresses our expec-
tation that the amplitude of the oscillations W will de-

Ja 9 J d J crease as they occur on smaller scales, wBilescillates
or T ar fEZGHEO(” - oo T+ 56(7))(9—4 , with constant amplitude.
Two further definitions, namely,I[I.=11+=® and
r=e ™t {té(n (220 9=ala, will be useful becausg alone determines the ingo-
ing and outgoing null geodesics, ahtl, andII_ are the
to transform to the new coordinates. components of the matter field propagating along them.
We shall be looking for a solution in which and « are In the following, we use the coordinatésand r, and the

periodic. What does this mean for the matter variallgs fieldsZ={a,g,Il, ,II_,S}. In these variables, the complete
IT, and W? The Einstein equations suggest tdatandII ~ field equations, including the definitions oF, andIl_ in
should be periodic too, biw cannot be periodic because of terms ofS, are

Feltogll, +CIl.Fa2(1—e™ {tég)(2—e it og)S

= 17 (1+ &))eftéog ’ @9
[
a where
a,§=§(c+ni+n2_), (26)
C=1-a’+a%(2—e " {t4S)232, (31)
g.=Cug, (27)

As suggested by the way we have written the equations, Egs.
S,5=—S—%(H+—H_), (28 (25—(28) can be treated as evolution equations{ijnwith
periodic boundary conditions in, and Eqs(29) and(30) as
constraints which are propagated by the evolution equations.
Note that now only positive powers ef appear explicitly,
so that in the limitr— —c we are left with a set of non-
trivial, scale-invariant equations fa. The terms multiplied
by e” are “irrelevant” in the language of renormalization
group theony[18].
0=S,—e g 11211, +11_) The equations are invariant undé&v— —W, and both
- W=1 andW=—1 are vacuum, or pure gauge, solutions,
+(1+ &[S+ (I, —T1)], (300 with F=0. In Eq. (23) we have implicitly assumed that

a
0=a,+ e‘(“fo)g‘lz(ﬂi—ﬂz_)

—(1+§6)g(C+Hi+Hﬁ), (29)
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W— 1 asymptotically. A solution tending t&/=—1 can be All fields are periodic inT with a periodA that is to be
trivially obtained from one tending t&/=1 by changing the determined as an eigenvalue. Here as in the example of the
sign of W, ®@, andII, while leavingS, a, anda unchanged. scalar field[3], the field equations are complemented by

The field equations are left unchanged. regularity conditions at the center=0 (for t<0), and at the
past self-similarity horizorthe past light cone of the point
IV. BACKGROUND SOLUTION (r=0,t=0), orr=—t]. One can solve these boundary con-
ditions in terms of free parameters.
A. The eigenvalue problem To maker=0<{=— a regular center, we impose

In this section we construct the solutia, (r,t) which ~a=1 andg=1 there. We expand in powers ef, and notice
dominates type Il behavior. In the last section we noted thathata, g, andIl are even in that expansidhecause they are
the field equations do not admit an exactly self-similar soly-€ven inr atr=0), while S and ¢ are odd. We label the
tion. Physically, this follows from the presence of a preferredorders of this expansion by a suffix in parentheses to distin-
scale in the equations. In the dimensionless variables wgUish them from the orders in the expansi@2). The ex-
have introduced, this scale survives, hidden in the factorBansion coefficients can be given recursively in terms of one
e” that appear at several places in the field equations. Thiee periodic functior§;)(7). To ordere® they are, giving
physical interpretation oé” is the scale on which the fields 1l and® instead offl, andII_,
echo, divided by the underlying scale of the equations. In the

limit e*—0, on very small spacetime scales, the equations 3o)(7)=1, (37)
become scale invariant. We want to find the solution that (=1 38)
becomes self-similar in that limit. This leads us to the ansatz Y0 '
i I 0)(7)=0, (39)
Z,(§m)= 2, €VZ,n(¢,7), (32)

* n=0 *n S(l)(T):free, (40)
where eacl, , is periodic inT with periodA. In the limit D4)(1)=—2Fy), 41
e™—0, Z,, dominates the solution, which then becomes
self-similar. Z, o is the solution of a nonlinear eigenvalue a(z)(r)=28(21), (42
problem, with eigenvalud, and boundary conditions arising
from certain regularity requirement&, ; is the solution of di2)(1)=0, (43
an inhomogeneous nonlinear boundary value problem, with
source terms depending af, ,. Similar boundary value I 5 (1) =€%[ S}~ (1+ &) Syl (44)

problems completely determine all high&g , recursively,
so that the ansatz is consistent. 1 forrrs , 3

In the following we are interested only in the equations Sig(1)= 1_0{9 o[l (5)=2(1+ &) (2)]+8S5}, (45
for Z, ¢, and from now on we suppress the suffiy on the
components o¥, ¢, denotingll , , o simply byII, , etc.(In P 3)(7)=—4S3. (46)
the compact formal notatiod, , we keep the suffix. The
equations forZ, ;, are derived from those for above by These expressions are used to impose the asymptotic bound-
setting the factoe™ equal to zero at each explicit occurrence. ary condition at{— —<« at some small value of, say
We choose to evolve onli ., IT_, andg in ¢, with Egs.  {={jes-
(25) and(27), and to determina andS at each new value of We use the remaining coordinate freedom, the choice of
¢ from the constraints, Eq$29) and (30). The set of equa- &o(7), to move the self-similarity horizon to the coordinate
tions we solve numerically is then, in simplified notation, surface/=0 by means of the coordinate condition

- Fettéogll, +(1-a’+4a’S?)Il.+2a%s [1-(1+¢p)efeg],—o=0, (47)
t,g”: — ’ '
15 (1+¢g)et " fog which means that=0 is null, and impose analyticity there
(33 by the condition
9,=(1-a*+4a’s)g, (34) [—efogll, ,+(1-a?+4a2S)II, —2a%S],_=0.
(48)
0=a,+ ef<£+§o>gflg(n2+_n’{) (This is a regular and sufficient condition, by the same argu-

ment already used i[8].)
a These two constraints can be solved recursively after ex-
—(1+ gé)i(l— a?+4a2s2+ Hi +112), (35 panding, this time in powers @t We denote the components
of this expansion also by subscripts in parentheses. The two
free parameters here are the periodic functigps(r) and
0=S,—- e ({Télg=1L(IT, +11_) IT_o)(7). From Eq.(47), one obtains the algebraic identity

+(1+ &[S+ z(IT, —11)]. (36) 9oy =[ef(1+ &)1 (49)
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To obtain the leading-order coefficients of the other fields, 10* ,

we substitute Eq(49) into Eqgs.(36), (35), and(33) (upper
sign),
S(Io)+(1+ gé)S(O)_(l+ f(’))l_[_(o)=0, (50) 104 i
alo)~ (L+&)[11% o)+ 7120~ (1+ &)[ 287y~ $]ap, =0,
(51)

1, (0= (1+ €9)[1— (g, + 445 S 111+ ) 10° | |

+ (14 &))2a%,S0,=0, (52)
and consider these as linear ODE's f§,, [a(o)]*z, and
IT, (o), respectively. 10 .

As in the scalar field case, we make the assumption that ~ 1x10™ 1x107 1x10°

the metric variablea andg contain only even frequencies in _ . )
7, and the matter variablel . , IT_, andS only odd fre- FIG. 4. Quartic convergence &, , with explen. Assuming

that the error is due to a finite value 6fy is E=Aexp4 ., the
difference between two numerical solutions obtained With and
Lot Adiert 1S AE=4AAeri€Xp4err. Therefore, we plot here
. . . AE/(4A ) =E, against exfier. Circles denote the maximal er-
contain eYe” terms im, and among them _ge_nerlcally a term ror, over all grid points and Fourier components, squares the root-
constant inr. TheHSWOU|d not be per'Od'C_ I, F’Ut Wou',d mean-square error, and triangles the error An N=64 and
have a term linear irr, and through the Einstein equations 5 ;=0.1. The production valuge,= — 6.4 corresponds to the fifth
this would be in contradiction to the periodicity of and  point from the left.
g, and hence the self-similarity &, . _ _

The equivalent of the fiel® here is the scalar fielp in ~ consistent and converges for small enougtwith Z, , the
the scalar field model, and for a massive or self-interactinglominant term. ,
¢ a similar argument holds. The equations for a massless 10 Obtain error bars on the solution, we have checked
#, however, do not contaigb itself but only its derivatives ~convergence with the numerical parameiggg, the number
I1.. . Therefore, a linear dependence ®fon = would not N of Fourier components, and the grid spacing, by vary-

clash with spacetime self-similarity. Such solutions exist,Ing one of them at a time. . .

and have been investigated by Brady|, but surprisingly Figure t4 dd?monstrates quartic ::onvergence W'tr‘%_'@hf}.(p
the critical solution for the massless field is not of this kind,asn?/xr;ecne L?m I(()urdeapnan?u\)/nr 0 onr]dhﬂ(revxpl)?g,eﬁ).f IS
and the massless and massigeself-interactingscalar field convergence breaks down at very small values ofcgxp

theref N th i litv cl because all fields become very small.
are, theretore, in the same universality class. Figure 5 demonstrates quadratic convergence with grid

spacing inZ, as expected from centered differencing of the
B. Numerical construction ¢ derivatives. This convergence breaks down at very small
Our numerical method has been described in detail elseZ@lués ofA¢, probably because grid points get very close to
where[3], and can be applied to the EYM system without /6the regular singular poirt=0. .
modification: By decomposing all fields in Fourier compo- _Convergence witN is rapid: The difference between re-
nents with respect tar, the partial differential equations sults fc_)r N=6_4_and N:128. IS alrea_dy of order 1C.
(PDE’s) in 7 andZ go over into alarge system of ODE’s in N=§4 is surprisingly small, given that it means only 16 odd
the variableZ for the Fourier components. ODE’s inalone, ' Cu"l€r components each to repres¢ht (7) and I1_()

in the boundary conditions and the constraints, go over intcggrqn;fneexf gogz;/nf)ogf gt‘?;;g:(sqaigg t](-)Sbfe(:)rZior(OT?[(.) E‘-il;hteh e
algebraic equations which can be solved in closed fakm. 0

. ; *translation invariance irr of the equations foZ, .]
now appears as a parameter in the Fourier transformation of For the production run we have chosi,=— 6.4

the 7 derivatives. The boundary value problem is solved nU'Agz(]_/go) (that is, 513 grid poinis andN=128. The so-

merically by relaxation. . X .
. : : ... lution Z , has an estimated maximal error of
A solution of the field equations and boundary condltlons+2 3% 16‘9}2% root-mean-square error af3.6x 10°5, in

exists only for isolated values df, and we have found pre- oo 0ion — 6 4< /<0. We obtainA =0.73784 0.00002.

c_lsely_ one. The convergence radu,!s of our relaxation algo; Il three error estimates are dominated by the error from

[lr':hmr:s ?maller-tr:zi\n fo:jthe tsca(ljar ]Ileld(,jpt:obf'il?tly lbecause inite differencing in¢, with the estimated error from ex-
€ shorter period, and Instead of aad hocinitial guess anding around,= —<« somewhat smaller, and the error

we had to use collapse data kindly provided by Choptui . - ) :
[17] to obtain a good enough starting value for the relaxationrom using a finite number of Fourier componentsrimuch

) smaller.
algorithm.
We find good agreement &f, ; with the Z of a critical
collapse simulation for- 3.00< 7< —2.22[17], which is not
very surprising as we started our numerical search with these We have explicitly constructed the critical solution only
data but, nevertheless, confirms that the an@#rfor Z, is  in the past light cone of the point£0,r=0). In this paper

guencies. This is compatible with the equationsZqQg, al-
though it is not with the equations for the genezallf this
symmetry did not hold, the right-hand side of E§0) would

C. Global structure
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well. The perturbation equations differ from those for the
scalar field model through the explicit appearance®in
the equations, and the fact that the coefficieht8, C, and
1x107" ¢ . D are not periodic inr even if the background solution we
perturb around is the critical solutidh, , because, is not
periodic. However, the coefficienss, B, C, andD admit an

1x10° . .

1x1072 L 3 expansion of the form
1x107% £ 3 oc
A= 2 @A, 7), (54)
=
1x107% | 3

where theA, are periodic. In this expansion, the leading
termsA,, By, etc. depend only on the leading teidy, of
the background expansion.

As for the scalar field model, we make the ang&z

1x107® L ; .
1x107° 1%10” 1%10” 1x10

FIG. 5. Quadratic convergence @f o with the numerical grid

spacingA . As a measure of the error At/, we compare it with *

AZ/2. Circles denote the maximal error, over all grid points and 5Z(§,T)=E cCieM75Z(L,7), (55

Fourier components, squares the root-mean-square error, and tri- i=1

angles the error ih. N=64 and{.= —6.4. The production value

A{=(1/80) corresponds to the second point from the left. where theC; are free coefficients, and the are a discrete
set of complex numbers, which are determined as eigenval-

we are not concerned with its global structure, only its exis-ues of a new, linear boundary value problem. Clearly, the

tence, echoing period, and perturbation spectrum. From thg,z obey the equation

ansatz(21) for the metric and periodicity irr it follows that

the point ¢=0,r=0) is a curvature singularity, with curva-

ture blowing up as exp{27). It is also clear that the space-

time cannot be asymptotically flat. Neither fact is relevant

for its role as an intermediate attractor. We can guess that tH8 the massless scalar field model, #& could be assumed

global structure is the same as that of the scalar field criticalo be periodic in7. In the presence of a scale, this is no

solution [3]. Assuming analyticity at the past light cone, longer possible, and we have to expand ea¢honce more

there is a unique self-similar continuation uptte 0. We as[9]

expect that continuation to agree with the critical solution

found by CCB. The ling=0 is expected to reveal itself as *

coordinate singularity, with a unique analytic continuation SZ(L,1)= Z e""8,Z2(L, 1), (57)

up to the future light cone. The future light cone could n=0

a priori be a null curvature singularity. In the scalar field

case it turns out to be a very mild singularity, with all com- where only the individual coefficien,Z are periodic. This

ponents of the Riemann tensor finite, and only limited differ-expansion is exactly analogous to E82). The &;,Z obey a

entiability of the metric components and matter fields. Wecoupled set of equations which can be derived from(&6)

are not aware of any reason why the same behavior shouigl a straightforward bookkeeping exercise, after inserting the

8Z,=A5Z ,+(B+\A+eC+e?D)5Z.  (56)

apply to all kinds of matter, however. expansion(54). These equations are complemented by regu-
larity conditions at{=— and{=0. The equations for the
V. LINEAR PERTURBATIONS AND CRITICAL SioZ are simply
EXPONENT
A. The eigenvalue problem 610Z,;=AoioZ,;+ (Bot+NiAg) 5ioZ. (58

In this section we construct the one linear perturbation of ) . N
the critical solution that grows with decreasing spacetimelhis equation, together with the boundary conditions, al-
scale, ag— — o, with the purpose of calculating the critical ready determines the spectrufn;}. The others,Z obey
exponent for the black hole mass in critical collapse. inhomogeneous equations and can be determined recur-
The linearized evolution equations for a linear perturba-Sively, but here we are interested only in the spectrum. This

tion 8Z of any background solution are of the general form @S0 means that we only need the leading tetpy of the
background expansion.

52'§=A52,T+(B+eTC+e27D)5Z. (53 Writing down the field equation(58) for the &;,Z is
straightforward. As we have seen, one simply linearizes Egs.
Here the explicit powers af” are the same that appear in the (33)—(36) for Z,,, and then makes the replacements
full field equations. The linearized constraints are of thedZ, o— 6Z;jo, but 6Z, o ,— 8ioZ ,+\ioZ ,, Which follow
same general form, but with the left-hand side equal to zerdrom the definition(55). Writing a for a, o, etc., andda for
and the following considerations apply equally to them asdjqa, etc., to keep the notation simple, we obtain
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ST, =[17(1+&p)eftéo] L alo,+[Ni+(1+ € (—T12 o — 3+ Fa%, —6a%y, S, 162
X{Fet [l ,6g+9(Sll. +\dll.)]
+(1—a?+4a°S?) 11 . +2a(4S*—1)11. Sa
+8a2SIl . §S+2a%8S+4aSsa
+(1+ et Il g}, (59)

- (1+ éé)[ %g(z]:)la(O)(Hi(o) - 1—[2_(0)) 5g(o)+ 4a(30)8(0)
X 8S(0)*+2a)I1_ (9) 611 _(0)]=0, (70)
ST, (o) +[Ni— (1+ £))(1—aly, +4a%, S5 1911 (o)

+ 9011} o)~ (1+E)T1+(1)189(0)
89 ;= (1-a*+4a’s?) sg+2a(4S°—1)gsa+8a®Sgss,

(60) +(1+£){2a0)[(1-4S)I1 )+ 2S10)] a0
+2a%,[1—4S0)I1 | ()]6S0)} =0. 71
0=da ,+[\+ e ((Hég Y (T2 —T12) - L(1+ &) ajo)l 011+ (0)18S0)} (71
The suffix (0) denotes the leading term in an expression in
_ 2 2Q2 2 2
X(1=-3a"+12a°S+1I% +117) ] oa powers of ¢ around {=0. We still need to calculate the
+{e"Eré[ — 1112 —T1% g~ 2adg background termI . ;) o)=1I. (1) in Eq. (72). To do this,
we expand Eqs(33), (lower sign, (28), and (30) to O(¢),
+g ta(IT, ST, —T1_ 811 )] —(1+ &5)[4a3SsS and evaluate the resulting algebraic expressions
+a(H+5H++H_5H_)]}, (61) g(l):C(O)g(0)1 WhereC(O)El_a(20>+4a(20)S(20), 72)
0=6S ,+ (N +1+&))8S
+1 ~H [T (T, +11_)8g—g~ L( ST, + 11 1 AR 2
>1e [g (I +I1_)5g—g “(4Il, )] Iy =5[(1+ &) M1 g+ Coll o+ 2af o),
, 73
F(L+ (AT, — 8T1 )}, (62 (73
Similarly, we obtain the expansion aroude- —= of the Siy=—S0)— 5(I; (o~ _ (o)), (74)
8,0Z by linearizing Eqs(37)—(46) and then making the same
replacement, at each order &. The nonvanishing expan-
sion coefficients ta(e*) are ao) ) )
a(l):T(C(0)+H+(0)+H—(0))a (75

8S1)(7)=free, (63

[alternatively, we could have obtainegl;) and a(;, from
0P (1)(7)=—28S1), (64)  expanding the constraint$1) and (62)], and finally solve
the linear ODE

§a(2)(7) = 45(1)58(1) y (65)

STL () () =€ 55y, + (A —1— £0) 851, (66) L~ (1+E€0)(1+2C o)Ly 1)+ (1+Co)IlL o) (76)

L +(1+ &) {280 (1—4S5)T1 )+ 2S10) ]
8Si3)(7)= E{e%[ ST {5+ (N —2—2&;) 811 5]

2
+ 248(1)55(1)}’ (67) for H+(1) .
Linear perturbations which have the samsymmetry as
0P (5)(7)=—48S3). (68  that of the background, , (S andII. odd frequenciesa

] ) ] » ) and g even frequencigs decouple from those with the op-
As the linearized regularity condition &0 we impose  posite symmetry. We call them even and odd perturbations,

the vanishing of the numerator of E(G9), (upper sigh.  regpectively, and can treat them separately in the numerical
There is no linearized equivalent of the coordinate condition.5|culation of the spectrurfi;}.

(47), as we have already fixed the coordinate system when
the background was calculate@fhis means that=0 is

. . . B. Numerical construction
exactly null in the background spacetime, but not in the per-

turbed spacetimpThe one boundary condition =0 can Our numerical method is the same ag3i We evolve a
be solved recursively in terms of two free periodic functionsPasis of all linear perturbations compatible with the con-
89(0)(7) and STI_(g)(7), from straints at either one of the boundaries to a matching point,
and look for zeros of the determinant of the combined bases
8SJo)+ (Ni+1+ &) 8S10)+ (1+ &) as a function ofx. A zero indicates the existence of a per-

turbation consistent with both sets of boundary conditions
X[ =8 _0)+39 *(IL (o) +11_(0)) 89(0)]=0, (69)  for that value ofr. We have implemented this algorithm for
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both real and complex. We have checked our results, for ~ TABLE I. Convergence ofA with step size in{. \, is the

real A and even perturbations, with a relaxation algorithmLyapunov exponent of the one growing mode. Its negative inverse
that is partially independent numerically, and in whikh is the critical exponenty. \, is the exponent of the scale change
figures as an additional variable, which is balanced by fixing 7-translation gauge mode. It must be zero and serves as a check
the perturbations as an additional boundary condition. Th&n the_ numerical error. Note that the numerical gedd number.of _
determinant in question is in fact a holomorphic function ofsteps is the same for the background as that for the perturbations in
\ (because the field equations are yeahd this can be used ©2¢N case. The range ofis —6.4<{<0 in each case.

to find its zeros and poles efficiently.

We expect certain zeros and poles in thplane from the Number of steps M M2
following considerationsZ, , is scale invariant and, there- 32 —5.1318584162589 0.13720816860828
fore, invariant under the infinitesimal transformation 64 —5.0828194924873—1.4932102080912 10 2
128 —5.0891816495598—1.1519697001698 10~ 2
Zyo(1 )= Zy o[ (1+ €)1, (1+ e)t]=Z,o({, 7+ €) 256 —5.0010562847918 4.70611906841680 3
=Z.0(l, )+ €0, (79 512 —5.0913625725286 1.67586110376710 2

This corresponds to a gauge linear perturbation mode with - _
\i=0 and 8Z=2Z,,,. Z,o is also invariant under time A>=0. We have verified that the correspondid@=Z, ¢,

translation, to high precision. We find the expected polexat —1.17,
but accompanied by a zero very close by. For odd perturba-
Zyo(r ) —=Z,o(r t+e) tions, on the negative real line we find the expected pole at
., , N=—0.17.
=Zyol&, 1)+ e {1+ 60)Zyos ™ Lo, At A=—1, for both even and odd perturbations, we do

(79 not find the expected zero and pole, respectively, because of
a numerical problem which is discussed in the appendix. It
corresponding to a gauge mode with=—1. Both gauge does not affect our calculation of the perturbation determi-
modes are even according to our classification. nant for values of not close to— 1. The unstable mode at
The ODE's, Egs.(69—(71), are all of the form )\=-5.0 and gauge mode at=0 are clear enough, and we
f"+gf+h=0, where f stands for Sy, dapy, and can use their convergence properties to obtain an estimate of
ol oy, respectively. In all three equatiogsdepends only the numerical error.
on the background solution and is even, whilés linear in Table | gives the values of for the unstable mode; and
the perturbations, and has the samsymmetry as that of the scale change gauge modgas a function of the step size
f. It can be showr{3] that this type of equation has no A/. The deviation of the numerical value af from zero
solution when the average valdim 7) of the coefficientg serves as one estimate of numerical error. It is larger than the
vanishes. As g in each case is of the form other estimate, from the convergenceaf and we, there-
A + (background fields), this corresponds to a simple pole irfore, adopt it as our definitive error estimate fof. We
the N plane. These poles are there not just because of thebtain A ;= —5.091+0.017, from which we obtain for the
breakdown of a particular numerical method but indicate thatritical exponenty=— 1/\;=0.1964+ 0.0007.
for these values ok no perturbations exist which obey the
boundary condition at=0. The poles arise only when the
inhomogeneous terrh, and in consequence the unknown
f, have a nonvanishing average, that is when they are even. We have obtained the asymptotic form of the type Il criti-
Calculating the average value gffor each of the three cal solution of EYM collapse, its echoing period, and the
equations, we find that they vanish foh=—1, critical exponent for the black hole mass, in a calculation
A=—1—A, and\=—A, respectively, wherd is the aver- similar to the one we made for the massless scalar [f&&].
age value of 2(% 56)1'[2_(0), with numerical value The major new feature is the presence of the length scale in
A=0.1726.(We have used the fact that the EYM field equations. In consequence, the critical solu-
tion and its linear perturbations are no longer self-similar,
(Inag,)’ = (1+ 56)[H2—(o>+ 1t (23(20)_ %)3(20)] (80)  but become so only asymptotically on spacetime scales much
smaller than the length scale of the field equatiéms the
has a vanishing average value, as it is the derivative of arder of mass of the BM solutignHere we have only cal-
periodic function, to simplify the average$n summary, for culated the leading term in the asymptotic expansions for the
even perturbations we expect zerosh\at0 and A=-—1  critical solution and its perturbations, but this is sufficient to
(gauge modes one more zero on the negative real litke  calculate both the echoing peridd and critical exponenty
unstable mode and a pole ah=—1.17. For odd perturba- exactly. We find  A=0.73784+0.00002 and
tions we expect poles at=—1 and\=—-0.17. y=0.1964+ 0.0007, while Choptuik, Chmaj, and Bizdf]
The numerical calculation of the perturbation determinantind A=0.74 andy=0.20 in collapse simulatiors.
as a function ol largely confirms the predictions: For even
perturbations, on the negative real line we find a zero at—
A1=—5.0, corresponding to the expected physical unstable "Data files of the background and unstable mode from the produc-
mode, with a critical exponent of 1/A;=0.2, as found in  tion run are available through the WWW address http://www.aei-
collapse simulations. We also find the expected zero apotsdam.mpg.de/gundlach.

VI. CONCLUSIONS
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As explained in Sec. Il, following1] we have not made generic, nonspherical, initial data? What is the angular mo-
the most general ansatz for the YM field in spherical sym-mentum of the black hole formed from data with angular
metry, but a consistent restriction. For the type | critical so-momentum in the limit where the black hole mass is fine-
lution, the BM solution, one misses one unstable perturbatuned to zero? Are there qualitatively new phenomena away
tion mode in doing this. In the full phase space it is anfrom spherical symmetry?
attractor of codimension two, and one would have to fine-
tune two parameters in the initial data to make the time evo-

lution approximate it for a long time. Similarly, the type I ACKNOWLEDGMENTS
critical solution we have found here may be an attractor of ) ) o, .
higher codimension than one in the full phase space. | would like to thank Piotr Bizorand Matt Choptuik for

In the formalism we have developed to deal with the preshelpful discussions, and Matt Choptuik for making his data
ence of a length scale in the equations, both the backgrourfiom collapse simulations available. This work was sup-
solution, and its linear perturbations, are expanded in powergorted by the Ministry of Education and Scien@pain.
of that length scale. The leading term of the latter series
obeys field equations which are simply the linearization of
the field equations for the leading term of the former series. APPENDIX A: NUMERICAL PROBLEMS AT A=-1
Both sets of equations, therefore, consistently describe one ) ] ]
new physical system which is scale invariant, and which is Calculating the determinant of even perturbations as a
obtained from the original, scale-dependent model in thdunction of A, we do not find the expected zero but a pole at
limit where all fields vary on spacetime scales much smaller = — 1, with an alternating series of poles and zeros accu-
than the intrinsic scale of the field equations. In the languag&ulating towards-1 from below. There are no further poles
of renormalization group theory, these equations are th&F Zeros immediately above. The positions of the poles are
short-scale fixed point of a renormalization group transforthe same in the real and complex algorithms, but depend on
mation acting on the original field equations. the values of the numerical parametdrsand 6. A qualita-

What matter System is described by the renorma"zediVEly similar piCtUre arises for odd pel’turbations. These fea-
equations? In the case of a massless or self-interacting scaféfes can be explained as a numerical artifact as follows.
field the fixed point is the massless scalar figld]. For We have checked explicitly that the gauge mdde)
scalar electrodynamics, it is the massless complex scal@Peys the constrair(61). When we try to reconstruaia of
without electromagnetisni9]. For YM matter, the fixed this mode from the constraint, however, the numerical result
point field equations do not seem to describe a previoushplows up at smalf. To understand this, consider the equa-
known model. They could best be described as an Abeliation éa’+géa+h=0, with g and h defined by Eq.(61).

YM model which acquires a mass through symmetry breakThis equation has no solutiom that is periodic in if the
ing. In the small-scale limit, the effective YM equation is average inr of g vanishes. The Fourier algorithm that we
linear in the rescaled gauge potent®l and the effective Use to solve this foba at each/ needs to divide the average
stress tensor is quadratic B The effective theory is no of h by the average of. As {— — <, the average of over
longer full YM theory, with up to quartic self-interaction 7 as a function ol and{ is A +1+0(e*), where the last
terms, but it retains a quadratic self-interaction termSin  term is positive. As\— —1 from below, this goes through
which one must think of as an expansion of the originalzero at some small value ¢f In the exact perturbation mode
cubic and quartic self-interactions of YM matter around the(79), the average value df vanishes at the same rate with
vacuum background solutioi= 1, with higher than second ¢ as that ofg, but with small numerical errors this cancella-
powers ofS suppressed in the small-scale limit. tion fails, and small numerical errors are magnified. In the

The example of EYM collapse shows that one does notalculation of the perturbation determinant this results in the
need scale invariance of the field equations to have criticapbserved, essentially random behavior fors—1. For
phenomena with the famous relatidvh~ (p—p, ). Rather, A>—1 the problem does not arise, as then the average value
they can be found in some region of phase space for angf g does not vanish for any.
system, when the typical scales of the initial data are much We have not found a simple way of fixing this problem,
smaller than the typical scales of the Einstein-matter fieldas our algorithm relies in an essential way on reconstructing
equations. For astrophysical matter, these initial data ar® anda anddS andéa from the constraints at ea¢h It does
simply not realized in astrophysical collapse. not affect numerical results, however, unless where the av-

In the present paper we have developed a general formagrage values of both the coefficiemggsandh are very small,
ism for dealing with critical collapse restricted to sphericalthat is, fora=< —1. (If only the average value d is small,
symmetry, allowing for discrete self-similarity and the pres-the resulting blowup in the perturbations is physical, as in the
ence of a length scale. The generalization to more than onether poles we have discusse@alculating the perturbation
scale is trivial: the various scales can be written as a singldeterminant is not a goal in itself, but only a means of find-
scale times dimensionless numbers. The general formalising the spectrum of linear perturbations. With the present
has already given rise to new physics: the calculation of critiimethod we can say with confidence that there is a zero at
cal exponents not only for the black hole mass but also ita.=—5.0, and no other zeros for negative realapart from
charge in critical collapse of scalar electrodynanii&k the two gauge modes. We could in principle be missing a

Most remaining questions in critical phenomena go bezero (physical growing modeat A< — 1, where the code is
yond the restriction to spherical symmetry. Do the sphericalinreliable and, therefore, we have to rely on evidence from
critical solutions found so far act also as critical solutions forcollapse simulations that there is only one unstable mode.
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