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I consider the appearance of shocks in hyperbolic formalisms of general relativity. I study the particular case
of the Bona-Masso´ formalism with a zero shift vector and show how shocks associated with two families of
characteristic fields can develop. These shocks do not represent discontinuities in the geometry of spacetime,
but rather regions where the coordinate system becomes pathological. For this reason I call them ‘‘coordinate
shocks.’’ I show how one family of shocks can be eliminated by restricting the Bona-Masso´ slicing condition
] ta52a2f (a)trK to the casef511k/a2, with k an arbitrary constant. The other family of shocks cannot
be eliminated even in the case of harmonic slicing (f51). I also show the results of the numerical evolution
of nontrivial initial slices in the special cases of a flat two-dimensional spacetime, a flat four-dimensional
spacetime with a spherically symmetric slicing, and a spherically symmetric black hole spacetime. In all three
cases coordinate shocks readily develop, confirming the predictions of the mathematical analysis. Although I
concentrate in the Bona-Masso´ formalism, the phenomena of coordinate shocks should arise in any other
hyperbolic formalism. In particular, since the appearance of the shocks is determined by the choice of gauge,
the results presented here imply that inany formalismthe use of a harmonic slicing can generate shocks.
@S0556-2821~97!05510-0#

PACS number~s!: 04.20.Ex, 04.20.Dw

I. INTRODUCTION

In the last few years there has been a renewed interest in
the study of initial-value formulations of general relativity
@1–9#. This interest has been motivated mainly by the desire
of rewriting the Einstein system of evolution equations in an
explicit hyperbolic form, so that it can be solved numerically
using modern high-resolution methods from fluid dynamics
@10#.

One can separate the new hyperbolic formalisms accord-
ing to the way in which they treat the evolution of the lapse
function a. Some formulations assume the existence of an
arbitrarily prescribed gauge; i.e., the lapse is an arbitrary
function of spacetime knowna priori @8,9# ~‘‘prescribed
gauge’’ formalisms!. Other formulations include the lapse
function as part of the system of dynamical variables, and
postulate for it an evolution equation that guarantees the hy-
perbolicity of thewholesystem, geometry plus gauge@1–7#
~‘‘hyperbolic gauge’’ formalisms!. The resulting formalisms
remain hyperbolic for anyprescribedshift vector.1

Prescribed gauge formalisms, though certainly useful
theoretically, might have a limited applicability in numerical
relativity simply because there is no recipe that can give us
the a priori form of the lapse except in trivial cases~for
examplea51). Hyperbolic gauge formalisms, on the other
hand, by allowing the lapse functon to adapt itself to the

evolution of the geometry while maintaining the hyperbolic
structure of the system of equations, would appear to be
much more promising.

Hyperbolic gauge formalisms, however, are probably
more susceptible to a problem that seems to have been over-
looked until now. By rewriting the whole evolution system
~gauge plus geometry! in hyperbolic form, they open up the
possibility of running into a well-known nonlinear effect as-
sociated with hyperbolic systems: the appearance of shocks.
Here I use the term ‘‘shock’’ in a somewhat loose form to
refer to a discontinuous solution that develops from smooth
initial data, without worrying about the existence of weak
solutions or jump conditions.

The fact that in vacuum general relativity one can have
shock fronts is well known@12–15#. By shock fronts, how-
ever, one generally understands discontinuities in the curva-
ture of spacetime present in the initial data that propagate
with the speed of light. In the theory of nonlinear hyperbolic
equations such solutions are not considered proper shocks,
but are called instead ‘‘contact discontinuities.’’ Here, how-
ever, I will consider the existence of discontinuous solutions
that arise from smooth initial data even in a flat spacetime.
Clearly those solutions do not correspond to a physical dis-
continuity in the geometry of spacetime. Instead the discon-
tinuities indicate regions where our coordinate system be-
comes pathological: the time slices can become nonsmooth,
or a spatial coordinate might map a finite proper distance to
an infinitesimal interval. It is for this reason that I shall refer
to them as ‘‘coordinate shocks.’’

Even though modern high-resolution numerical methods
can deal with the presence of shock waves, clearly the ap-
pearance of coordinate shocks is something that must be
avoided. In the first place, coordinate shocks create com-
pletely artificial discontinuities in solutions that otherwise
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assumed to be knowna priori. The author is aware, however, of
some efforts to find evolution equations for the shift that will keep
the whole system hyperbolic@11#.
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represent perfectly smooth geometries. Not only that, but
since in general our gauge conditions are not obtained from a
conservation law, we will not have an analogue of the ‘‘weak
solutions’’ to such laws. This means that after a shock forms
our gauge conditions will just break down, and even if the
numerical solution remains well behaved,it will not have
any clear physical meaning. In particular, as the numerical
mesh is refined, the solution will not converge after the for-
mation of the shock.

In this paper I will concentrate in one particular hyper-
bolic formalism of general relativity, the Bona-Masso´ ~BM!
formalism @1–4#, and I will show how these coordinate
shocks can and do indeed develop even in very simple situ-
ations.

II. THE BONA-MASSÓ FORMALISM

In this section I will make a brief introduction to the BM
hyperbolic formalism for general relativity. I will use the
most recent form of this formalism as presented in@4#.

Let us start from the standard 311 formulation of general
relativity of Arnowitt, Deser, and Misner~ADM ! @16,17#.
The evolution equations for the metricgi j and extrinsic
curvatureKi j are

~] t2Lb!gi j522aKi j , ~1a!

~] t2Lb!Ki j52¹ i¹ ja1a@Ri j
~3!1trKKi j22KikK j

k2Ri j
~4!#,
~1b!

where a is the lapse function,bk the shift vector, and
where Ri j

(3) and Ri j
(4) represent the components of the Ricci

tensor for the spatial hypersurfaces and for the full space-
time, respectively. In what follows I will restrict myself to
the case of the zero shift vector. The ADM equations then
reduce to

] tgi j522aKi j , ~2a!

] tKi j52¹ i¹ ja1a@Ri j
~3!1trKKi j22KikK j

k2Ri j
~4!#.

~2b!

In order to obtain a system that is first order in space we
introduce the quantities

Ak5]klna, Dki j5
1

2
]kgi j . ~3!

The evolution equation forKi j can then be rewritten as

] tKi j1]k~alk
i j !5aSi j , ~4!

where we have defined

lk
i j5Dk

i j1
1

2
d i
k~Aj12Vj2Djm

m!

1
1

2
d j
k~Ai12Vi2Dim

m!, ~5!

with

Vk[Dkm
m2Dm

mk . ~6!

The source termSi j in Eq. ~4! involves only the fields
themselves and not their derivatives:

Si j52Ri j
~4!1trKKi j22KikK j

k14DkmiD
km

j1Gk
kmGm

i j

2G ikmG j
km1~Ak22Dm

km!~Di jk1Djik !

1Ai SVj2
1

2
Djk

kD1Aj SVi2
1

2
Dik

kD . ~7!

We also need an evolution equation for theDki j . This we
obtain, by taking the spatial derivative of the evolution equa-
tion for gi j ,

] tDki j1]k~aKi j !50. ~8!

The quantitiesVk defined in Eq.~6! are very important.
Their evolution equation can be obtained from Eq.~8!. In
order to ensure hyperbolicity, however, it is crucial to
modify the resulting equation using the momentum con-
straints to obtain

] tVk5aPk, ~9!

where

Pk5Gk
01Am~Kk

m2dk
mtrK !1Kn

m~Dkm
n2dk

nDma
a!

22Kmn~D
mn

k2dk
nDa

am!, ~10!

and whereGmn is the Einstein tensor of the spacetime. The
quantities Vk are now considered independent, and Eq.~6!
becomes an algebraic constraint that must be satisfied by the
physical solutions.

Finally, we need evolution equations for the lapsea and
its derivativeAk , i.e., we need to choose a slicing condition.
In the BM formalism the following slicing condition is used:

] ta52a2f ~a!trK, ~11!

with f (a).0 but otherwise arbitrary.
The complete system of evolution equations then takes

the form

] ta52a2f ~a!trK, ~12a!

] tgi j522aKi j , ~12b!

and

] tAk1]k~a f trK !50, ~13a!

] tDki j1]k~aKi j !50, ~13b!

] tKi j1]k~alk
i j !5aSi j , ~13c!

] tVk5aPk . ~13d!

To study the characteristic structure of the system of Eqs.
~12! and~13! we choose a fixed space directionx and con-
sider only derivatives along that direction. It can then be
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shown that the system is hyperbolic with the following
structure.2

25 fields propagate along the time lines~zero speed!.
These fields are

$a,gi j ,Ax8,Dx8 i j ,Vi ,Ax2 fDx
m
m% ~x8Þx!. ~14!

10 fields propagate along the physical light cones with
speeds

l l
656aAgxx. ~15!

These fields are

wl
ix865Kix86Agxx~Dxix81d i

xVx8 /g
xx! ~x8Þx!. ~16!

2 fields propagate with the ‘‘gauge speeds’’

l f
656aAf gxx. ~17!

They are

wf
65Af trK6Agxx~Ax12Vx/gxx!. ~18!

III. MATHEMATICAL ANALYSIS
OF THE NONLINEARITIES

Here I will try to understand the nonlinearities present in
our system of equations, trying in particular to determine
whether shocks can develop. From the discussion in the pre-
vious section it is clear that the system of evolution equa-
tions in the BM formalism has the structure

] tui5pi , iP$1, . . . ,Nu%, ~19a!

] tv i1]xFi5qi , iP$1, . . . ,Nv%. ~19b!

The fluxesFi that appear in the above equations have the
form

Fi5(
j51

Nv

Mi jv j , ~20!

where the coefficientsMi j are functions of theu’s but not
of the v ’s.

Let us now call l i the eigenvalues andei the corre-
sponding eigenvectors of the Jacobian matrixMi j
5]Fi /]v j . Let us also introduce the matrixR
5@e1ue2u•••ueNv# of column eigenvectors. The eigenfields

wi are then defined by

v5Rw⇒w5R21v. ~21!

2Here I use the term hyperbolic in the weak sense to mean that the
characteristic matrix of the system has real eigenvalues. It should be
noticed that this weak form of hyperbolicity does not guarantee that
the system can be diagonalized. A crucial feature of the BM for-
malism is that even though it is only weakly hyperbolic, it can in
fact be diagonalized as long asf.0.

A given eigenfield wi is called ‘‘linearly degenerate’’
@18# if the following condition holds:

]l i

]wi
5(

j51

Nv ]l i

]v j

]v j
]wi

5¹vl i•ei50. ~22!

Since in our case thel ’s do not depend on thev ’s , it is
obvious that all the eigenfields are linearly degenerate.

In the case of systems of conservation laws where the
sources vanish, linear degeneracy is enough to guarantee that
no shocks will form. However, when the sources are non-
zero, this is not true anymore. This is easy to see if we
consider for a moment the prototype of nonlinear hyperbolic
equations, Burgers’ equation

] tu1u]xu50. ~23!

If we now define

v:5]xu, ~24!

then we can rewrite Eq.~23! as the system

] tu52uv, ~25a!

] tv1]x~uv !50. ~25b!

This has precisely the form~19!. The only eigenvalue turns
out to be equal tou which is clearly independent ofv. By
the definition above the system is linearly degenerate. How-
ever, it is clearly nonlinear and will generate shocks since it
is only Burgues’ equation in disguise. The nonlinearities
have now been buried in the sources.

Clearly the condition that must be imposed to guarantee
that no shocks will develop is that a given eigenvaluel i
should not be affected by changes in the corresponding
eigenfieldwi . The condition for linear degeneracy~22! asks
for the eigenvalue not to be explicitly dependent on its asso-
ciated eigenfield. In the presence of sources, however, the
coupling can introduce an indirect dependency. In order to
study this dependency let us consider the time evolution of
l i :

l̇ i5] tl i5(
j51

Nu ]l i

]uj
] tuj5¹ul i•p. ~26!

Now, we want this time derivative to be independent of
the eigenfieldwi :

]l̇ i

]wi
5

]

]wi
~¹ul i•p!50. ~27!

I shall call this condition ‘‘indirect linear degeneracy’’ and I
will refer to condition~22! as ‘‘explicit’’ or ‘‘direct’’ linear
degeneracy.

If we assume that the condition for explicit linear degen-
eracy holds, then the condition for indirect linear degeneracy
can be reduced to

¹ul i•
]p

]wi
5¹ul i•(

j51

Nv ]p

]v j

]v j
]wi

50, ~28!

which can be rewritten as

¹ul i•~ei•¹v!p50. ~29!
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This condition must supplement the condition for explicit
linear degeneracy~22! if we want to guarantee that no shocks
will develop.

Let us now apply the previous condition to the BM sys-
tem of evolution equations~12! and ~13!. From the discus-
sion of the previous section it is clear that, on a given spatial
direction x we only have the following nontrivial eigenval-
ues:

l l
656aAgxx, l f

656aAf gxx. ~30!

The time derivative ofl l
6 will then be

l̇ l
656l l

6F 1a ] ta1
1

2gxx
] tg

xxG
56l l

6F 1a ] ta2
gxmgxn

2gxx
] tgmnG . ~31!

Using now Eqs.~12! we find

l̇ l
656al l

6~Kxx/gxx2 f trK !. ~32!

Now, from the definitions ofwl and wf @Eqs. ~16! and
~18!# we can easily find that

trK5
1

2Af
~wf

11wf
2! ~33!

and (p,qÞx)

Kxx5gxxtrK1Kpq~g
xpgxq2gxxgpq!5

1

2 FgxxAf
~wf

11wf
2!

1~gxpgxq2gxxgpq!~wpq1
l 1wpq2

l !G . ~34!

Substituting these results back in the expression forl̇ l
6 we

find

l̇ l
656

al l
6

2 F 1Af ~12 f !~wf
11wf

2!1~gxpgxq2gxxgpq!

3~wpq1
l 1wpq2

l !G . ~35!

In the same way we find, for the time derivative of
l f

6 ,

l̇ f
656al f

6@Kxx/gxx2~ f1a f 8/2!trK#, ~36!

where f 85]a f . Substituting again the expression forKxx
and trK in terms of the eigenfields we find

l̇ f
656

al f
6

2 F 1Af ~12 f2a f 8/2!~wf
11wf

2!

1~gxpgxq2gxxgpq!~wpq1
l 1wpq2

l !G . ~37!

Equations~35! and ~37! are very important results. Con-
sider first the situation forl f

6 . If we want l̇ f
6 to be in-

dependent ofw6
f , and hence satisfy the condition for indi-

rect linearly degeneracy, we must clearly ask for

12 f2a f 8/250. ~38!

This differential equation can be easily solved to give

f ~a!511k/a2, ~39!

with k an arbitrary constant. We must in fact takek>0 in
order to ensure that we will havef.0 for all a.0 .

We have then show that the functionf must have the
form ~39! in order to guarantee that the eigenfieldsw6

f will
not generate shocks. Notice that if we takek50 the condi-
tion reduces to that of harmonic slicing, i.e., for harmonic
slicing the eigenfieldsw6

f do not generate shocks.
Consider now the situation forl l

6 . From Eq.~35! it is
clear that if we wantl̇ l

6 to be independent ofwqp6
l we

must have

gxpgxq2gxxgpq50 ~p,qÞx!. ~40!

This condition is very restrictive. In particular, it is im-
possible to satisfy with a diagonal metric. We then reach the
conclusion that in the general case, the eigenfieldswqp6

l can
alwaysgenerate shocks. Notice how this result is indepen-
dent of the value off , it will therefore remain true even in
the case of harmonic slicing.

One must stress here the fact that we have not actually
proved that shocks will indeed develop. Whether they do or
not in any particular case should depend in a critical way on
the form of the initial data. In the following sections I will
consider some examples that show how coordinate shocks
can indeed develop even in very simple cases.

IV. FLAT TWO-DIMENSIONAL SPACETIME

A. Evolution equations

As a first example, consider a flat two-dimensional space-
time ~a ‘‘111’’ spacetime! with coordinates$t,x% . Notice
that these coordinates do not have to correspond to the
Minkowski coordinates$xM ,tM% , so we can have a non-
trivial evolution even though the spacetime is flat. Since we
only have one spatial dimension, I will simplify the notation
in the following way:

g:5gxx , A:5Ax , D:5Dxxx , K:5Kxx . ~41!

Notice that the variableVx is identically zero.
The system of evolution equations~12! and ~13! reduces

in this case to

] ta52a2fK/g, ~42a!

] tg522aK, ~42b!

and

] tA1]x~a fK/g!50, ~43a!

] tD1]x~aK !50, ~43b!
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] tK1]x~aA!5a/g~AD2K2!. ~43c!

The characteristic structure of this system is very simple.
There are three fields that propagate along the time lines

~speed zero!. These fields are

$a,g,A2 fD/g%. ~44!

The two remaining fields propagate with the ‘‘gauge
speeds’’

l f
656aAf /g. ~45!

They are

wf
65AfK/g6A/Ag. ~46!

Notice how there are no fields propagating along the
physical light cones. According to the discussion of the pre-
vious section, we should then expect shocks only when con-
dition ~39! is violated.

B. Numerical simulations

Since we are dealing with a flat spacetime, the only way
to obtain a nontrivial evolution is to start with a nontrivial
initial slice. I will therefore consider an initial slice given in
terms of Minkowski coordinates$xM ,tM% as

tM5h~xM !. ~47!

I will assume that the dynamical spatial coordinatex co-
incides initially with the Minkowski spatial coordinatexM .
It is then not difficult to show that the initial metricg and
extrinsic curvatureK are given by

g512h82, ~48a!

K52h9/Ag. ~48b!

The initial value of D can be obtained directly from its
definition in terms ofg. The initial lapse is taken to be equal
to 1 everywhere, which implies thatA50.

In all the simulations shown here, the functionh(x) has
a Gaussian profile:

h~x!5HexpH 2
~x2xc!

2

s2 J , ~49!

with $H,s,xc% constants. The particular values of$H,s%
used in the simulations presented here are

H55, s510. ~50!

I have also always taken the initial perturbation to be cen-
tered aroundxc5150. The initial values of all the variables
can be seen in Fig. 1. All the results presented below where
obtained using a time step ofDt50.125 and a spatial incre-
ment of Dx50.25.

In all the simulations, the evolution proceeds at first in a
similar way: The initial perturbation ing, D, andK gives
rise to perturbations ina and A . These perturbations rap-
idly develop into two separate pulses traveling in opposite

directions with a speed;Af . What happens later depends
crucially on the form of the functionf (a).

For harmonic slicing (f51), the pulses remain smooth as
they move away. Once the pulses are gone, the lapse, the
metric, and the variablesA and D return to their initial
values, and the extrinsic curvature becomes 0. Figure 2
shows the values of the variables att5100 .

When f is a constant larger than 1, the pulses do not
remain smooth and shocks develop. In fact, we have two
shocks developing in each pulse, one in front of it and one
behind it. At those points, the lapse and the metric develop
large gradients, while the extrinsic curvature and the vari-

FIG. 1. Two-dimensional flat spacetime. Initial values of the
dynamical variables.

FIG. 2. Two-dimensional flat spacetime. Values of the variables
at t5100 for harmonic slicing (f51).
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ablesA and D develop very tall and narrow spikes. Figure
3 shows the values of the variables att575 in the particular
case whenf51.69.

When f is a constant smaller than 1, a single shock de-
velops in the middle of each pulse. Apart from this, the situ-
ation is very similar to the casef.1. Figure 4 shows the
values of the variables att575 in the particular case when
f50.49.
Finally, when f is of the form~39!, no shocks develop in

agreement with the predictions. The pulses remain smooth
and move away with a speed;A11k. Figure 5 shows the
values of the variables att570 in the particular case when
f5111/a2 .

As a final comment, it should be mentioned that I have
performed similar simulations with many different values of
the amplitudeH and width s of the Gaussian profile of the
initial slice. When f is not of the form~39! shocks appar-
ently always develop, though at different times. The crucial
feature that seems to determine the time of shock formation
is the maximum absolute value of the extrinsic curvature
K. For small values ofK, shocks take a long time to appear,
whereas for large values they develop very rapidly.

V. SPHERICALLY SYMMETRIC VACUUM SPACETIME

A. Evolution equations

As a second example, consider a spherically symmetric
four-dimensional vacuum spacetime. Let us introduce the co-
ordinate system$t,r ,u,f% . The only independent dynami-
cal variables will then be

$a,grr ,guu ,Ar ,Drrr ,Druu ,Krr ,Kuu ,Vr%. ~51!

The system of evolution equations~12! and ~13! reduces
now to

] ta52a2f trK, ~52a!

] tgrr522aKrr , ~52b!

] tguu522aKuu , ~52c!

and

] tAr1] r~a f trK !50, ~53a!

] tDrrr 1] r~aKrr !50, ~53b!

] tDruu1] r~aKuu!50, ~53c!

] tKrr1] r~al rr
r !5aSrr , ~53d!

FIG. 3. Two-dimensional flat spacetime. Values of the variables
at t575 in the case whenf51.69.

FIG. 4. Two-dimensional flat spacetime. Values of the variables
at t575 in the case whenf50.49.

FIG. 5. Two-dimensional flat spacetime. Values of the variables
at t570 in the case whenf5111/a2.
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] tKuu1] r~aluu
r !5aSuu , ~53e!

] tVr5aPr . ~53f!

with

l rr
r 5Ar12Vr22Druu /guu , ~54a!

luu
r 5Druu /grr , ~54b!

and

Srr5Krr ~2Kuu /guu2Krr /grr !1Ar~Drrr /grr22Druu /guu!

~55a!

12Druu /guu~Drrr /grr2Druu /guu!12ArVr , ~55b!

Suu5KrrKuu /grr2Drrr Druu /grr
211, ~55c!

Pr522/guu@ArKuu2Druu~Kuu /guu2Krr /grr !#.
~55d!

We also have the following algebraic constraint that must be
satisfied by the physical solutions:

Vr52Druu /guu . ~56!

The characteristic structure of this system turns out to be
the following.

Five fields propagate along the time lines~speed zero!.
These fields are

$a,grr ,guu ,Vr ,Ar2 fDr
m
m%. ~57!

Two fields propagate along the physical light cones with
speeds

l l
656a/Agrr . ~58!

These fields are

wl
65AgrrKuu6Druu . ~59!

Two fields propagate with the ‘‘gauge speeds’’

l f
656aAf /grr . ~60!

They are

wf
65Af grr trK6~Ar12Vr !. ~61!

Notice how we now have both fields propagating with the
speed of light and fields propagating with the gauge speed.
We should then expect to see two different types of shocks
forming. In particular, shocks produced by thewl

6 fields
can be expected always, even for harmonic slicing.

B. Numerical simulations for a flat spacetime

Again, since we are dealing with flat spacetime, the only
way to obtain a nontrivial evolution is to start with a non-
trivial initial slice. I will therefore consider an initial slice
given in terms of Minkowski coordinates$r M ,tM% as

tM5h~r M !. ~62!

I will assume that the dynamical radial coordinater co-
incides initially with the Minkowski radial coordinater M . It
is then not difficult to show that the initial metric
$grr ,guu% and extrinsic curvature$Krr ,Kuu% are given by

grr512h82, ~63a!

guu5r 2, ~63b!

Krr52h9/Agrr , ~63c!

Kuu52rh8/Agrr . ~63d!

The initial values of $Drrr ,Druu ,Vr% can be obtained
directly from their definitions in terms of the metric. The
initial lapse is taken to be equal to 1 everywhere, which
implies that Ar50.

In all the simulations shown here, the functionh(r ) has
a Gaussian profile:

h~r !5HexpH 2
~r2r c!

2

s2 J , ~64!

with $H,s,r c% constants. The particular values of$H,s%
used in the simulations presented here are

H515, s520, ~65!

and I have taken the initial perturbation to be centered
around r c5300. The initial values of all the variables can be
seen in Fig. 6. The results presented below were obtained
using a time step ofDt50.1 and a spatial increment of
Dx50.2.

In all the simulations the evolution proceeds at
first in a similar way: the initial perturbations in
$grr ,Drrr ,Krr ,Kuu% give rise to perturbations in
$a,guu ,Ar ,Druu ,Vr%. These perturbations develop into

FIG. 6. Spherically symmetric flat spacetime. Initial values of
the dynamical variables.
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separate pulses traveling in opposite directions with a speed
;Af . The pulses are not symmetric any more since clearly
the in-going and out-going directions are not equivalent.

Consider first the case off.1. As the evolution pro-
ceeds, shocks develop in both pulses. These shocks are simi-
lar to those found in the 111 case: two shocks develop in
each pulse, one in front of it and one behind it. At those
points $a,grr ,Druu ,Kuu ,Vr% develop large gradients, while
$Ar ,Drrr ,Krr % develop tall and narrow spikes. The angular
metric componentguu in contrast develops sharp corners.
Figure 7 shows the values of the variables att570 in the
particular case whenf51.69.

When f,1, we again find results that are similar to the
111 case: a single shock develops in each pulse. Again, at
the shock $a,grr ,Druu ,Kuu ,Vr% develop large gradients,
$Ar ,Drrr ,Krr % develop spikes, andguu develops sharp cor-
ners. Figure 8 shows the values of the variables att570 in
the particular case whenf50.49.

The most interesting case is that of harmonic slicing
( f51). In contrast to the 111 case, shocks still develop
here. The shocks, however, have a different structure indica-
tive of their different origin: the variables$Ar ,Drrr ,Krr %
now develop large gradients, while$a,grr ,Druu ,Kuu ,Vr%
develop sharp spikes. The angular metric componentguu
also seems to develop a large gradient, though this gradient
is less sharp than that found in other variables. This is easy to
understand geometrically: any discontinuity inguu must
necessarily be accompanied by an infinite value ofgrr ~we
must jump a finite radial distance in an infinitesimal inter-
val!. The shocks are clearly visible in the in-going pulse, but
do not seem to be present in the out-going pulse. Figure 9
shows the values of the variables att570 for harmonic
slicing.

Again, I have performed similar simulations for different
amplitudes and widths of the Gaussian profile of the initial
slice. The shocks are always there. The only exception seems
to be that for very small amplitudes of the initial perturbation

the pulses moving in the in-going direction may not have
enough time to develop before they reach the origin. Also,
for the case of harmonic slicing, shocks in the out-going
direction never seem to form, no matter how large the initial
perturbation might be.

C. Numerical simulations for a black hole spacetime

In all the previous examples I have restricted myself to a
flat spacetime. Since this is a very special case one might
think that the shocks that we have found are just an artifact
of the flatness. To show that this is not the case, I will now
consider a spherically symmetric black hole spacetime.

FIG. 7. Spherically symmetric flat spacetime. Values of the vari-
ables at t570 in the case whenf51.69.

FIG. 8. Spherically symmetric flat spacetime. Values of the vari-
ables at t570 in the case whenf50.49.

FIG. 9. Spherically symmetric flat spacetime. Values of the vari-
ables at t570 in the case whenf51.
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To find adequate initial data I start from a Schwarzschild
slice with spatial metric

dl25
1

122M /r s
drs

21r s
2dV2, ~66!

where r s is the Schwarzschild radial coordinate and
dV25du21sin2udf2.

In order to eliminate the singularity atr s52M , I will
define a new radial coordinater that measures proper dis-
tance along the slice. The coordinatesr s and r will be
related by

r5h~r s!1M lnF r s1h~r !

r s2h~r s!
G , ~67!

with

h~r s!5~r s
222Mrs!

1/2. ~68!

Notice that even though Eq.~67! can not be inverted analyti-
cally to find r s(r ), it can easily be inverted numerically to
arbitrarily high accuracy.

The new metric will now have the form

dl25dr21@r s~r !#2dV2. ~69!

It is easy to see that the Schwarzschild slice has zero extrin-
sic curvature, so our initial data will be

grr51, ~70a!

guu5r s
2 , ~70b!

Krr50, ~70c!

Kuu50. ~70d!

Now, if we use this initial data directly we will not see
any shocks develop. This is known since the BM formalism
has been used before to solve this problem and no shocks
have been observed@3#. The reason why shocks do not de-
velop is that they are a consequence of transport and as such
they should only develop when we have wave propagation,
either in the form of real gravitational waves, or in the form
of pure gauge waves. The static black hole problem has no
gravitational waves, and the initial data given above does not
give rise to gauge waves either.

In order to introduce gauge waves into our problem, I will
consider an initial slice given in terms of Schwarzschild time
ts in the following way:

ts5h~r !. ~71!

It is not difficult to show that the new slice will have the
metric components

grr512~ash8!2, ~72a!

guu5r s
2 , ~72b!

where as is the Schwarzschild lapse function

as5~122M /r s!
1/2. ~73!

The components of the extrinsic curvature for this slice
can now be shown to be

Krr52$ash91as8h8@22~ash8!2#%/Agrr , ~74a!

Kuu52as
2r sh8/Agrr . ~74b!

As before, the initial values of$Drrr ,Druu ,Vr% can be
obtained directly from their definitions in terms of the met-
ric. The initial lapse is again taken to be equal to 1 every-
where, which implies thatAr50.

For the functionh(r ) I will again use a Gaussian:

h~r !5HexpH 2
~r2r c!

2

s2 J , ~75!

with $H,s,r c% constants. In order to see the development of
the shocks clearly, I will consider simulations where the cen-
ter of our perturbationr c is out in the wave zone.

All the simulations I have carried out proceed in a similar
way. At the throat of the wormhole we find what we expect
for a black hole spacetime: the lapse collapses and the metric
component grr grows rapidly. Out in the wave zone, the
disturbance behaves in the same way as it did in flat space-
time: the initial perturbations in$grr ,Drrr ,Krr ,Kuu% give
rise to perturbations in$a,guu ,Ar ,Druu ,Vr%, these then de-
velop into separate pulses traveling in opposite directions
with a speed;Af .

In all cases, the traveling pulses develop shocks that have
very similar characteristics to those that we found in the flat
case. Here I will only show the results found in the case of
harmonic slicing f51. The particular values of$H,s% used
in this simulation are

H55, s55. ~76!

I have also taken the initial perturbation to be centered
around r c550, and the mass of the black hole to be
M51. The results presented here were obtained using a time
step of Dt50.025 and a spatial increment ofDx50.05.
The initial values of all the variables can be seen in Fig. 10.

Figure 11 shows the values of the variables att515.
Notice how around the throat the lapse and the angular met-
ric componentguu have collapsed, while the radial metric
componentgrr has grown to a very large value. The inter-
esting region for our purposes, however, is away from the
throat. We can clearly see the two pulses resulting from our
initial perturbation. The pulse moving inwards has developed
a shock: the variables$Ar ,Drrr ,Krr % have developed large
gradients, while $a,grr ,Druu ,Kuu ,Vr% have developed
sharp spikes. The angular metric componentguu has also
developed a large gradient.

VI. DISCUSSION

I have introduced a general approach to the study of shock
development in hyperbolic systems of equations with
sources. I have shown that the usual condition of explicit
linear degeneracy~direct linear degeneracy! must be supple-
mented with a new condition which I have called ‘‘indirect
linear degeneracy’’ in order to guarantee that no shocks will
develop.
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I have applied this condition of indirect linear degeneracy
to the BM hyperbolic formalism of general relativity in the
case of a zero shift vector. My analysis has shown how two
distinct families of characteristic fields can give rise to
shocks. Numerical simulations have confirmed these predic-
tions in the simple cases of a flat two-dimensional spacetime,
a flat four-dimensional spacetime with spherically symmetric
slices, and a spherically symmetric black hole spacetime.

The appearance of shocks that develop from smooth ini-
tial data in vacuum general relativity comes as a great sur-
prise. These shocks, however, do not represent discontinui-
ties in the geometry of spacetime, but indicate instead

regions where our coordinate system becomes pathological.
It is for this reason that I refer to them as ‘‘coordinate
shocks.’’

Of the two families of coordinate shocks found, one can
be completely eliminated by choosing a BM gauge function
f (a) of the form

f ~a!511k/a2, ~77!

with k>0 an arbitrary constant. Fork.0, however, this
form of the function f will not be very useful in spacetimes
with large curvatures. The reason for this is easy to see. Even
though the condition will prevent the formation of shocks, it
implies an evolution equation for the lapse of the form

] ta52~a21k!trK. ~78!

Clearly, in a region where the lapse has collapsed to a very
small value we will have

] ta.2ktrK. ~79!

If trK.0, there is nothing to prevent the lapse from becom-
ing negative~this can in fact happen very easily in black hole
simulations!. We are then led to the conclusion that the only
value of f that will prevent the first family of shocks from
developing without carrying the risk of leading to a negative
lapse is f51, i.e., harmonic slicing.

The second family of shocks, on the other hand, is inde-
pendent of the form off and arises even for harmonic slic-
ing. This is a very unexpected result. After all, this is pre-
cisely the slicing used to prove the theorems of existence and
uniqueness of solutions in general relativity@19–21#. Since
at a shock the differential equations break down, one would
expect the theorems to forbid such solutions. We must re-
member, however, that these theorems can only be proved
locally, they cannot therefore rule out a shock that develops
after afinite time.

It must be stressed that the violation of indirect linear
degeneracy is not a sufficient condition for the development
of shocks. The choice of initial data will have a crucial effect
in whether or not shocks actually develop. In particular,
since shocks are a consequence of transport, they should
only develop when we have wave propagation, either in the
form of real gravitational waves, or in the form of pure gauge
waves as was shown in the examples presented here. Of
course, in the simple cases considered in this paper one can
easily find initial data that does not produce shocks: for the
flat spacetimes one can just take a flat initial slice, while for
a black hole spacetime we can start from an unperturbed
Schwarzschild slice. In the more general case, however, it
might be difficult to find such benign initial data, or even to
prove that it exists at all.

One more important point should be made here. Since the
shocks that I have found arise in the case of a zero shift
vector, they must necessarily indicate a breakdown of the
slicing condition. That is, the shocks represent places where
the spatial hypersurfaces become nonsmooth. Since the pres-
ence of a shift vector can not alter the geometry of these
hypersurfaces, the shocks found here must appear forany
shift condition. A given shift might eliminate the discontinui-
ties in some components of the spatial metric, but it cannot

FIG. 10. Spherically symmetric black hole spacetime. Initial
values of the dynamical variables.

FIG. 11. Spherically symmetric black hole spacetime. Values of
the variables att515 in the case whenf51.
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eliminate the shocks completely: at least some of the dy-
namical quantities will remain nonsmooth for all possible
shift choices.

Although in this paper I have concentrated in the BM
hyperbolic formalism, the mathematical tools developed can
easily be applied to any other hyperbolic formalism of gen-
eral relativity. One should expect the phenomena of coordi-
nate shocks to also arise in any such formalism. In fact, since
all formalisms must have the same physical solutions, the
results of this paper imply that inany formalismthe use of a
harmonic slicing will generate shocks for at least some initial

conditions. Clearly, the search for gauge conditions and/or
restrictions on the initial data that can prevent the develop-
ment of coordinate shocks is a problem that must be ad-
dressed if hyperbolic formalisms are to become an important
tool in the study of both theoretical and numerical relativity.

ACKNOWLEDGMENTS

The author wishes to thank Gabrielle D. Allen, Carles
Bona, Joan Masso´, and Bernard F. Schutz for many useful
discussions and comments.

@1# C. Bona and J. Masso´, Phys. Rev. D40, 1022~1989!.
@2# C. Bona and J. Masso´, Phys. Rev. Lett.68, 1097~1992!.
@3# C. Bona, J. Masso´, E. Seidel, and J. Stela, Phys. Rev. Lett.75,

600 ~1995!.
@4# C. Bona, J. Masso´, E. Seidel, and J. Stela~unpublished!.
@5# Y. Choquet-Bruhat and T. Ruggieri, Commun. Math. Phys.89,

269 ~1983!.
@6# Y. Choquet-Bruhat and J. W. York, C. R. Acad. Sci. Paris A

321, 1089~1995!.
@7# A. Abrahams, A. Anderson, Y. Choquet-Bruhat, and J. W.

York, Phys. Rev. Lett.75, 3377~1995!.
@8# H. Friedrich, Class. Quantum Grav.13, 1451~1996!.
@9# S. Frittelli and O. A. Reula, Phys. Rev. Lett.25, 4667~1996!.

@10# R. J. LeVeque,Numerical Methods for Conservation Laws
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