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Appearance of coordinate shocks in hyperbolic formalisms of general relativity
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| consider the appearance of shocks in hyperbolic formalisms of general relativity. | study the particular case
of the Bona-Massdormalism with a zero shift vector and show how shocks associated with two families of
characteristic fields can develop. These shocks do not represent discontinuities in the geometry of spacetime,
but rather regions where the coordinate system becomes pathological. For this reason | call them “coordinate
shocks.” | show how one family of shocks can be eliminated by restricting the Bona-Mtisisy condition
da=—a®f(a)trK to the casef=1+k/a?, with k an arbitrary constant. The other family of shocks cannot
be eliminated even in the case of harmonic slicifg=_). | also show the results of the numerical evolution
of nontrivial initial slices in the special cases of a flat two-dimensional spacetime, a flat four-dimensional
spacetime with a spherically symmetric slicing, and a spherically symmetric black hole spacetime. In all three
cases coordinate shocks readily develop, confirming the predictions of the mathematical analysis. Although |
concentrate in the Bona-Massormalism, the phenomena of coordinate shocks should arise in any other
hyperbolic formalism. In particular, since the appearance of the shocks is determined by the choice of gauge,
the results presented here imply thatany formalismthe use of a harmonic slicing can generate shocks.
[S0556-282197)05510-0

PACS numbd(s): 04.20.Ex, 04.20.Dw

[. INTRODUCTION evolution of the geometry while maintaining the hyperbolic
structure of the system of equations, would appear to be
In the last few years there has been a renewed interest imuch more promising.
the study of initial-value formulations of general relativity =~ Hyperbolic gauge formalisms, however, are probably
[1-9]. This interest has been motivated mainly by the desiranore susceptible to a problem that seems to have been over-
of rewriting the Einstein system of evolution equations in anlooked until now. By rewriting the whole evolution system
explicit hyperbolic form, so that it can be solved numerically (gauge plus geometryn hyperbolic form, they open up the
using modern high-resolution methods from fluid dynamicspossibility of running into a well-known nonlinear effect as-
[10]. sociated with hyperbolic systems: the appearance of shocks.
One can separate the new hyperbolic formalisms accordHere | use the term “shock” in a somewhat loose form to
ing to the way in which they treat the evolution of the lapserefer to a discontinuous solution that develops from smooth
function «. Some formulations assume the existence of arnnitial data, without worrying about the existence of weak
arbitrarily prescribed gauge; i.e., the lapse is an arbitrarsolutions or jump conditions.
function of spacetime knowma priori [8,9] (“prescribed The fact that in vacuum general relativity one can have
gauge” formalismg Other formulations include the lapse shock fronts is well knowi12—15. By shock fronts, how-
function as part of the system of dynamical variables, andver, one generally understands discontinuities in the curva-
postulate for it an evolution equation that guarantees the hyture of spacetime present in the initial data that propagate
perbolicity of thewhole system, geometry plus gaufe-7]  with the speed of light. In the theory of nonlinear hyperbolic
(“hyperbolic gauge” formalisms The resulting formalisms equations such solutions are not considered proper shocks,
remain hyperbolic for anprescribedshift vector! but are called instead “contact discontinuities.” Here, how-
Prescribed gauge formalisms, though certainly usefukver, | will consider the existence of discontinuous solutions
theoretically, might have a limited applicability in numerical that arise from smooth initial data even in a flat spacetime.
relativity simply because there is no recipe that can give u€learly those solutions do not correspond to a physical dis-
the a priori form of the lapse except in trivial cas¢®r  continuity in the geometry of spacetime. Instead the discon-
example «=1). Hyperbolic gauge formalisms, on the other tinuities indicate regions where our coordinate system be-
hand, by allowing the lapse functon to adapt itself to thecomes pathological: the time slices can become nonsmooth,
or a spatial coordinate might map a finite proper distance to
an infinitesimal interval. It is for this reason that | shall refer
*Present address: Max Planck Institut Gravitationsphysik, Al-  to them as “coordinate shocks.”
bert Einstein Institut, Schlaatzweg 1, D-14473 Potsdam, Germany. Even though modern high-resolution numerical methods
To date, in all these hyperbolic formalisms the shift vector iscan deal with the presence of shock waves, clearly the ap-
assumed to be knowa priori. The author is aware, however, of pearance of coordinate shocks is something that must be
some efforts to find evolution equations for the shift that will keepavoided. In the first place, coordinate shocks create com-
the whole system hyperbol[d 1]. pletely artificial discontinuities in solutions that otherwise
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represent perfectly smooth geometries. Not only that, but The source termS; in Eq. (4) involves only the fields
since in general our gauge conditions are not obtained from #themselves and not their derivatives:
conservation law, we will not have an analogue of the “weak

solutions” to such laws. This means that after a shock forms = S;;= — R(" + trKKjj — 2K; K+ 4Dy D™ + T I™;
our gauge conditions will just break down, and even if the K . m

numerical solution remains well behavet,will not have =ikl "+ (A= 2D ") (Djj + Djix)

any clear physical meaningn particular, as the numerical 1 1

mesh is refined, the solution will not converge after the for- +A| V- —D,-kk +A| Vi— _Dikk)- 7
mation of the shock. 2 2

In this paper | will concentrate in one particular hyper- ) ) )
bolic formalism of general relativity, the Bona-Masg#M) We also need an evolution equation for tbg;; . This we
formalism [1—4], and | will show how these coordinate qbtam, by taking the spatial derivative of the evolution equa-
shocks can and do indeed develop even in very simple sition for gij,
ations.

Dyij+ ol aK;j)=0. (8)
Il. THE BONA-MASSO FORMALISM The quantitiesV, defined in Eq(6) are very important.

In this section | will make a brief introduction to the BM Their evolution equation can be obtained from E8). In
hyperbolic formalism for general relativity. | will use the order to ensure hyperbolicity, however, it is crucial to
most recent form of this formalism as presented4h modify the resulting equation using the momentum con-

Let us start from the standard+3 formulation of general straints to obtain
relativity of Arnowitt, Deser, and MisnetADM) [16,17].

The evolution equations for the metrig;; and extrinsic V= aPy, 9
curvature K;; are

(0= Lp)gij= —2aKj;, (18

where

P=Go+An(KP— 60trK) + KM(Dy = 82D o)
(0= Lp)Kij=—=VVja+ o RP +trKK;; — 2K KK =R{], o e am
(1b) —2Knn(D™— DM, (10

where « is the lapse function,8* the shift vector, and and whereG,, is the Einstein tensor of the spacetime. The
where Ri(f’) and Ri(j“) represent the components of the Ricci quantities V,, are now considered independent, and &.
tensor for the spatial hypersurfaces and for the full spacebecomes an algebraic constraint that must be satisfied by the
time, respectively. In what follows | will restrict myself to physical solutions.
the case of the zero shift vector. The ADM equations then Finally, we need evolution equations for the lapgeand
reduce to its derivative A, , i.e., we need to choose a slicing condition.
In the BM formalism the following slicing condition is used:
h0ij = —2aKj;, (2a)
da=—a?f(a)trK, 11
&tK”-:—ViVJ-a-l—a[Rff')-i—trKKij—2KikK}(—Ri(j4)]. ‘ ( ) ( )
(2D with f(a)>0 but otherwise arbitrary.

The complete system of evolution equations then takes

In order to obtain a system that is first order in space We%he form

introduce the quantities

1 da=—a*f(a)trK, (123
Ak=r9k|na, Dkijzi(gkgij . (3)
9i;= —2aKj; , (12b)
The evolution equation foiK;; can then be rewritten as g
an
aKij+ alaNk) =aS;, (4)
&tAk-l— &k(aftrK)=0, (133)
where we have defined
1 3{Dyjj+ d(aK;j) =0, (13b
)\kiszkij+Ets:((Aj'i‘ZVj_Djmm) ‘
3Kij + d(al’j)) = aSj, (139
1
+ 5 0{(A+2Vi=Dip"), (5 V= aPy. (13d)
with To study the characteristic structure of the system of Egs.

(12) and(13) we choose a fixed space direction and con-
Vi=Dym =DMk (6) sider only derivatives along that direction. It can then be
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shown that the system is hyperbolic with the following A given eigenfield w; is called “linearly degenerate”

structure? [18] if the following condition holds:
25 fields propagate along the time lin€sero speed N,
These fields are I\ dvj B
aw, ,2 Juj aw; Vohi-@=0. (22

{Cl’,gij ,AXI,DX/”‘ ,Vi !AX_ fDXmm} (X, 7‘:X) (14) ) ) o
Since in our case the\’s do not depend on the’s, it is
10 fields propagate along the physical light cones withobvious that all the eigenfields are linearly degenerate.

speeds In the case of systems of conservation laws where the
sources vanish, linear degeneracy is enough to guarantee that

A=+ ag®. (15  no shocks will form. However, when the sources are non-

zero, this is not true anymore. This is easy to see if we

These fields are consider for a moment the prototype of nonlinear hyperbolic

equations, Burgers’ equation
Wi+ =Ki £VG¥(Dyixr + 8V, 1g7) (X' #X).  (16)

du+udu=0. (23
2 fields propagate with the “gauge speeds” If we now define
A=+ afg™. (17) vi=dyU, (24)
They are then we can rewrite Eq23) as the system
= JFtrK = Vg A+ 24/ g, (18 du=—uv, (253
A + dy(uv)=0. (25b)

IIl. MATHEMATICAL ANALYSIS

OF THE NONLINEARITIES This has precisely the forrtl9). The only eigenvalue turns

out to be equal tou which is clearly independent of. By
Here | will try to understand the nonlinearities present inthe definition above the system is linearly degenerate. How-
our system of equations, trying in particular to determineever, it is clearly nonlinear and will generate shocks since it
whether shocks can develop. From the discussion in the prés only Burgues’ equation in disguise. The nonlinearities
vious section it is clear that the system of evolution equahave now been buried in the sources.

tions in the BM formalism has the structure Clearly the condition that must be imposed to guarantee
that no shocks will develop is that a given eigenvalng

aui=p;i, ie{l,... Ny}, (199  should not be affected by changes in the corresponding
eigenfield w; . The condition for linear degenera32) asks

vitaFi=qi, ie{l,... N} (19n  for the eigenvalue not to be explicitly dependent on its asso-

ciated eigenfield. In the presence of sources, however, the
The fluxesF; that appear in the above equations have theoupling can introduce an indirect dependency. In order to
form study this dependency let us consider the time evolution of
N, )\i .

=2, Mjjv,;, (20
121 e =g \j= E atu, Vu\i-Pp. (26)

where the coefficientdvl;; are functions of theu’s but not Now, we want this time derivative to be independent of

of the v’s. : .
. the eigenfieldw; :
Let us now call \; the eigenvalues anay the corre- g :
sponding eigenvectors of the Jacobian matrik;; O 9
=dFi/dv;. Let us also introduce the matrixR o —(V\i-p)=0. (27
. . . Wi (9Wi
=[e|e]- - -|eNU] of column eigenvectors. The eigenfields
w; are then defined by | shall call this condition “indirect linear degeneracy” and |
will refer to condition(22) as “explicit” or “direct” linear

v=Rw=w=R"1v. (21)  degeneracy.
If we assume that the condition for explicit linear degen-
eracy holds, then the condition for indirect linear degeneracy
can be reduced to

Here | use the term hyperbolic in the weak sense to mean that the
characteristic matrix of the system has real eigenvalues. It should be Vi
noticed that this weak form of hyperbolicity does not guarantee that
the _syst_em can be diagonal?zc_ad. A crucial feature of _the_ BM fpr'which can be rewritten as
malism is that even though it is only weakly hyperbolic, it can in
fact be diagonalized as long &5-0. Vi\i-(g-V,)p=0. (29

N,
_p_,
! aw, 2 v ow; 0. (28)
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This condition must supplement the condition for explicit Equations(35) and(37) are very important results. Con-
linear degenerac{2?) if we want to guarantee that no shocks sjder first the situation forf... If we want A, to be in-
will develop. dependent ofw’. , and hence satisfy the condition for indi-

Let us now apply the previous condition to the BM sys- (ot linearly degeneracy, we must clearly ask for
tem of evolution equation&l2) and (13). From the discus-

sion of the previous section it is clear that, on a given spatial 1-f—af’/2=0. (38

direction x we only have the following nontrivial eigenval-

ues: This differential equation can be easily solved to give
N.==ayg® A=+ aTg™ (30) f(a)=1+k/a? (39

with k an arbitrary constant. We must in fact take=0 in
order to ensure that we will havé>0 for all «>0 .

We have then show that the functioh must have the
form (39) in order to guarantee that the eigenfiehdé: will
not generate shocks. Notice that if we take0 the condi-

The time derivative ofA'. will then be

A==\ gt 5 g™
* *a t ngx t

! g*Mg*" tion reduces to that of harmonic slicing, i.e., for harmonic
=EN s e Watgmn}- (31)  slicing the eigenfieldsnv’. do not generate shocks.
Consider now the situation fok'. . From Eq.(35) it is
Using now Eqs(12) we find clear that if we want)'. to be independent ot/v!wt we
must have
A=+ al L (KX g™*—ftrK). (32

g*Pg*9-ggP9=0 (p,q#Xx). (40)

This condition is very restrictive. In particular, it is im-
possible to satisfy with a diagonal metric. We then reach the
conclusion that in the general case, the eigenﬁeﬂéjﬁ+ can

Now, from the definitions ofw;, and w; [Egs.(16) and
(18)] we can easily find that

trK = L(Wf++wf7) (33)  alwaysgenerate shocks. Notice how this result is indepen-
NG dent of the value off, it will therefore remain true even in
the case of harmonic slicing.
and (p,q#X) One must stress here the fact that we have not actually

proved that shocks will indeed develop. Whether they do or
o xx XPrX XX PO 1l|g ‘ ‘ not in any particular case should depend in a critical way on
K¥=g" K+ Kpg(97"9™ - g7g™) = 5 W(W ++WL)  the form of the initial data. In the following sections I will
consider some examples that show how coordinate shocks

XX

can indeed develop even in very simple cases.
+(g*Pg = g*gPN) (Wpgs + W) |- (34)
IV. FLAT TWO-DIMENSIONAL SPACETIME
Substituting these results back in the expressionor we A. Evolution equations
find As a first example, consider a flat two-dimensional space-
time (a “1+1” spacetime¢ with coordinates{t,x} . Notice
R _+a)\'I i Loy w4 (¥ 4GP that these coordinates do not have to correspond to the
=T \/;( )W +wio)+(g7Pg™ - g™ g Minkowski coordinates{xy ,ty}, SO we can have a non-
trivial evolution even though the spacetime is flat. Since we
only have one spatial dimension, | will simplify the notation
X (Wpqs +Wpg-) |- (35 in the following way:

' _ o 0:=0uxx» A:=A,, D:=D,w K:=Ki. (4]
In the same way we find, for the time derivative of
N Notice that the variablev, is identically zero.
The system of evolution equatio$2) and (13) reduces

ML=+ N [KXg*—(f+af'/2)trk],  (36)  in this case to

—_ 2
where f'=g,f. Substituting again the expression fdt,, dar=—a"fK/g, (423
and tK in terms of the eigenfields we find 9,9=—2aK, (42b)
A1
)\ft:iaz_ W(1—f—af’/2)(wf++wf,) and
G A+ a(afKIg)=0, (433

+(g*PgI— g*gP%) (Wpq +Wpq-) |- (37) 3D+ dy(aK)=0, (43b)
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K+ d(aA)=alg(AD—K?). (430

The characteristic structure of this system is very simple.

There are three fields that propagate along the time lines 1} ] tF NY; —

(speed zerp These fields are

{a,9,A—fD/g}. (449

The two remaining fields propagate with the “gauge

speeds”
AN =xaVflg. (45)
They are

w', = fK/g=A/\g. (46)

Notice how there are no fields propagating along the
physical light cones. According to the discussion of the pre- :
vious section, we should then expect shocks only when con- 005 | g

dition (39) is violated.

B. Numerical simulations

0.6 [ 3

" | SN
0 100 200 300 0 100 200 300

0.1 7 T T T 0.1 7 T T T

0.05 - 4 0.05 |- 3

~0.05 [ 4 -oo0s5fF B

1 1 1 1 1 1]
100 200 300 0 100 200 300

0.1 — —
0.05 B

of 3

R 1 B |
0 100 200 300

FIG. 1. Two-dimensional flat spacetime. Initial values of the

Since we are dealing with a flat spacetime, the only wayynamical variables.

to obtain a nontrivial evolution is to start with a nontrivial

initial slice. | will therefore consider an initial slice given in directions with a speed- Jf. What happens later depends

terms of Minkowski coordinategxy ,ty} as
ty=h(Xu). (47)

| will assume that the dynamical spatial coordinateo-
incides initially with the Minkowski spatial coordinatq, .
It is then not difficult to show that the initial metrig and
extrinsic curvatureK are given by

crucially on the form of the functiorf («).

For harmonic slicing {=1), the pulses remain smooth as
they move away. Once the pulses are gone, the lapse, the
metric, and the variableA and D return to their initial
values, and the extrinsic curvature becomes 0. Figure 2
shows the values of the variables &t 100 .

When f is a constant larger than 1, the pulses do not
remain smooth and shocks develop. In fact, we have two
shocks developing in each pulse, one in front of it and one

g=1-h'?, (483 behind it. At those points, the lapse and the metric develop
% large gradients, while the extrinsic curvature and the vari-
K=-h"/g. (48b
The initial value of D can be obtained directly from its N — E 20y — .
definition in terms ofg. The initial lapse is taken to be equal '2_ R E
to 1 everywhere, which implies thaA=0. £ ] £ ]
In all the simulations shown here, the functidr{x) has . ]
a Gaussian profile: 1 o ]
0.6 ]
2 o 106 200 300 o5 160 P T
X—X
h(X):HeXp{_(_Zi] (49) 01 4 D
o ! AT T T ] 0.1y T L A
0.05- 1 oesft 4
with {H,o,x;} constants. The particular values éH,o} oF 3 of ]
used in the simulations presented here are : ] ; ]
-0.05F - -0.05 -
H=5, o=10. (50) 01t it =00 S(IJ(; —0.1‘1') 160 200 B(I)O-
| have also always taken the initial perturbation to be cen- 01 . m

tered aroundx.=150. The initial values of all the variables

o.osf— 3
can be seen in Fig. 1. All the results presented below where A3 \ {\ E

obtained using a time step &ft=0.125 and a spatial incre-

ment of Ax=0.25.

In all the simulations, the evolution proceeds at first in a 0.1t R o

similar way: The initial perturbation ig, D, andK gives

rise to perturbations ine and A . These perturbations rap-

FIG. 2. Two-dimensional flat spacetime. Values of the variables

idly develop into two separate pulses traveling in oppositeat t=100 for harmonic slicing {=1).
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FIG. 3. Two-dimensional flat spacetime. Values of the variables FIG. 5. Two-dimensional flat spacetime. Values of the variables
at t=75 in the case wherf =1.69. at t=70 in the case wherf=1+1/a?

ablesA and D develop very tall and narrow spikes. Figure  aq 3 final comment, it should be mentioned that | have
3 showi th?l"il%egs of the variablestat 75 in the particular e formed similar simulations with many different values of
ca?;\a/hw ep A ant ller than 1 inale shock d the amplitudeH and width o of the Gaussian profile of the
velopseirr: thésrr?igglgso?gaiw%u?;e irp])ar,t ?rc?rlrr:%h?ss tr?((a: sitl(j—_initial slice. When f is not of the form(39) shocks appar-
ation is very similar to the casé>1. Figure 4 shows the ently always develop, though_ at dlffer_ent times. The cruc[al
) - : : feature that seems to determine the time of shock formation
values of the variables at=75 in the particular case when . : S
- is the maximum absolute value of the extrinsic curvature
f=0.49. )
K. For small values ofK, shocks take a long time to appear,

Finally, when f is of the form(39), no shocks develop in .
agreement with the predictions. The pulses remain smootWhereas for large values they develop very rapidly.

and move away with a speeé /1+k. Figure 5 shows the

values of the variables at=70 in the particular case when V. SPHERICALLY SYMMETRIC VACUUM SPACETIME

f=1+1/a?. A. Evolution equations
N . As a second example, consider a spherically symmetric
LT 7 A E four-dimensional vacuum spacetime. Let us introduce the co-
b 1 s 1 ordinate system{t,r,0,¢} . The only independent dynami-
N /l/ \[\ E N ] cal variables will then be
*oF 1 ost g {@.9r.900,Ar ,Dirr \Dirgg Kir Koy, Vi (51)
oef 3 1 1 ] L \:
0 100 200 300 ° 100 200 300 The system of evolution equatioi$2) and (13) reduces
o1, now to
008 a=— azftrK, (529
~0.05 7 hGre = —2aK,, (52b)
o hGee= —2aKyy, (529
0.1 and
o aA, + d,(aftrk)=0, (533
70.05:— ‘ ﬁtDrrr'f'(?r(aK”):O, (53b)
0,0 ) 8 SN R | |
o 100 200 300 gtDr00+ &r(aK(_}ﬂ) — O, (53C)

FIG. 4. Two-dimensional flat spacetime. Values of the variables ;
at t=75 in the case wherf=0.49. Ky +dr(aky)=aS,, (530
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9K gyt 9r(akyy) = aSyy, (53¢ . \ L. N 8os/T?
(9tVr: aPr . (53f) 3k E 3r E Lif i
with T E [
; 1 1 \/\/ 0.9 -
M =Ar+2V,—2D;44/900, (543 o ST e
r Al‘ Drrr Draa/r
Ay=D, g/ Grr , (54b) L I T et A L
and b ] T ; b ;
o NITE 1
Sie =K1 (2K g9/999— Kir 19rr) + Ar(Dier 195 = 2D 9/ 9 90) -otp E 7 osr ]
(553) 'O‘ZW‘&MW ~02 156500 500 400 500 OHH_LMJWJO
K Ko v,
+2Dr00/906'(Drrr/grr_Dr90/990)+2ArVra (55b) 02 frrrrrprrr e 400 IAMSAREARAR AT rl T
Spo= KrrKGH/grr_Drerr(i(}/grr2+11 (550 \/\/ 2
Pr=—2/9psl ArK 99— Drga(Kgg/ oo~ Krr 19rr) ] s o .
(55d) ““100 200 800 400 50 00 200 300 400 500 00 200 300 400 50

We also have the following algebraic constraint that must be FIG. 6. Spherically symmetric flat spacetime. Initial values of
satisfied by the physical solutions: the dynamical variables.

V:=2D /946 - (56) | will assume that the dynamical radial coordinateco-
The characteristic structure of this system turns out to bénmdes initially V\."t.h the Minkowski radial coorfj|_n_ate,\,| It .
the following. is then not difficult to show that the initial metric

Five fields propagate along the time linéspeed zerp {9rr 1940t and extrinsic curvaturgK,, Ky} are given by
These fields are

O = 1_h,21 (633
_ m
{a'agrr Ne PPRVAN. fDr m}- (57) g(w:rZ, (63b)
Two fields propagate along the physical light cones with
speeds K, =—h"I\g,, (630
N.==alg,. (59) K pp=—rh'I g, (630

These fields are The initial values of {D,,, ,D,44,V,} can be obtained

directly from their definitions in terms of the metric. The
(-
W' . =0, Kgs£ D gy 59 initial lapse is taken to be equal to 1 everywhere, which
Two fields propagate with the “gauge speeds” implies that A,=0. _
In all the simulations shown here, the functidr{r) has
A==+ a,/f/g”_ (60) a Gaussian profile:

They are r—r.)2

y h(r)=Hex%—( 02C) ] (64)

wh = fg, trK=(A+2V,). (62)

. ' . . with {H,o,r;} constants. The particular values ¢H, o}
Notice how we now have both f|_elds propagating with the&lsed in the simulations presented here are
speed of light and fields propagating with the gauge speed.

We should then expect to see two different types of shocks H=15 =20, (65)
forming. In particular, shocks produced by the . fields
can be expected always, even for harmonic slicing. and | have taken the initial perturbation to be centered
around r .= 300. The initial values of all the variables can be
B. Numerical simulations for a flat spacetime seen in Fig. 6. The results presented below were obtained

Again, since we are dealing with flat spacetime, the onlyus"lg a time step ofAt=0.1 and a spatial increment of
way to obtain a nontrivial evolution is to start with a non- 2X~ 2. i i ,
trivial initial slice. | will therefore consider an initial slice !N @l the simulations the evolution proceeds at

given in terms of Minkowski coordinatefry ,ty} as first in a similar way: the initial perturbations in
{9/r,Dyrr Ky Kggt give rise to perturbations in

tu=h(ryu). 62 {a,9¢9,Ar,Dgg,V,}. These perturbations develop into
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FIG. 7. Spherically symmetric flat spacetime. Values of the vari-  FIG. 8. Spherically symmetric flat spacetime. Values of the vari-
ables att=70 in the case wherf=1.69. ables att=70 in the case wherf =0.49.

separate pulses traveling in opposite directions with a spee[ﬂe pulses moving in the in-going direction may not have

~f . The pulses are not symmetric any more since clearlynq,h time to develop before they reach the origin. Also,
the in-going and out-going directions are not equivalent. ¢4 the case of harmonic slicing, shocks in the out-going

Consider first the case of >1. As the evolution pro- girection never seem to form, no matter how large the initial
ceeds, shocks develop in both pulses. These shocks are Sifsrturbation might be.

lar to those found in the 41 case: two shocks develop in
each pulse, one in front of it and one behind it. At those
points {«,9,, ,D,49,Kgg,V,} develop large gradients, while
{A; Dy ,K,;} develop tall and narrow spikes. The angular In all the previous examples | have restricted myself to a
metric componentg,, in contrast develops sharp corners. flat spacetime. Since this is a very special case one might
Figure 7 shows the values of the variablestat70 in the think that the shocks that we have found are just an artifact
particular case wherf=1.69. of the flatness. To show that this is not the case, | will now
When f<1, we again find results that are similar to the consider a spherically symmetric black hole spacetime.
1+1 case: a single shock develops in each pulse. Again, at
the shock {«,q,,,D,¢s,Kyg,V,} develop large gradients,
{A;,D,; ,K,,} develop spikes, and),, develops sharp cor-
ners. Figure 8 shows the values of the variable$=a?0 in
the particular case wheri=0.49.
The most interesting case is that of harmonic slicing
(f=1). In contrast to the t1 case, shocks still develop

C. Numerical simulations for a black hole spacetime

oo/ T?
T T T

. . . 0 0. [ T |
here. The shocks, however, have a different structure indica- " * ™ ** = 0 e e
tive of their different origin: the variabledA, D, ,K} . S ‘ "’."/r. \

now develop large gradients, whiléa,g,, ,D,gg,Kgg,V,}
develop sharp spikes. The angular metric componggpy
also seems to develop a large gradient, though this gradient
is less sharp than that found in other variables. This is easy to -
understand geometrically: any discontinuity ig,, must oz
necessarily be accompanied by an infinite valueggf (we
must jump a finite radial distance in an infinitesimal inter- o2
val). The shocks are clearly visible in the in-going pulse, but .,
do not seem to be present in the out-going pulse. Figure 9
shows the values of the variables &&70 for harmonic
slicing. o
Again, | have performed similar simulations for different — -oefz-ss
amplitudes and widths of the Gaussian profile of the initial
slice. The shocks are always there. The only exception seems FIG. 9. Spherically symmetric flat spacetime. Values of the vari-
to be that for very small amplitudes of the initial perturbationables att=70 in the case wherf=1.
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To find adequate initial data | start from a Schwarzschild The components of the extrinsic curvature for this slice

slice with spatial metric can now be shown to be
dI?=————dr2+r2dQ? (66) K":_{ash”+aéh,[z_(ashl)z]}/@' (743
1-2M/rg )
. . . | Kgo=—alrsh'1\g,. (74b)
where r¢ is the Schwarzschild radial coordinate and
dQ2=d e’ + sirfedg?. As before, the initial values of D, ,D,4y.V,} can be
In order to eliminate the singularity at;=2M, | will obtained directly from their definitions in terms of the met-

define a new radial coordinate that measures proper dis- ric. The initial lapse is again taken to be equal to 1 every-
tance along the slice. The coordinates and r will be  where, which implies thatA,=0.

related by For the functionh(r) 1 will again use a Gaussian:
rs+7/(r)} p{ (r—rc)z]
r=mn(rg)+Min| ———~|, 6 h(r)=Hexp — , 75
7(rs) (T (67) (r) 7 (75
with with {H,o,r } constants. In order to see the development of
) 1o the shocks clearly, | will consider simulations where the cen-
7(rg)=(rs—2Mrg)™* (68 ter of our perturbationr . is out in the wave zone.

All the simulations | have carried out proceed in a similar
way. At the throat of the wormhole we find what we expect
for a black hole spacetime: the lapse collapses and the metric
componentg,, grows rapidly. Out in the wave zone, the
disturbance behaves in the same way as it did in flat space-

dI2=dr2+[r(r)]2dQ2. (69)  time: the initial perturbations in{g;; ,Dy Ky ,Kgp} give
rise to perturbations i{ «,gy4,A; ;D g, V,}, these then de-
It is easy to see that the Schwarzschild slice has zero extrinvelop into separate pulses traveling in opposite directions

Notice that even though E¢67) can not be inverted analyti-
cally to find rg(r), it can easily be inverted numerically to
arbitrarily high accuracy.

The new metric will now have the form

sic curvature, so our initial data will be with a speed~ \/f .
In all cases, the traveling pulses develop shocks that have
9 =1, (703 very similar characteristics to those that we found in the flat
2 case. Here | will only show the results found in the case of
9oo=Ts (70B harmonic slicingf=1. The particular values ofH, o} used
in this simulation are
K, =0, (700
H=5, o=5. (76)
K00: 0 . (70d)

. o _ _ I have also taken the initial perturbation to be centered

Now, if we use this initial data directly we will not see around r,=50, and the mass of the black hole to be
any shocks develop. This is known since the BM formalismy = 1. The results presented here were obtained using a time
has been used before to solve this problem and no shocl@ep of At=0.025 and a spatial increment afx=0.05.
have been observe@]. The reason why shocks do not de- The initial values of all the variables can be seen in Fig. 10.
velop is that they are a consequence of transport and as such Figure 11 shows the values of the variables tat 15.
they should only develop when we have wave propagationyotice how around the throat the lapse and the angular met-
either in the form of real gravitational waves, or in the form yjc componentg,, have collapsed, while the radial metric
of pure gauge waves. The static black hole problem has ngomponentg,, has grown to a very large value. The inter-
give rise to gauge waves either. _ _throat. We can clearly see the two pulses resulting from our

In order to introduce gauge waves into our problem, I willjnitial perturbation. The pulse moving inwards has developed
consider an initial slice given in terms of Schwarzschild timeg shock: the variable$A, ,D,,, .K,,} have developed large
ts in the following way: gradients, while {a,g,,,D,4y,K4,V,} have developed

t.=h(r) (71) sharp spikes. The angular metric componep}, has also
s ' developed a large gradient.

It is not difficult to show that the new slice will have the

metric components VI. DISCUSSION
g =1—(ah")?, (729 I have introduced a general approach to the study of shock
development in hyperbolic systems of equations with
gﬁgzrg, (72b) sources. | have shown that the usual condition of explicit
linear degeneracidirect linear degeneragynust be supple-
where ay is the Schwarzschild lapse function mented with a new condition which | have called “indirect

linear degeneracy” in order to guarantee that no shocks will
ag=(1-2M/rg*2 (73)  develop.
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) o . 8re W 8o/ T3 regions where our coordinate system becomes pathological.
S R It is for this reason that | refer to them as “coordinate

N3 ] er ] shocks.”

2 1 % E . Of the two families of coordinate shocks found, one can

. i 1Lk 1 be completely eliminated by choosing a BM gauge function

' \W f(a) of the form

° (I) :;o 4|o s‘o BIO ulm ° :J zlo 4Io elo alo ulm o8 (;-‘ zlo 410 slo a‘o ulm

A D D/t f(a)=1+kla? (77

o5k ] 'E . .F ] with k=0 an arbitrary constant. Fok>0, however, this

0 0 YN form of the functionf will not be very useful in spacetimes
ok 1 .k j s with large curvatures. The reason for this is easy to see. Even
' though the condition will prevent the formation of shocks, it
TSR e R i o o e o i o e a0 e b0 im0 implies an evolution equation for the lapse of the form

K Kgo r, V.
ST T T da=—(a?+K)trK. (78
0 NP 0 Clearly, in a region where the lapse has collapsed to a very
2 small value we will have

-1 4 -50 F B

il I Lol 1 100 Lol 1

1 - 1 1 1 1 1 L L 1 —_~
0 20 40 60 80 100 0 20 40 60 80 100 © 0 20 10 60 80 100 (9ta——ktI’K. (79)

FIG. 10. Spherically symmetric black hole spacetime. Initial If trK>0, there is nothing to prevent the lapse from becom-

values of the dynamical variables. ing negative(this can in fact happen very easily in black hole
simulations. We are then led to the conclusion that the only

| have applied this condition of indirect linear degeneracyvalue of f that will prevent the first family of shocks from
to the BM hyperbolic formalism of general relativity in the developing without carrying the risk of leading to a negative
case of a zero shift vector. My analysis has shown how twdapse is f=1, i.e., harmonic slicing.
distinct families of characteristic fields can give rise to The second family of shocks, on the other hand, is inde-
shocks. Numerical simulations have confirmed these predigendent of the form off and arises even for harmonic slic-
tions in the simple cases of a flat two-dimensional spacetimeing. This is a very unexpected result. After all, this is pre-
a flat four-dimensional spacetime with spherically symmetriccisely the slicing used to prove the theorems of existence and
slices, and a spherically symmetric black hole spacetime. uniqueness of solutions in general relativiy9—21]. Since

The appearance of shocks that develop from smooth iniat a shock the differential equations break down, one would
tial data in vacuum general relativity comes as a great surexpect the theorems to forbid such solutions. We must re-
prise. These shocks, however, do not represent discontinuinember, however, that these theorems can only be proved
ties in the geometry of spacetime, but indicate insteadocally, they cannot therefore rule out a shock that develops

after afinite time

It must be stressed that the violation of indirect linear
T degeneracy is not a sufficient condition for the development
b ] of shocks. The choice of initial data will have a crucial effect
in whether or not shocks actually develop. In particular,
since shocks are a consequence of transport, they should
o8 E only develop when we have wave propagation, either in the
form of real gravitational waves, or in the form of pure gauge
waves as was shown in the examples presented here. Of
course, in the simple cases considered in this paper one can
easily find initial data that does not produce shocks: for the
flat spacetimes one can just take a flat initial slice, while for
a black hole spacetime we can start from an unperturbed
Schwarzschild slice. In the more general case, however, it
might be difficult to find such benign initial data, or even to
prove that it exists at all.

One more important point should be made here. Since the
shocks that | have found arise in the case of a zero shift
vector, they must necessarily indicate a breakdown of the
slicing condition. That is, the shocks represent places where
the spatial hypersurfaces become nonsmooth. Since the pres-

8os/ T2
T T
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e e a0 0z ae w0 so w0 O 0 20 40 so B0 10 ence of a shift vector can not alter the geometry of these
hypersurfaces, the shocks found here must appeaarigr
FIG. 11. Spherically symmetric black hole spacetime. Values ofshift condition A given shift might eliminate the discontinui-
the variables att=15 in the case wherf=1. ties in some components of the spatial metric, but it cannot
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eliminate the shocks completely: at least some of the dyeonditions. Clearly, the search for gauge conditions and/or
namical quantities will remain nonsmooth for all possiblerestrictions on the initial data that can prevent the develop-
shift choices. ment of coordinate shocks is a problem that must be ad-

Although in this paper | have concentrated in the BMdressed if hyperbolic formalisms are to become an important
hyperbolic formalism, the mathematical tools developed cartool in the study of both theoretical and numerical relativity.
easily be applied to any other hyperbolic formalism of gen-
eral relativity. One should expect the phenomena of coordi-
nate shocks to also arise in any such formalism. In fact, since
all formalisms must have the same physical solutions, the The author wishes to thank Gabrielle D. Allen, Carles
results of this paper imply that iany formalismthe use of a Bona, Joan Massand Bernard F. Schutz for many useful
harmonic slicing will generate shocks for at least some initialdiscussions and comments.
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