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We develop the principle of nongravitating vacuum energy, which is implemented by changing the measure
of integration in the action fromA2gdDx to an integration in an internal space ofD scalar fieldswa . As a
consequence of such a choice of the measure, the matter LagrangianLm can be changed by adding a constant
while no cosmological term is induced. Here we develop this idea to build a new theory which is formulated
through the first order formalism, for example, when using vielbeinea

m and spin connectionvm
ab

(a,b51,2, . . . ,D) as independent variables. The equations obtained from the variation ofea
m and the fields

wa imply the existence of a nontrivial constraint. This approach can be made consistent with invariance under
arbitrary diffeomorphisms in the internal space of scalar fieldswa ~as well as in ordinary space-time!, provided
that the matter model is chosen so as to satisfy the above-mentioned constraint. If the matter model is not
chosen so as to satisfy automatically this constraint, the diffeomorphism invariance in the internal space is
broken. In this case the constraint is dynamically implemented by the degrees of freedom that become physical
because of the breaking of the internal diffeomorphism invariance. However, this constraint always dictates the
vanishing of the cosmological constant term and the gravitational equations in the vacuum coincide with
vacuum Einstein’s equations with zero cosmological constant. The requirement that the internal diffeomor-
phisms be a symmetry of the theory points towards the unification of forces in nature such as in the Kaluza-
Klein scheme.@S0556-2821~97!02010-9#

PACS number~s!: 04.20.Cv, 04.50.1h, 04.62.1v

I. INTRODUCTION

In 1917, Einstein realized@1# that his field equations can
be modified by introducing the ‘‘cosmological constant
term.’’ This ‘‘L term’’ appears in the Einstein’s equations in
the form

Rmn2
1

2
gmnR2Lgmn5

k

2
Tmn , ~1!

wherek[16pG. Although Einstein considered the introduc-
tion of such a term a mistake, the fact is that such a term
does not violate any symmetry. Furthermore, quantum field
theory ~QFT! predicts the existence a vacuum energy be-
cause of the zero point fluctuations, which gives an infinite
contribution to Tmn which is of the form gmnr0,
(r05const), that is, indistinguishable from theL term. Even
if the infinity problem could be avoided, QFT naturally pre-
dicts a very largeL term, since on purely dimensional
ground, QCD would give a vacuum energy of order 1
GeV4 and in quantum gravity one expects 1076 GeV4, while
observations require the vacuum energy to be less then
10246 GeV4. For a historic overview see@2# and for reviews
of the modern attempts to solve this puzzle see@3#.

In this paper we will develop an approach where, as a
consequence of a nontrivial constraint imposed by the varia-
tional principle, which has a highly geometrical motivation,
anyL term is forbidden. When this constraint is satisfied in
an automatic form by the matter models, we have an addi-
tional local symmetry in the model. The triviality of the con-

straint or the associated local gauge symmetry implies the
physical irrelevance of certain degrees of freedom. It should
be pointed out that the vanishing of the cosmological term is
achieved even if the constraint is nontrivially implemented.
In this case the degrees of freedom mentioned above become
nontrivial and are dynamically active in the mechanism that
eliminates the cosmological constant.

This approach is based on a paper by us@4#, where the
‘‘principle of nongravitating vacuum energy~NGVE!’’ was
formulated. There the usual measure of integration that is
A2g, was changed by another scalar densityF which is also
a total derivative, built fromD scalar fields~if D is the
dimension of space-time!. In an explicit form

F[«a1a2•••aD«a1a2•••aD~]a1
wa1

!~]a2
wa2

!•••~]aD
waD

!,
~2!

where wa , (a51,2, . . . ,D) are scalar fields. In this case
*LmFdDx is invariant under the changeLm→Lm1const,
since then we just add to the integrandLmF a total deriva-
tive term. We should then remember that usually the cosmo-
logical constant piece in Eq.~1! is generated from a term of
the form L*A2gdDx, which with the change of measure
becomes an irrelevant total divergence. In spite of this, in
such a model an integration constant, that plays a role which
resembles that of a cosmological term, appears in the equa-
tions ~although for nonvanishing values of this integration
constant, maximally symmetric spaces are not available@4#!.
In addition, the equations deviate from those of general rela-
tivity and a new physical massless ‘‘dilaton’’ appears, with
the corresponding phenomenological problems.

In contrast, here we will find that when formulating the
theory in a way which is invariant under diffeomorphisms in
the manifold of fieldswa , then no term that plays the role of
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a cosmological constant term can appear. Together with this,
no propagating dilaton appears. This is achieved in a simple
way by formulating the model in terms of vielbeins and al-
lowing the possibility of torsion. This is quite a natural ap-
proach since vielbeins and torsion appear in any case if fer-
mions are introduced.

In the context of this formulation of the theory, the local
symmetry mentioned before, is actually the group of diffeo-
morphisms in the space of the scalar fieldswa . If this group
is indeed a symmetry, the vanishing of the cosmological con-
stant is a trivial consequence. If this group is not a symmetry,
still the variation with respect to these degrees of freedom
leads to the constraint that makes the cosmological constant
vanishing.

As was mentioned above, the key idea of the theory is
replacing the measureA2gdDx byFdDx, F being given by
Eq. ~2! and we are then led to the following action for grav-
ity plus matter:

S5E LFdDx[E S 2
1

k
R1LmDFdDx, ~3!

whereR is the scalar curvature. To defineR, we can use the
standard Riemannian definition in terms ofgmn . This leads
to the theory studied in Ref.@4#.

A different approach, which will be shown in this paper to
be physically inequivalent, is to allow a more general form
for R which allows for the possibility of torsion. In this case
we define@5#

R~v,e!5eamebnRmnab~v!, ~4!

Rmnab~v!5]mvnab2]nvmab1~vma
c vncb2vna

c vmcb!,
~5!

whereeam5habeb
m , hab is the diagonalD3D matrix with

elements11,21, . . . ,21 on the diagonal,ea
m are the viel-

beins, andvm
ab (a,b51,2, . . . ,D) is the spin connection.

The matter LagrangianLm that appears in Eq.~3! does not
depend on the scalar fieldswa and it is now a function of
matter fields, vielbeins, and spin connection, considered as
independent fields. We assume for simplicity thatLm does
not depend on the derivatives of vielbeins and spin connec-
tion.

It should be noted that the same results can be obtained in
the first order formalism where we use the metricgmn ~or
vielbeinseam) and the connectionGmn

l as independent vari-
ables.

As it is well known@6#, if fermions contribute toLm , the
vielbein formalism becomes unavoidable anyway. This could
be regarded as an argument to view the use of Eqs.~4! and
~5! as a more fundamental starting point than that of using
the Riemannian definition forR. As we will see, in the
NGVE theory studied here,R(v,e)Þ Riemann scalar, even
in the caseLm50.

II. GENERAL FEATURES OF THE NGVE THEORY

In this section we study the general features of the NGVE
theory, which are consequences only of the fact that the sca-
lar fieldswa enter just in the measure of integration and not

in the total Lagrangian densityL[2(1/k)R1Lm . First, no-
tice that F is the Jacobian of the mappingwa5wa(x

a),
a51,2, . . . ,D. If this mapping is nonsingular (FÞ0), then
~at least locally! there is the inverse mappingxa5xa(wa),
a50,1 . . . ,D21. Since FdDx5D!dw1`dw2`•••

`dwD , we can thinkFdDx as integrating in the internal
space variableswa . In addition, ifFÞ0 then there is a co-
ordinate frame where the coordinates are the scalar fields
themselves.

The fieldF is invariant under the volume-preserving dif-
feomorphisms in internal space:wa85wa8(wb) where

«a1a2•••aD

]wb1
8

]wa1

]wb2
8

]wa2

•••

]wbD
8

]waD

5«b1b2•••bD. ~6!

Such infinite-dimensional symmetry leads to an infinite
number of conservation laws. To see this, notice that from
the volume-preserving symmetrieswa85wa8(wb), defined by
Eq. ~6!, which for the infinitesimal case imply

wa85wa1l«aa1•••aD
]Fa1a2•••aD21

~wb!

]waD

~7!

(l!1), we obtain through Noether’s theorem the conserved
quantities

j V
m5Aa

mS 2
1

k
R1L D «aa1•••aD

]Fa1a2•••aD21
~wb!

]waD

. ~8!

We now want to notice that the form of the action~3!
implies the existence of a very special set of equations.
These are the equations of motion obtained by variation of
the action~3! with respect to the scalar fieldswb and they are

Ab
m]mS 2

1

k
R1LmD50, ~9!

where

Ab
m[«a1a2•••aD21b

«a1a2•••aD21m~]a1
wa1

!

3~]a2
wa2

!•••~]aD21
waD21

!. ~10!

It follows from Eq. ~2! thatAb
m]mwb85D21dbb8F and tak-

ing the determinant of both sides, we get
det(Ab

m)5(D2D/D!)FD21. Therefore, ifFÞ0, which we
will assume in what follows, the only solution for Eq.~9! is

L[2
1

k
R1Lm5const[M . ~11!

Finally, we show that the same structure of this action,
which leads to the very special set of equations displayed
above, is associated with another, even more puzzling set of
symmetries than the volume-preserving diffeomorphisms. In
fact, let us consider the following infinitesimal shift of the
fields wa by an arbitrary infinitesimal function of the total
Lagrangian densityL[2(1/k)R1Lm , that is

wa85wa1ega~L !, e!1. ~12!
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In this case the action is transformed according to

dS5eDE Aa
mL]mga~L !dDx5eE ]mVmdDx, ~13!

where Vm[DAa
m f a(L) and f a(L) being defined from

ga(L) through the equationLdga /dL5d fa /dL. To obtain
the last expression in the Eq.~13!, it is necessary to note that
]mAa

m[0. By means of the Noether’s theorem, this symme-
try leads to the conserved current

j L
m5Aa

m~Lga2 f a![Aa
mE

L0

L

ga~L8!dL8. ~14!

The existence of this symmetry depends crucially on the in-
dependence of the Lagrangian densityL on the scalar fields
that define the measure. In fact, the existence of this symme-
try could be used to justify the expectation that quantum
corrections would keep that basic structure, provided it is
present at the tree level.

III. THE NGVE THEORY—RIEMANNIAN APPROACH

Before studying the case when the definitions~4! and~5!
are used, we will review the model studied in@4#, whereR in
the action ~3! is the Riemannian one andLm
5Lm(gmn ,matter fields).

Variation of Sg[2(1/k)*RFdDx with respect togmn

leads to the result

dSg52
1

kE F@Rmn1~gmnh2¹m¹n!#dgmndDx. ~15!

In order to perform the correct integration by parts we
have to make use of the scalar fieldx[F/A2g, which is
invariant under continuous general coordinate transforma-
tions, instead of the scalar densityF. Then, integrating by
parts and ignoring a total derivative term which has the form
]a(A2gPa), wherePa is a vector field, we get

dSg
dgmn 52

1

k
A2g@xRmn1gmnhx2x ,m;n#. ~16!

In a similar way, varying the matter part of the action~3!
with respect togmn and making use of the scalar fieldx we
can express a result in terms of the standard matter energy-
momentum tensorTmn[(2/A2g)](A2gLm)/]g

mn. Then,
after some algebraic manipulations we get, instead of Ein-
stein’s equations,

Gmn5
k

2$Tmn2 1
2 gmn@Ta

a1~D22!Lm#%

1
1

xSD23

2
gmnhx1x,m;nD , ~17!

whereGmn[Rmn2 1
2Rgmn .

By contracting Eq.~17! and using Eq.~11!, we get

hx2
k

D21$M1 1
2 @Ta

a1~D22!Lm#%x50. ~18!

By using Eq.~18! we can now excludeTa
a1(D22)Lm

from Eq. ~17!:

Gmn5
k

2
@Tmn1Mgmn#1

1

x
@x ,m;n2gmnhx#. ~19!

Notice that Eqs.~9! and ~17! are invariant under the ad-
dition to Lm a constant piece, since the combinationTmn

2 1
2 gmn@Ta

a1(D22)Lm# is invariant.
It is very important to note that the terms depending on

the matter fields in Eq.~19! as well as in Eq.~17! do not
containx field, in contrast with the usual scalar-tensor theo-
ries, such as Brans-Dicke theory. As a result of this feature
of the NGVE theory, the gravitational constant does not suf-
fer space-time variations. However, the matter energy-
momentum tensorTmn is not conserved. Actually, taking the
covariant divergence of both sides of Eq.~19! and using the
identity x ;n;a

,a 5(hx),n1x ,aRan , Eqs.~19! and~18!, we get
the equation of matter nonconservation

Tmn
;m522

]Lm
]gmn g

ma]alnx. ~20!

We are interested now in studying the question whether
there is an Einstein sector of solutions, that is are there so-
lutions that satisfy Einstein’s equations? First of all, we see
that Eqs.~19! coincide with Einstein’s equations only if the
x field is a constant. From Eq.~18! we conclude that this is
possible only if an essential restriction on the matter model is
imposed,

2M1Ta
a1~D22!Lm[2Fgmn

]~Lm2M !

]gmn 2~Lm2M !G50,

~21!

which means thatLm2M is an homogeneous function of
gmn of degree one, in any dimension. If condition~21! is
satisfied then the equations of motion allow solutions of gen-
eral relativity ~GR! to be solutions of the model, that is
x5const andGmn5(k/2)Tmn1Mgmn . It is interesting to
observe that when condition~21! is satisfied, a new symme-
try of the action~3! appears. We will call this symmetry
‘‘Einstein symmetry’’ @because Eq.~21! leads to the exis-
tence of an Einstein sector of solutions#. Such a symmetry
consists of the scalings

gmn→lgmn, ~22!

wa→l2 1/Dwa , ~23!

wherel5const. To see that this is indeed a symmetry, note
that from definition of scalar curvature it follows that
R→lR when the transformations~22! and ~23! are per-
formed. Since condition~21! means thatLm is a homoge-
neous function ofgmn of degree one, we see that under the
transformations ~22! and ~23! the matter Lagrangian
Lm→lLm . From this we conclude that Eqs.~22! and ~23!
are indeed a symmetry of the action~3! when Eq.~21! is
satisfied.

The situation described above can be realized for special
kinds of bosonic matter models.

5972 55E. I. GUENDELMAN AND A. B. KAGANOVICH



~1! Scalar fields without potentials, including fields sub-
jected to nonlinear constraints, such as thes model. The
general coordinate-invariant action for these cases has the
form Sm5*LmFdDx whereLm5 1

2s,ms,ng
mn.

~2! Matter consisting of fundamental bosonic strings. The
condition ~21! can be verified by representing the string ac-
tion in theD-dimensional form wheregmn plays the role of a
background metric. For example, bosonic strings, according
to our formulation, where the measure of integration in a
D-dimensional space-time is chosen to beFdDx, will be
governed by an action of the form

Sm5E LstringFdDx,

Lstring52TE dsdt
dD„x2X~s,t!…

A2g
Adet~gmnX,a

mX,b
n !,

~24!

where*LstringA2gdDx would be the action of a string em-
bedded in aD-dimensional space-time in the standard
theory; a,b label coordinates in the string world sheet and
T is the string tension. Notice that under a scaling~22!
~which means thatgmn→l21gmn), Lstring→l (D22)/2Lstring;
therefore, concluding thatLstring is a homogeneous function
of gmn of degree one, that is Eq.~21!, is satisfied only if
D54.

~3! It is possible to formulatethe point particle modelof
matter in a way such that Eq.~21! is satisfied. This is be-
cause for the free-falling point particle a variety of actions
are possible~and are equivalent in the context of general
relativity!. The usual actions are taken to be
S52m*F(y)ds, wherey5gab(dX

a/ds)(dXb/ds) ands is
determined to be an affine parameter except ifF5Ay, which
is the case of reparametrization invariance. In our model we
must take Sm52m*LpartFd4x with Lpart52m*dsd4„x

2X(s)…/A2gF@y„X(s)…# where *LpartA2gd4x would be
the action of a point particle in four dimensions in the usual
theory. For the choiceF5y, condition~21! is satisfied. Un-
like the case of general relativity, different choices ofF lead
to inequivalent theories. Notice that in the case of point par-
ticles ~takingF5y), a geodesic equation~and, therefore, the
equivalence principle! is satisfied in terms of the metric
gab
eff [xgab even if x is not constant. It is interesting also
that in the four-dimensional casegab

eff is invariant under the
Einstein symmetry described by Eqs.~22! and ~23!.

Notice that the theory as formulated in this section makes
sense even without condition~21! being satisfied. In contrast,
we will see in the next section that when allowing torsion,
the consistency of the equations of motiondictatesa condi-
tion which generalizes the condition~21!.

IV. THE NGVE THEORY—VIELBEIN-SPIN CONNECTION
APPROACH

A. General consideration

We are now going to study the theory defined by the
action ~3! in the case that the scalar curvature is defined by
Eqs.~4! and~5!, which means thatR may not coincide with
the Riemannian scalar curvature and as a consequence we do

not expect the NGVE-vielbein-spin connection~VSC! ap-
proach to coincide with the Riemannian approach of Sec. III.

As in Sec. II, variation with respect to the scalar fields
wa leads to the equation

Aa
m]mS 2

1

k
R~e,v!1Lm~e,v,matter fields! D50, ~25!

which implies, ifFÞ0, that

2
1

k
R~e,v!1Lm~e,v,matter fields!5M . ~26!

On the other hand, considering the equations obtained
from the variation of the vielbeins, we get, ifFÞ0,

2
2

k
Rma~e,v!1

]Lm
]eam 50, ~27!

where

Rma~e,v![ebnRmnab~v!. ~28!

Notice that Eq.~27! is indeed invariant under the shift
Lm→Lm1const.

Since R(e,v)[eamRma(e,v), we can eliminateR(v)
from the Eqs.~26! and ~27! after contracting the last one
with eam . As a result we obtainthe nontrivial constraint

eam
]~Lm2M !

]eam 22~Lm2M !50. ~29!

In the caseLm5Lm(gmn ,matter fields), we see that the
form of the constraint~29! coincides with the condition~21!
which provides the existence of the Einstein sector of solu-
tions in the Riemannian approach. In contrast,here it is not a
choice but a consequence of the variational principle.

The constraint~29! has to be satisfied for all components
~in the functional space! of the functionLm . In particular, for
the constant part denoted^Lm&, we obtain:

^Lm&2M50. ~30!

Therefore, one of the consequences of the constraint~29! is
that it dictates that the constant part of the matter Lagrang-
ian ^Lm& is compensated by the integration constant Min
the case of a maximally symmetric vacuum state.

We will see that constraint~29! can be satisfied in three
possible ways:~1! Automatically, that is from the definition
of Lm , without any dynamical consideration;~2! automati-
cally after matter field equationsonly are used;~3! after all
equations are used. All three matter model examples of the
Sec. III belong to case~1!.

As we saw in Sec. III, in the context of the Riemannian
approach, the condition~21! is related to the Einstein sym-
metry, Eqs.~22! and ~23!. It is very interesting to see what
kind of symmetry of the action~3! is associated with the
constraint~29! in the context of the VSC approach. It turns
out that when the constraint~29! is satisfied automatically
~without using the equations of motion of matter!, we obtain
that a local version of Einstein symmetry holds. Further-
more, thislocal Einstein symmetryis nothing but diffeomor-
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phism invariance in the space of the scalar fieldswa , which
has to be accompanied with a conformal transformation of
the vielbeins:

wa→wa85wa8~wb!, ~31!

eam→eam8 5J1/2eam , ~32!

J[DetS ]wa8

]wb
D . ~33!

In terms ofgmn andF ~andx[F/A2g), this symmetry
has the form

gmn→g8mn5J21gmn, ~34!

F→F85JF, ~35!

x→x85J12D/2x. ~36!

Since whenFÞ0, we have that the transformation
wa5wa(x

m) is one to one, we obtain that by means of Eq.
~35!, F can be transformed to whatever we want, in particu-
lar F5A2g or, what is the same,x51 is a possible
‘‘gauge’’ if FÞ0.

B. Torsion in the absence of fermions

Let us now analyze what is the dependence ofvm
ab on

eam and x. As a first step, let us consider the case when
Lm5Lm(gmn , matter fields! and the dimensionality of the
space-timeD54. This of course excludes the possibility of
fermions, but those can be incorporated without qualitative
changes in the discussion.

Then, the variation of the action~3! with respect tovm
ab

gives

«mnlr«abcd@xel
cDner

d1 1
2 el

cer
dx,n#50, ~37!

whereDnear[]near1vna
d edr .

The solution of Eq.~37! is

vm
ab5vm

ab~e!1Km
ab , ~38!

wherevm
ab(e) is the Riemannian spin connection@5,6# and

Km
ab is the contorsion tensor@5,6# which in our case is given

by

Km
ab5

1

2
s,a~em

aeba2em
beaa!, ~39!

wheres[ lnx. Notice that deviation of the new measureF
from the GR measureA2g ~that isxÞconst) is the origin of
torsion.

If we insert this into the expression ofFR(v,e), we ob-
tain

FR~v,e![A2gxR~v,e!5A2g@xR~gmn!26x1/2hx1/2#,
~40!

whereR(gmn) is the Riemannian scalar curvature. The con-
formal coupling form of the scalar fieldx1/2 is apparent. This
is not a surprise since the left-hand side is invariant under the

local conformal rescalings~31!–~33! and the conformal cou-
pling form in the right-hand side is the unique conformally
invariant coupling between a scalar field and the Riemannian
scalar curvature. The right-hand side represents the resulting
second order formalism, that is, what is obtained after solv-
ing the spin connection in terms of the other fields and then
replacing the result into the action. The appearance of the
additional26x1/2hx1/2 term in Eq.~40!, which is absent in
the approach developed in Sec. III, clearly shows the in-
equivalence of the two approaches in all cases, even when no
assumptions are made concerning the validity of the local
Einstein symmetry, Eqs.~31!–~33!, or, what is the same,
Eqs.~34!–~36!.

This can be seen also by examining the shape of the equa-
tions of motion, even when the symmetry, Eqs.~34!–~36!, is
not assumed to hold. From Eqs.~27!, ~28!, ~4!, ~5!, ~38!, and
~39!, we get

Gmn~g!1Hmn5
k

2
~Tmn1Mgmn!, ~41!

where

Hmn[2x21/2@gmnhx1/22~x1/2!,m;n#

1x21@4~x1/2!,m~x1/2!,n2gmn~x1/2!,a~x1/2! ,a#,

~42!

and Gmn(g)[Rmn(g)2
1
2gmnR(g) with Rmn(g) and R(g)

being the Riemannian Ricci tensor and scalar. Taking the
trace of Eq.~41!, we get

hx1/22
1

6FR~g!1
k

2
~Ta

a14M !Gx1/250. ~43!

Using that

Ta
a5eam

]Lm
]eam 24Lm , ~44!

and constraint~29!, we get

hx1/22
1

6
@R~g!2k~Lm2M !#x1/250. ~45!

As we expected,x1/2 has an equation which is of the
conformally coupled type.

In the vacuum~that is taking into account only constant
part ofLm), because of the constraint~30!, Eq. ~45! takes the
form

hx1/22
1

6
R~g!x1/250. ~46!

We can see then that Eqs.~46! and ~41! are invariant under
the transformations~34!–~36! ~which in such a case play the
role of conformal transformations!. Therefore,x field can be
transformed into a constant and the resulting equation~41!
becomes just vacuum Einstein’s equations with zero cosmo-
logical constant. As an example how this is realized in a
concrete model, see Sec. IV D below.
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From Eqs.~41!, ~42!, and ~27!, we get the equation of
matter nonconservation

Tmn
;m52

]Lm
]eam

gmnea
a]alnx, ~47!

where semicolon means covariant derivative in the Riemann-
ian space-time with a metricgmn . This equation coincides
with Eq. ~20! in the case whereLm depends on vielbeins only
throughgmn . In cases where the local Einstein symmetry,
Eqs.~31!–~33! @or, what is the same, Eqs.~34!–~36!# holds,
the x field can be transformed into a constant and then Eq.
~47! becomes equation of covariant conservation of the
energy-momentum tensor.

C. Study of constraint in fermionic models

As it is well known @5,6#, one of the most attractive fea-
tures of the vielbein formalism is its ability to incorporate
fermions in the context of generally coordinate-invariant
theories.

The simplest example of a fermion is that of spin-1
2 par-

ticles. In this case we regard the spinor fieldC as a general
coordinate scalar and transforming nontrivially with respect
to local Lorentz transformation according to the spin-1

2 rep-
resentation of the Lorentz group.

Considering the Hermitian action~which allows for the
possibility of fermion self-interactions! of the form

Sf5E L fFd4x, ~48!

where

L f5
i

2
C̄@gaea

m~]Wm1 1
2vm

cdscd!

2~]Qm1 1
2vm

cdscd!g
aea

m#C1U~C̄C!. ~49!

Herescd[
1
4@gc ,gd#.

Again, vm
cd should be determined by the equation ob-

tained from the variation of the full action with respect to
vm
cd . This in general will give rise to additional contribution

to the torsion, as it is well known@5,6#.
Here, in the context of the matter models~48! and ~49!,

we focus on the conditions where the constraint~29! is sat-
isfied, while x remains unspecified~i.e., remains unphysi-
cal!.

From Eq.~49! and using the equations of motion derived
from the actions~48! and ~49!, we get

ea
m ]L f

]ea
m 22L f5C̄CU822U, ~50!

whereU8 is the derivative ofU with respect to its argument.
We see that the constraint~29! is satisfied on the mass shell
~since the fermion equations of motion are used! with
M50 for L f defined by Eq. ~49! if, for example,
U5c(C̄C)2. Any other quartic interaction, such as
C̄gaCC̄gaC, C̄sabCC̄sabC, (C̄g5C)2, etc., would also
satisfy the constraint~29! on the mass shell withM50. In

particular, the Nambu–Jona-Lasinio model@7# would also
satisfy the constraint~29! on the mass shell withM50.

It is interesting to compare this kind of fermionic models
where the constraint~29! is satisfied withM50, with the
models discussed already at the end of the Sec. III. Here the
constraint is satisfied only on the mass shell while in those
previous examples the constraint~29! is satisfied automati-
cally, using only the definition of the Lagrangian.

D. Example with scalar field

Now let us consider cases when the constraint~29! is not
satisfied without restrictions on the dynamics of the matter
fields. Nevertheless, the constraint~29! holds as a conse-
quence of the variational principle in any situation.

A simple case where the constraint~29! is not automatic
is the case of a scalar field with a nontrivial potential
V(f). In this case the constraint~29! implies

V~f!1M50. ~51!

Therefore, we conclude that, providedFÞ0, there is no dy-
namics for the theory of a single scalar field, since constraint
~51! forces this scalar field to be a constant. This means that
the effective cosmological constantV(f)1M in the Eq.~41!
vanishes identically providedFÞ0.

The constraint~51! has to be solved, together with the
equation of motion,

hf1s,mf ,m1
]V

]f
50, ~52!

wheres5 lnx. From Eqs.~51! and~52! we conclude that the
f field has to be located at an extremum of the potential
V(f). Since the constraint~51! eliminates the dynamics of
the scalar fieldf, we cannot really say that we have a situ-
ation where the symmetry, Eqs.~31!–~33! @or, what is the
same, in the forms~34!–~36!# is actually broken, since after
solving the constraint, together with the equation of motion
~i.e., on the mass shell!, the symmetry remains true.

Then using the constraint~51! in the equation of motion
for x1/2 @Eq. ~45!#, we get

hx1/22
1

6
R~g!x1/250. ~53!

By using the obvious conformal invariance of Eq.~53! and
of all other equations, thex field can be transformed into a
constant, for example one@the correspondent conformal
transformation is in fact the particular case of the local Ein-
stein symmetry, Eqs.~34!–~36! with J„wa(x)…5x(x)#. No-
tice that in this simple matter model, Eq.~47! takes the trivial
form 050.

V. THE INCORPORATION OF VECTOR BOSONS INTO
THE NGVE THEORY IN THE VSC APPROACH

A. General notions

As it is well known, interactions between elementary par-
ticles appear to be well described by the exchange of vector
bosons. The incorporation of vector bosons is, therefore, an
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important subject which has to be dealt with in the context of
the new gravitational theory developed in this paper.

As we have seen in the case of the point particle models,
different formulations of a matter model, which in the case
of GR are physically equivalent, can in fact be the origin of
inequivalent theories when formulated in the framework of
the NGVE theory. As we will see in this chapter, a similar
situation arises in the case of vector bosons. We will discuss
here~and in the next section! several options, some consis-
tent with local Einstein symmetry and others which are not.
As it is well known, the vielbein formalism allows us to
regard a vector in different ways:~i! GVLS: a vector under
general coordinate transformations, while being a scalar un-
der local Lorentz transformations.~ii ! GSLV: a scalar under
general coordinate transformations, while being a vector un-
der local Lorentz transformations. LetAm be a GVLS. We
can then always define a GSLV asAa5ea

mAm .

B. Model of vector boson with the local Einstein symmetry

Here we will choose the GSLV variables as the funda-
mental Lagrangian variables. Defining the Lorentz tensor
and generally coordinate-invariant scalar field strength

Fab5ea
mDmAb2eb

mDmAa , ~54!

where DmAa5]mAa1vmabA
b, we choose the following

matter Lagrangian for massless vector bosons:

Lv.b.52 1
4 hachbdFabFcd . ~55!

In the first order formalism it is understood thatvmbc is
regarded as an independent variable, to be determined from
the equations of motion obtained by variatingvmbc . Notice
that the matter Lagrangian~55! is in fact homogeneous of
degree two in the vielbeins. Therefore, a theory incorporat-
ing only Lv.b. as a matter model, is consistent with the local
Einstein symmetry, Eqs.~31!–~33!, and satisfies in an auto-
matic form the constraint~29! with M50. As a consequence
of the symmetry, Eqs.~31!–~33!, we obtain of course that in
this modelx can be taken to be one ifFÞ0 everywhere. If
we do this, then we can see immediately that in the approxi-
mation wherevmab5vmab(e) $vmab(e) is the Riemannian-
spin connection@see also Eq.~38!#%, the Lagrangian density
~55! with Fab defined by Eq.~54! is invariant under the
gauge transformations

Aa→Aa1ea
m ]L

]xm . ~56!

If we do not fixx field, then the form of the gauge transfor-
mations is modified, but the model is still gauge invariant in
the same approximation.

We should point out that together with the obvious advan-
tages which this formulation of the theory of massless vector
bosons has, this approach leads to weak violations~of gravi-
tational strength! of the gauge invariance principle. This is a
consequence of the first order formalism, where the spin con-
nection is determined from its equation of motion and we
obtain in fact that there will be a contribution to the torsion
from the vector boson itself. For example, it turns out that
this gravitational back reaction of the vector bosons on grav-

ity ~i.e., onvmab) is proportional to the gravitational constant
k and violates the gauge invariance. Contribution tovmab
from fermions would also produce violations of gauge in-
variance in Eq.~55!.

C. Gauge fields from extra dimensions in the VSC approach

Here we will see that in the framework of higher-
dimensional unification, the VSC approach can incorporate
gauge fields. It is important to notice that in the context of
the NGVE theories only the VSC alternative can success-
fully implement the idea of higher-dimensional unification.
The Riemannian approach, developed in@4# and reviewed in
Sec. III, is not suitable for this task.

Let us see first of all that the purely Riemannian approach
to the NGVE theories does not provide a successful formu-
lation of the higher-dimensional unification. To see this, we
start from the five-dimensional NGVE-Riemannian action

S552
1

k5
E FR5~gab!d

5x, ~57!

where

F[«abcde«
ABCDE~]Awa!~]Bwb!•••~]Ewe!, ~58!

gab is the five-dimensional metric, andR5 is the Riemannian
scalar curvature in the five-dimensional space-time.

Our choice of parametrizing the five-dimensional metric
gAB is @8#

gAB5S gmn1e2k2vAmAn ekvAm

ekvAn v D ,
wheregmn , v, andAm do not depend on the fifth dimension
x5, which is taken to be compactified. Doing the integration
over x5, we get

S55
1

kE F@2R41e2vgmrgnsFmnFrs#d4x, ~59!

whereR4 is the scalar curvature of a four-dimensional space-
time with the metricgmn , k5k5/2pr, r being the size of
the extra dimension, andFmn5]mAn2]nAm .

We see now that in contrast with the usual Kaluza-Klein
theories, variation with respect tov leads to the nontrivial
constraint for the gauge fieldgmrgnsFmnFrs50. Such a
constraint is of course inconsistent with a phenomenologi-
cally successful theory of gauge fields showing, therefore,
the failure of the Riemannian approach to the Kaluza-Klein
unification in the context of the nongravitating vacuum en-
ergy theories. We now turn our attention to higher-
dimensional unification in the context of the VSC approach.

Let us consider then the action~3! in the five-dimensional
case (D55), but where the scalar curvature is defined by
Eq. ~4!, which means thatR may not coincide with the Rie-
mannian definition, as we have verified it is the case in the
four-dimensional theory.

Let us now consider the dependence of the spin connec-
tion vAab on the vielbeinea

A and onx[F/Ag ~we follow
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the same steps we went through in the four-dimensional
case!. Variation of the action~3! with R defined as in Eq.~4!
in five dimensions gives

«abcd f«
ABCDF~xeC

c eD
dDBeF

f 1 1
3 eC

c eD
d eF

f x,B!50. ~60!

The solution of Eq.~60! is now

vA
ab5vA

ab~e!1KA
ab , ~61!

wherevA
ab(e) is the Riemannian-spin connection of the five-

dimensional space-time andKA
ab is the contorsion tensor

which in our case is given by

KA
ab5

1

3
s,B~eA

aebB1eA
beaB!. ~62!

If we insert this into the expression forFR5(e,v), we
obtain

FR5~e,v![AgxR5~e,v!5Ag@xR5~gAB!2 16
3 x1/2hx1/2#

50. ~63!

HereR5(gAB) is the ordinary scalar curvature in the five-
dimensional Riemannian space-time with the metricgAB .
Again, we find a conformal coupling appropriate toD55,
for the fieldx1/2.

The other equations of motion, obtained from the varia-
tion with respect toea

A , after some algebraic manipulations,
are

G~5!AB~e,v!5G~5!AB~gCD!1H ~5!AB~x1/2!50, ~64!

whereG(5)AB[R(5)AB2 1
2gABR5 and

H ~5!AB~x1/2!5
2

x1/2@gABhx1/22 2
3 ~x1/2!,A;B#

2
2

3x
@gAB~x1/2!,C~x1/2! ,C

22~x1/2!,A~x1/2!,B#. ~65!

As in the four-dimensional case, ifFÞ0, using the sym-
metry Eqs.~31!–~33! @which in terms ofx andgAB appears
as a conformal transformation, see Eqs.~34!–~36!, where
gmn should be replaced bygAB#, we can set the gauge
x51, obtaining then equations identical to those of ordinary
general relativity, in this case forD55, however. The
Kaluza-Klein mechanism for gauge field generation works
then as usual.

When considering non-Abelian compactifications, things
work most straightforward when the matter Lagrangian that
produces the compactification satisfies the constraint~29!.
This is the case if the compactification is achieved, for ex-
ample, through some hedgehog configuration@9# which cor-
responds to the identity mapping from the extra-dimensional
sphere into a space of scalar fields satisfying nonlinears
model-type equations. In addition, instead of sphere some
other finite area noncompact manifolds can be considered

@10#. The problem in this case is associated with the large
mass generation which the Kaluza-Klein gauge fields get in
this kind of approaches.

VI. BREAKING LOCAL EINSTEIN SYMMETRY

A. A gauge1matter fields system

In some cases, the constraint~29! is not automatically
satisfied, in fact. In those cases, in order for the constraint to
be satisfied, thex field becomes determined, therefore,
breaking the symmetry, Eqs.~31!–~33!.

To see how this works, we study a model of a gauge field
~now formulated in the GVLS way, in contrast with what we
did in Sec. V B! and a neutral scalar field. Now gauge in-
variance is evident, however, local Einstein symmetry is bro-
ken. Although the model is not very realistic we study it only
to get an insight how the theory works rather than to get a
correct description of nature.

Therefore, we study the model~3! with the particular
choice of the matter Lagrangian densityLm given by

Lm5
1

2
gmn]mf]nf2U~f!2

1

4
FmnFabg

magnb, ~66!

whereFmn[]mAn2]nAm .
Notice that the action~3! with the matter Lagrangian~66!

is not invariant under the local Einstein symmetry Eqs.~31!–
~33!. However, the nontrivial constraint

2
1

2
FmnF

mn12@U~f!1M #50 ~67!

is still satisfied as a result of the equations of motion.
We can study now how the theory works in several types

of solutions. First of all, if we are interested in radiation-type
solutions, whereFmnF

mn50, the situation becomes identical
~from the point of view of symmetries! to that when no
gauge field was considered~see Sec. IV D!.

If we look, for example, for static purely electric spheri-
cally symmetric solutions of the equations of motion, Eq.
~67! tells us thatf is a function of the electric field, not just
a constant as in Sec. IV D. After this, the equation of motion
for thef field ~52! allows us to solveds/dr as a function of
f5f(F0r) and its first and second derivatives~as well as
function of the metric!. Finally, this solution fords/dr has
to be inserted in the equation forE[F0r , which involves
ds/dr. The resulting problem is a highly nonlinear one but a
well-defined one which shows the role of thes[ lnx field in
the enforcement of the constraint. Notice that thex field is
now not arbitrary. However, away from the sources, that is in
a vacuum state that satisfies constraint~51!, Eq. ~53! holds,
which is an equation with conformal invariance. Therefore,
x is there totally arbitrary and, therefore, unphysical.

B. Breaking the local Einstein symmetry by the gravitational
sector of the theory

Breaking of the local Einstein symmetry is possible also
in the gravitational sector of the theory in a case of an ap-
pearance of higher order terms in the curvature~for example,
as could be the case for quantum corrections!. These terms
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usually give rise to noncausal propagation and ghosts. In our
case, however, the fact that the measure of integration isF
instead ofA2g allows us to consider contributions which
are meaningless in the usual theory. This is the case when in
the Lagrangian density we consider possible Euler (r) and
Hirzebruch-Pontryagin (j) contributions

r[
1

A2g
«abmn«abcdRababRmncd , ~68!

j[
1

A2g
«abmnRababRmncdh

achbd. ~69!

rA2g andjA2g are total divergences even in the presence
of torsion@11# ~our conventions for«abmn are different from
those of Ref.@11#! and, therefore, irrelevant in the standard
approaches. However, since the measure of integration is
F, rF and jF are contributions to the action that can be
considered in our case. These give nontrivial contributions to
the equations of motion. Since the contribution ofj into the
total action violates the parity symmetry, we do not consider
it in this first analysis. Furthermore, we present here only a
sketch about the main features of the theory in the presence
of the Euler contribution into the Lagrangian density.

It is known @12# that when studying space-time of dimen-
sionalities bigger than four, the corresponding generalization
of the four-dimensional Euler density gives a nontrivial con-
tribution to the equations of motion; however, it does not
give rise to ghosts. In our case, this is still true and the proof
follows the same lines of what is done in the higher-
dimensional case@12#.

Considering small perturbations ofea
m and x around

ea
m5da

m and ofx51, we obtain from the Euler contribution
into the Lagrangian density:

SE5E Fd4x]a j
a, ~70!

where

j a54@2s ;b
,as ,b22s ,ahs2s ,bs,bs ,a# ~71!

ands5 lnx. As in Ref. @12#, the purely gravitational effects
vanish in the quadratic approximation. We see, for example,
that (]2s/]t2)2 is absent in the integrand of Eq.~70!. Second
derivatives with respect to time appear in the integrand of
Eq. ~70! only linearly.

Notice that when the Euler density is present, the con-
straint ~29! becomes now a dynamical equation fors:

2r1eam
]Lm
]eam 22Lm12M50, ~72!

wherer is given by Eq.~68!. Equation~72! is a dynamical
equation fors rather than a constraint because second order
time derivatives ofs appear in it.

Finally, notice that in the context of the modifications in
the gravitational sector, described in this subsection, flat
space-time is still always a solution.

C. General relativity limit as freezing the x degree of freedom

As we have seen, the vanishing of the cosmological con-
stant relies on the existence of thex field and the nontrivial
constraint~29! associated with the new measure of integra-
tion and with the scalar fieldswa from which this measure
~and thex field! is built.

Now, we want to see in what limit the model studied here
becomes undistinguishable from GR. This is important from
the point of view of the correspondence principle. This ques-
tion has obviously to do with what is assumed for the dy-
namics of thex field.

When the local symmetry, Eqs.~31!–~33!, exists, thex
field does not represent a physical degree of freedom and it is
in fact arbitrary and not determined by the equations of mo-
tion. When the constraint~29! is nontrivially satisfied, the
x field has to be determined so as to make things work.
Finally, as we explained in Sec. VI B, we found a way to
turn the x field into a dynamical field by introducing the
Euler term.

Obviously, we should be able to obtain GR if the dynam-
ics of thex field is turned into a trivial one, that is, if only
x5const is allowed. This is of course the exact opposite to
the case of unbroken symmetry. This is possible within the
general form~3! of the theory, provided we add toLm a
Lagrange multiplier term that enforcesx5const. The form
of this contribution to the Lagrangian density is

L freezing5
1

A2g
«mnab]mEnab , ~73!

where we assume that all components ofEnab are to be
varied without restriction, i.e.,Enab is a new fundamental
field. The variation of the action with respect toEnab gives
in fact

]mx5const, ~74!

that is the only possible configuration for thex field is
x5const.

The variation of the action with respect toeam gives

2
2

k
Ram~v!1

]Lm
]eam 1eamL freezing50. ~75!

Contracting this witheam, we obtain

2
2

k
R~v!1eam

]Lm
]eam 14L freezing50. ~76!

Also, the variation with respect to the fieldswa leads to~if
FÞ0)

2
1

k
R~e,v!1Lm~e,v,matter fields!1L freezing5M .

~77!

From Eqs.~76! and ~77!, we get

eam
]Lm
]eam 22~Lm2L freezing2M !50, ~78!
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which now is not a constraint but rather determines the
Lagrange multiplier termL freezing.

Contracting Eq.~75! with en
a , we obtain

2
2

k
Rmn~v!1en

a ]Lm
]eam 1gmnL freezing50. ~79!

From Eqs.~79! and ~76!, we get

2
2

kFRmn~v!2
1

2
gmnR~v!G1en

a ]Lm
]eam 2gmnLm1gmnM50,

~80!

or, what is the same,

Gmn5
k

2S en
a ]Lm
]eam 2gmnLm1gmnM D5

k

2
~Tmn1Mgmn!,

~81!

whereGmn[Rmn2 1
2gmnR.

Taking into account that thex degree of freedom is fro-
zen now@see Eq.~74!#, we conclude that Eqs.~81! are the
Einstein equations of GR~or Einstein-Cartan equations if
fermions are included in the model!, where an arbitrary in-
tegration constantM playing the role of a cosmological con-
stant appears.

No information concerning the vanishing of the cosmo-
logical constant is obtained now, because the constraint that
used to do this job contains now the Lagrange multiplier
field Enab which is not determined by any other equation,
therefore, Eq.~78! is now not a constraint at all.

VII. DISCUSSION AND CONCLUSIONS

Here we have developed the consequences of changing
the measure of integration fromA2gdDx to dw1`dw2
`•••`dwD , when the mapping from the scalarswa
(a51,2, . . . ,D) to the coordinates is not knowna priori.
This means that the measure of integration is determined
dynamically and not assumed to have a particular form as it
is done in GR. Such model@4# has been called ‘‘nongravi-
tating vacuum energy~NGVE! theory’’ because if we change
the integrand~i.e., the Lagrange density! by a constant,
which in GR is associated with a vacuum energy, no change
in the equations of motion is obtained~ignoring possible
boundary effects!.

Moreover, we have discovered in this paper, that when
using the vielbein-spin connection first order formalism in
the context of the models based on the NGVE principle, a
nontrivial constraint~29! appears as a result of equations of
motion. The first order formalism based ongmn ~or em

a ) and
the connectionGmn

l as independent variables is physically
equivalent and will be studied in a subsequent publication.

In our previous paper on NGVE theory@4# we have seen
that the constant part of the vacuum energy does not affect
gravitational properties, but an integration constant appears
and it plays a role similar to that of an effective cosmological
term ~although a maximally symmetric de Sitter space did
not exist there!. Now, allowing for the possibility of torsion,
such integration constant appears too, but it is determined
dynamicallyso as to cancel any possible constant part of the
vacuum energy, which is present in the starting formulation.

The existence of a nontrivial constraint does, however,
modify the dynamics of the matter fields in a nontrivial way.
This can be avoided, as we have seen in Sec. VI D, by mak-
ing the dynamics of thex field trivial if we introduce a
Lagrange multiplier. In this case the constraint becomes only
a definition of the Lagrange multiplier and, therefore, fails to
give additional information on the effective cosmological
constant. This version of the theory coincides physically with
the models discussed by the authors of Refs.@13# where the
cosmological constant is an integration constant. It is here
obtained from the general formalism by enforcing from out-
side the triviality of thex field, which is of course not a
natural thing to do. This version of the theory does not an-
swer the question of the vanishing of the cosmological con-
stant, which is again an arbitrary integration constant, with
no particular reason to pick the vanishing value as has been
pointed out by Weinberg@3#.

We have seen in Sec. VI A that terms that violate the
local Einstein symmetry can be incorporated and they do not
alter the basic conclusions of the model, that is, the vanish-
ing of the cosmological constant term. They do give rise,
however, to a nontrivial dynamics for the fieldx which ac-
quires a physical meaning because of these breaking terms.
Furthermore, the constraint~29! is satisfied anyway by dy-
namically adjusting the fieldx, as we saw in the particular
example of Sec. VI A.

Incorporating masses, for example, will modify this con-
straint so that the masses will enter in the constraint. In the
case of fermions, we have seen in Sec. IV C that if we start
from Nambu–Jona-Lasinio–~NJL-! type models@7#, the
constraint~29! is satisfied on the mass shell without restric-
tion on the matter field dynamics. However, a spontaneous
symmetry-breaking mechanism originates from quantum
corrections and as a result masses of fermions appear. So if
our classical arguments concerning the satisfaction of the
constraint~29! in the NJL model survive the quantum cor-
rections, we would then expect that the fermion masses may
not enter in the constraint at all. If they do, they contribute to
a nontrivialx dynamics. Which alternative is the right one
requires a nontrivial analysis.

In addition, in the context of some model resembling the
standard model, the constraint~29! seems to give a basic
condition which tells us that the Higgs boson field is a com-
posite of the other fields appearing in the theory in a way that
resembles what we have studied in Sec. VI A.

A way to avoid the constraint from having a big effect on
the dynamics of any single matter field is to introduce a large
number of fields, most of them interacting with one another
only gravitationally and of course through the constraint.
Since the wholeLm enters in the constraint, enlarging the
number of fields diminishes the ‘‘job’’ each individual field
has to do. In such a way we expect to recover the local
symmetry, Eqs.~31!–~33!, at long distances, i.e., the trivial-
ity of the constraint at long distances. This would be a way to
realize the infrared dynamical symmetry restoration of gauge
symmetries as it has been discussed in the literature@14#.

Keeping a nontrivial constraint~that is, avoiding the in-
troduction of the Lagrange multiplier that trivializes thex
dynamics!, in Secs. III–V, we have formulated several mod-
els ~including fermions, scalar field, and vector bosons!
where the constraint~29! is satisfied at least on the mass
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shell. However, it follows from the equations of motion that
the only possible configuration of a single scalar field with a
potential is a constant scalar field located in the extremum of
the potential. In this casethe constraint dictates that this
extremal value of the potential is compensated by the inte-
gration constant, thus providing the mechanism for the non-
existence of the cosmological constant on the mass shell.
Those models respect the local Einstein symmetry. There-
fore, we can set the gaugex51 and in this case Eq.~47!
becomes the equation of the covariant conservation of the
energy-momentum tensor.

The infinite-dimensional symmetries~7! and ~12! impose
strict restrictions on the possible induced terms in the quan-
tum effective action, if no anomalies appear in this effective
action. In particular, symmetry under the transformation~12!
seems to prevent the appearance of terms of the form
f (x)F @except forf (x)}1/x# in the effective action which
although is invariant under volume-preserving transforma-
tions ~7!, breaks symmetry~12!. The casef (x)}1/x is not
forbidden by symmetry~12! and appearance of such a term
would mean inducing a ‘‘real’’ cosmological term, i.e., a
term of the formA2gL in the effective action. However,
appearance of such a term seems to be ruled out because of
having opposite parity properties to those of the action given

in Eq. ~3!. Furthermore, in the absence of Euler-like terms
~of Sec. VI B!, the variational principle gives nowL50 in
the vacuum if such term is ‘‘forced’’ into the theory. Of
course, in the absence of a consistently quantized theory,
such arguments are only preliminary. Nevertheless, it is in-
teresting to note that if all these symmetry arguments are
indeed applicable, this would imply that the scalar fields
wa can appear in the effective action only in the integration
measure, that is, they preserve their geometrical role.

Finally, it is very interesting that in attempts to build a
model which respects both the local Einstein symmetry and
the gauge invariance, we have succeeded in finding it only in
the framework of the Kaluza-Klein unification. It is a clue
that the resolution of the cosmological constant problem and
the problem of unifying the fundamental forces of nature are
intrinsically intertwined.
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