PHYSICAL REVIEW D VOLUME 55, NUMBER 10 15 MAY 1997

Gravitational theory without the cosmological constant problem
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We develop the principle of nongravitating vacuum energy, which is implemented by changing the measure
of integration in the action from/—gdPx to an integration in an internal space DBfscalar fieldsp,. As a
consequence of such a choice of the measure, the matter Lagrang@m be changed by adding a constant
while no cosmological term is induced. Here we develop this idea to build a new theory which is formulated
through the first order formalism, for example, when using vielbefh and spin connectionwzb
(a,b=1,2,...,D) as independent variables. The equations obtained from the variatief afid the fields
¢, iImply the existence of a nontrivial constraint. This approach can be made consistent with invariance under
arbitrary diffeomorphisms in the internal space of scalar field¢as well as in ordinary space-timerovided
that the matter model is chosen so as to satisfy the above-mentioned constraint. If the matter model is not
chosen so as to satisfy automatically this constraint, the diffeomorphism invariance in the internal space is
broken. In this case the constraint is dynamically implemented by the degrees of freedom that become physical
because of the breaking of the internal diffeomorphism invariance. However, this constraint always dictates the
vanishing of the cosmological constant term and the gravitational equations in the vacuum coincide with
vacuum Einstein’s equations with zero cosmological constant. The requirement that the internal diffeomor-
phisms be a symmetry of the theory points towards the unification of forces in nature such as in the Kaluza-
Klein scheme[S0556-282(197)02010-9

PACS numbefs): 04.20.Cv, 04.50+h, 04.62+V

[. INTRODUCTION straint or the associated local gauge symmetry implies the
physical irrelevance of certain degrees of freedom. It should
In 1917, Einstein realizefil] that his field equations can be pointed out that the vanishing of the cosmological term is
be modified by introducing the ‘“cosmological constant achieved even if the constraint is nontrivially implemented.
term.” This “ A term” appears in the Einstein’s equations in In this case the degrees of freedom mentioned above become
the form nontrivial and are dynamically active in the mechanism that
eliminates the cosmological constant.
This approach is based on a paper by{4s where the
uvo @) “principle of nongravitating vacuum energiNGVE)” was
formulated. There the usual measure of integration that is
wherex=16xG. Although Einstein considered the introduc- —g, was changed by another scalar dendityhich is also
tion of such a term a mistake, the fact is that such a terna total derivative, built fromD scalar fields(if D is the
does not violate any symmetry. Furthermore, quantum fieldlimension of space-timeln an explicit form
theory (QFT) predicts the existence a vacuum energy be-
cause of the zero point fluctuations, which gives an infinite (I)Egalaz"‘aDsalaz‘”aD(aal(‘oal)(aaz(paz)‘ . -((9aD(paD),

1 K
R/uz_ Eg,uvR_Ag/LVZET

contribution to T,, which is of the form g,,po, (2
(po=const), that is, indistinguishable from theterm. Even
if the infinity problem could be avoided, QFT naturally pre- where ¢,, (a=1,2,...,D) are scalar fields. In this case

dicts a very largeA term, since on purely dimensional [L,®dPx is invariant under the change,— L+ const,
ground, QCD would give a vacuum energy of order 1since then we just add to the integrabhgd a total deriva-
GeV* and in quantum gravity one expects’iGeV#, while  tive term. We should then remember that usually the cosmo-
observations require the vacuum energy to be less thelogical constant piece in Eql) is generated from a term of
10746 GeV*. For a historic overview sd@] and for reviews the form A f/—gdPx, which with the change of measure
of the modern attempts to solve this puzzle & becomes an irrelevant total divergence. In spite of this, in
In this paper we will develop an approach where, as auch a model an integration constant, that plays a role which
consequence of a nontrivial constraint imposed by the variaresembles that of a cosmological term, appears in the equa-
tional principle, which has a highly geometrical motivation, tions (although for nonvanishing values of this integration
any A term is forbidden. When this constraint is satisfied inconstant, maximally symmetric spaces are not availgte
an automatic form by the matter models, we have an addin addition, the equations deviate from those of general rela-
tional local symmetry in the model. The triviality of the con- tivity and a new physical massless “dilaton” appears, with
the corresponding phenomenological problems.
In contrast, here we will find that when formulating the
*Electronic address: GUENDEL@BGUmail. BGU.AC.IL theory in a way which is invariant under diffeomorphisms in
"Electronic address: ALEXK@BGUmail.BGU.AC.IL the manifold of fieldsp,, then no term that plays the role of
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a cosmological constant term can appear. Together with thisn the total Lagrangian density=—(1/k)R+L,. First, no-
no propagating dilaton appears. This is achieved in a simpléce that ® is the Jacobian of the mapping,= ¢.(X%),
way by formulating the model in terms of vielbeins and al-a=1,2,...,D. If this mapping is nonsingulard+0), then
lowing the possibility of torsion. This is quite a natural ap- (at least locally there is the inverse mapping'=x*(¢,),
proach since vielbeins and torsion appear in any case if fera=0,1... D—1. Since ®d°x=D!de; \dg,/\---
mions are introduced. Ndep, we can think®dPx as integrating in the internal

In the context of this formulation of the theory, the local space variableg,. In addition, if ®+#0 then there is a co-
symmetry mentioned before, is actually the group of diffeo-ordinate frame where the coordinates are the scalar fields
morphisms in the space of the scalar fielgls If this group  themselves.
is indeed a symmetry, the vanishing of the cosmological con- The field® is invariant under the volume-preserving dif-

stant is a trivial consequence. If this group is not a symmetryfeomorphisms in internal space’,= ¢.(¢p) Where
still the variation with respect to these degrees of freedom

leads to the constraint that makes the cosmological constant agogl o7<p{)2 azp{JD
vanishing. €a.a, .2 =€ph.bs. . b (6)
As was mentioned above, the key idea of the theory is 1 00 0fa,  O¢a, TEP

replacing the measuré— gdPx by ®dPx, ® being given by
Eqg. (2) and we are then led to the following action for grav-
ity plus matter:

Such infinite-dimensional symmetry leads to an infinite
number of conservation laws. To see this, notice that from
the volume-preserving symmetrigs, = ¢, (¢p), defined by

1 Eq. (6), which for the infinitesimal case imply
szf L@dezf (——R+ Ly, | ®dPx, ®)
K aFa a, --a ((Pb)
192 D-1
: , @a= patAg 7
whereR is the scalar curvature. To defifg we can use the IPag
standard Riemannian definition in termsg@f,. This leads
to the theory studied in Ref4]. (A<1), we obtain through Noether’s theorem the conserved

A different approach, which will be shown in this paper to quantities
be physically inequivalentis to allow a more general form

for R which allows for the possibility of torsion. In this case e anf — £R+ 1 IFaja,--ap_4(Pb) ®
we define[5] W=Aal 7 Faay 2 IPa, '
— by . .
R(w,e)=e%e”R,,an(0), (4) We now want to notice that the form of the acti¢®)
. . implies the existence of a very special set of equations.
Ruvab(@)=3d,0,5p= 3,@ 4abT (@ 0@ ch™ @5a® ucb) s These are the equations of motion obtained by variation of

(5 the action(3) with respect to the scalar fields, and they are

where e = 5% 72" is the diagonaD X D matrix with

elements+1,—1,...,—1 on the diagonale are the viel- ALd,
beins, andwff’ (a,b=1,2,...,D) is the spin connection.

The matter Lagrangiah,, that appears in Eq.3) does not where

depend on the scalar fields, and it is now a function of

matter fields, vielbeins, and spin connection, considered as Ab=Eaa, ap_,b8 12 P (0, @q))
independent fields. We assume for simplicity thgt does

not depend on the derivatives of vielbeins and spin connec- X(0ayPa,)*(ay Pag ,)- (10)
tion.

It should be noted that the same results can be obtained it follows from Eq. (2) that Afd, op =D~ 8, ® and tak-
the first order formalism where we use the metig, (or  ing the determinant of both sides, we get
vielbeinse,,) and the connectioli’,, as independent vari- det(Af)=(D~°/D!)®°~*. Therefore, if®+#0, which we
ables. will assume in what follows, the only solution for E(Q) is

As it is well known[6], if fermions contribute td.,, the

=0, €)

1R L
- —R+
K m

vielbein formalism becomes unavoidable anyway. This could _ 1 _

: =——R+L,= .
be regarded as an argument to view the use of Ejsand L K Rt Ln=cons=M (1
(5) as a more fundamental starting point than that of using
the Riemannian definition foR. As we will see, in the Finally, we show that the same structure of this action,
NGVE theory studied her&}(w,e) # Riemann scalar, even Which leads to the very special set of equations displayed
in the casd.,,=0. above, is associated with another, even more puzzling set of

symmetries than the volume-preserving diffeomorphisms. In

fact, let us consider the following infinitesimal shift of the

fields ¢, by an arbitrary infinitesimal function of the total
In this section we study the general features of the NGVH.agrangian density. = — (1/x)R+L,, that is

theory, which are consequences only of the fact that the sca-

lar fields ¢, enter just in the measure of integration and not Pa=¢ategqa(l), €<l (12

Il. GENERAL FEATURES OF THE NGVE THEORY
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In this case the action is transformed according to
5S= EDJ AgL&Mga(L)dDX=eJ 9,0#dPx, (13

where Q#=DALf,(L) and f (L) being defined from
0a(L) through the equatiohdg,/dL=df,/dL. To obtain
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By using Eq.(18) we can now excludd+(D—-2)L,
from Eq. (17):

K 1
G;,LVZE[T,LLV_l—Mg,uV]_l—;[X,/.L;V_g,LLVDX]' (19)

Notice that Eqs(9) and (17) are invariant under the ad-

the last expression in the EQL3), it is necessary to note that dition to L, a constant piece, since the combinatitp,
d,A4=0. By means of the Noether’s theorem, this symme-_ 1 9, [ T4+ (D—2)L,] is invariant.

try leads to the conserved current

L
it=AsLge -t =AL [ gLaL. g
0

It is very important to note that the terms depending on
the matter fields in Eq(19) as well as in Eq(17) do not
containy field, in contrast with the usual scalar-tensor theo-
ries, such as Brans-Dicke theory. As a result of this feature

. of the NGVE theory, the gravitational constant does not suf-

The existence of this symmetry depends crucially on the inter gpace-time variations. However, the matter energy-
dependence of the Lagrangian denditpn the scalar fields  yomentum tensof ,, is not conserved. Actually, taking the
that define the measure. In fact, the existence of this symmesyariant divergence of both sides of B49) and using the

try could be used to justify the expectation that quantu
corrections would keep that basic structure, provided it is[h

present at the tree level.

Ill. THE NGVE THEORY—RIEMANNIAN APPROACH

Before studying the case when the definitigdsand (5)
are used, we will review the model studied #, whereR in
the action (3) is the Riemannian one andL,,
=Lm(9,, ,matter fields).

Variation of S;=—(1/k)[R®d°x with respect tog*”
leads to the result

1
8Sy= fq)[RWJr(gWD—VMVV)]angDx. (15

K

In order to perform the correct integration by parts we

have to make use of the scalar fiejd=d/\/—g, which is

invariant under continuous general coordinate transform
tions, instead of the scalar densidy. Then, integrating by
parts and ignoring a total derivative term which has the for

d,(N—gP%), whereP“ is a vector field, we get

6S 1
59/,?1/ == ;V _g[XR/.LVJ’_g}LVDX_X,}L;V]'

(16)

In a similar way, varying the matter part of the acti@)
with respect tag#” and making use of the scalar fieldwe

Mdentity x:2 ,=(0x),,+ X' “Rq,, EGs.(19) and(18), we get

e equation of matter nonconservation

. m
T4 = _2079’“’

ghd,Iny. (20

We are interested now in studying the question whether
there is an Einstein sector of solutions, that is are there so-
lutions that satisfy Einstein’s equations? First of all, we see
that Egs.(19) coincide with Einstein’s equations only if the
x field is a constant. From E@18) we conclude that this is
possible only if an essential restriction on the matter model is
imposed,

A(Ly—M)

2M+T%+(D-2)L,=2| g* 50

_(Lm_M)}:O1
(21)

Avhich means that ,,—M is an homogeneous function of

g”” of degree one, in any dimension. If conditi¢®l) is

MSatisfied then the equations of motion allow solutions of gen-

eral relativity (GR) to be solutions of the model, that is
x=const andG,,,=(«/2)T,,+Mg,,. It is interesting to

observe that when conditiai2l) is satisfied, a new symme-
try of the action(3) appears. We will call this symmetry
“Einstein symmetry” [because Eq(21) leads to the exis-
tence of an Einstein sector of solutign§uch a symmetry
consists of the scalings

can express a result in terms of the standard matter energy-

momentum tensofT ,,=(2/—9g)d(v—9gLm)/dg*”. Then,

g*’'—ng"”, (22

after some algebraic manipulations we get, instead of Ein-

stein’s equations,
K 1 a
Gv=5 T3 9l Ta+ (D—2)Ln]}

1/D-3
+- Tg[LVDX+Xl/L;V ’ (17)

X

whereG,,=R,,—3Rg,, .
By contracting Eq(17) and using Eq(11), we get

Oy— DKﬂlM + %[Tg+(D—2)Lm]}X=0- (18)

ea—N" Poq, (23)
where\ =const. To see that this is indeed a symmetry, note
that from definition of scalar curvature it follows that
R—AR when the transformation§22) and (23) are per-
formed. Since conditior{21) means thaLl,, is a homoge-
neous function ofy*” of degree one, we see that under the
transformations (22) and (23) the matter Lagrangian
L,—\L,,. From this we conclude that Eq&2) and (23)
are indeed a symmetry of the actid® when Eq.(21) is
satisfied.

The situation described above can be realized for special
kinds of bosonic matter models.
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(1) Scalar fields without potentials, including fields sub- not expect the NGVE-vielbein-spin connectieddSC) ap-
jected to nonlinear constraints, such as thenodel. The proach to coincide with the Riemannian approach of Sec. lll.
general coordinate-invariant action for these cases has the As in Sec. Il, variation with respect to the scalar fields
form S,= L, ®d°x whereL,= %O',Ma',,,g"“’. ¢, leads to the equation

(2) Matter consisting of fundamental bosonic strings. The
condition (21) can be verified by representing the string ac-
tion in theD-dimensional form wherg,, plays the role of a
background metric. For example, bosonic strings, according
to our formulation, where the measure of integration in awhich implies, if®+0, that
D-dimensional space-time is chosen to ®&P’x, will be
governed by an action of the form

1
ALd, —;R(e,w)+Lm(e,w,matterfield$ =0, (25

1
— ;R(e,w) +L (e 0w, matter fieldg=M. (26)

Sm:j Lstring‘pdDX- On the other hand, considering the equations obtained
from the variation of the vielbeins, we get,df#0,

L TJ.dadraDO“_X“nT»\Me( XEXT) 2 oL
string /=9 Gur”a% b — —Rua(€0)+ -5 =0, (27)
(24)
here

wherefLst,ing\/—ngx would be the action of a string em- W
bedded in aD-dimensional space-time in the standard RMa(e!w)EebyRMvab(w)' (28
theory; a,b label coordinates in the string world sheet and
T is the string tension. Notice that under a scalif&p) Notice that Eq.(27) is indeed invariant under the shift

(which means thaty,,—X\"'9,,), Laring=A® ?Lgingg  Lm—Lm+const.
therefore, concluding thati,q is @ homogeneous function Since R(e,w)=e%*R,,(e,0), we can eliminateR(w)
of g*¥ of degree one, that is Eq21), is satisfied only if from the Egs.(26) and (27) after contracting the last one

D=4. with e,, . As a result we obtaithe nontrivial constraint
(3) It is possible to formulat¢he point particle modebf

matter in a way such that Eq21) is satisfied. This is be- ¥ Lm—M) B

cause for the free-falling point particle a variety of actions € Jedt —2(Lm=M)=0. (29

are possible(and are equivalent in the context of general
relativity). The usual actions are taken to be In the casel,=Ly(g,,,matterfields), we see that the
S=-mJfF(y)ds, wherey=g,z(dX*/ds)(d XPlds) andsis  form of the constrainf29) coincides with the conditiof21)
determined to be an affine parameter exceptsf\'y, which ~ which provides the existence of the Einstein sector of solu-
is the case of reparametrization invariance. In our model w&ons in the Riemannian approach. In contrastie it is not a
must take S,=— mepartCDd“x with L= — mfdss*(x  choice but a consequence of the \(ar_iational principle
—X(s))I=gF[y(X(s))] where prart\/—_gd4X would be _ The congtraln(29) has to be sa_tlsfled for all (_:omponents
the action of a point particle in four dimensions in the usual(in the functional spageof the functionl., . In particular, for
theory. For the choic& =y, condition (21) is satisfied. Un- e constant part denotéd ), we obtain:

like the case of general relativity, different choicedolead

to inequivalent theories. Notice that in the case of point par-

ticles (taking F =), a geodesic equatio@nd, therefore, the - tporefore; one of the consequences of the const(amtis

eg#il/alence prin(_:ipbe_is satisfied in terms_ of the_ metric that it dictates that the constant part of the matter Lagrang-

9ap=XYap €VeN if y is not constant. It is interesting also jan (| ) is compensated by the integration constantii

Einstein symmetry described by Eq82) and(23). We will see that constrain29) can be satisfied in three
Notice that the theory as formulated in this section makegossible ways(1) Automatically, that is from the definition

sense even without COI’]dItIC(l) be|ng satisfied. In contrast, of Lm, without any dynamica' Consideratio(g) automati-

we will see in the next section that when allowing torsion, cally after matter field equatiorsnly are used{3) after all

the consistency of the equations of motidictatesa condi-  equations are used. All three matter model examples of the

(Lmy—M=0. (30)

tion which generalizes the conditid@1). Sec. Il belong to casél).
As we saw in Sec. lll, in the context of the Riemannian
IV. THE NGVE THEORY—VIELBEIN-SPIN CONNECTION approach, the conditiofl) is related to the Einstein sym-
APPROACH metry, Egs.(22) and(23). It is very interesting to see what

kind of symmetry of the actior{3) is associated with the
constraint(29) in the context of the VSC approach. It turns
We are now going to study the theory defined by theout that when the constrairiR9) is satisfied automatically
action (3) in the case that the scalar curvature is defined bywithout using the equations of motion of majte~ve obtain
Egs.(4) and(5), which means thaR may not coincide with that a local version of Einstein symmetry holds. Further-
the Riemannian scalar curvature and as a consequence we uhore, thislocal Einstein symmetris nothing but diffeomor-

A. General consideration
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phism invariance in the space of the scalar figlds which  local conformal rescaling81)—(33) and the conformal cou-
has to be accompanied with a conformal transformation opling form in the right-hand side is the unique conformally

the vielbeins: invariant coupling between a scalar field and the Riemannian
scalar curvature. The right-hand side represents the resulting

Pa— 5= Pa( @), (3D second order formalism, that is, what is obtained after solv-

ing the spin connection in terms of the other fields and then

eaﬂﬂeéﬂz\]llzeaw (32 replacing the result into the action. The appearance of the

additional — 6 20y term in Eq.(40), which is absent in
_ t(f*Pé the approach developed in Sec. lll, clearly shows the in-
J=De . (33 . .

ey equivalence of the two approaches in all cases, even when no

assumptions are made concerning the validity of the local
In terms ofg#*” and® (and y=®/\—g), this symmetry Einstein symmetry, Eqs(31)—(33), or, what is the same,

has the form Egs. (34)—(36).
wv vy 11y This can be seen also by examining the shape of the equa-
g'—g'#"=J""g"", (34 tions of motion, even when the symmetry, E(4)—(36), is
, not assumed to hold. From Ed&7), (28), (4), (5), (38), and
X_>X, =J1_D/2X_ (36) «
Gu(@)+H,,==(T,,+Mg,,), 41
Since when®#0, we have that the transformation prl @) FH =5 (T, 9yur) 4D

©a= @a(x*) is one to one, we obtain that by means of Eq.

(35), ® can be transformed to whatever we want, in particu-Where

lar ®=+—g or, what is the samey=1 is a possible Py 12,1
“gauge” if d+0. Huw=2x""19,,0x "= (x*?), 1]

+x 40M, (XY= 9, (XM, (XD 4],

B. Torsion in the absence of fermions 42)
Let us now analyze what is the dependencewg\a on . _

e, and x. As a first step, let us consider the case wher@nd G,,(9)=R,,(9)~29,,R(9) with R,,(g) and R(g)

Lm=Lm(g,,, matter fields and the dimensionality of the being the Riemannian Ricci tensor and scalar. Taking the

space-timeD = 4. This of course excludes the possibility of trace of Eq.(41), we get

fermions, but those can be incorporated without qualitative

changes in the d_isc_:ussion. _ _ " [0y Y2— } R(g)+£(Tg+4M) Y¥2=0. (43)
Then, the variation of the actiof8) with respect tow?; 6 2
gives .
Using that
4™ o xesD, €0+ defely,, |=0,  (37) oL
Te=e—0 4L, (44)

whereD ,€,,= 3,6, + ®5,€4, - 9e3#
The solution of Eq(37) is

and constraint29), we get

03’=w3(e)+ K3, (39)
1

where w3°(€) is the Riemannian spin connecti¢5,6] and O x*2— 5[R(Q) = x(Lm— M)1x"?=0. (45)
Kj‘f’ is the contorsion tensdb,6] which in our case is given
by As we expectedy'? has an equation which is of the

1 conformally coupled type.

Kib=—a,a(e2eb“—e2ea“), (39 In the vacuum(that is taking into account only constant
2 part ofL ), because of the constraif80), Eq. (45) takes the
form

whereo=Iny. Notice that deviation of the new measube

from the GR measurg— g (that is y # const) is the origin of 1

torsion. OxY?— =R(g)x*?=0. (46)

If we insert this into the expression dfR(w,€), we ob- 6

tain We can see then that Eq&l6) and(41) are invariant under

DR(w,e)= \/—_gXR(w,e)= \/—_Q[XR(Q,W) — 6 Y20,V the transformation£34)—(36) (\(vhich in such a case play the
(40)  role of conformal transformationsTherefore y field can be

transformed into a constant and the resulting equatin

whereR(g,,,) is the Riemannian scalar curvature. The con-becomes just vacuum Einstein’s equations with zero cosmo-

formal coupling form of the scalar fielg"/? is apparent. This logical constant. As an example how this is realized in a

is not a surprise since the left-hand side is invariant under theoncrete model, see Sec. IV D below.
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From Egs.(41), (42), and (27), we get the equation of particular, the Nambu—Jona-Lasinio mod&] would also

matter nonconservation satisfy the constraint29) on the mass shell witM =0.
It is interesting to compare this kind of fermionic models
. L m N where the constrain29) is satisfied withM =0, with the
Tut=— agweaaalnx, (47 models discussed already at the end of the Sec. Iil. Here the

constraint is satisfied only on the mass shell while in those

where semicolon means covariant derivative in the RiemanrR'€Vious examples the constraif@9) is satisfied automati-
ian space-time with a metrig,,,. This equation coincides Cally. using only the definition of the Lagrangian.

with Eq. (20) in the case wherk,, depends on vielbeins only

throughg,,. In cases where the local Einstein symmetry, D. Example with scalar field

Egs.(3D)—(33) [or, what is the same, Eq&34)—(36)] holds, Now let us consider cases when the constré8i is not

the y field can be transformed into a constant and then Eqgagisfied without restrictions on the dynamics of the matter
(47) becomes equation of covariant conservation of thjg|4s. Nevertheless, the constraif9) holds as a conse-
energy-momentum tensor. guence of the variational principle in any situation.

C. Study of constraint in fermionic models A simple case where the constrai29) is not automatic
is the case of a scalar field with a nontrivial potential

As it is well known[5,6], one of the most attractive fea- V(). In this case the constraif9) implies

tures of the vielbein formalism is its ability to incorporate
fermions in the context of generally coordinate-invariant V(¢)+M=0. (51)
theories.

~ The simplest example of a fermion is that of sgipar-  Therefore, we conclude that, providde 0, there is no dy-
ticles. In this case we regard the spinor fididas a general pamics for the theory of a single scalar field, since constraint
coordinate scalar and transforming nontrivially with respec51) forces this scalar field to be a constant. This means that
to local Lorentz transformation according to the SPIrep-  the effective cosmological constavi¢$) + M in the Eq.(41)

resentation of the Lorentz group. vanishes identically provide® #0.
Considering the Hermitian actiofwhich allows for the The constraint(51) has to be solved, together with the
possibility of fermion self-interactionsof the form equation of motion,
sfzf Li®d?x, (48) A
Ooto,, o4+ @-0, (52)

where whereo=Iny. From Egs(51) and(52) we conclude that the

P ¢ field has to be located at an extremum of the potential
LfIE‘I’[ Y2eh(d,+ 305 00c) V(¢). Since the constrains1) eliminates the dynamics of
the scalar fieldp, we cannot really say that we have a situ-

ation where the symmetry, Eq€31)—(33) [or, what is the
same, in the form$34)—(36)] is actually broken, since after
s solving the constraint, together with the equation of motion
Hereocq= Z[:dycﬁd]- , , (i.e., on the mass shglithe symmetry remains true.

“Again, " should be determined by the equation ob- Thep ysing the constraits1) in the equation of motion
tained from the variation of the full action with respect to ¢, 2 [Eq. (45)], we get

wff’. This in general will give rise to additional contribution
to the torsion, as it is well know[b,6]. 1

Here, in the context of the matter modé&8) and (49), Ox*?- ER(Q)X”Z:O- (53
we focus on the conditions where the constraitfl) is sat-
isfied, while y remains unspecifiedi.e., remains unphysi-
cal).

From Eg.(49) and using the equations of motion derived
from the actiong48) and(49), we get

—(F,+ 2% YL IT+U(WY). (49

By using the obvious conformal invariance of E§3) and

of all other equations, thg field can be transformed into a

constant, for example onfthe correspondent conformal

transformation is in fact the particular case of the local Ein-

stein symmetry, Eq934)—(36) with J(¢,(X))=x(X)]. No-

ega—l_;—ZLF‘lT\PU '_2u, (50) tice that in this simple matter model, E¢.7) takes the trivial
ey form 0=0.

whereU’ is the derivative ofJ with respect to its argument. \, THE INCORPORATION OF VECTOR BOSONS INTO

We see that the constraif®9) is satisfied on the mass shell THE NGVE THEORY IN THE VSC APPROACH
(since the fermion equations of motion are Usewth _
M=0 for L; defined by Eq. (49 if, for example, A. General notions

U=c(¥¥)% Any other quartic interaction, such as Asitis well known, interactions between elementary par-
Yy, V2 Vo, P Po2PP, (Ty¥)2 etc., would also ticles appear to be well described by the exchange of vector
satisfy the constraint29) on the mass shell withM=0. In  bosons. The incorporation of vector bosons is, therefore, an
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important subject which has to be dealt with in the context ofity (i.e., onw,,p) is proportional to the gravitational constant
the new gravitational theory developed in this paper. « and violates the gauge invariance. Contributionatg,y,

As we have seen in the case of the point particle modeldrom fermions would also produce violations of gauge in-
different formulations of a matter model, which in the casevariance in Eq(55).
of GR are physically equivalent, can in fact be the origin of
inequivalent theories when _formulgited_in the framew_orl_< of ¢ Gauge fields from extra dimensions in the VSC approach
the NGVE theory. As we will see in this chapter, a similar ] ) ]
situation arises in the case of vector bosons. We will discuss Here we will see that in the framework of higher-
here(and in the next sectiorseveral options, some consis- dimensional unification, the VSC approach can incorporate
tent with local Einstein symmetry and others which are not9auge fields. It is important to notice that in the context of
As it is well known, the vielbein formalism allows us to the NGVE theories only the VSC alternative can success-
regard a vector in different wayé) GVLS: a vector under fully m_wplement the idea of higher-dimensional t_m|f|cat_|on.
general coordinate transformations, while being a scalar unLh€ Riemannian approach, developed4hand reviewed in
der local Lorentz transformationéi) GSLV: a scalar under Sec. lll, is not suitable for this task. _
general coordinate transformations, while being a vector un- Let us see first of all that the purely Riemannian approach

der local Lorentz transformations. L&t be a GVLS. We 0 the NGVE theories does not provide a successful formu-
can then always define a GSLV Ag= el:‘A lation of the higher-dimensional unification. To see this, we
a -

start from the five-dimensional NGVE-Riemannian action

B. Model of vector boson with the local Einstein symmetry

1
- 5
Here we will choose the GSLV variables as the funda- Ss= K5J' PRs(vap)dx, ®7
mental Lagrangian variables. Defining the Lorentz tensor
and generally coordinate-invariant scalar field strength where

—ak _ak
Fap=€aD,Av—€,D A, (54) D=6 e P CH Inpa) (Fp0p) - - - (Fe@e),  (58)

where DMAa=aMAa+w#abAb, we choose the following

matter Lagrangian for massless vector bosons: vab IS the five-dimensional metric, ari®} is the Riemannian

scalar curvature in the five-dimensional space-time.
Our choice of parametrizing the five-dimensional metric

_—_ 1 _ac_ bd
Ly == 277 FapFcq- (55 Yag IS (8]
In the first order formalism it is understood that, is 5 0
regarded as an independent variable, to be determined from _ 9t xvAA,  exvA,
the equations of motion obtained by variatingy,.. Notice YaB= exvA, v '

that the matter Lagrangiafb5) is in fact homogeneous of
degree two in the vielbeins. Therefore, a theory incorporat- . . .
ing only L, , as a matter model, is consistent with the IocaIWSheregﬂVZ v, andA,, do not depe.r?d on th_e fiith cﬂmensm_n
Einstein symmetry, Eqs31)—(33), and satisfies in an auto- X, wh;ch is taken to be compactified. Doing the integration
matic form the constrain®9) with M=0. As a consequence overx®, we get

of the symmetry, Eq9.31)—(33), we obtain of course that in

this mongX can be taken to pe one_(ﬁaﬁo everywhere. If _ Sszlj O[—R,+ eZUg,ngVUFMVFPU]d4X' (59)

we do this, then we can see immediately that in the approxi- K

mation wherew ,,p= o ,ap(€) {® ,an(€) is the Riemannian- _ _ _

spin connectiorisee also Eq(38)]}, the Lagrangian density whereR, is the scalar curvature of a four-dimensional space-
(55) with F,y, defined by Eq.(54) is invariant under the time with the metricg,,, x=«s/27p, p being the size of
gauge transformations the extra dimension, and,,,=d,A,—d,A,, .

We see now that in contrast with the usual Kaluza-Klein
theories, variation with respect to leads to the nontrivial
constraint for the gauge field“*9"’F,,F,,=0. Such a
constraint is of course inconsistent with a phenomenologi-
If we do not fix y field, then the form of the gauge transfor- cally successful theory of gauge fields showing, therefore,
mations is modified, but the model is still gauge invariant inthe failure of the Riemannian approach to the Kaluza-Klein
the same approximation. unification in the context of the nongravitating vacuum en-

We should point out that together with the obvious advan€rgy theories. We now turn our attention to higher-
tages which this formulation of the theory of massless vectoglimensional unification in the context of the VSC approach.
bosons has, this approach leads to weak violatiohgravi- Let us consider then the acti¢8) in the five-dimensional
tational strengthof the gauge invariance principle. This is a case D=5), but where the scalar curvature is defined by
consequence of the first order formalism, where the spin corkg. (4), which means thaR may not coincide with the Rie-
nection is determined from its equation of motion and wemannian definition, as we have verified it is the case in the
obtain in fact that there will be a contribution to the torsion four-dimensional theory.
from the vector boson itself. For example, it turns out that Let us now consider the dependence of the spin connec-
this gravitational back reaction of the vector bosons on gravtion wa,, on the vielbeinef and ony=®/\/y (we follow

N
A— A+ egm. (56)
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the same steps we went through in the four-dimensiondl10]. The problem in this case is associated with the large
caseg. Variation of the actior{3) with R defined as in Eq4) mass generation which the Kaluza-Klein gauge fields get in
in five dimensions gives this kind of approaches.

eancae PP (xvegepDger+ 5 ekeferx.e)=0. (60) VI. BREAKING LOCAL EINSTEIN SYMMETRY
The solution of Eq(60) is now A. A gauget+matter fields system
In some cases, the constraif#9) is not automatically
w3P=w3(e) +K2P, (61)  satisfied, in fact. In those cases, in order for the constraint to
be satisfied, they field becomes determined, therefore,
wherewi‘\b(e) is the Riemannian-spin connection of the five- breaking the symmetry, Eq&31)—(33).
dimensional space-time anid3’ is the contorsion tensor  To see how this works, we study a model of a gauge field
which in our case is given by (now formulated in the GVLS way, in contrast with what we
did in Sec. VB and a neutral scalar field. Now gauge in-
1 variance is evident, however, local Einstein symmetry is bro-
K§b=§o,a(e}§eb5+ efe®). (62)  ken. Although the model is not very realistic we study it only
to get an insight how the theory works rather than to get a
correct description of nature.
Therefore, we study the modéB) with the particular
choice of the matter Lagrangian density, given by

If we insert this into the expression f@PRs(e,w), we
obtain

DRs(e,0)=yxRs(€,) =y xRs( vap) — Ex 4 x "] 1 1
Lin=59""9,$9,6—U($) = 7F,.Fusg" 9", (66)

=0. (63
Here Rs(yag) is the ordinary scalar curvature in the five- whereF,,=d,A,—d,A,. _
dimensional Riemannian space-time with the metyj;. ~ Notice that the actioi3) with the matter Lagrangia(66)
Again, we find a conformal coupling appropriate Bo=5, is notinvariant under the local Einstein symmetry E(gl)—
for the field y*2 (33). However, the nontrivial constraint

The other equations of motion, obtained from the varia-
g?g with respect tee], after some algebraic manipulations, B EFMF’”+2[U(¢)+ M]=0 67)
Gs)aa(€,0) =Gs)ap( vcp) +Hisas(x¥)=0, (64) is still satisfied as a result of the equations of motion.

We can study now how the theory works in several types

whereG s)ag=R(5)a8— 2yagRs and of solutions. First of all, if we are interested in radiation-type

solutions, wherd= , ,F*“”=0, the situation becomes identical

2 (from the point of view of symmetrigsto that when no
1/2y 1/2__ 2 1/ ) .
Hs)as(x )= F/'Z[ Yaex"?= 5 (X n8] gauge field was considerdédee Sec. IV D
If we look, for example, for static purely electric spheri-
cally symmetric solutions of the equations of motion, Eq.

__[ ( 1/2) ( 1/2),C ‘ . > O -

3yt TABLX el (67) tells us thatg is a function of the electric field, not just
y " a constant as in Sec. IV D. After this, the equation of motion

—2(x"?,A(x"? 8]- (65) for the ¢ field (52) allows us to solvalg/dr as a function of

) ) ) _ ¢=@(Fo,) and its first and second derivativéass well as

As in the four-dimensional case, & #0, using the sym-  fynction of the metrig: Finally, this solution forde/dr has

metry Eqs.(31)—(33) [which in terms ofy and yag appears 1 pe inserted in the equation f&=F,, , which involves
as a conformal transformation, see E¢34)-(36), where  q,/qdr. The resulting problem is a highly nonlinear one but a

gu» Should be replaced by,gl, we can set the gauge \yell-defined one which shows the role of thre=Iny field in

x=1, obtaining then equations identical to those of ordinarghe enforcement of the constraint. Notice that fhéeld is
general relativity, in this case fob=5, however. The now not arbitrary. However, away from the sources, that is in

Kaluza-Klein mechanism for gauge field generation worksy yacuum state that satisfies constrabt), Eq. (53) holds,
then as usual. which is an equation with conformal invariance. Therefore,

When consic_jering non-Abelian compactifications,_ things, is there totally arbitrary and, therefore, unphysical.
work most straightforward when the matter Lagrangian thag(

produces the compactification satisfies the constredfy.
This is the case if the compactification is achieved, for ex-
ample, through some hedgehog configurafi@hwhich cor-
responds to the identity mapping from the extra-dimensional Breaking of the local Einstein symmetry is possible also
sphere into a space of scalar fields satisfying nonlinear in the gravitational sector of the theory in a case of an ap-
model-type equations. In addition, instead of sphere sompearance of higher order terms in the curvaifioe example,
other finite area noncompact manifolds can be considereds could be the case for quantum correctiofifiese terms

B. Breaking the local Einstein symmetry by the gravitational
sector of the theory
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usually give rise to noncausal propagation and ghosts. In ou€. General relativity limit as freezing the x degree of freedom
case, however, the fact that the measure of integratioh i ag e have seen, the vanishing of the cosmological con-
instead of /=g allows us to consider contributions which stant relies on the existence of thefield and the nontrivial
are meaningless in the usual theory. This is the case when {ynstraint(29) associated with the new measure of integra-
the Lagrangian density we consider possible Eulgrénd  {jon and with the scalar fieldg, from which this measure
Hirzebruch-Pontryaging) contributions (and they field) is built.
Now, we want to see in what limit the model studied here
p= grBuvgabey g (68) becom_es undistinguishable from GR. This_ is_importqnt from
\/__g apab’ puvedy the point of view of the correspondence principle. This ques-
tion has obviously to do with what is assumed for the dy-
namics of they field.
= e PR gabR e an®nPl. (69) When the local symmetry, Eq$31)—(33), exists, they
—g field does not represent a physical degree of freedom and it is
in fact arbitrary and not determined by the equations of mo-
p\—g and&y/—g are total divergences even in the presenceion. When the constraint29) is nontrivially satisfied, the
of torsion[11] (our conventions foe “##” are different from  x field has to be determined so as to make things work.
those of Ref[11]) and, therefore, irrelevant in the standard Finally, as we explained in Sec. VI B, we found a way to
approaches. However, since the measure of integration tsirn the y field into a dynamical field by introducing the
®, p® and £® are contributions to the action that can be Euler term.
considered in our case. These give nontrivial contributions to  Obviously, we should be able to obtain GR if the dynam-
the equations of motion. Since the contributionéahto the  ics of the y field is turned into a trivial one, that is, if only
total action violates the parity symmetry, we do not considery=const is allowed. This is of course the exact opposite to
it in this first analysis. Furthermore, we present here only ahe case of unbroken symmetry. This is possible within the
sketch about the main features of the theory in the presenageneral form(3) of the theory, provided we add tb,, a
of the Euler contribution into the Lagrangian density. Lagrange multiplier term that enforcgs=const. The form
It is known[12] that when studying space-time of dimen- of this contribution to the Lagrangian density is
sionalities bigger than four, the corresponding generalization
of the four-dimensional Euler density gives a nontrivial con- 1 vap
tribution to the equations of motion; however, it does not Lfreezing:TSM IuEvap, (73)
give rise to ghosts. In our case, this is still true and the proof 9

lzjc.)llows.theI samezlmes of what is done in the higher-,, Lo \ve assume that all componentsEyf,; are to be
imensional casgl2] varied without restriction, i.e.E,,; is a new fundamental

Considering small perturbations & and x around (|4 The variation of the action with respect Q.. gives
ey =04 and of y=1, we obtain from the Euler contribution j, fact

into the Lagrangian density:

d,x=const, (74
— 4 Ta
SE_I PA™Xd4) %, (70 that is the only possible configuration for the field is
X =const.
where The variation of the action with respect €8 gives
j“=4[20’;%0"3—ZU'QDO'—(T'EO',BU'“] (71

dL
Tk Ra,u( w)+ Jean + eap.l-freezing: 0. (75

ando=Iny. As in Ref.[12], the purely gravitational effects
vanish in the quadratic approximation. We see, for example, Contracting this withe®”, we obtain
that (9%c/t?)? is absent in the integrand of E.0). Second

derivatives with respect to time appear in the integrand of 2 ay OLm _
Eq. (70 only linearly. - ;R(w)+e g Jedk + 4L freezing= 0. (76)

Notice that when the Euler density is present, the con-
straint(29) becomes now a dynamical equation ter Also, the variation with respect to the fielgg leads to(if

d+0)
L
2p+eauaeaj—2|_m+2|v|:o, (72) .
- R(e,w)+Ly(e,o,matter field$+ Lieesing= M.

wherep is given by Eq.(68). Equation(72) is a dynamical (77)
equation foro rather than a constraint because second order
time derivatives ofr appear in it. From Eqs.(76) and(77), we get

Finally, notice that in the context of the modifications in AL
the gravitational sector, described in this subsection, flat an "M o M= v
space-time is still always a solution. € e (L™ Lireezing~ M) =0, (78
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which now is not a constraint but rather determines the The existence of a nontrivial constraint does, however,

Lagrange multiplier tern geesing: modify the dynamics of the matter fields in a nontrivial way.
Contracting Eq(75) with €%, we obtain This can be avoided, as we have seen in Sec. VI D, by mak-
) L ing the dynamics of they field trivial if we introduce a
_ —Rw(w)ﬂLei arz 10,0, L freezing=0- (79) Lagra_m_g_e multiplier. In this case _th_e constraint become_s only
K de a definition of the Lagrange multiplier and, therefore, fails to

give additional information on the effective cosmological
constant. This version of the theory coincides physically with
the models discussed by the authors of REf8] where the
—9ulmt9,,M=0, cosmological constant is an integration constant. It is here
(80) obtained from the general formalism by enforcing from out-
side the triviality of they field, which is of course not a
or, what is the same, natural thing to do. This version of the theory does not an-
swer the question of the vanishing of the cosmological con-
K[ ,dLm K stant, which is again an arbitrary integration constant, with
Cuv=3| € 3gam ~ Gurbmt 9uM | =5 (T, +Mg,,), no particular reason to pick the vanishing value as has been
(81)  Ppointed out by Weinber§g3].
We have seen in Sec. VI A that terms that violate the
whereG,,=R,,,— %gWR. local Einstein symmetry can be incorporated and they do not
Taking into account that thg degree of freedom is fro- alter the basic conclusions of the model, that is, the vanish-
zen now[see Eq.(74)], we conclude that Eq481) are the ing of the cosmological constant term. They do give rise,
Einstein equations of GRor Einstein-Cartan equations if however, to a nontrivial dynamics for the fieldwhich ac-
fermions are included in the modelvhere an arbitrary in- quires a physical meaning because of these breaking terms.
tegration constari¥! playing the role of a cosmological con- Furthermore, the constrairig9) is satisfied anyway by dy-
stant appears. namically adjusting the fielgy, as we saw in the particular
No information concerning the vanishing of the cosmo-example of Sec. VI A.
logical constant is obtained now, because the constraint that Incorporating masses, for example, will modify this con-
used to do this job contains now the Lagrange multiplierstraint so that the masses will enter in the constraint. In the
field E,,z which is not determined by any other equation, case of fermions, we have seen in Sec. IV C that if we start

From Egs.(79) and(76), we get

L
a km
+e), gy

2 1
R,uv(w) - EgMVR(w)

K

therefore, Eq(78) is now not a constraint at all. from Nambu-—Jona-Lasinio{NJL-) type models[7], the
constraint(29) is satisfied on the mass shell without restric-
VII. DISCUSSION AND CONCLUSIONS tion on the matter field dynamics. However, a spontaneous

symmetry-breaking mechanism originates from quantum

Here we have developed the consequences of changingrrections and as a result masses of fermions appear. So if
the measure of integration fronf—gd®x to dei/Ade,  our classical arguments concerning the satisfaction of the
A---Ndep, when the mapping from the scalars,  constraint(29) in the NJL model survive the quantum cor-
(a=1,2,...,D) to the coordinates is not knowa priori.  rections, we would then expect that the fermion masses may
This means that the measure of integration is determinegdot enter in the constraint at all. If they do, they contribute to
dynamically and not assumed to have a particular form as i nontrivial y dynamics. Which alternative is the right one
is done in GR. Such modé¢#] has been called “nongravi- requires a nontrivial analysis.
tating vacuum energ§NGVE) theory” because if we change  In addition, in the context of some model resembling the
the integrand(i.e., the Lagrange densjtyby a constant, standard model, the constraif®9) seems to give a basic
which in GR is associated with a vacuum energy, no changgondition which tells us that the Higgs boson field is a com-
in the equations of motion is obtaindéynoring possible  posite of the other fields appearing in the theory in a way that
boundary effects resembles what we have studied in Sec. VI A.

Moreover, we have discovered in this paper, that when A way to avoid the constraint from having a big effect on
using the vielbein-spin connection first order formalism inthe dynamics of any single matter field is to introduce a large
the context of the models based on the NGVE principle, snumber of fields, most of them interacting with one another
nontrivial constraint(29) appears as a result of equations of only gravitationally and of course through the constraint.
motion. The first order formalism based gp, (or €) and  Since the wholeL, enters in the constraint, enlarging the
the connectionl™,, as independent variables is physically number of fields diminishes the “job” each individual field
equivalent and will be studied in a subsequent publication. has to do. In such a way we expect to recover the local

In our previous paper on NGVE theof¢] we have seen symmetry, Eqs(31)—(33), at long distances, i.e., the trivial-
that the constant part of the vacuum energy does not affedty of the constraint at long distances. This would be a way to
gravitational properties, but an integration constant appean®alize the infrared dynamical symmetry restoration of gauge
and it plays a role similar to that of an effective cosmologicalsymmetries as it has been discussed in the literdtite
term (although a maximally symmetric de Sitter space did Keeping a nontrivial constrairthat is, avoiding the in-
not exist therg Now, allowing for the possibility of torsion, troduction of the Lagrange multiplier that trivializes the
such integration constant appears too, but it is determinedynamicg, in Secs. Ill-V, we have formulated several mod-
dynamicallyso as to cancel any possible constant part of theels (including fermions, scalar field, and vector bospns
vacuum energy, which is present in the starting formulationwhere the constrain(29) is satisfied at least on the mass



5980 E. I. GUENDELMAN AND A. B. KAGANOVICH 55

shell. However, it follows from the equations of motion thatin Eq. (3). Furthermore, in the absence of Euler-like terms
the only possible configuration of a single scalar field with a(of Sec. VI B), the variational principle gives now =0 in
potential is a constant scalar field located in the extremum ofhe vacuum if such term is “forced” into the theory. Of
the potential. In this caséhe constraint dictates that this course, in the absence of a consistently quantized theory,
extremal value of the potential is compensated by the intesuch arguments are only preliminary. Nevertheless, it is in-
gration constant, thus providing the mechanism for the nonteresting to note that if all these symmetry arguments are
existence of the cosmological constant on the mass.sheihdeed applicable, this would imply that the scalar fields
Those models respect the local Einstein symmetry. Therep, can appear in the effective action only in the integration
fore, we can set the gauge=1 and in this case Eq47) measure, that is, they preserve their geometrical role.
becomes the equation of the covariant conservation of the Finally, it is very interesting that in attempts to build a
energy-momentum tensor. model which respects both the local Einstein symmetry and
The infinite-dimensional symmetri€g) and(12) impose  the gauge invariance, we have succeeded in finding it only in
strict restrictions on the possible induced terms in the quanthe framework of the Kaluza-Klein unification. It is a clue
tum effective action, if no anomalies appear in this effectivethat the resolution of the cosmological constant problem and
action. In particular, symmetry under the transformatib®  the problem of unifying the fundamental forces of nature are
seems to prevent the appearance of terms of the forrmtrinsically intertwined.
f(x)® [except forf(x)x1/x] in the effective action which
although is invariant under volume-preserving transforma-
tions (7), breaks symmetry12). The casef(y)o1/y is not
forbidden by symmetry12) and appearance of such a term  We would like to thank J. Bekenstein, R. Brustein, A.
would mean inducing a “real” cosmological term, i.e., a Davidson, D. Owen, L. Parker, and Y. Peleg for interesting
term of the formy/—gA in the effective action. However, conversations. Especially we want to thank L. Parker and Y.
appearance of such a term seems to be ruled out becauseRdleg for interesting suggestions concerning the special role
having opposite parity properties to those of the action giverof Kaluza-Klein unification in the context of our model.
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