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For every mapping of a perturbed spacetime onto a background and with any vector fieldj we construct a
strongly, identically conserved covariant vector densityI (j), which is the divergence of a covariant antisym-
metric tensor density, a ‘‘superpotential.’’I (j) is linear in the energy-momentum tensor perturbations of
matter, which may be large;I (j) does not contain the second order derivatives of the perturbed metric. The
superpotential is identically zero when perturbations are absent. By integrating strongly conserved vectors over
a partS of a hypersurfaceS of the background, which spans a two-surface]S, we obtain integral relations
between, on the one hand, initial data of the perturbed metric components and the energy-momentum pertur-
bations onS and, on the other, the boundary values on]S. We show that there are as many such integral
relations as there are different mappings,j’s, S’s, and]S’s. For given boundary values on]S, the integral
relations may be interpreted as integral constraints on local initial data including the energy-momentum
perturbations. Strong conservation laws expressed in terms of Killing fieldsj̄ of the background become
‘‘physical’’ conservation laws. In cosmology, to each mapping of the time axis of a Robertson-Walker space
on a de Sitter space with the same spatial topology there correspond ten conservation laws. The conformal
mapping leads to a straightforward generalization of conservation laws in flat spacetimes. Other mappings are
also considered. Traschen’s ‘‘integral constraints’’ for linearized spatially localized perturbations of the
energy-momentum tensor are examples of conservation laws with peculiarj vectors whose equations are
rederived here. In Robertson-Walker spacetimes, the ‘‘integral constraint vectors’’ are the Killing vectors of a
de Sitter background for a special mapping.@S0556-2821~97!00310-X#

PACS number~s!: 04.20.Cv, 98.80.Hw

I. INTRODUCTION

A. Strong conservation laws and cosmology

Background spacetimes are commonly used in perturba-
tion theories in general relativity@1# and play an essential
role in cosmology@2#. One ‘‘puzzle’’ @3# in the theory of
cosmological perturbations is Traschen’s ‘‘integral con-
straints’’ for spatially localizedperturbations@4,5#. These
Gauss-type restrictions on the energy-momentum of matter
perturbations have significant effects@6#: They point to an
important reduction of the Sachs-Wolfe@7# effect on the
mean square angular fluctuations at large angles of the cos-
mic background temperature due to local inhomogeneities in
the universe for spatially isolated perturbations.

Traschen’s relations remind us of Bergmann’sstrong con-
servation laws@8# applied to perturbations of isolated sys-
tems. Such conservation laws, which were explored in detail
by Bergmann and Schiller@9#, are, in fact, identities. The
identities, which involve an arbitrary vectorj, have played a
basic role in the derivation of weak or Noether conserved
currents in general relativity@10# and are still in use@11#. We
found it thus interesting to study strong conservation laws on
background spacetimes@12# in the context of cosmological
perturbations.

Strong conservation laws are obtained from Lagrangians
that are scalar densities with not higher than first order de-
rivatives of the fields. There areno suchscalar densitiesfor
the metric, and therefore strong conservation laws in general
relativity are coordinate dependent. The coordinate depen-
dence can be ‘‘brushed under the rug’’ by mapping the
spacetime on a flat background@13#. This method offers, for
example, the advantage of making the Bondi mass@14# cal-
culable from Einstein’s pseudotensor in Bondi coordinates
@15# rather than in Minkowski coordinates@16#. But back-
grounds are more than a useful tool in relativistic cosmology;
they are inevitable in linear and nonlinear perturbation theo-
ries.

Here we derive strong conservation lawswith respect to
curved backgroundsalong the line indicated by Bergmann.
We define a Lagrangian densityL̂G for the gravitational
field, quadratic in the first order covariant derivatives of the
perturbed metric~the caret means ‘‘density,’’ i.e., multipli-
cation byA2g!. L̂G is normalized so thatL̂G50 when there
are no perturbations. Perturbations do not have to be small.
The strong conservation laws, derived fromL̂G , are identi-
cally conserved vector densitiesÎm(j), the divergences of
covariant superpotential densitiesĴmn:

Îm5]nĴ
mn, Ĵmn52 Ĵnm. ~1.1!

The Îm’s are identically conserved independently of whether
or not Einstein’s equations are satisfied. However, we con-
sider only metrics that satisfy Einstein’s equations. The
Îm’s are linear in the perturbed energy-momentum tensor,
and bothÎm andĴmn contain the perturbed metric and its first
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order covariant derivatives~no second order derivatives!;
both are zero when there are no perturbations. It follows
from Eq. ~1.1! that, if S is any piece of a hypersurfaceS
which spans a two-surface]S

E
S
ÎmdSm5E

]S
ĴmndSmn . ~1.2!

These exact nonlinear integral identities represent strong glo-
bal conservation laws if the integration is over the whole
hypersurfaceS. If S is only a piece of the total, one may, in
the manner of Penrose@17#, speak of quasilocal strong con-
servation laws.

Now suppose that the boundary values, and thusĴmn, on
]S aregiven. Then Eq.~1.2! represents anintegral constraint
on the perturbations of the energy-momentum tensordTn

m for
given initial perturbations of the metric onS. Reciprocally, if
dTn

m is given, Eq.~1.2! represent integral constraints on the
initial metric data onS. There are many integral constraints:
for any mapping, anyj, and anyS with the same boundary
values and the samej and its first derivatives on]S. Integral
constraints may be used to relate boundary values of the
metric to the matter sources onS.

Coming back to Traschen’s integral constraints for linear
perturbations, these represent particular forms of Eq.~1.2!
with a class of ‘‘integral constraint vectors’’jm5Vm ~not
necessarily Killing vectors!, for which Eq.~1.2! reduces to

E
S
dTn

mVndŜm50. ~1.3!

Boundary contributions are by definition vanishing. These
equations are the integral constraints ondTn

m that Traschen
@4# and Traschen and Eardley@6# considered for spatially
localized perturbations on a Robertson-Walker background.
They found that Eq.~1.3! reduces considerably the Sachs-
Wolfe @7# effect of dTn

m on the angular fluctuations of the
cosmic background radiation. Different boundary values may
have less stringent effects.

B. Noether conservation laws on curved backgrounds

In special relativity@18# as in general relativity@19,20#,
when the arbitrary vectorjm is replaced by a Killing vector
of the background,j̄m, the strong conservation laws become
physical conservation laws. Noether conserved vectorsĴm

have a physical content analogous to energy-momentum and
angular-momentum conserved currents in electromagnetism.
However, contrary to electromagnetism, conserved gravita-
tional currents cannot be made gauge independent, i.e., inde-
pendent of the mapping.

Noether conservation laws can be applied to asymptoti-
cally flat spacetimes. This subject is not dealt with here in
detail, but it is noteworthy that our superpotentialĴmn gives
properly the ‘‘standard’’ expression for total energy and lin-
ear and angular momenta at spatial infinity@19# and at null
infinity @21# found in the literature@22#. The global conser-
vation laws,in their superpotential forms, relate local quan-
tities to boundary values and, if applied globally, give physi-
cal interpretations to ‘‘asymptotic parameters’’ of solutions.
They are also useful in cosmology.

C. Noether conservation laws in cosmology

In cosmology, there are six Noether conservation laws for
perturbations in a Robertson-Walker background, corre-
sponding to the six Killing vectors. There are four non-
Noether conservation laws for each of the remaining confor-
mal Killing vectors. The ten vectors correspond to the fact
that Robertson-Walker spacetimes are conformal to de Sitter
spacetimes, which, as is well known, admit ten independent
Killing vectors like Minkowski space. In cosmological appli-
cations, de Sitter spaces appear more suitable as backgrounds
than Minkowski spaces, the more so because in the inflation-
ary scenario, de Sitter spacetimes transform into Robertson-
Walker spacetimes. The quasienergy and initial position of
the mass center@40# can be associated with the four Killing
vectors of de Sitter spaces which do not correspond to the six
Killing vectors of Robertson-Walker universes.

Traschen’s integral constraints, which we mentioned be-
fore, look like conservation laws on a de Sitter space in
disguise. Tod@23# has shown that the equations forintegral
constraint vectors~ICV’s! Vm are the conditions forS to be
embeddable in a spacetime with constant curvature of which
theVm’s are the Killing vectors.

In Sec. II we give the general theory of strong conserva-
tion laws relative to a curved background for both nonlinear
and linearized perturbations. A summary of some of the re-
sults of Sec. II appeared already in@12#. Here we give full
details and we also include a generalization of the
Belinfante-Rosenfeld identities@24#. Section III is devoted to
Noether conservation laws; the energy-momentum tensor
and the helicity tensor with respect to the background are
singled out. Results of applications to asymptotically flat
backgrounds are mentioned. Section IV gives details on No-
ether’s conservation laws for Robertson-Walker spaces
mapped on de Sitter spaces with the same spatial topology.
In Sec. V Traschen’s integral constraints are related to strong
conservation laws. Integral constraint vectors are shown to
be the Killing vectors of a de Sitter background with a par-
ticular mapping.

II. STRONGLY CONSERVED CURRENTS

The main result of this section is summarized in Eq.
~2.39!.

A. Lagrangian density for gravitational fields
on a curved background

Let gmn(x
l), l,m,n, . . .50,1,2,3, be the metric of a space-

timeM with signature22, and letḡmn( x̄
l) be the metric of

the backgroundM̄. Both are tensors with respect to arbitrary
coordinate transformations. Once we have chosen a mapping
so that pointsP ofM map into pointsP̄ of M̄, then we can
use the convention thatP̄ andP shall always be given the
same coordinatesx̄l5xl. This convention implies that a co-
ordinate transformation onM inevitably induces a coordi-
nate transformation with the same functions onM̄. With this
convention, such expressions asgmn(x

l)2ḡmn(x
l) become

true tensors. However, if the particular mapping has been left
unspecified, we are still free to change it. The form of the
equations for perturbations must inevitably contain a gauge
invariance corresponding to this freedom.
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LetRnrs
l andR̄nrs

l be the curvature tensors ofM andM̄.
These are related as follows@25#:

Rnrs
l 5D̄rDns

l 2D̄sDnr
l 1Drh

l Dns
h 2Dsh

l Dnr
h 1R̄nrs

l .
~2.1!

Here D̄r are covariant derivatives with respect toḡmn and
Dmn

l is the difference between Christoffel symbols inM and

M̄:

Dmn
l 5Gmn

l 2Ḡmn
l 5 1

2g
lr~D̄mgrn1D̄ngrm2D̄rgmn!.

~2.2!

Our quadratic Lagrangian densityL̂G for gravitational per-
turbations is then defined as

L̂G5L̂2 L̂̄, L̂52
1

2k
~R̂1]mk̂

m!,

L̄̂52
1

2k
R̂̄, k5

8pG

c4
. ~2.3!

The caret means, as we said before, multiplication by

A2g, never byA2ḡ. Thus, ifR̂5A2gR, R̂̄ will unambigu-

ously mean A2ḡR̄. Notice that RC 5A2gR̄ÞR̄̂
5A2ḡRC /A2g. The divergence of the vector densityk̂m,

k̂m5
1

A2g
D̄n~2ggmn!5ĝmrDrs

s 2ĝrsDrs
m , ~2.4!

cancels all second order derivatives ofgmn in R. L̂ is the

Lagrangian used by Rosen.L̂̄ is L̂ in which gmn has been
replaced byḡmn . When gmn5ḡmn , L̂G is thus identically
zero. The intention here is to obtain conservation laws in the
background space so that ifgmn5ḡmn , conserved vectors
and superpotentials would be identically zero as in
Minkowski space in special relativity. The following for-
mula, deduced from Eqs.~2.3! and ~2.1!, shows explicitly
how L̂G is quadratic in the first order derivatives ofgmn or,
equivalently, quadratic inDrs

m :

L̂G5
1

2k
ĝmn~Dmn

r Drs
s 2Dms

r Drn
s !2

1

2k
~ ĝmn2 ĝ̄mn!R̄mn .

~2.5!

Notice that if R̄nrs
l 50 and coordinates are such thatḠmn

l

50, L̂G is nothing else than the familiar ‘‘GG-GG’’ Lagrang-
ian density@26#.

B. Infinitesimal reparametrization in both M and M̄

Lie differentials are particularly convenient in describing
infinitesimal displacements in bothM andM̄; they are thus
not associated with a change of mapping. If

Dxm5jmDl ~2.6!

represents an infinitesimal one-parameter displacement gen-
erated by a sufficiently smooth vector fieldjm, the corre-
sponding changes in tensors are given in terms of the Lie

derivatives with respect to the vector fieldjm , Dgmn

5£jgmnDl, etc. The Lie derivatives may be written in terms
of ordinary partial derivatives]m , covariant derivativeD̄m
with respect toḡmn , or covariant derivativeDm with respect
to gmn . Thus,

£jgmn5gml]njl1gln]mjl1jl]lgmn

5gmlD̄njl1glnD̄mjl1jlD̄lgmn

5gmlDnjl1glnDmjl. ~2.7!

Consider now the Lie differentialDL̂ of L̂. With the
variational principle in mind, we writeDL̂5£jL̂Dl in the
form

DL̂5
1

2k
ĜmnDgmn1]mÂ

mDl, ~2.8!

where Einstein’s tensor densityĜmn5R̂mn2 1
2ĝ

mnR is the
variational derivative ofL̂ with respect togmn and Âm is a
vector density linear inj ~see below!. The Lie derivative of a
scalar density like L̂ is just an ordinary divergence
]m(L̂jm). Thus

Ô[£jL̂2]m~L̂jm!50. ~2.9!

Combining Eqs.~2.9! with ~2.8!, we obtain

Ô[
1

2k
Ĝmn£jgmn1]mB̂

m, ~2.10!

where

B̂m5Âm2L̂jm5 1
2 Ŝmrs£jgrs1Ĵm2L̂jm, ~2.11!

in which

2kŜmrs5~gmrgsn1gmsgrn2gmngrs!D̂nl
l

2~gnrgsl1gnsgrl2gnlgrs!D̂nl
m ~2.12!

and

4kĴm5ĝml]lZ1ĝrs@D̄mZrs2~D̄rZs
m1D̄sZr

m!#,
~2.13!

with

Zrs[£jḡrs5D̄rjs1D̄sjr , Z5ḡrsZrs , js5ḡsmjm.

~2.14!

Indices will be moved up or down withḡrs only, never with
grs . In Eq. ~2.11!, £jgrs may be replaced by its expression
~2.7! in terms of D̄n derivatives. In this way,B̂m contains
D̄n derivatives only.

Belinfante @24# and Rosenfeld@24# extracted from Eq.
~2.10! various identities and showed how to complete Pauli’s
canonical energy-momentum tensor to make it symmetrical
@27#. Identities ~2.10! have been used to construct strong
conservation laws in general relativity, without mapping on a
background@28# and, more rarely, with a mapping on a flat
background@19#. Here we use the identities~2.10! to con-
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struct strong conservation laws on curved backgrounds. The
Bianchi identities implyDnG

mn50 so that with Eq.~2.7!,
Eq. ~2.10! can be written as the divergence of a vector den-
sity

Ô5]m ĵ
m50 where ĵ m5

1

k
Ĝn

mjn1B̂m. ~2.15!

Hence L̂ ‘‘generates’’ a vectorĵ m that is identically con-
served. It has been obtained without using Einstein’s field
equations; Eq.~2.15! is the kind of strong conservation law
introduced by Bergmann@8#. We shall, of course, assume
that Einstein’s equations are satisfied, and replace, (1/k)Gn

m

by the energy-momentum of matter,

1

k
Gn

m5Tn
m , ~2.16!

so that our strong conservation law~2.15! reads

]m ĵ
m5]m~ T̂n

mjn1B̂m!50. ~2.17!

Equation~2.17! is, strictly speaking, not an identity anymore.
GivenTn

m , Eq. ~2.17! holds only for metrics that satisfy Eq.
~2.16!. ĵ m is linear inj and its derivatives up to order 2. If in
B̂m, the D̄rjs are decomposed into symmetric and antisym-
metric parts, usingZrs defined in Eq.~2.14!,

D̄rjs5] [rjs]1
1
2Zrs , ~2.18!

ĵ m takes the form

ĵ m5 P̂n
mjn1ŝm@rs#] [rjs]1Ẑm, ~2.19!

in which

P̂n
m5T̂n

m1
1

2k
ĝrsR̄rsdn

m1 t̂n
m , ~2.20!

with

2ktn
m5grs@~Drl

l Dsn
m 1Drs

m Dln
l 22Drl

m Dsn
l !

2dn
m~Drs

h Dhl
l 2Drl

h Dhs
l !#

1gml~Drs
s Dln

r 2Dls
s Drn

r !, ~2.21!

and ŝm@rs# is the antisymmetric part ofŝmrs related to
Ŝmrs as

2kŝmrs52kŜmrlglnḡ
ns

5~gmrḡsn1ḡmsgrn2gmnḡrs!D̂nl
l

2~gnrḡsl1ḡnsgrl2gnlḡrs!D̂nl
m ~2.22!

~the terms containingḡrs do not contribute toŝm@rs#! while

4kẐm5~Zr
mgrs1gmrZr

s2gmsZ!Dsl
l

1~grsZ22grlZl
s!Drs

m 1gml]lZ

1grs~D̄mZrs22D̄rZs
m!. ~2.23!

C. Superpotentials and strong conservation laws

Since ĵ m as given by Eq.~2.15! is identically conserved
whatevergmn is, it must be the divergence of an antisymmet-
ric tensor density that depends on the arbitrarygmn’s too;
thus,

ĵ m5]n ĵ
mn where ĵ mn52 ĵ nm. ~2.24!

ĵ mn is easy to find and has been derived directly fromL̂ in
@19#. In those papers the background is assumed to be flat,
but the derivation ofĵ mn does not depend on that assumption:

j mn5
1

k
D [mjn]1

1

k
j [mkn] . ~2.25!

The term (1/k)D [mjn] will be recognized as12 Komar’s @29#
superpotentials. In terms ofD̄ derivatives,

Drjm5D̄rjm1Drl
m jl, ~2.26!

and regarding expression~2.4! for km, j mn may be written in
the form

k j mn5g[mrD̄rjn]1g[mrDrl
n] jl1j [mgn]rDrs

s 2j [mDrs
n] grs.

~2.27!

Had we applied the identity~2.9! to L̂̄ instead ofL̂, we
would have written everywhereḡmn instead ofgmn , from Eq.
~2.9! up to Eq.~2.23!. We would have found strong, barred,

conserved vector densitiesĵ m and barred superpotentials

ĵ mn:

ĵ m5S T̂n
m1

1

2k
R̂̄dn

mD jn1Ẑm5]n ĵ
mn, ~2.28!

with

Ẑm5ḡml]lZ1ḡrs~D̄mZrs22D̄rZs
m! ~2.29!

and

ĵ mn5
1

k
D [mjn] . ~2.30!

Strongly conserved vectors forL̂G5L̂2 L̂̄ are thus obtained
by subtracting barred vectors and superpotentials from un-
barred ones; in this way, we definerelative vectors and in
particularrelative superpotentials jˆmn—relative to the back-
ground space. Setting

Îm5 ĵ m2 ĵ m̄, Ĵmn5 ĵ mn2 ĵ mn52 Ĵnm, ~2.31!

we have

Îm[ Ĵm1 ẑm5]nĴ
mn, ]m Î

m[0, ~2.32!

where

Ĵm5 ûn
mjn1ŝm@rs#] [rjs] , ~2.33!

with
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ûn
m5dT̂n

m1
1

2k
l̂ rsR̄rsdn

m1 t̂n
m , ~2.34!

in which

dT̂n
m[T̂n

m2T̂n
m, l̂mn[ĝmn2ĝmn, ~2.35!

and ẑm5Ẑm2Ẑm is given by

4kzm5~Zr
mgrs1gmrZr

s2gmsZ!Dsl
l 1~grsZ22grlZl

s!Drs
m

1 lml]lZ1 l rs~D̄mZrs22D̄rZs
m!, ~2.36!

while the superpotential is given by

Ĵmn5
1

k
@D [mĵn]2D [mĵn]1 ĵ [mkn] #. ~2.37!

Jmn can also be written in terms ofgmn , Drs
m , andjm:

kJmn5 l [mrD̄rjn]1g[mrDrl
n] jl1j [mgn]rDrs

s 2j [mDrs
n] grs,

~2.38!

in which lmn5 l̂mn/A2g.
The tensors in Eq.~2.33! have a physical interpretation.

On a flat background, in coordinates in whichḠmn
l 50, tn

m

reduces to Einstein’s pseudotensor.ûn
m appears therefore as

the energy-momentum tensor of the perturbations with re-
spect to the background. The second tensor in Eq.~2.33!,
ŝm@rs#, is quadratic in the metric perturbations just liket̂n

m .
It is also bilinear in the perturbed metric components (gmn

2ḡmn) and their first order derivatives.ŝ
m@rs# resembles, in

this respect, the helicity tensor density in electromagnetism
~see below!. The factor of] [rjs] represents thus the helicity
tensor density of the perturbations with respect to the back-
ground.

It should be noted again that all the components ofIm and
of the superpotentialJmn itself are identically zero ifgmn

5ḡmn ; therefore, strong conservation laws refer to perturba-
tions only and not to the background.

To summarize, the main result obtained so far is the ex-
plicit form of strongly conserved vectorsÎm and their asso-
ciated superpotentialsĴmn on any background:

Îm[ûn
mjn1ŝm@rs#] [rjs]1 ẑm5]nĴ

mn, ~2.39!

in which ûn
m is given in Eq.~2.34!, ŝmrs in Eq. ~2.22!, zm in

Eq. ~2.36!, andJmn in Eq. ~2.38!. Îm is strongly conserved for
any jm and any mapping ofM on M̄.

D. Strong integral conservation laws and integral constraints

We can now integrate Eq.~2.39! on a partS of a hyper-
surfaceS which spans a two-surface]S and obtain astrong
integral conservation law:

E
S
~ ûn

mjn1ŝm@rs#] [rjs]1 ẑm!dSm5E
]S
ĴmndSmn .

~2.40!

On both sides of this equality appear, besidesdT̂n
m , com-

ponents of the metric perturbations and their first order de-
rivatives. Therefore, Eq.~2.40! is an integral relation be-
tween possible metric initial data onS, the energy-
momentum perturbationsdTn

m , and the boundary values on
]S. For fixedboundary values, and for eachjm, Eq. ~2.40!
gives an integral constrainton the metric initial data for
given dTn

m . Reciprocally, for given metric initial data, Eq.
~2.40! is an integral constraint ondTn

m . In particular, if per-
turbations are ‘‘localized’’ in the sense that the boundary
integral is zero, then the integral constraints are simply given
by

E
S
~ ûn

mjn1ŝm@rs#] [rjs]1 ẑm!dSm50 ~ isolated system!.

~2.41!

There exist special vectorsjm for which the expression
~2.36! for zm takes a somewhat simpler form.

If the background admits conformal Killing vectors, like
in Robertson-Walker spacetimes,

Zrs5 1
4 ḡrsZ, ~2.42!

and Eq.~2.36! becomes

8kzm5~ lmr1 1
2 ḡ

mrl !]rZ2~gmrDrs
s 2grsDrs

m !Z

~jm conformal!. ~2.43!

If jm is a homothetic Killing vector,

Zrs5 1
4 ḡrsC, C5const, ~2.44!

Eq. ~2.43! reduces to

8kzm52~gmrDrs
s 2grsDrs

m !C52Ckm

~jm homothetic!. ~2.45!

For Killing vectors of the background, which hereafter
will be denoted byj̄m we getzm50. If, in addition, Killing
vectors are tangent toS, j̄mdSm50, as will be the case in
Robertson-Walker spacetimes mapped on de Sitter spaces,
the coupling to the background Ricci tensor in Eq.~2.34!
disappears, and Eq.~2.40! reduces to

E
S
@~dT̂n

m1 t̂n
m!j̄n1ŝm@rs#] [rj̄s] #dSm

5E
]S
ĴmndSmn ~ j̄mdSm50!. ~2.46!

E. Belinfante-Rosenfeld identities

Equation~2.32!, ]m Î
m50, with Îm depending linearly on

jm’s and their first order derivatives, holds for anyjm.
Therefore,]m Î

m50 is a linear combination of thejm’s and
their derivativesD̄ljm and D̄ (rs)j

m:

]m Î
m5Ônjn1Ôn

mD̄mjn1Ôn
rsD̄ ~rs!j

n[0, ~2.47!
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whose coefficients must be identically zero. This gives 60
identities—the Belinfante-Rosenfeld identities generalized to
curved backgrounds. Strong integral conservation laws and
integral constraints are obtained with linear combinations of
these 60 identities withjm and its derivatives as coefficients.
Calculations of the coefficients are somewhat tedious, but
straightforward. A useful equation is that which transforms
zm into an expression depending onD̄mjn andD̄ (rs)j

n rather
thanZrs and D̄lZrs :

ẑm5S 2
1

4k
l̂mrR̄rn1

1

2k
l̂ rsR̄rsn

m D jn1ŝ l
mn D̄njl

1b̂l
mrsD̄ ~rs!j

l, ~2.48!

wheresmrs is defined in Eq.~2.22!, while

b̂l
mrs5

1

4k
~ l̂mrdl

s1 l̂msdl
r22l̂ rsdl

m!5b̂l
msr . ~2.49!

Inserting Eq.~2.48! into Eq. ~2.32! leads to the following
set of identities, following from Eq.~2.47!:

On5D̄mun
m1 1

2srslR̄lnrs

1
1

2k
(D̄ml

rsR̄rsn
m 2 l rsD̄nR̄rs2 1

2 D̄rl
rsR̄sn)50,

~2.50!

On
m5un

m1D̄ls n
lm 2

1

k
lmrR̄rn50. ~2.51!

On
~rs!5s n

~rs! 1D̄mbn
mrs50. ~2.52!

Equation~2.50! shows thatun
m , the energy-momentum ten-

sor with respect to a curved background, is in general not
‘‘conserved’’; it is not divergenceless. It is, however, diver-
genceless if the background is flat. Equation~2.51! shows
that on a Ricci-flat background,un

m is itself the divergence of
a tensor; i.e., it derives from a superpotential. The general-
ized Belinfante-Rosenfeld identities may be useful to check
un

m and smrs calculated independently. Equations~2.50!–
~2.52! are a covariant formulation of Goldberg’s@28# identi-
ties extended to curved backgrounds.

F. Linearized strong conservation laws
on a curved background

In the linear approximation, we writegmn5ḡmn1hmn and
thereafter we shall omit the overbar onḡmn ; D̄m becomes
Dm , and terms quadratic inhmn and D̄lhmn or Dlhmn are
neglected. The right-hand side of Eq.~2.35! becomes

l̂mn5A2g~2hmn1 1
2g

mnh!, h5gmnhmn ; ~2.53!

indices are now displaced withgmn , for instance,hmn

5gmrgnshrs .
The right-hand side of Eq.~2.40!, with the superpotential

Jmn given by Eq.~2.38!, can now be written entirely in terms
of lmn because, in the linear approximation,Drs

m , defined in
Eq. ~2.2!, becomes

Drs
m 5 1

2 ~Drhs
m1Dshr

m2Dmhrs!. ~2.54!

If we substitute this expression forDrs
m into Eq. ~2.38!, we

obtain, after a few rearrangements, the perturbed superpoten-
tial densityĴmn>A2gJmn which is linear inlmn and its first
derivatives:

kJmn5 l [mrDrjn]1j [mDrl
n]r2D [ml r

n]jr. ~2.55!

The left-hand side of Eq.~2.40! contains two terms qua-
dratic in the perturbations:tn

m @cf. Eq. ~2.21!# andsm@rs# @cf.
Eq. ~2.22!#. These two terms are now neglected. With Eq.
~2.54!, the linearized expression forzm @cf. Eq. ~2.36!# re-
duces to

4kzm5Zrs~2Drl s
m2Dml rs!2 l rs~2DrZs

m2DmZrs!

1~ lmrDrZ2Drl
mrZ!. ~2.56!

Like Jmn, zm is linear in lmn and its first derivatives. The
linearized form of the strong conservation law~2.40! is thus
as follows:

E
S
S dT̂n

mjn1
1

2k
l̂ rsRrsjm1 ẑmDdSm5E

]S
ĴmndSmn ,

~2.57!

with Ĵmn given by Eq. ~2.55! and zm by Eq. ~2.56!. The
linearized integral identities can also be written in terms of
dTn

m rather thandT̂n
m . Since from Eq.~2.53! we deduce that

dA2g5 1
2A2gl5 1

2A2gh with l5gmnl
mn,

h5gmnh
mn, ~2.58!

we can replacedT̂n
m in Eq. ~2.57! by

dT̂n
m5A2gdTn

m1 1
2A2gTn

mh, dTn
m5Tn

m2Tn
m,

~2.59!

and obtain, using Einstein’s equations for the background,

E
S
FdTn

mjn1
1

2k
~Rn

mdr
s2Rr

sdn
m!hs

r jn1zmGdŜm

5E
]S
JmndŜmn . ~2.60!

Equations~2.57! and~2.60! are useful forms of the linearized
strong integral conservation laws.

Simplifications occur whenzm simplifies; in particular, if
the background admits conformal Killing vectors, like in
Robertson-Walker spacetimes@see Eq.~2.42!#, in which case
Eq. ~2.56! becomes

8kzm5~ lmr1 1
2g

mrl !]rZ2ZDr~ lmr1 1
2g

mrl !

~jm conformal!. ~2.61!

If jm is a homothetic Killing vector@see Eq.~2.44!#, then Eq.
~2.61! reduces to
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8kzm52CDr~ lmr1 1
2g

mrl !, C5const

~jm homothetic!. ~2.62!

For Killing vectors of the background,zm50. If, in addition,
Killing vectors are tangent toS, j̄mdSm50, as may be the
case in Robertson-Walker spacetimes, Eq.~2.60! reduces
then to

E
S
S dTn

m1
1

2k
Rn

mhD j̄ndŜm5E
]S
JmndŜmn , ~2.63!

with Jmn given by Eq.~2.55!.

III. NOETHER CONSERVATION LAWS

We now return to Eq.~2.32! and consider what happens
when arbitraryjm’s are replaced by Killing vectorsj̄m of the
background.

A. Conserved current Jµ

Ĵm, which contains the physics of the conservation laws,
is not, in general, a conserved vector density since

]mĴ
m52]mẑm. ~3.1!

However, whenjm is a Killing vector j̄m of the background,
thenZrs50 @cf. Eq. ~2.14!#, ẑm50, andĴm( j̄) is conserved.
Hence we can speak about ‘‘physical conservation laws.’’
We should bear in mind, however, that in general the con-
served quantities will depend on the choice of the back-
ground.

Ĵm has been derived in the same way as ‘‘Noether’s theo-
rem’’ in classical field theory@18#. Thus, by replacingjm in
strongly conserved currents by Killing vectorsj̄m of the
background, we obtain Noether conserved vector densities.
These areexactwith mappings on curved backgrounds:

Jm~ j̄ !5un
mj̄n1sm@rs#] [rj̄s] , ]mĴ

m~ j̄ !50. ~3.2!

The interpretation ofun
m andsmrs is suggested by elec-

tromagnetic conserved currents in special relativity. For an
electromagnetic field, with

L̂EM52
1

16p
A2gFmnFmn , Fmn5]mAn2]nAm ,

~3.3!

one finds

ĴEM
m 5 ûnEM

m j̄n2
1

4p
F̂mrAs] [rj̄s] , ~3.4!

where j̄n are Killing vectors of Minkowski space which is
here described in arbitrary coordinates. In Eq.~3.4!, the ex-
pression

ûnEM
m 5

]L̂EM
]~]mAr!

]nAr2L̂EMdn
m ~3.5!

represents Pauli’s canonical energy-momentum tensor den-
sity. It is not the standard symmetric electromagnetic energy-
momentum tensor density

T̂nEM
m 5

1

4p
A2g@FmrFrn1 1

4dn
mFrsFrs#. ~3.6!

Indeed,

ĴEM
m 5T̂nEM

m j̄n2]rS 1

4p
F̂mrAnj̄nD . ~3.7!

The second term in Eq.~3.7! is gauge dependent and its
divergence is zero. It is generally assumed that the appropri-
ate boundary values ensure that this second term does not
contribute to the global conserved quantity. However, if,
with each displacement vectorj̄n, we associate a gauge
transformationAm→Am1]mz such that (Am1]mz) j̄m50,
the gauge-dependent term in Eq.~3.7! will disappear.

The first termT̂nEM
m j̄n, has a proper local meaning. On a

space like hypersurface extending to infinity,

E
S
ĴEM

m dSm5E
S
ûnEM

m j̄ndSm

1E
]S→`

S 2
1

4p
F̂mrAnj̄nDdSmr

5E
S
T̂nEM

m j̄ndSm . ~3.8!

Here Eq. ~3.8! represents thetotal energy-momentum for
Killing vectors j̄m’s of translations. It gives the total angular
momentum ifj̄m’s describe spatial rotations; the integral of
the second term on the right-hand side of Eq.~3.2! repre-
sents, in this case, the spin of the electromagnetic field. This
means thatT̂nEM

m j̄n contains also the spin density.
By analogy with electromagnetism, we shall give similar

interpretations to the two terms on the right-hand side of Eq.
~3.2!. un

m is the ~relative! energy-momentum tensor with re-
spect to a given background for a given mapping and, simi-
larly, sm@rs# can be interpreted as the~relative! spin tensor.
As in electromagnetism, the conserved vector densityĴm

may not have a well-defined local meaning even for a given
mapping. However,Ĵm generates global conservation laws
which are advantageously associated with a superpotential.
Global quantities with appropriate mappings near thebound-
ary of the domain of integration may, and indeed have, in-
teresting physical meaning in certain cases as we shall see
below.

B. Conservation laws in asymptotically flat spacetimes

Locally conserved quantities are related to boundary val-
ues through the superpotential to which we now turn our
attention. Global conservation laws derived fromJmn have
been discussed in@19# and in@21#; they will not be analyzed
here. The results of those applications are, however, illumi-
nating and worth summarizing. They strengthen the interpre-
tation ofJm as a Noether conserved vector of energy, linear,
and angular momentum.
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Spacetimes that are asymptotically flat admit asymptotic
Killing vectors. Each space may be mapped on a flat back-
ground that is identified with the spaces itself at infinity.

To calculate globally conserved quantities, the mapping
can be defined only asymptotically. To each Killing vector
j̄m of the background, the total amount of the corresponding
conserved quantity ‘‘in the whole space at a given time’’ is
the integral ofĴm over a spacelike hypersurfaceS extending
to infinity:

P~ j̄ !5E
S
ĴmdSm5E

]S→`
ĴmndSmn . ~3.9!

1. Results at spatial infinity

We may use the asymptotic solution representing an iso-
lated system, as given in@30# to calculate energy and linear
and angular momenta att5const. The corresponding quan-
tities P( j̄) show which parameters in the asymptotic solu-
tions are commonly interpreted as energy and linear and an-
gular momenta of such a system. It is worth noting that
Jmn provides both linear and angular momenta as does the
pseudotensor of Landau and Lifshitz@26#. Our Jmn is, how-
ever, derived from a real Noether conserved vector. In con-
trast to the Landau-Lifshitz pseudotensor, it can be calcu-
lated in arbitrary coordinates whereas the Landau-Lifshitz
pseudotensor~or the Einstein pseudotensor for energy and
linear momentum! gives meaningful results only in coordi-
nates which become Lorentzian at infinity in such a manner
that gmn→hmn1O(r21) ~see, however,@15#!.

2. Results at null infinity

Here, for axisymmetric@14# or general@31# outgoing ra-
diation asymptotic solutions, it is advantageous to use
Newman-Unti@32# coordinatesxl[(x05t2r ,r ,x2,x3) con-
formally flat in x2,x3. The solutions have asymptotic sym-
metries represented by the Bondi-Metzner-Sachs group@33#.
The BMS group contains supertranslationsu→u
1a(x2,x3). For the Killing vectors of translations in the
background, we identifyP( j̄), respectively, with the Bondi
@34# massP0( j̄) and with Sachs@33# linear momentum@35#
Pk( j̄). Pa( j̄) ~a,b, . . .50,1,2,3! behaves like a vector un-
der Lorentz transformations of coordinates in the flat back-
ground, and the fluxesdPa /du are invariant under super-
translations. Similarly, for Killing vectors of spatial rotations
in the background,P( j̄) is the same@21# as the standard
definition of the angular momentumLk( j̄) @22#, but without
an ‘‘anomalous factor of 2.’’ The angular momentum trans-
forms as a vector for rotations in the background, but
dLk /du depends on the mapping and, in particular, on su-
pertranslations.

The conserved quantitiesP( j̄) have one outstanding
property worth noting. They are given by a superpotential,
not an ‘‘asymptotic superpotential.’’ That is,P( j̄) is ob-
tained from adifferential conservation lawand is directly
related through Einstein’s equations to the energy-
momentum tensor of the matter. No other differential con-
servation law has been given so far~with or without a back-
ground! that gives the standard expressions of the total
energy and linear and angular momenta at null infinity.

C. Linearized conservation laws

In the linear approximation, the formulas of Sec. II E are
valid. Noether’s conserved currents follow from Eq.~2.57!
or ~2.60! by replacingjm with Killing vectors j̄m for which
zm50. Thus the linearized form of the global Noether con-
servation laws~3.9! becomes

dP~ j̄ !5E
S
FdTn

m1
1

2k
~Rn

mdr
s2Rr

sdn
m!hs

r G j̄ndŜm

5E
dS
Jmn~ j̄ !dŜmn , ~3.10!

with

kJmn5 l [mrDrj̄n]1 j̄ [mDrl
n]r2D [ml r

n] j̄r. ~3.11!

IV. CONSERVATION LAWS IN COSMOLOGY
WITH RESPECT TO de SITTER

BACKGROUNDS

A. Spatially conformal mappings on de Sitter space

Strongly or weakly perturbed Robertson-Walker space-
times are related, by definition, to a Robertson-Walker back-
ground. Robertson-Walker spacetimes admit six Killing vec-
tors, each of these vectors generate a conserved Noether
current@36#.

We may, however, map Robertson-Walker spacetimes
~perturbed or not! on a de Sitter space which has ten Killing
vectors and thus ten conserved currents. It is interesting to
ask what are the four Noether currents for Killing vectors of
the de Sitter space that are not Killing vectors of a
Robertson-Walker spacetime. They replace energy and the
initial center-of-mass position. To elucidate this, we map
closed (k51), flat (k50), or open (k521) hypersurfaces
~at constant cosmic time! of Robertson-Walker spacetimes
on the corresponding hypersurfaces, with the same topology,
in de Sitter spaces.

Let Robertson-Walker spacetimes be described in coordi-
nates (t,xk) in which the metric reads

ds25gmndx
mdxn5f2dt21gkldx

kdxl

5f2dt22a2f kldx
kdxl , ~4.1!

where f kl(x
m) have particular forms for closed, flat or open

t5const hypersurfaces;xk may be any of suitable coordi-
nates, andf anda are functions oft. The metric of the de
Sitter background in these coordinates has a similar form

ds̄25ḡmndx
mdxn5c2dt21ḡkldx

kdxl

5c2dt22ā2f kldx
kdxl ; ~4.2!

here,c and ā are also functions oft. The ‘‘cosmic~proper!
times’’ T are thus given bydT5f(t)dt in the Robertson-
Walker spacetimes and bydT5c(t)dt in de Sitter space.
Hypersurfaces with the samet are mapped on one another.
Choosing both functionsf andc fixes the mapping of the
cosmic times up to a constant. For the moment we shall fix
neither of them.
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B. Killing vectors of the de Sitter background

The ten Killing vectors of the de Sitter background,j̄m

5( j̄0,j̄k), satisfy the Killing equation

Z̄mn5D̄mj̄n1D̄nj̄m50, ~4.3!

which in the 113 decomposition given by Eq.~4.2! implies

Z̄0050⇒ j̄05
1

c
j̃0~xk!, ~4.4!

Z̄0k50⇒ j̇̄ k52c2ḡkl¹ l j̄
0, ~4.5!

where j̃0 is a function whose equation is given below@see
Eq. ~4.9!#, ¹ l is a ḡkl ~or gkl or f kl! covariant derivative, and
a overdot denotes a derivative with respect tot. It may be
useful to remind the reader that indices are displaced by
ḡmn . Finally, the spatial part of the Killing equations gives

2
Z̄kl
ā2

5 f mk¹ l j̄
m1 f ml¹kj̄

m12cH̄ f klj̄
050, ~4.6!

where

H̄5
aG

cā
~4.7!

is the Hubble ‘‘constant’’ of de Sitter space;H̄ satisfies the
relation

1

c
HG 5

k

ā2
, ~4.8!

which follows from Einstein’s equations or, as the integra-
bility condition of Eq.~4.3!. If we take a partialt derivative
of Eq. ~4.6! and make use of Eq.~4.5!, we obtain

¹klj̄
01k fklj̄

050 or ¹klj̃
01k fklj̃

050. ~4.9!

This equation can be solved. Havingj̃0, we can obtainj̄k

from Eqs. ~4.5! and ~4.6!. Explicit expressions forj̄m and
finite group transformations are given in Weinberg@37#. Us-
ing Weinberg’s coordinatesadaptedto t5const slices,f kl
becomes

f kl5dkl1
kxkxl

12kr2
, f kl5dkl2kxkxl ,

r 25~x1!21~x2!21~x3!2. ~4.10!

Any j̄m is a linear combination with constant coefficients of
the following ten vectors.

~a! Quasitranslations int5const:

j̄0

~r !

50, j̄k

~r !

5d r
kA12kr2, r51,2,3. ~4.11!

~b! Quasirotations int5const:

j̄0

@rs#

50, j̄k

@rs#

5dkrxs2dksxr , r ,s51,2,3. ~4.12!

~c! Time quasitranslations:

j̄0

~0!

5
1

c
A12kr2, j̄

~0!

k52H̄xkAl2kr2. ~4.13!

~d! Lorentz quasirotations:

j̄0

@r #

5
1

c
xr , k50⇒ j̄k

@r #

5H̄@ 1
2dkr~r 22t2!2xkxl #,

~4.14!

k561⇒ j̄k

@r #

5H̄@kdkr2xkxr #, ~4.15!

where, in Eq.~4.14!,

t5
c

aG
~k50!. ~4.16!

The Killing vectors ~4.11! and ~4.12! are also the Killing
vectors of Robertson-Walker spacetimes. The vectors~4.13!,
~4.14!, and ~4.15! are conformal Killing vectors of
Robertson-Walker spacetimes.

C. Superpotentials and conserved vectors

To obtain the superpotentials we follow the calculations
outlined in Sec. II C. With the metric componentsgmn of Eq.
~4.1! and ḡmn of Eq. ~4.2!, we calculate the quantitiesl rs

5 l̂ rs/A2g,

l 005
1

f2 S 12
fā 3

ca3 D , l kl5gklS l2 cā

faD , ~4.17!

and the Christoffel symbolsGmn
l and Ḡmn

l and their differ-
encesDmn

l ,

G00
0 5

ḟ

f
, Ḡ00

0 5
ċ

c
⇒D00

0 5
ḟ

f
2

ċ

c
[fT. ~4.18!

The functionT just defined describes a relative shift in times
measured in Robertson-Walker cosmic time units. Next,

G0l
k 5fHd l

k ,

Ḡ0l
k 5cH̄d l

k⇒D0l
k 5fSH2

c

f
H̄ D d l

k5fHd l
k , ~4.19!

where

H5
ȧ

fa
; ~4.20!

H is the relative Hubble function measured in Robertson-
Walker cosmic time. Finally,

Gkl
0 52

H

f
gkl ,

Ḡkl
0 52

H̄

c
ḡkl⇒Dkl

0 52
1

f SH2
ā2f

a2c
H̄ Dgkl . ~4.21!
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With j̄m given by Eqs.~4.11!–~4.16!, lmn by Eq. ~4.17!,
Dmn

l by Eqs.~4.18!–~4.21!, the superpotential, defined in Eq.
~2.38!, has the form:

2kJ0k5Aḡkl¹ l j̄
01Bj̄k, ~4.22!

2kJkl5Cḡ[km¹mj̄ l ] , ~4.23!

whereA, B, andC are functions oft:

A~ t !52
ā 2

a2
12

cā 3

fa3
2

c2

f2 ,

B~ t !5S 3 ā 2

a2
22

cā 3

fa3
2

c2

f2D H̄c 2
4

f
H,

C~ t !52
ā 2

a2
22

cā 3

fa3
. ~4.24!

The components of the conserved vector densityĴm can be
calculated either from the superpotential sinceĴm5]nĴ

mn or
directly from Eq. ~2.33!. With the usual notations for the
Tn

m components

T0
05r, Tl

k52d l
kP, T̄n

m5Ldn
m , ~4.25!

the zero component of the current then reads

J05F S r2
cā 3

fa3
L

k D2
1

2k
lL2

3

k
H2G j̄ 0[U~ t !j̄ 0,

~4.26!

where

l5 l rsḡrs53
ā 2

a2
24

cā 3

fa3
1

c2

f2 5C2A, ~4.27!

and the spatial part is given by

Jk5F S 2P2
cā 3

fa3
L

k D2
1

2k
lL1

3

k
H22

3f

2kc S ā 2

a2
2

c2

f2D
3~T1H!H̄G j̄ k1

1f

2kc S ā 2

a2
2

c2

f2D ~T1H!ḡkl¹ l~cj̄0!.

~4.28!

The first set of parentheses in the brackets of Eqs.~4.26! and
~4.28! represents the ‘‘relative mass-energy density’’ and
‘‘relative pressure’’ respectively. The second term is the cou-
pling to the background. The other terms are associated with
field energy and helicity and they depend on the mapping of
the time axes.

D. Mappings

As a consequence of Eq.~4.26! and j̄0’s as given in Eqs.
~4.11!–~4.19!, the conserved quantities in a volumeV en-
closed by a sphere of radiusr are all equal to zero except the
‘‘energy’’ P0 , associated with time quasitranslationsj̄0

(0)given by Eq.~4.13!. The ‘‘energy’’ reads

P05
4p

3
ā 3r 3U, ~4.29!

whereU is given by Eq.~4.26!. The most appealing mapping
is one that givesU50 so thatP050. With such a mapping
there are ten conserved quantities forperturbations of
Robertson-Walker spacetimes only; it adds ‘‘energy-
momentum’’ to theperturbedRobertson-Walker spacetimes
that have no quasispacetime translation invariance.

One may also consider a conformal mapping, for which
we take

c51, f5
a

ā
, ~4.30!

so that

ds25
a2

ā2
ds̄2. ~4.31!

Then,

U~ t !5S r2f24
L

k D12f24~12f2!
L

k
2
3

k
H2.

~4.32!

In this case the total energy of a closed space (k51) is also
zero, but for open or flat sections it is infinite. The mean
‘‘energy density’’ P0@(4p/3)ā 3r 3# of a k50 Robertson-
Walker spacetime mapped on de Sitter is given by
U(t)A2g/A2ḡ. The mean ‘‘energy density’’ in ak521
space is, however, infinite becauseP0 grows faster than the
proper volume asr→`.

V. TRASCHEN’S INTEGRAL CONSTRAINTS

A. Equations for integral constraint vectors

Let us now go back to Traschen’s integral constraints that
were written in Eq.~1.3! for spatially localized linear pertur-
bations. For general linear perturbations, Traschen@5#
showed that for certain vectorsVm, called ‘‘integral con-
straint vectors’’~ICV’s!, that satisfy 12 equations on a par-
ticular hypersurfaceS, there exist Gauss-like integrals of the
form

E
S
dTn

mVndŜm5E
dS
BmndŜmn , ~5.1!

whereBmn is given in terms ofhmn , V
m, and their first order

derivatives. If the perturbed metric gives no contribution to
the right-hand side of Eq.~5.1!, the expression reduces to
Traschen’s integral constraints~1.3!. At first sight, Eq.~5.1!
appears to be a strong conservation law for linear perturba-
tions similar to Eq.~2.60!, some terms of the left-hand side
of Eq. ~2.60! having been transformed into boundary inte-
grals.

The 12 Traschen equations for ICV’s were deduced from
Einstein’s constraint equations@38#. We shall here show that
Traschen’s ICV equations can be derived from the strong
conservation laws~2.60!.
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The problem is to find the conditions onjm’s for which
Eq. ~2.60! takes the form~5.1!. In doing so, we shall not only
obtain the Traschen equations forVm, but also find under
what conditions Eq.~5.1! holds on afamily of hypersurfaces
S rather than on a particular hypersurface.

Let us write Eq.~2.60! in synchronous coordinates around
S. In these coordinates,S is defined byt5const and the
metric takes the form

ds25dt21gkl~ t,x
m!dxkdxl , k,l ,m, . . .51,2,3.

~5.2!

It is always possible to keep the gauge synchronous for
the perturbations, namely, to take

h005h0k50, ~5.3!

becauseh00 andh0k depend on the mapping above and be-
low S. Here we are interested in conditions on one particular
hypersurfaceS ~to begin with!. On t5const, Eq.~2.60! can
be written as

E
S
FdTn

0jn1
1

2k
~Rn

0jnh2Rr
shs

r j0!1z0GdV5E
]S
J0kdSk ,

~5.4!

where

dV5dŜ05A2gdx1dx2dx3,

dSk5dŜ0k5A2g«klmdx
[ ldxm] . ~5.5!

The componentz0 @cf. Eq. ~2.56!# is linear in Zmn and
DrZmn . It is also linear inhmn , ḣmn5] thnm , and¹khmn
~the covariant derivatives ofhmn with respect to the three-
metricgkl!. Thusz0 is of the form

z05Aklhkl1Bmkl¹mhkl1Cklḣkl

5¹m~Bmklhkl!1Eklhkl1Cklḣkl . ~5.6!

Inserting Eq.~5.6! into Eq. ~5.4! and taking account of Eq.
~5.3!, we obtain an expression of the form

E
S
FdTn

0jn1
1

2k
Yklh̃kl1

1

4k
Zkl] th̃klGdV

5E
]S

~J0m2Bmklhkl!dSm , ~5.7!

in which

h̃kl5hkl2gklhm
m , ~5.8!

and theZkl’s are the spatial components of theZmn tensor
defined in Eq.~2.14!. The left-hand side of Eq.~5.7! takes
the form~5.1! when the factors ofh̃kl and of its time deriva-
tive ] th̃kl vanish:

Zkl50, Ykl50. ~5.9!

The first of these equations can be written in a 113 decom-
position as

Zkl5¹kj l1¹ ljk1ġklj
050 ~5.10!

~remember that in generalDkÞ¹k!. With Zkl50, the equa-
tion Ykl50 reduces to

Ykl5
1
2 ~¹kZl

01¹ lZk
0!1 1

4 ġklZ0
02~Rkl1gklG0

0!j0

2 1
2Rm

0 jmgkl50, ~5.11!

whereG0
0 is a component of Einstein’s tensor. Accordingly,

if ICV’s satisfy Eqs.~5.10! and~5.11!, then Eq.~5.4! or ~5.7!
has the form~5.1!. It is now easy to see that Eqs.~5.10! and
~5.11! are equivalent to Traschen’s equations~3a! and ~3b!
@39#. Inserting the explicit expressions ofBmkl into Eq.~5.7!,
we obtain

E
S
dTn

0jndV5E
]S

S J0k2 1

4k
hm
mZ0

kDdSk , ~5.12!

whereJ0k is given in terms ofjm, hmn , and their first order
derivatives by Eq.~2.55!.

How is Eq. ~5.12! modified if we consider perturbations
in a nonsynchronous gauge? The answer is that, instead of
Eq. ~5.12!, Eq. ~5.4! becomes

E
S
FdTn

0jn1
1

2k
Rk
0~h0

0jk22h0
kj0!G

5E
]S

FJ0k2 1

4k
hm
mZ0

k1
1

4k
~Z0

kh0
02Z0

0h0
k!GdSk . ~5.13!

Equation~5.13! shows that if Eqs.~5.10! and~5.11! holdand
if Rk

050 in synchronous coordinates, Eq.~2.60! has the de-
sired form ~5.1! independently of any gauge condition, as
pointed out by Traschen. Robertson-Walker spacetimes have
that property, but, in general,Rk

0 does not vanish. In a syn-
chronous gauge, Eq.~2.60! has the form of Eq.~5.1!, not
only on a particularS, but on all nearby hypersurfaces.

B. ICV’s in Robertson-Walker spacetimes

With a metric of the form~4.1! and withf51, Eq.~5.10!
can be written as

2
Zkl
a2

5 f mk¹ lj
m1 f ml¹kj

m12 f klHj050 where H5
ȧ

a

~5.14!

andYkl50 or, equivalently,

Ykl2
1
2a

2] l S Zkla2 D[¹klj
01k fklj

050. ~5.15!

Equations~5.14! and ~5.15! are Traschen’s equations~15a!
and ~15b! in @5#.

We notice that Eq.~5.15! for j0 is the same as Eq.~4.9!
for j̄0 and that Eq.~5.14! for j0 and jk is the same as Eq.
~4.6! for j̄0 and j̄k in the de Sitter space provided that

c5
H

H̄
. ~5.16!
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Therefore, a set of solutions for Traschen’s equations is
given by the ten Killing vectorsj̄

a

m (a51,2,...,10) of the de

Sitter space~4.11!–~4.16! with c replaced byH/H̄. Linear
combinations of the ten Killing vectorsj̄

a

m’s with coefficients

that are functions oft, are also solutions of Traschen’s equa-
tions. In effect, the ten ICV’s, sayV

a
a, given by Traschen, are

the following combinations of the Killing vectors:

V
a

m5c j̄
a

m5 H
H̄

j̄
a

m , ~5.17!

with the exception of quasi-Lorentz rotations in the flat
Robertson-Walker spacetime (k50) for which Traschen’s
ICV’s are equal to

V
@r #

m5c~ j̄
@r #

m1 1
2 t2 j̄

~r !

m!, ~5.18!

where j̄
@r #

m is given by Eq.~4.14!, j̄
(r )

m by Eq. ~4.11!, and

t by Eq. ~4.16!.
Equations ~5.17! and ~5.18! suggest, and it has been

shown explicitly in@41#, that in fact Traschen’s integral con-
straint ~1.3! is an expression of conservation laws for a per-

turbed Robertson-Walker spacetimemapped on a de Sitter
spacetimeand with the mapping given by the conditions

f51, c5
H

H̄
. ~5.19!

This is at variance with Traschen and Eardley’s@6# interpre-
tation of Eq.~1.3! as conditions of energy-momentum con-
servation defined with respect to the Robertson-Walker back-
ground.
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