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Relativistic conservation laws and integral constraints for large cosmological perturbations
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For every mapping of a perturbed spacetime onto a background and with any vect@nfieldonstruct a
strongly, identically conserved covariant vector dens{i§), which is the divergence of a covariant antisym-
metric tensor density, a “superpotentiall{¢) is linear in the energy-momentum tensor perturbations of
matter, which may be largé(¢) does not contain the second order derivatives of the perturbed metric. The
superpotential is identically zero when perturbations are absent. By integrating strongly conserved vectors over
a partX of a hypersurface of the background, which spans a two-surfake we obtain integral relations
between, on the one hand, initial data of the perturbed metric components and the energy-momentum pertur-
bations on3, and, on the other, the boundary values@h We show that there are as many such integral
relations as there are different mapping's, 2's, and é2's. For given boundary values ai®, the integral
relations may be interpreted as integral constraints on local initial data including the energy-momentum
perturbations. Strong conservation laws expressed in terms of Killing féeldé the background become
“physical” conservation laws. In cosmology, to each mapping of the time axis of a Robertson-Walker space
on a de Sitter space with the same spatial topology there correspond ten conservation laws. The conformal
mapping leads to a straightforward generalization of conservation laws in flat spacetimes. Other mappings are
also considered. Traschen's “integral constraints” for linearized spatially localized perturbations of the
energy-momentum tensor are examples of conservation laws with peéwiectors whose equations are
rederived here. In Robertson-Walker spacetimes, the “integral constraint vectors” are the Killing vectors of a
de Sitter background for a special mappif§0556-282197)00310-X

PACS numbe(s): 04.20.Cv, 98.80.Hw

[. INTRODUCTION Strong conservation laws are obtained from Lagrangians
that are scalar densities with not higher than first order de-
rivatives of the fields. There amo suchscalar densitiedor

~ Background spacetimes are commonly used in perturbahe metric, and therefore strong conservation laws in general
tion theories in general relativitjl] and play an essential relativity are coordinate dependent. The coordinate depen-
role in cosmology[2]. One “puzzle” [3] in the theory of  dence can be “brushed under the rug” by mapping the
cosmological perturbations is Traschen's “integral CON-gpacetime on a flat backgroufiti3]. This method offers, for
straints” for spatially localizedperturbations[4,5]. These example, the advantage of making the Bondi nfa< cal-

Gauss-type restrictions on the energy-momentum of matter;|apie from Einstein's pseudotensor in Bondi coordinates
perturbations have significant effedi8]: They point to an [15] rather than in Minkowski coordinatdd6]. But back-

important reduction of the Sachs-Wolf] effect on the rounds are more than a useful tool in relativistic cosmology;

mean square angular fluctuations at large angles of the cog- o g ) -
mic background temperature due to local inhomogeneities ifl ey are inevitable in linear and nonlinear perturbation theo-
ries.

the universe for spatially isolated perturbations. ) . .
Traschen’s relations remind us of Bergmanstiong con- Here we derive strong con;ervgithn lawgh respect to
servation laws[8] applied to perturbations of isolated sys- curved backgroundalong the line indicated by Bergmann.
tems. Such conservation laws, which were explored in detaiVe define a Lagrangian density; for the gravitational
by Bergmann and Schillei9], are, in fact, identities. The field, quadratic in the first order covariant derivatives of the
identities, which involve an arbitrary vectgr have played a perturbed metridthe caret means “density,” i.e., multipli-
basic role in the derivation of weak or Noether conservectation by/—g). |:G is normalized so tha&e=0 when there
currents in general relativifyl0] and are still in us¢11]. We  are no perturbations. Perturbations do not have to be small.
found it thus interesting to s_tudy strong conservation Ia_ws Ofrhe strong conservation laws, derived frarg, are identi-
background spacetimg42] in the context of cosmological cally conserved vector densitieiﬁ(g), the divergences of

perturbations. covariant superpotential densitigs”:

A. Strong conservation laws and cosmology
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order covariant derivative$no second order derivatives C. Noether conservation laws in cosmology
both are zero when there are no perturbations. It follows
from Eg. (1.1 that, if 3 is any piece of a hypersurfac®
which spans a two-surface,

In cosmology, there are six Noether conservation laws for
perturbations in a Robertson-Walker background, corre-
sponding to the six Killing vectors. There are four non-
R R Noether conservation laws for each of the remaining confor-
J "‘dEfJ J#rds,, . (1.2 mal Killing vectors. The ten vectors correspond to the fact
= % that Robertson-Walker spacetimes are conformal to de Sitter

. . . - spacetimes, which, as is well known, admit ten independent
These exact nonlinear integral identities represent strong glq<

bal conservation laws if the intearation is over the whol illing vectors like Minkowski space. In cosmological appli-
al conservation 1aws € Integration Is over the .Oecations, de Sitter spaces appear more suitable as backgrounds

hypersurfaces. If % is only a piece of the Fotal, oneé may, N 1pan Minkowski spaces, the more so because in the inflation-
the manner of Penrodd 7], speak of quasilocal strong con- ary scenario, de Sitter spacetimes transform into Robertson-
servation laws. ~ Walker spacetimes. The quasienergy and initial position of
Now suppose that the boundary values, and IS on  {he mass centdr0] can be associated with the four Killing
d% aregiven Then Eq(1.2) represents aimtegral constraint  \ectors of de Sitter spaces which do not correspond to the six
on the perturbations of the energy-momentum tedddrfor  illing vectors of Robertson-Walker universes.
given initial perturbations of the metric di Reciprocally, if Traschen’s integral constraints, which we mentioned be-
oTY is given, Eq.(1.2) represent integral constraints on the fore, look like conservation laws on a de Sitter space in
initial metric data or. There are many integral constraints: disguise. Tod23] has shown that the equations fategral
for any mapping, any, and any> with the same boundary constraint vectorgICV's) V* are the conditions foE to be
values and the samgand its first derivatives orix. Integral  embeddable in a spacetime with constant curvature of which
constraints may be used to relate boundary values of thghe V#'s are the Killing vectors.
metric to the matter sources @ In Sec. Il we give the general theory of strong conserva-
Coming back to Traschen’s integral constraints for lineartion laws relative to a curved background for both nonlinear
perturbations, these represent particular forms of @®  and linearized perturbations. A summary of some of the re-
with a class of “integral constraint vectorsg“=V* (not  sults of Sec. Il appeared already|[ih2]. Here we give full
necessarily Killing vectops for which Eq.(1.2) reduces to  details and we also include a generalization of the
Belinfante-Rosenfeld identitid®4]. Section Il is devoted to
J 5T,:/vadi#:0_ (1.3 Noether cops_ervation Iavys; the energy-momentum tensor
) and the helicity tensor with respect to the background are
singled out. Results of applications to asymptotically flat
Boundary contributions are by definition vanishing. Thesepackgrounds are mentioned. Section IV gives details on No-
equations are the integral constraints &, that Traschen ether's conservation laws for Robertson-Walker spaces
[4] and Traschen and Eardld$] considered for spatially mapped on de Sitter spaces with the same spatial topology.
localized perturbations on a Robertson-Walker backgroundn Sec. V Traschen’s integral constraints are related to strong
They found that Eq(1.3) reduces considerably the Sachs-conservation laws. Integral constraint vectors are shown to
Wolfe [7] effect of 6T/ on the angular fluctuations of the be the Killing vectors of a de Sitter background with a par-
cosmic background radiation. Different boundary values mayicular mapping.
have less stringent effects.
Il. STRONGLY CONSERVED CURRENTS

B. Noether conservation laws on curved backgrounds . . . . . .
g The main result of this section is summarized in Eq.

In special relativity[18] as in general relativity19,20,  (2.39.
when the arbitrary vectof is replaced by a Killing vector
of the backgroundg*, the strong conservation laws become
physical conservation laws. Noether conserved vecidrs
have a physical content analogous to energy-momentum and
angular-momentum conserved currents in electromagnetism. Letg,,(x*), ,w,v, .. .=0,1,2,3, be the metric of a space-
However, contrary to electromagnetism, conserved gravitaime M with signature—2, and letg,,,(x*) be the metric of
tional currents cannot be made gauge independent, i.e., indée background\. Both are tensors with respect to arbitrary
pendent of the mapping. coordinate transformations. Once we have chosen a mapping

Noether conservation laws can be applied to asymptotiso that pointd of M map into points® of M, then we can
cally flat spacetimes. This subject is not dealt with here inuse the convention th&® and P shall always be given the
detail, but it is noteworthy that our superpotentl4t gives  same coordinates'=x*. This convention implies that a co-
properly the “standard” expression for total energy and lin- ordinate transformation o inevitably induces a coordi-
ear and angular momenta at spatial infirfil] and at null  nate transformation with the same functions/oh With this
infinity [21] found in the literaturd22]. The global conser- convention, such expressions gl;,,(x“)—gw(x)‘) become
vation laws,in their superpotential formgelate local quan- true tensors. However, if the particular mapping has been left
tities to boundary values and, if applied globally, give physi-unspecified, we are still free to change it. The form of the
cal interpretations to “asymptotic parameters” of solutions.equations for perturbations must inevitably contain a gauge
They are also useful in cosmology. invariance corresponding to this freedom.

A. Lagrangian density for gravitational fields
on a curved background
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LetR) . andR}  be the curvature tensors 8ff and M.  derivatives with respect to the vector field, Ag,,

These are related as follo}&5]: =£.9,,A\, etc. The Lie derivatives may be written in terms
N \ N N N — of ordinary partial derivativeg,, covariant derivativeD ,,
RV,,,;—D,JAW DA} ot AL AT —AG AT ARG, with respect tag,,,, or covariant derivativ® , with respect
21D  tog,,. Thus,
Here D are covariant derivatives with respect ggV and ggnggm(gvgwrgmaﬂghju g\a}\gw
A ,is the difference between Christoffel symbols/t and — — =
M: :g,u)\Dvg +g)\vD,u,§ +§ D}\gp,v
TN . - I =g )\Dvg}\+g)\VD f}\- (27)
A =T3,~ T}, =39"(D,0,,+D,8,,~D,0u.). g e
(2.2 Consider now the Lie differentiab L of £. With the
Our quadratic Lagrangian densi@e for gravitational per- ;/;rrl;;:ltlonal principle in mind, we writé L=£,LAN in the
turbations is then defined as
~ 1 . -
~ A =T A 1 ~ ~ - v
1 = 817G where Einstein’s tensor densit@#’=Rr" — 30*'R is the
L=~— 7 R, k= it (2.3 variational derivative of with respect tog,,, and A* is a
K

vector density linear ig (see below The Lie derivative of a
The caret means, as we said before, multiplication b);calar density like £ is just an ordinary divergence

L&*). Thus
\V—4d, never by\/—g. Thus, ifR=1/— gR, R will unamblgu- Tu(LE7)-

ously mean J—gR. Notice that R=1— gR+R O=£.L-3,(LE")=0. (2.9

—\/—gR/\/ g. The divergence of the vector denslty Combining Egs(2.9) with (2.8, we obtain

1

~ 1
po (2'4) O =

ki= el
2k

D,(—9g"")=g""AJ,— G AL GHE,Q,,,+d,B", (2.10

J

cancels all second order derivatives@f, in R. £ is the  where

Lagrangian used by Rosed. is £ in which g,, has been
replaced byg,,. Wheng,,=g,,, Ls is thus identically
zero. The intention here is to obtain conservation laws in then which
background space so that gfwzg_,w, conserved vectors

BH=AK— LEF=ISHIEQ +ER—LEF, (21D

and superpotentials would be identically zero as in 2KSHPT= (gHPGTT+ gHogPY — ghrgPo) AN,
Minkowski space in special relativity. The following for- .
mula, deduced from Eqg2.3) and (2.1), shows explicitly —(g"P g™ +g"gPr —g"gr7) A% (2.12

how Lg is quadratic in the first order derivatives gf,, or,

equivalently, quadratic i/ and

o 1 . 4kEF =g 0,Z+5""[D*Z,,— (D ,Z%+D,Z4)],
Lo §H(ALAT,~ALAT) = o (§=§"")R,,. (213
(2.9 with

Bh J— J—
Notice that if R;,,=0 and coordinates are such tHé(;; Z,,=£:9,,=D g +Dg§p, Z=07Z,y,  £y=Oguét
=0, LG is nothing else than the familiarl'T-I'T”" Lagrang-

ian density[26]. - (2.14
Indices will be moved up or down witg,,, only, never with
B. Infinitesimal reparametrization in both M and M 9,0+ IN EQ.(2.11, £,9,, may be replaced by its expression

(2.7) in terms of D, derivatives. In this wayB* contains
D, derivatives only.
Belinfante [24] and Rosenfeld 24| extracted from Eq.
(2.10 various identities and showed how to complete Pauli’'s
AxF=ERAN (2.6) canonical energy-momentum tensor to make it symmetrical
[27]. Identities (2.10 have been used to construct strong
represents an infinitesimal one-parameter displacement genenservation laws in general relativity, without mapping on a
erated by a sufficiently smooth vector fiel#, the corre- background28] and, more rarely, with a mapping on a flat
sponding changes in tensors are given in terms of the Lidackground19]. Here we use the identitie®.10 to con-

Lie differentials are particularly convenient in describing
infinitesimal displacements in botiv and M; they are thus
not associated with a change of mapping. If
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struct strong conservation laws on curved backgrounds. The C. Superpotentials and strong conservation laws
Bianchi identities implyD ,G#”=0 so that with Eq.(2.7),

. . Since]“ as given by Eq(2.19 is identically conserved
sE|?y (210 can be written as the divergence of a vector den whateverg,,, is, it must be the divergence of an antisymmet-

ric tensor density that depends on the arbitrgpy’s too;

. R 1. R thus,
0=4,j#=0 where j*=—Gl¢"+B*. (2.19 . . A -

K j*=4a,j*” where j#'=—j"", (2.29
Hence £ “generates” a vectorj* that is identically con-  jur jg easy to find and has been derived directly frnin
served. It has been obtained without using Einstein’s field19]. |n those papers the background is assumed to be flat,
equations; Eq(2.19 is the kind of strong conservation law ¢ the derivation of #* does not depend on that assumption:
introduced by Bergmanifi8]. We shall, of course, assume
that Einstein’s equations are satisfied, and replace;) @4

1 1
jpr="_plrgrl 4 — grgyl
by the energy-momentum of matter, JEr=— DHER A+ — ERKE

(2.2

1 GH=TH (2.16 The term (1k)D*£" will be recognized ag Komar's[29]

Kk VT ' superpotentials. In terms & derivatives,
so that our strong conservation lg®@.15 reads ngM:D_Pgﬂ_{_ AX N (2.26
%IT”:%(:T’V‘&”F B#)=0. (217 and regarding expressid@.4) for k¥, j*” may be written in

) ) ) ) ) ) the form
Equation(2.17) is, strictly speaking, not an identity anymore.

Given T4, Eq.(2.17) holds only for metrics that satisfy Eq. Kj#”:g[#PD_ngleg[#PA;]xngr glugeag — dral gee,
(2.16). j“ is linear in& and its derivatives up to order 2. If in (2.27)
B#, theD ¢, are decomposed into symmetric and antisym-

metric parts, using,,, defined in Eq(2.14),

D,é0=01pém+ 3Zpes (2.18
j“ takes the form
jr=Prer ey &+ 70, (2.19
in which
pufuy 1 gPoR ,SL+ T4 (2.20
y=Tt oo a0y T,
with
2kt =g (AR AL, +ALAY, — 200 A7)
= SN(AJAL—ALALD]
+g"NADLAL,—ATAL), (2.21

and o#lr7] is the antisymmetric part of“*” related to
3HP7 as

2KkaHPT= 2K$“””g>w?”
=(g"g7" + g7 gP — gr'gP?) A,
~ (g9 +g7 g~ 9" gAY, (222
(the terms containing”” do not contribute tar**1) while
4kZF=(ZVgPT+gHPZs—groZ) AN,
+(gP7Z— 297 Z]) A +gH 0\ Z

+97’(D*Z,,—2D,Z"). (2.23

Had we applied the identity2.9) to L instead of/:‘, we
would have written everywheig, , instead ofg,,, , from Eq.
(2.9 up to Eqg.(2.23. We would have found strong, barred,

conserved vector densitieg* and barred superpotentials

=~

.

=~ = 1 = = =
A=\ T+ oo RO £+ Z1=0,j1, (2.28
with
Zr=gP3Z+097(D Z,,~2D,Z")  (2.29
and
— 1l —_—
jrr=—Dlrgl, (2.30

Strongly conserved vectors fdlg=L— L are thus obtained

by subtracting barred vectors and superpotentials from un-
barred ones; in this way, we defimelative vectors and in
particularrelative superpotentials*j’—relative to the back-
ground space. Setting

IM:}M_E_}L, jMV:]\:‘“’—FVZ —3”“, (2.31
we have
fn=Juy gn=0,3m",  §,1#=0, (2.32
where
Ju= :9’,,‘5”4- (}#[pvla[pgcl , (2.33
with
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On both sides of this equality appear, besié@%ﬁ, com-

0, =06, + 2k IP7R, 8, + 17, (2.34 ponents of the metric perturbations and their first order de-
rivatives. Therefore, Eq(2.40 is an integral relation be-
in which tween possible metric initial data ofx, the energy-
momentum perturbation8T% , and the boundary values on
5%55%,:_ﬁ, f’”EQ’“’—W, (2.39 d2. For fixed boundary values, and for eacétt, Eq. (2.40

gives anintegral constrainton the metric initial data for
given 6T% . Reciprocally, for given metric initial data, Eq.
(2.40 is an integral constraint oAT% . In particular, if per-

1 (ZRQPT+ qHPT7O — qHT N 1 (gPT7 — 2P 7O A K f[urbatlor)s are “Iocallzed_” in the sense that the_ bound_ary
Aardt=(249 9", = 9" ) A+ (972297 Z0) A, integral is zero, then the integral constraints are simply given

and Z“:Z“—’ZT‘ is given by

+1#29,Z+1P7(D#Z,,,— 2D ,Z%), (2.39 by
while the superpotential is given by J (0“£"+ &#[PU](y[png]_{_zM)dEM:O (isolated system
s
- 1 . — (2.41)
JuV:; [DIrg—Dlrgr]+ rgrl, (2.37

There exist special vecto®* for which the expression
(2.36 for ¢* takes a somewhat simpler form.

If the background admits conformal Killing vectors, like
in Robertson-Walker spacetimes,

J#¥ can also be written in terms of,,, AY, and

po?

kB =] ““’D_pg”] + Q[WAZ]AQ + g[MgV]PAZU_ g[,uA;]ngU' o
(2.39 Z,o=19,0Z, (2.42

in which |MV:|“;W/\/__9_ and Eq.(2.36 becomes
The tensors in Eq(2.33 have a physical interpretation.

On a flat background, in coordinates in Whiﬂﬁvzo, t4

reduces to Einstein’'s pseudotensérjf. appears therefore as

8rl#=(1#P+3gP1)3,Z— (g A, — 9P AL )Z

the energy-momentum tensor of the perturbations with re- (& conformay). (243
spect to the background. The second tensor in (B3, If & is a homothetic Killing vector,

a*rol is quadratic in the metric perturbations just likg.

It is also bilinear in the perturbed metric componerds ( Z,,= %g_wc, C=const, (2.449

—9,.,) and their first order derivatives:*L#”) resembles, in
this respect, the helicity tensor density in electromagnetisnfFd. (2.43 reduces to
(see below. The factor ofd;,&,; represents thus the helicity

tensor density of the perturbations with respect to the back- 8k{*=—(g""Aj,—9""A},)C=—Ck*
ground. _
It should be noted again that all the components‘cénd (§* homothetig. (2.49

of the superpotential*” itself are identically zero ifg,,, o ]
=g,,,; therefore, strong conservation laws refer to perturba- FOr Killing vectors of the backgrom.md, V‘(h'Ch hgreafter
tions only and not to the background. will be denoted by¢* we get{#=0. If, in addition, Killing
To summarize, the main result obtained so far is the exvectors are tangent B, £#dx,=0, as will be the case in
plicit form of strongly conserved vectotg and their asso- Robertson-Walker spacetimes mapped on de Sitter spaces,
ciated superpotential#” on any background: the coupling to the background Ricci tensor in ER.34)
disappears, and Eq.40 reduces to

1#= e+ arleolg &g+ 24=0,3",  (2.39 ) o -
) f [(sTa+E e+ oHe7)op€,1d3,
in which 6% is given in Eq.(2.342, a#P? in Eq.(2.22, {* in =
Eq.(2.36, andJ*” in Eq.(2.38. 1* is strongly conserved for A —
any ¢* and any mapping ofM on M. = LzJWdE’“’ (§#d%,=0). (2.49

D. Strong integral conservation laws and integral constraints . . .
E. Belinfante-Rosenfeld identities

We can now integrate E¢2.39 on a partX, of a hyper-

surfaceS which spans a two-surfac® and obtain astrong Equation(2.32, 4,,1*=0, with I* depending linearly on
integral conservation law §"’s and their first order derivatives, holds for a.

Therefore,d,1#=0 is a linear combination of thé*’s and

J’ (b%”—(}”[p”]ﬂ[pfgﬁz“)dEM:f :]‘”dEW. their derivativesD, &* andD (&
s s

(2.40 3,1#=0,£"+ 0D &+ 02D ) E'=0, (2.4
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whose coefficients must be identically zero. This gives 60 A* =1(D h*+D, h*—D*h ). (2.549
identities—the Belinfante-Rosenfeld identities generalized to e re g ?

curved backgrounds. Strong integral conservation laws anff we substitute this expression fadr”  into Eq. (2.39, we
integral constraints are obtained with linear combinations Obbtain, after a few rearrangementS,pthe perturbed superpoten_
these 60 identities witlj* and its derivatives as coefficients. i, densityjf‘”z J—gJ*” which is linear inl#* and its first
Calculations of the coefficients are somewhat tedious, bUfjeriyatives:

straightforward. A useful equation is that which transforms

{* into an expression depending B, &” andD () &” rather KJMV:HMPngVl + glﬂDp| vlp D[M|;1 . (259
thanZ,, andD,Z,, :

The left-hand side of Eq.2.40 contains two terms qua-
dratic in the perturbations* [cf. Eq.(2.21)] ando#1P] [cf.
Eqg. (2.22]. These two terms are now neglected. With Eq.
P— (2.54), the linearized expression f@* [cf. Eq. (2.36)] re-
+BLPD () EN (2.48  duces to

1. — 1. — o
gr=| = g 1R, o IPORY, |7+ 677,D 8

pov

whered#?? is defined in Eq(2.22, while 4i{*=7°"(2D,|#~D*,,)—17?(2D 2~ D*Z,,)

- 1 - ~ ~ ~ 4 (| — ©pZYy . )
Brr = (imo 4 mosp—210o o) = Bpor . (2.49 (1%D,2=D,l*2) 259

Like J#¥, ¢* is linear in1*” and its first derivatives. The

Inserting Eq.(2.48 into Eq. (2.32) leads to the following linearized form of the strong conservation &40 is thus
set of identities, following from Eq(2.47): as follows:

—D A+ Ll poNR
Ov_Du0v+20' R)\Vprr

~ 1 . ~ ~

pevy — po B rn = wv
s - L(ang W )dzﬂ | s,
- 2K (DMIPURgUV_lpUDVRPO'_ % DPIPURJV) =0, (2.57)

(250  Wwith Jwv given by Eq.(2.55 and ¢* by Eq. (2.56. The
linearized integral identities can also be written in terms of
ST rather thansT% . Since from Eq(2.53 we deduce that

$=g=1g1=1/7gh with 1=g,,1",

h=g,,h"", (2.59

— 1 —
OH= 9"+ D)\U}‘”V—; |“PR,,=0. (2.52)

O(Vplr)zo.(Pf")V+D_ﬂBl;P”= 0. (252

Equation(2.50 shows thatf , the energy-momentum ten- -

sor with respect to a curved background, is in general nowe can replaceT, in Eq. (2.57) by

“conserved”; it is not divergenceless. It is, however, diver- . _
genceless if the background is flat. Equati@51) shows STH=\[—goTr+3\—gTth, oTE=TH-TH

that on a Ricci-flat background’; is itself the divergence of (2.59

a tensor; i.e., it derives from a superpotential. The general- ) ) ) . )

ized Belinfante-Rosenfeld identities may be useful to checi@d obtain, using Einstein’s equations for the background,
0% and o#*? calculated independently. Equatiof®.50—

(2.52 are a covariant formulation of Goldberd’a8] identi- f
ties extended to curved backgrounds. 3

14

1 5
STLE + 5 (RUST—RISINGE"+ (#|dS,,

F. Linearized strong conservation laws =j J‘“’diw. (2.60
on a curved background o2

In the linear approximation, we wri,,=g,,+h,, and  Equationg2.57) and(2.60 are useful forms of the linearized
thereafter we shall omit the overbar oy, ; D, becomes strong integral conservation laws.
D,. and terms quadratic ih,, andD,h,, or D,h,, are Simplifications occur wheig# simplifies; in particular, if
neglected. The right-hand side of H§.35 becomes the background admits conformal Killing vectors, like in
R Robertson-Walker spacetimgsee Eq(2.42], in which case
|#7=\—g(—h*"+}g*"h), h=g*’h,,; (253 Eq.(2.56 becomes

indices are now displaced witly,,, for instance, h*” 8k{H=(1*"+39""1)d,Z—ZD,(I1*°+ 3g**I)
= gMPgVUhpo i
The right-hand side of Eq2.40, with the superpotential (¢, conforma). (2.61

J*” given by Eq.(2.38, can now be written entirely in terms

of I“” because, in the linear approximatiaxy;, , defined in I £ is a homothetic Killing vectofsee Eq(2.44)], then Eq.

Eqg. (2.2, becomes (2.61) reduces to
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8rit= _CDP(|MP+%9P«P|)’ C=const represents Pauli’s canonical energy-momentum tensor den-
sity. It is not the standard symmetric electromagnetic energy-
(&% homothetig. (2.62 ~ momentum tensor density
- . . . . 1
For Killing vectors of the background#=0. If, in addition, TIVLEMzﬂ \/_—g[F,LprVJF%a,:FWFpU]_ (3.6)

Killing vectors are tangent t&, £“d% ,=0, as may be the
case in Robertson-Walker spacetimes, E260 reduces

then to Indeed,
R : STt 0 4 FAE| 33
f STh+ o— Rih|£7d3 :f J#ds,,, (2.63 EMTVEMS T 4 ’
s\ 7 2k Bl a
_ _ The second term in Eq3.7) is gauge dependent and its
with J*” given by Eq.(2.59. divergence is zero. It is generally assumed that the appropri-
ate boundary values ensure that this second term does not
I1l. NOETHER CONSERVATION LAWS contribute to the global conserved quantity. However, if,

with each displacement vect@®, we associate a gauge

transformationA,—A,+4d,{ such that A,+4,0)§*=0,
the gauge-dependent term in E§.7) will disappear.

We now return to Eq(2.32 and consider what happens
when arbitraryé#’s are replaced by Killing vectorg” of the

background. The first termT%,£”, has a proper local meaning. On a
space like hypersurface extending to infinity,
A. Conserved current J*
" ) _ ) ) R I

. J#, yvh|ch contains the physics of the co_nse(vatlon laws, j JEMdE#:f BhpE7dS
is not, in general, a conserved vector density since s b)

9, h=—a, " (3.0 J 1. ——

w n + — —_FMmp v
I R FLeA €7 |ds,,

However, wherg* is a Killing vector §# of the background,

thenZ,,=0 [cf. Eq.(2.14], {#=0, andJ”(g) is con;erved. ZJ -]—;VLEM?dE#_ (3.9
Hence we can speak about “physical conservation laws.” 5

We should bear in mind, however, that in general the con-

served quantities will depend on the choice of the backHere Ed.(3.8_represents theotal energy-momentum for
ground. Killing vectors £“'s of translations. It gives the total angular

J* has been derived in the same way as “Noether’s theomomentum ifé*’s describe spatial rotations; the integral of
rem” in classical field theory18]. Thus, by replacing# in  the second term on the right-hand side of E82) repre-
strongly conserved currents by Killing vectog# of the ~ Sents, in this case, the spin of the electromagnetic field. This
background, we obtain Noether conserved vector densitiegneans thall}g,£” contains also the spin density.
These areexactwith mappings on curved backgrounds: By analogy with electromagnetism, we shall give similar
L o o interpretations to the two terms on the right-hand side of Eq.
JHE) =g+ atlrol €, a#:]/‘(f)zo. (3.2  (3.2. ) is the(relative energy-momentum tensor with re-
spect to a given background for a given mapping and, simi-
The interpretation of* and o7 is suggested by elec- larly, o“l?”} can be interpreted as tieelative) spin tensor.
tromagnetic conserved currents in special relativity. For amAs in electromagnetism, the conserved vector dendtty
electromagnetic field, with may not have a well-defined local meaning even for a given
mapping. HoweverJ* generates global conservation laws
which are advantageously associated with a superpotential.
Global quantities with appropriate mappings nearkiband-

(3.3y  ary of the domain of integration may, and indeed have, in-

_ teresting physical meaning in certain cases as we shall see
one finds below.

- 1
EEM:_E V_gFMVF,u,va FlLV:&MAV_aVA/L!

R N — 1 . _ . . . .
I = 0%y 7 — = FMpAoa[png] ' (3.4) B. Conservation laws in asymptotically flat spacetimes

Locally conserved quantities are related to boundary val-
ues through the superpotential to which we now turn our
attention. Global conservation laws derived frat” have
been discussed ii9] and in[21]; they will not be analyzed
here. The results of those applications are, however, illumi-

oF nating and worth summarizing. They strengthen the interpre-

gr = TEM g N P s (3.5 tation of J* as a Noether conserved vector of energy, linear,
vEM EMYy .

a(d,A,) and angular momentum.

where? are Killing vectors of Minkowski space which is
here described in arbitrary coordinates. In Ej4), the ex-
pression
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Spacetimes that are asymptotically flat admit asymptotic C. Linearized conservation laws
Killing vectors. Each space may be mapped on a flat back-

L ” : ! o< In the linear approximation, the formulas of Sec. Il E are
ground that is identified with the spaces itself at infinity. PP

valid. Noether’'s conserved currents follow from Eg.57)

can be defined only asymptotically. To each Killing vectorq)r (2.60 by replacingé” with Killing vectors £* for which

% of the back d th | fth . if‘zo. Thus the linearized form of the global Noether con-
& of the bac grc.Jun“',t e total amount of the qorrespon,(’dlp ervation lawg3.9) becomes
conserved quantity “in the whole space at a given time” is

the integral ofJ* over a spacelike hypersurfageextending — L L ” — -
to infinity: oP(§)= s oT,+ P (Rys,—Ryay)hp | £7d%,
P_)=J Jeds :J Jerds 3.9 _ S
(=] 2= e 39 (B, (3.10
1. Results at spatial infinity with
We may use the asymptotic solution representing an iso- - .
lated system, as given {80] to calculate energy and linear kJ#r=leeD gl glup |Mle—plr Mg (3.1)
and angular momenta &tconst. The corresponding quan-
tities P(g) show which parameters in the asymptotic solu- IV. CONSERVATION LAWS IN COSMOLOGY
tions are commonly interpreted as energy and linear and an- WITH RESPECT TO de SITTER
gular momenta of such a system. It is worth noting that BACKGROUNDS
J#¥ provides both linear and angular momenta as does the _ _ )
pseudotensor of Landau and Lifshf@6]. Our J*” is, how- A. Spatially conformal mappings on de Sitter space

ever, derived from a real Noether conserved vector. In con- Strongly or weakly perturbed Robertson-Walker space-
trast to the Landau-Lifshitz pseudotensor, it can be calcutimes are related, by definition, to a Robertson-Walker back-
lated in arbitrary coordinates whereas the LandaU-LifShitZground_ Robertson-Walker Spacetimes admit six K||||ng vec-
pseudotensofor the Einstein pseudotensor for energy andtors, each of these vectors generate a conserved Noether
linear momentumngives meaningful results only in coordi- cyrrent[36].

nates which become Lorentzian at infinity in such a manner we may, however, map Robertson-Walker spacetimes

thatg,,— 7,,+0(r ') (see, however,15]). (perturbed or noton a de Sitter space which has ten Killing
o vectors and thus ten conserved currents. It is interesting to
2. Results at null infinity ask what are the four Noether currents for Killing vectors of

Here, for axisymmetri¢14] or genera[31] outgoing ra- the de Sitter space that are not Killing vectors of a
diation asymptotic solutions, it is advantageous to usdrobertson-Walker spacetime. They replace energy and the
Newman-Unti[32] coordinatesc*= (x°=t—r,r,x?,x%) con- initial center-of-mass position. To elucidate this, we map
formally flat in x?,x%. The solutions have asymptotic sym- closed k=1), flat (k=0), or open k= —1) hypersurfaces
metries represented by the Bondi-Metzner-Sachs gf88p (at constant cosmic timeof Robertson-Walker spacetimes
The BMS group contains supertranslations—u  On the corresponding hypersurfaces, with the same topology,
+a(x?,x%). For the Killing vectors of translations in the in de Sitter spaces.

background, we identifyP(&), respectively, with the Bondi Let Rokbe.rtson.-WaIker spacetimes be described in coordi-
[34] massPq(¢) and with Sach$33] linear momentuni35] nates (,x’) in which the metric reads

P(é). P8 (aB,...=0,1,2,3 behaves like a vector un- dgzgﬂydxﬁdxvz $2dt2+ gy dxdx

der Lorentz transformations of coordinates in the flat back- 9o o -

ground, and the fluxed P, /du are invariant under super- = ¢ dt*—af, dx"dx, (4.1

translations. Similarly, for Killing vectors of spatial rotations . )
in the backgroundP(¢) is the same21] as the standard wheref,(x™) have particular forms for closed, flat or open

_ k : P
definition of the angular momentuim (£) [22], but without t—tconst hyperzurfacesf( n:_ay beﬁan_lyhof sutlt_ablef t?]ooéd'
an “anomalous factor of 2.” The angular momentum trans-NA€S, andp anda are functions ot. The metric of the de

forms as a vector for rotations in the background, butsmer background in these coordinates has a similar form

glértig#sg?%enr;(.js on the mapping and, in particular, on su = g, dx“dx’= P22+ godxedy
The conserved quantitie® (&) have one outstanding = y2dt?—aZf dxkdx; (4.2
property worth noting. They are given by a superpotential,
not an “asymptotic superpotential.” That i®(¢£) is ob- here,iy anda are also functions of. The “cosmic(propej
tained from adifferential conservation lavand is directly times” T are thus given bydT= ¢(t)dt in the Robertson-
related through Einstein’s equations to the energyWalker spacetimes and byT=¢(t)dt in de Sitter space.
momentum tensor of the matter. No other differential con-Hypersurfaces with the sameare mapped on one another.
servation law has been given so faith or without a back- Choosing both functiong) and ¢ fixes the mapping of the
ground that gives the standard expressions of the totabosmic times up to a constant. For the moment we shall fix
energy and linear and angular momenta at null infinity. neither of them.
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B. Killing vectors of the de Sitter background

The ten Killing vectors of the de Sitter backgrouﬁ
=(£°,£4), satisfy the Killing equation

Z,,=D,§,+D,£,=0, (4.3

which in the 23 decomposition given by Ed@4.2) implies

Zoo= 0=»?=%E°<xk>, (4.4)
Zo= 0= £K= — yZgFy, €0, 4.5

where £° is a function whose equation is given bel¢see
Eq.(4.9], V, is ag, (or gy, or f,,) covariant derivative, and
a overdot denotes a derivative with respect.tdt may be
useful to remind the reader that indices are displaced by =
Q_MV- Finally, the spatial part of the Killing equations gives

Zy — — — =
_?=fmkV|§m+fm|Vk§m+2¢/ka|§o=0, (4.6)
where
R 4
e (4.7
is the Hubble “constant” of de Sitter spacgsatisfies the
relation
Ly X 4.8
Py (4.9

which follows from Einstein’s equations or, as the integra-and the Christoffel symbolf

bility condition of Eq.(4.3). If we take a partiat derivative
of Eq. (4.6) and make use of Edq4.5), we obtain
or Vkréo‘l‘ kfkréoz

V&4 kf =0 (4.9

This equation can be solved. Havig§, we can obtairg
from Egs. (4.5 and (4.6). Explicit expressions fog* and
finite group transformations are given in Weinb§gJ]. Us-
ing Weinberg’'s coordinateadaptedto t=const slices,f,
becomes

kxKx

fk|:5k|+ —zl_kr , fklzékl_kaX

r2=(x%)2+(x?)2+(x%)>2. (4.10

Any? is a linear combination with constant coefficients of

the following ten vectors.
(a) Quasitranslations ih=const:

0=0, &=61-krZ, r=123. (411
(r) (r)

(b) Quasirotations iri=const:
£0=0, &K=6xS—s%, rs=1,23. (4.12

[rs] [rs]
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(c) Time quasitranslations:
— 1 — —
0= 1-kr?, &k=—Hx*—krZ. (4.13
(0) ¥ (0)
(d) Lorentz quasirotations:
— 1 -
Q= x k=0=&=H[3(r?— ) —x*'],
m ¥ [r]
(4.14
k== 1= " =H[k&" —x*x'], (4.19
[r]
where, in Eq.(4.14),
g (k=0). (4.16

The Killing vectors(4.11) and (4.12 are also the Killing
vectors of Robertson-Walker spacetimes. The vedtrsld),
(4.14, and (4.15 are conformal Killing vectors of
Robertson-Walker spacetimes.

C. Superpotentials and conserved vectors

To obtain the superpotentials we follow the calculations
outlined in Sec. Il C. With the metric componergts, of Eq.
(4 1D andg, g, of Eq. (4.2, we calculate the quantitieg”

1771\~ g,

1 ¢_3 ( ¢a
00_ Kl— okl [ —
I e (1 v 1'=g“ 1 %a 4.19
and F_?W and their differ-
encesA),
I TN

The function7 just defined describes a relative shift in times
measured in Robertson-Walker cosmic time units. Next,

T§=pHof,

r_a:wH_ar:Aa=¢( H-— % ﬂ Sk=¢Hsk, (4.19
where
H= Ja (4.20

‘H is the relative Hubble function measured in Robertson-
Walker cosmic time. Finally,
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With ? given by Egs.(4.11)—-(4.16, 1*” by Eg. (4.17),

AZV by Egs.(4.18—(4.21), the superpotential, defined in Eq.

(2.38, has the form:

2k3% = AgFV, 0+ Bek, (4.22
21 JM = (Cglkmy Il (4.23
where A, B, andC are functions ot:
gas  §f
A(t): 2 +2 ¢a3 ?’
a’? _ya° ¢2 H 4
B(t)=|3—=—2——=3——>5|——H,
( ) a2 ¢a3 ¢ l/f ¢
C —2EZ 2[’053 4.2
()= 22 2o (4.24

The components of the conserved vector Qeniﬁ‘ty;an be
calculated either from the superpotential sidée=9,J*" or

directly from Eq.(2.33. With the usual notations for the

173
T/ components

T=p, T=—6skP, TH=A&", (4.25
the zero component of the current then reads
gas A\ 1
o_||,— 72 22| _ _ 242
J [(p o x 2KIA H go U(t)go
(4.2
where
o a?  yga® Y
=1 gpa=3?—4ﬁ+?=C—A, (4.27)
and the spatial part is given by
yas 1 3 3¢ [a? P
k— _ = Sap 2% _
J [ -P- ¢ P IA+ p H 2k 22 gz

2| (T+ 1) (40).

2
X(T+ 'H)T (a—
(4.289

The first set of parentheses in the brackets of E426) and
(4.28) represents the
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(4.29

wherel{ is given by Eq(4.26). The most appealing mapping
is one that giveg/=0 so thatP,=0. With such a mapping
there are ten conserved quantities fperturbations of
Robertson-Walker spacetimes only; it adds ‘“energy-
momentum” to theperturbedRobertson-Walker spacetimes
that have no quasispacetime translation invariance.

One may also consider a conformal mapping, for which
we take

3 !
y=1 b= (4.30

so that

a2

d32=5—2 ds%. (4.31)

Then,

Ut)= (p ¢ o2 +2¢ Y(1- ¢)———H2

(4.32

In this case the total energy of a closed spdce 1) is also
zero, but for open or flat sections it is infinite. The mean
“energy density” Po[(4m/3)a’r®] of a k=0 Robertson-
Walker spacetime mapped on de Sitter is given by
U(t)\—g/—g. The mean “energy density” in &=—1
space is, however, infinite becauBg grows faster than the
proper volume ag— .

V. TRASCHEN'S INTEGRAL CONSTRAINTS
A. Equations for integral constraint vectors

Let us now go back to Traschen’s integral constraints that
were written in Eq(1.3) for spatially localized linear pertur-
bations. For general linear perturbations, TraschHéh
showed that for certain vectong”, called “integral con-
straint vectors”(ICV’s), that satisfy 12 equations on a par-
ticular hypersurfac&, there exist Gauss-like integrals of the
form

f STAVYdS, = f BLYdS, (5.1)
p o

wv

“relative mass-energy density” and
“relative pressure” respectively. The second term is the couwhereB*” is given in terms oh

uv» V¥, and their first order

pling to the background. The other terms are associated witherivatives. If the perturbed metric gives no contribution to
field energy and helicity and they depend on the mapping ofhe right-hand side of Eq5.1), the expression reduces to

the time axes.

D. Mappings

As a consequence of E(.26 and?’s as given in Egs.

(4.1)—-(4.19, the conserved quantities in a volunveen-

closed by a sphere of radiusare all equal to zero except the

“energy” P,, associated with time quasitranslatiog8
given by Eq.(4.13. The “energy” reads (©)

Traschen'’s integral constraint$.3). At first sight, Eq.(5.1
appears to be a strong conservation law for linear perturba-
tions similar to Eq.(2.60, some terms of the left-hand side
of Eq. (2.60 having been transformed into boundary inte-
grals.

The 12 Traschen equations for ICV’s were deduced from
Einstein’s constraint equatiofi38]. We shall here show that
Traschen’s ICV equations can be derived from the strong
conservation law$2.60.
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The problem is to find the conditions a@jt’s for which
Eq. (2.60 takes the forn{5.1). In doing so, we shall not only
obtain the Traschen equations f@r, but also find under
what conditions Eq(5.1) holds on afamily of hypersurfaces
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Z= Vi + V1 &+ 9aé0=0 (5.10

(remember that in generdl, # V). With Z,,=0, the equa-
tion Y,,=0 reduces to

S rather than on a particular hypersurface.

Let us write Eq(2.60 in synchronous coordinates around
S. In these coordinatess is defined byt=const and the
metric takes the form

Yi=3(ViZP+ V29 + $01Z5— (R + 9 GH) €°

—3R1EMg=0, (5.11)
whereGg is a component of Einstein’s tensor. Accordingly,
if ICV’s satisfy Eqs.(5.10 and(5.11), then Eq«5.4) or (5.7)
has the form(5.1). It is now easy to see that Eq&.10 and

It is always possible to keep the gauge synchronous fof5.11) are equivalent to Traschen’s equatidBs) and (3b)
the perturbations, namely, to take [39]. Inserting the explicit expressions Bf"¥' into Eq.(5.7),
we obtain

ds?=dt?+ gy (t,xMdxdx, klI,m,...=1,2,3.

(5.2)

hoo=hok=0, (5.3
becausehy, and hy, depend on the mapping above and be-
low S. Here we are interested in conditions on one particular
hypersurfaces (to begin with. Ont=const, Eq.(2.60 can
be written as

1
0sv — Ok __ m—k
Lﬂyg dv= LE(J P hmzo)ds(, (5.12

whereJ% is given in terms of*, h and their first order
derivatives by Eq(2.55.

How is Eq.(5.12 modified if we consider perturbations
in a nonsynchronous gauge? The answer is that, instead of

Eq. (5.12, Eq. (5.4 becomes

na

_ 0k
dv= LEJ ds.,
(5.4)

1
0sv 0 ¢£v _ OhpP 0 0
fiéTyg -I——ZK (R,E"h—RIN7ED) + ¢

where v 1
u SToE"+ 5 RE(hgi"—Zhﬁfo)}

L.

Equation(5.13 shows that if Eqs(5.10 and(5.11) hold and

if R°=0 in synchronous coordinates, Eg.60 has the de-
sired form (5.1) independently of any gauge condition, as
pointed out by Traschen. Robertson-Walker spacetimes have
that property, but, in generalRE does not vanish. In a syn-

dV=d3,= V= gdxtdx2dx®,

2 JOk— 3 hmzK+ 3 (ZKh2—2Z%hK) |ds,. (5.13
ds(:dEOKZ \/_gsk|mdx[|de]. (55) 4 M 0 4k 0’0 0’0 ) ’
The componentZ® [cf. Eq. (2.56)] is linear inZ,, and
D,Z,,- Itis also linear inhy,, hpp=3dihyy,, and Vihy,
(the covariant derivatives di,,, with respect to the three-
metric g,). ThusZ® is of the form

gO:Aklhkr" Bmk|thk|+ Cklhk|

:Vm(Bmklhk|)+Eklhk|+Cklhk| . (56)

Inserting Eq.(5.6) into Eq. (5.4) and taking account of Eq.
(5.3, we obtain an expression of the form

Ogv 1 ki 1 kl 5w
ESTV§+5Y hk|+ﬂz (9thk|dV

- Lzu(’m— B™hy,)dS, 5.7

in which

Eklzhkl_gklhmy (5.8

and thezX""s are the spatial components of tdg , tensor
defined in Eq.(2.14. The left-hand side of Eq5.7) takes

the form(5.1) when the factors ofi; and of its time deriva-
tive d:hy, vanish:
Zk|:07 Yk|:0. (59)

The first of these equations can be written in-a3ldecom-
position as

chronous gauge, Eq2.60 has the form of Eq(5.1), not
only on a particulaiS, but on all nearby hypersurfaces.

B. ICV’s in Robertson-Walker spacetimes

With a metric of the form(4.1) and with¢$=1, Eq.(5.10
can be written as

Z
a_lg:fmkv|§m+fm|vk§m+ 2fHE’=0  where H=

| -

(5.

=

4

andY,,=0 or, equivalently,

Yw— 3%

z
a—';') =V &+ kf®=0. (515

Equations(5.14) and (5.15 are Traschen’s equatiori$53
and(15b) in [5].

We notice that Eq(5.15 for £° is the same as Ed4.9)
for &0 and that Eq(5.14 for ¢° and & is the same as Eq.
(4.6) for £° and £¥ in the de Sitter space provided that

(5.19
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Therefore, a set of solutions for Traschen’s equations isurbed Robertson-Walker spacetimepped on a de Sitter
given by the ten Killing vectorg* (a=1,2,..,10) of the de  spacetimeand with the mapping given by the conditions

a R
Sitter spacg4.11)—(4.16 with ¢ replaced byH/H. Linear Y
combinations of the ten Killing vecto&*’s with coefficients b=1, =— (5.19
H

a
that are functions of, are also solutions of Traschen’s equa-
tions. In effect, the ten ICV'’s, saga, given by Traschen, are

the following combinations of the Killing vectors: This is at variance with Traschen and Eardlg$interpre-

tation of Eqg.(1.3) as conditions of energy-momentum con-
_ Fn_ HZa servation defined with respect to the Robertson-Walker back-

\a/M_‘llgﬂ_ H §“ ' (517 ground.

with the exception of quasi-Lorentz rotations in the flat

Robertson-Walker spacetimé&=£0) for which Traschen’s

ICV'’s are equal to

VISR ER), (5.18
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