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The basic ABproblem is to determine how an unshielded tube of magnetic fluxF affects arbitrarily
long-wavelength charged particles impinging on it. For spin 1 at almost allF the particles do not penetrate the
tube, so the interaction essentially is periodic inF ~AB effect!. Below-threshold bound states move freely only
along the tube axis, and consequent induced vacuum currents supplement rather than screenF. For a pure
magnetic interaction the tube must be broader than the particle Compton wavelength, i.e., only the nonrela-
tivistic spin-1 AB problem exists.@S0556-2821~97!07210-X#

PACS number~s!: 03.65.Bz, 03.65.Pm, 11.15.2q, 11.27.1d

I. INTRODUCTION

Aharonov and Bohm~AB!, in their first paper on the ef-
fect which has come to bear their name@1,2#, also introduced
a novel problem in quantum physics. The ABeffectis the set
of measurable phenomena which occur for charged particles
unable to penetrate an endless tube of magnetic flux — all
observables are periodic in the flux~with periodh/q, where
q is the charge!. What may properly be called the ABprob-
lem is determining the influence on charged particles of an
unshieldedflux tube, in the limit where the particle de Bro-
glie wavelength goes to infinity. AB@1# observed that in this
limit spin-0 particles do not penetrate the tube, so that con-
ditions for the AB effect are satisfied automatically. Later
work showed that there are no particle states bound inside
the tube, and that the inability to penetrate still holds if the
Compton wavelength is long compared to the de Broglie
wavelength; i.e., the particle motion is relativistic. Further,
there are induced vacuum currents outside the tube, generat-
ing an extra flux which screens the total flux towards the
nearest integer number of flux quantaNh/q @3#.

For the spin-12 Dirac case there are interesting changes.
Now particles are able to penetrate just enough to be sensi-
tive to the sign of the flux@4#. This fact is connected with the
existence of threshold bound states for electrons whose mag-
netic moment is aligned with the flux: If there areN whole
quanta of flux, then in the (211)-dimensional problem ob-
tained by factoring out motion in the direction along the tube
there areN particle states~with magnetic moment parallel to
the flux! confined inside the tube@5#. In the full
(311)-dimensional problem, each such state corresponds to
a distinguishable particle with exactly the free electron mass,
able to move only along the tube. If there is an additional
fractional flux, there is a ‘‘quasibound’’ state or, equiva-
lently, a phase shiftp/2 ~with respect to the corresponding
spin-0 case! at threshold for exactly one partial wave. The
perfect ‘‘impedance match’’ between the infinite-wavelength
external wave and the internal state at exactly threshold en-

ergy is what permits this minimal nontrivial coupling be-
tween the flux and the outside particles beyond that implied
by the AB effect. In the spin-12 case, induced external
vacuum currents screen the magnitude of the flux down to-
wards the nearest smaller integer@6#, again showing a depen-
dence on the sign of the flux as well as its fractional part.

The aim of this work is to determine the corresponding
answers to the AB problem for spin-1 Yang-Mills particles.
We find that, except for a discrete set of flux values, there is
no penetration by threshold-energy particles impinging on
the tube. In this sense the situation resembles that for spin
0, where the AB effect holds exactly. However, now there is
a set of below-threshold bound states, somewhat more nu-
merous than the threshold bound states for spin1

2. The most
dramatic change is that, to have a pure magnetic field and no
other forces affecting an incident particle, the tube must be
broader than a vector boson Compton wavelength, so that
there is no relativistic AB problem for spin 1. Finally, spin-
1 vacuum currents enhance the given flux, a kind of anti-
screening familiar from discussions of QCD and asymptotic
freedom in the domain where only magnetic fields are con-
sidered@7#. Many qualitative and even quantitative results
for the AB problem may be illuminated by the study of
charged classical particles interacting with a narrow flux tube
@8#: The reason is that the role ofh, the quantum of action,
often may be played by another quantity with the same di-
mensions,qF, the product of particle charge with magnetic
flux.

The rest of the paper is organized as follows. In Sec. II we
explain why the Yang-Mills equation is the appropriate ana-
logue for spin 1 to the Klein-Gordon equation for spin 0 and
the Dirac equation for spin12. In Sec. III we discuss the
scattering solutions for long wavelength, and find that the
waves do not penetrate the flux, except for a discrete set of
flux values. In Sec. IV we study the bound state solutions of
the linearized equations, and find that the number of bound
states is somewhat greater than the number of flux quanta. In
Sec. V we analyze the behavior of the vacuum in the pres-
ence of a flux line, taking into account the crucial contribu-
tions to the classical Yang-Mills action quartic in the vector
boson fields. In Sec. VI we find insignificant changes in the
analysis if the magnetic field inside the tube is nonuniform.

*Electronic address: goldhab@insti.physics.sunysb.edu
†Permanent address.

PHYSICAL REVIEW D 15 MAY 1997VOLUME 55, NUMBER 10

550556-2821/97/55~10!/5951~6!/$10.00 5951 © 1997 The American Physical Society



II. CHOICE OF EQUATION

Developments of recent decades make the linearized
Yang-Mills equation the obvious choice to describe electro-
magnetic interactions of charged vector bosons: By now the
successes of the standard model for electroweak interactions
and quantum chromodynamics for strong interactions show
that non-Abelian gauge invariance not only is attractive aes-
thetically but also is utilized by nature. Here lies the differ-
ence between our approach to the spin-1 problem and that of
Hagen and Ramaswamy~HR! @9#, who adopt the Proca
equation, generalized by introducing minimal electromag-
netic coupling into what originally was an equation for neu-
tral vector bosons. The most general linear spin-1 equation
@10# links the gyromagnetic ratiog to an electric quadrupole
coupling proportional tog22. HR’s assumptions give
g51 and hence a nonzero quadrupole coupling, the origin of
divergent high energy behavior which would preclude per-
turbative renormalizability@11#. Like the Dirac equation, the
Yang-Mills ~YM ! equation impliesg52, hence an exact
lock between precession of spin and momentum in a uni-
form, static magnetic field. The YM choice manifests a sym-
metry of charged-particle motion in pure magnetic fields: In
classical physics, particle trajectories depend on momentum,
but not energy~which enters only in determining the speed at
which any trajectory is traversed!. The symmetry ensures
consistency between the spatial dependences of YM wave
functions in the relativistic regime and in what HR call the
Galilean regime, while for HR electric quadrupole coupling
breaks this connection. Further, only for the YM case does
the covariant divergence of the~four-vector! spin wave func-
tion vanish, sustaining the physical interpretation of the wave
function as a purely spatial three-vector in the instantaneous
rest frame of the charged particle.

HR’s quadrupole coupling produces such pathological be-
havior in very strong magnetic fields that they require scat-
tering functions not to penetrate the flux, making the relativ-
istic AB problem trivial by fiat. We on the other hand find
that very strong pure magnetic fields acting on charged vec-
tor bosons cannot occur, so that for physical reasons there is
no relativistic AB problem. In what they call the Galilean
limit, HR neglect theO(1/M2) electric quadrupole coupling,
obtaining a well-defined problem, but withg51 rather than
the preferred valueg52, and scattering resembling that for
spin 1

2, instead of spin 0 as we find.

III. LINEARIZED WAVE EQUATION
AND THRESHOLD-ENERGY SCATTERING

In the Yang-Mills equations, the electromagnetic vector
potentialAm is identified with theI 350 part of the field, and
the positively and negatively charged fieldsPa andNa are
identified with theI 3561 parts, whereI 3 is the third com-
ponent of the isospin. The equations may be written

@Da ,@Da,Db##50, ~1!

with

Da5]a1 iqVa , ~2!

Va5T1Pa1T2Na1T3Aa ,

@Ti ,Tj #5 i e i jkTk ,

T65T16 iT2 ,

andq the charge of the particle. Greek indices run over space
and time, Roman over space only. From here on, except
where indicated explicitly, we use units with\5c51. The
positive charge projection~all terms with net unit positive
charge! of Eq. ~1! contains terms of the form AAP and PNP.
The latter may be omitted to obtain an equation linear in the
charged field.

For perturbative renormalizability the Higgs mechanism
is needed to describe masses of vector bosons. In the linear-
ized wave equation this is functionally equivalent to adding a
term with a fixed massM , so that the solutionsPa automati-
cally obey the condition

DaP
a50, ~3!

with Da5]a1 iqAa @10#. There occur in Eq.~1! two terms
of the form@Da ,Db#. Recognizing2 i e i jk5Sk , one finds a
magnetic moment interaction proportional toqsB ~where
s561,0 is the eigenvalue ofS–B̂ acting onP). The result-
ing equation is

DbD
bPi22qsBPi1M2Pi50. ~4!

To solve Eq.~4!, we choose the applied magnetic flux in
the form of a uniform cylinder in thez direction, with radius
R taken to zero at the end of the calculation. Later we shall
come back to the significance and generality of conclusions
associated with assuming uniform field inside the tube. Be-
cause of the translational and boost symmetries in thez di-
rection, we may restrict our analysis to the two transverse
spatial dimensions.

The ~external! kinetic energy is assumed to be small in
comparison with the magnetic moment interaction inside the
flux tube, and so is dropped. For a state localized well within
the flux tube, the squared wave numberk25E22M2 is
given by the following expression, in which the first term
corresponds to the Landau level energy and the second cor-
responds to the magnetic moment interaction:

k25
4F

R2 S n1
1

2D2
2F

R2 gs. ~5!

Here the fluxF is measured in units of an AB quantum of the
conventional fluxF, i.e., F5qF/2p. For spin-1 particles
with g52, this expression can be negative only for the low-
est Landau level. Both inside and outside the flux tube the
wave function may be expressed as

P~r ,f!5eimf f ~r !, ~6!

where f (r ) tacitly depends on the spin projections and also
on the integer azimuthal angular momentumm, which must
be an integer for the wave function to be single valued. Put-
ting ~6! and the cylindrical forms of the derivatives into Eq.
~4! yields
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f 91
1

r
f 82F Smr D 22qB~m12s!1S qBr2 D 2G f52k2f'0

~7!

inside the flux cylinder and

f 91
1

r
f 82H Smr D 22qBmSRr D

2

1FqB2 SR2

r D G22k2J f50

~8!

outside.
The exterior~Bessel! equation is independent of the spin.

Its solution is

f ~r !5cJum2Fu~kr !1dYum2Fu~kr !, ~9!

where J and Y are, respectively, the regular and irregular
Bessel functions, and againF5qBR2/2 is the number of flux
quanta. The interior solution may be approximated by a se-
ries expansion:

f ~r !5e2Fr2/2R2S rRD umuS 11
G~11umu!

G„ 12 ~12m1umu22s!…

3(
j51

` F ~F ! jS rRD 2 j
G„j1 1

2 ~12m1umu22s!…

G~ j11!G~ j1umu11! G D .
~10!

Note that this form is an asymptotic series, since the radial
dependence of the coefficients in the differential equation

precludes analyticity. Thus care is required in drawing quan-
titative conclusions from the use of this approximation, but it
should be good enough for qualitative insight, as it exhibits
the appropriate ‘‘anti-Gaussian’’ asymptotic behavior —
growth at larger given bye1qBr2/4. In all the following, we
shall ensure that sufficient accuracy is available for the pur-
poses at hand.

Now the inside and outside solutions must be matched at
the flux boundary. The azimuthally dependent factors and
their derivatives match already, and so only radial matching
conditions are needed. We use a two-step matching that sim-
plifies the bookkeeping. Near the flux tube and for small
enough values of its radius, the external solution may be
written as

f ~r !5aS rRD um2Fu

1bS rRD 2um2Fu

. ~11!

The relationship between the coefficients in Eq.~9! and those
in Eq. ~11! is obtained by expanding Eq.~9! ~using standard
asymptotic formulas for Bessel functions of small argument
@12#! and setting this equal to Eq.~11!. At the boundaryR,
the dimensionless quantities

D5R
f 8

f
~12!

for Eqs. ~10! and ~11! must match. This meansc/d must
satisfy the equation

um2Fu1D

um2Fu2D
52S kR2 D 2um2Fu G~12um2Fu!@c1dcos~ um2Fup!/sin~ um2Fup!#

G~11um2Fu!@d/sin~ um2Fup!#
. ~13!

The relationship betweenc andd determines the behavior of
the wave function at large values of the argument (kr). For
k>0, the phase shift is defined by

tan~d!52d/c. ~14!

Note that we defined in such a way that it would vanish if
the charged particle were excluded from the flux tube. Of
course there is still an AB centrifugal potential, which means
that there is a phase shift from the case of no flux, but that
effect is well understood; it is the possibility of deviations
from the pure AB case which we are trying to address here.
The behavior ofd as a function ofF is given by Eq.~13!.
For less than critical values of the flux,d is small and posi-
tive. At the critical value ofF, d rises sharply throughp/2 to
just belowp, where it remains for larger than critical flux.
The size ofkR determines how sharp the transition is. For
kR50, d(F) is a step function. The transition from a free to
a bound state occurs when Eq.~13! can be satisfied for
k50. At precisely this value ofF, a quasibound state exists;
i.e.,d/c diverges ask approaches zero. Such a wave function
has an infinitely long tail, so that it is not square integrable,

but for infinitesimally largerF it would be a true bound state.
According to Eq.~13! the quasibound state occurs forF such
that

um2Fu1D50, ~15!

of course only possible when the magnetic moment and the
flux are parallel. The quasibound state with the smallest flux
occurs form51 atF50.74. Note that the seeming solution
of Eq. ~15!, F50, is spurious. Instead, form50 and any
FÞ0 there is a true bound state, the more deeply bound the
larger uFu is.

Just as in the case of spin12 ~and in HR’s Galilean limit of
the Proca scheme for spin 1), where quasibound states exist
for all nonintegerF, the existence of such a state implies
penetration of the flux tube by the particle, sufficient to pro-
duce sensitivity to the sign of the flux. The difference for
spin-1 Yang-Mills particles is that the quasibound states ex-
ist only for discrete values of the flux, so that penetration
occurs only for flux values in a set of measure zero.
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IV. COUNTING BOUND STATES

At energies less than the mass, i.e.,k2,0, the matching
conditions yield Eq.~13! with k replaced byik. Since these
are bound states and not just quasibound, the larger behav-
ior must be a decaying exponential, which meansc/d51/i .
ThenF must satisfy

um2Fu1D

um2Fu2D
52S kR

2 D 2um2Fu G~12um2Fu!
G~11um2Fu!

. ~16!

For k50, this also dictates thatF satisfy Eq.~15!: One has
approached the quasi-bound-state limit from the bound-state
rather than the scattering side, but the limiting behavior is the
same. Therefore a value ofF greater than a critical value by
even the smallest amount implies the existence of a true
bound state in the corresponding partial wave. As mentioned
earlier, despite the fact that form50 there is never a quasi-
bound state, a true bound state does exist for any nonzero
value of F. To count the total number of bound states we
need to find that value ofF for which a quasibound state
appears at a givenm; anyF slightly greater than this yields
exactlym11 bound states.

The dependence of the total number of bound states on
F can be inferred at least roughly from the approximate so-
lutions of Eq.~15!. For each increase ofm by 1, the number
of possible bound states increases by 1. Therefore, the
change inF per added bound state at some value ofF can be
found by solving Eq.~15! for pairs of adjacent values of
m. We fit a curve to points obtained this way, using the
approximation~10!, and sought to obtain an asymptotic form
for dm/dF. Integrating the resulting expression gave an es-
timate for the number of bound statesn as a function of the
amount of flux:

n'F10.3AF. ~17!

Because we know that the series method is not quantita-
tively reliable, this result needs further examination. First, it
is worth noting that the qualitative character of Eq.~17! is
quite reasonable. Since states in the lowest Landau level all
are bound, there should be at least@F11# of them. Near the
edge of the tube, there should be extra room for some less
strongly bound configurations, and the number of these
should be proportional to the circumference of the tube
2pR, measured on the scale of the magnetic length,
RAp/F. Thus simple geometry underlies this extra contribu-
tion to the number of bound states.

In the largeF limit an asymptotic form formmax as a
function ofF ~wheremmax is the maximum azimuthal quan-
tum number corresponding to a bound state! can be found by
writing Eq. ~4! in the form

d2f ~r !

dr2
1
1

r

d f~r !

dr
1k2~r ! f ~r !50, ~18!

where

k2~r !5
4F

R2 2Sm2F~r /R!2

r D 2. ~19!

We expandk(r[R̄2r) through second order about its mini-
mum at r5R̄5RAm/F ~even though we knowR̄.R, the
outer radius of the tube!, and make the substitution

x5AFr/R. ~20!

If we assume thatm can be written as

m5F1aAF, ~21!

then, recalling the assumption thatF is very large, Eq.~18!
becomes

d2 f̃ ~x!

dx2
14~12x2! f̃ ~x!50. ~22!

Matching logarithmic derivatives across the flux tube bound-
ary results in an equation fora:

f̃ 8~a/2!

f̃ ~a/2!
5a, ~23!

where the radiusR of the flux tube corresponds tox5a/2. A
direct numerical solution of Eq.~22! converged well and
gave

a50.55. ~24!

To this same two-place accuracy, the JWKB approximation
carried consistently through second order inx gives the same
result, which is rather impressive, as the inside-outside
matching condition is imposed not far from the classical
turning point where the approximation has a spurious square
root divergence.

V. VACUUM POLARIZATION EFFECTS

Having counted the bound state solutions to the linear
wave equation, we need to analyze their effect on the
vacuum structure. If the flux is spread out on a scale large
compared to the boson Compton wavelength, then the bound
states have positive energy smaller than the rest mass.
Clearly this lowers the vacuum energy compared to that in
the absence of the flux and, therefore, produces a paramag-
netic effect enhancing that flux, a clear example of anti-
screening. The antiscreening may compete with, but should
dominate, the effect of threshold scattering states, which as
for spin 0 tend to bring the flux to the nearest quantum value,
whether larger or smaller in magnitude.

A quite different situation arises if the flux is assumed to
be concentrated so that the magnetic length is less than the
Compton wavelength. In this case, the bound states have
v252k21m2,0, so that the frequency is imaginary, and
the bound state amplitudes grow exponentially with time.
This is not vacuum polarization, but rather instability of what
one would naively identify as the vacuum. The first thing one
can say is that this instability must be halted by the terms in
the energy quartic in the charged boson field, which act as an
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effective mass proportional to the field amplitude, and even-
tually must counterbalance the negative quadratic terms re-
sponsible for the instability. From the viewpoint of quantum
theory, this describes a Hartree-Fock approximation, studied
previously for the case of a magnetic field just strong enough
to generate instability@13#.

It is an interesting question worth further study whether
the configuration obtained by optimizing the coefficients of
the unstable modes of the linearized equation is itself stable,
or whether additional instabilities bring about the complete
extinction of the entire Yang-Mills field strength inside a
very narrow tube. There are several reasons to believe that
this might be the case. First, on distance scales small com-
pared to the boson Compton wavelength the full non-Abelian
gauge invariance is manifest, and the flux, which is a gauge-
covariant rather than -invariant quantity, should not be a
physical observable with a definite nonzero expectation
value. Second, if we try to imagine how this flux could be
created, it would require a cylindrical sheet of intense cur-
rent. The gauge interaction of the particles producing this
current would generate huge quantum fluctuations in the
isospin orientation of each particle, so that its charge would
average to zero, as would the corresponding current. Hence
there would be no steady source for the flux, and so no flux.

Finally, Nielsen and Olesen@14# observed that a vacuum
instability in QCD which favors the formation of a uniform
nonzero magnetic field does not by itself end in a stable
configuration. There is a further instability to formation of
what they call flux spaghetti, i.e., a complicated pattern of
tubes of flux rapidly varying in space and time. This suggests
that a single isolated flux tube of very small radius cannot
occur. Either there are none, or there are many tending to
cancel each other. Here we find the most dramatic change
from the situations for lower spin. There is nothing inconsis-
tent about a flux line influencing spin 0 or spin12. However,
for spin 1, the unadorned flux-line concept only makes sense
if the particles are nonrelativistic, so that the flux tube size
can be larger than the boson Compton wavelength, yet still
smaller than the de Broglie wavelength.

The above conclusion is consistent with known models
for flux tubes in relativistic field theories. In these models,
the tubes are examples of cosmic strings, with finite energy
per unit length. The radius of such a string is determined by
a force balance which automatically precludes magnetic
lengths smaller than a vector boson Compton wavelength
@15#.

VI. NONUNIFORM FIELD DISTRIBUTIONS

We promised to consider cases where the magnetic field
is not uniform inside the tube. A nonuniformity involving
magnetic length scales smaller than the Compton wavelength
appears unphysical, for the reasons just discussed. Other-
wise, the conclusion for the uniform-field case should con-
tinue to hold — that except for flux configurations in a set of
measure zero where quasibound states occur, the scattering
solutions at large de Broglie wavelength do not penetrate the
flux. For bound states, the situation could be more compli-
cated. For example, suppose that there were many ‘‘islands’’
of flux, each carrying a positive fluxFi,0.74. Provided
there were sufficient spacing between islands compared to

the radius of any one, each island would have one bound
state, and the total number of bound states for large totalF
would be proportional toF but with a proportionality con-
stant 1/Fi.1. If field of both signs is allowed, then the num-
ber of bound statesN could exceed the net fluxF by an
arbitrarily large factor, but the difference between the num-
bers of spin-up and of spin-down bound states would be
more closely linked toF. This statement actually applies also
to the spin-12 case, where there is an exact index theorem
Nup2Ndown5@F# @5#. There the exterior behavior, i.e., the
finite-energy scattering, depends only on the sign of the total
flux and on its fractional part.

For all three spins the low-energy scattering on a flux tube
is determined by the fractional part of the flux, and for spin
1
2 also the sign. For spin 0 there are no bound states regard-
less of the distribution of the flux, but for the higher spins the
number of bound states is sensitive to the distribution. Thus
one finds the unsurprising conclusion that behavior inside the
flux tube depends on the distribution, but behavior outside is
completely unaffected, except for configurations in a set of
measure zero in the case of spin 1. In other words, exterior
sensitivity to the flux distribution, as opposed to the total
flux, shows little or no change with spin, precisely because
there is little or no penetration of the flux.

VII. CONCLUSIONS: SPIN METAMORPHOSES
OF THE AHARONOV-BOHM PROBLEM

The problem of a charged particle in the presence of a
flux line originated with the paper of Aharonov and Bohm
@1#, where they observed that in the absence of spin the par-
ticle automatically is excluded from the flux. Thus all phe-
nomena must be periodic in the flux, with a period of one AB
flux quantum. For spin12 there are exactly@F# normalizable
zero-energy states bound inside the flux and, also, one qua-
sibound state, as long asF exceeds its integer part@F# by
any nonzero amount@5#. It is this feature which allows the
wave function to penetrate the flux just enough to be sensi-
tive to its sign, thus slightly spoiling the perfect AB period-
icity of the spinless case and violating usual expectations for
decoupling between phenomena at very different scales.
Nevertheless, the problem of spin-1

2 particles interacting with
an arbitrarily thin flux tube remains well defined. For spin
1, the linearized Yang-Mills equation has clear solutions in
the limit of zero tube radius, but the bound-state solutions
growing with time~which appear if the limit is taken on the
scale of the Compton wavelength of the vector boson! are
physically unacceptable. Fortunately, the nonlinearities in
the Yang-Mills system conspire to make this limit unachiev-
able. On length scales large compared to the Compton wave-
length the limit does make sense, and the description of scat-
tering and the counting of bound states go through exactly as
described in the body of the paper. Such a ‘‘fat’’ flux line
would polarize the vacuum so as to enhance the applied flux.
As the tube radius cannot be made small compared to the
Compton wavelength, the spin-1 case appears to be the end
of the road for the relativistic Aharonov-Bohm problem,
though the more complex problem which replaces it deserves
further study.
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