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The effective Lagrangian of QED coupled to dyons is calculated. The resulting generalization of the Euler-
Heisenberg Lagrangian contains nonlinearP- and T-noninvariant terms corresponding to the virtual pair
creation of dyons. The correspondingP- andT-violating part of the matrix element for light-by-light scattering
is considered. This effect induces an electric dipole moment for the electron, of orderM22, whereM is the
dyon mass. The current limit on the electric dipole moment of the electron yields the lower dyon mass bound
M.1 TeV. @S0556-2821~97!06109-2#
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I. INTRODUCTION

Very precise measurements achieved during the last de-
cade have opened up for a new approach in elementary par-
ticle physics. According to this, evidence of new particles
can be extracted from indirect measurements of their virtual
contribution to processes at energies which are too low for
direct production. For example, the top quark mass as pre-
dicted from precision electroweak data@1# agrees to within
10% with direct experimental measurements@2#.

This approach has recently been applied@3# for the esti-
mation of possible virtual monopole contributions to observ-
ables at energies below the monopole mass. One-loop dyon-
induced quantum corrections to the QED Lagrangian were
discussed in@4#. Taking into account the violation of parity
~and time-reversal symmetry! in a theory with monopoles
@5#, the emergence of an electric dipole moment was first
pointed out by Purcell and Ramsey@6#. More recently, the
effect due to monopole loop contributions has been dis-
cussed@7,8#.

The calculation of quantum corrections due to the virtual
pair creation of dyons is a very difficult problem because the
standard diagram technique is not valid in this case. The
difficulty is connected both to the large value of the magnetic
charge of the dyon and to the lack of a consistent local La-
grangian formulation of electrodynamics with two types of
charge~see, e.g.,@9# and references therein!. So, there is no
possibility to use a perturbation expansion in a coupling con-
stant. But one can apply the loop expansion which is just an
expansion in powers of the Planck constant\.

II. EFFECTIVE LAGRANGIAN

It is known ~see, e.g.,@10#! that the one-loop quantum
correction to the QED Lagrangian can be calculated without
the use of perturbation methods. The correction is just the
change in the vacuum energy in an external field. Let us
review the simple case of weak constant parallel electric and
magnetic fieldsE and H. We impose the conditions

euEu/m2!1 andeuHu/m2!1 such that the creation of par-
ticles is not possible. In this case the one-loop correction can
be calculated by summing the one-particle modes, the solu-
tions of the Dirac equation in the external electromagnetic
field, over all quantum numbers@10,11#. For example, if
there is just a magnetic field,H5(0,0,H), the corresponding
equation is

@ igm~]m1 ieAm!2m#c~x!50, ~1!

where the electromagnetic potential isAm5(0,2Hy,0,0).
The solution to this equation gives the energy levels of an
electron in a magnetic field@12,13#:

«n5Am21eH~2n211s!1k2, ~2!

wheren50,1,2, . . . , s561, andk is the electron momen-
tum along the field. In this case the correction to the La-
grangian is@10,12#
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where the terms independent of the external fieldH are
dropped and a standard renormalization of the electron
charge has been made@10#.

If we consider simultaneously magnetic (H) and electric
(E) homogeneous fields, then Eq.~1!, as well as its classical
analogue, can be separated into two uncoupled equations,
each in two variables@13#. Indeed, in this case we can take
Am5(Ez,2Hy,0,0) and the interactions of an electron with
the fieldsE andH are determined independently. For such a
configuration of electromagnetic fields the correction to the
Lagrangian is~see@10#, p. 787!*Permanent address: Institute of Physics, 220072 Minsk, Belarus.
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Here«n
(E) is the correction to the energy of an electron in the

combined external magnetic and electric fields, which is in
the first order proportional toe2E2.

So, the total Lagrangian isL5L01DL, where
L05(E22H2)/2 is just the Lagrangian of the free electro-
magnetic field in the tree approximation, and can be written
as

L5S 11
a

3pE0
`ds

s
e2m2sD E22H2

2
1DL8. ~5!

The logarithmic divergency can be removed by the standard
renormalization of the external fields and the electron
charge:

Ereg5Z3
21/2E, H reg5Z3

21/2H, ereg5Z3
1/2e, ~6!

where Z3
21511(a/3p)*0

`(ds/s)e2m2s is the usual QED
renormalization factor. Thus the finite part of the correction
to the LagrangianDL8 can be written in terms of physical
quantities as~see@10#, p. 790!

DL852
1

8p2E
0

`ds

s3
e2m2s@~esE!~esH!cot~esE!

3coth~esH!21#, ~7!

which in the limitE50 reduces to the renormalized form of
Eq. ~3!.

The series expansion of Eq.~7! in terms of the parameters
eE/m2!1, eH/m2!1 yields the well-known Euler-
Heisenberg correction@14#

DL8'
e4

360p2m4 @~H22E2!217~HE!2#, ~8!

wheree25a.
Let us consider how the situation changes if we consider

the virtual pair creation of dyons in the external electromag-
netic field. Using an analogy with the classical Lorentz force
on a dyon of velocityv with electric (Q) and magnetic (g)
charges@9#

F5QE1gH1v3~QH2gE!, ~9!

we shall assume that the wave equation for this particle in an
external electromagnetic field can be expressed as@15,4#

~ igmDm2M !c~x!50, ~10!

whereM is the dyon mass, andiDm a generalized momen-
tum operator, withDm5]m1 iQAm1 igBm .

The potential Am and its dual Bm are defined by
Fmn5]mAn2]nAm5«mnrs]rBs where Fmn is the electro-
magnetic field strength tensor1 and«012351. The potentials
in the case of constant parallel electric and magnetic fields
can be expressed as

Am5~Ez,2Hy,0,0!, Bm5~Hz,Ey,0,0!. ~11!

It is easily seen that the solution to the equation of motion
for a dyon in an external electromagnetic field can be ob-
tained from the solution to the equation for an electron, Eq.
~1!, by the substitution

eE→QE1gH, eH→QH2gE. ~12!

Using the same substitution in Eqs.~5! and~7!, we obtain the
following expression for the quantum correction to the La-
grangian, due to the vacuum polarization caused by dyons:

L5S 11
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1DL8, ~13!

where a total derivative has been dropped.
For the renormalization of this expression we can intro-

duce the renormalization factors@16#
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which are generalizations of the definitionZ3 of Eq. ~6!. In
this case the fields and charges are renormalized as@16,17#

Ereg
2 5Ze

21Zg
21E2, H reg

2 5Ze
21Zg

21H2,

ereg
2 5ZeZge

2, greg
2 5Ze

21Zg
21g2. ~15!

This relation ~15! means that the vacuum of electrically
charged particles shields the external electromagnetic field
but the contribution from magnetically charged particles an-
tishields it. This agrees with the results of@18,19#.

Considering now the case of weak electromagnetic fields,
the finite part of the LagrangianDL8 can, by analogy with
Eq. ~8!, be written as

DL85
1

360p2M4 $@~Q22g2!217Q2g2#~H22E2!2

1@16Q2g217~Q22g2!2#~HE!2

16Qg~Q22g2!~HE!~H22E2!%. ~16!

The expressions~8! and ~16! describe nonlinear correc-
tions to the Maxwell equations which correspond to photon-
photon interactions. The principal difference between the
formula~16! and the standard Euler-Heisenberg effective La-
grangian consists in the appearance ofP- and
T-noninvariant terms proportional to (HE)(H22E2). It
should, however, be noted that this term is invariant under
charge conjugationC, since thenboth Qandg would change
sign.

If we consider separately the virtual creation of dyon
pairs, then because of invariance of the model under a dual
transformation~see, e.g.,@9#!, the physics is determined not

1This definition is consistent only ifhAm5hBm50, i.e., for con-
stant electromagnetic fields or for free electromagnetic waves.
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by the valuesQ andg separately, but by the effective charge
AQ21g2. In the same way the operations ofP andT inver-
sions are modified. However, we will consider simulta-
neously the contributions from vacuum polarization by
electron-positron and dyon pairs. In this case it is not pos-
sible to reformulate the theory in terms of just one effective
charge by means of a dual transformation. Moreover, the
Dirac charge quantization condition connects just the electric
charge of the electron and the magnetic charge of a dyon:
eg5n/2 whereas the electric chargeQ is not quantized.

It is widely believed, based both on experimental bounds
and theoretical predictions@20#, that the dyon mass would be
large,M@m, wherem is the electron mass. Thus, in the
one-loop approximation the first nonlinear correction to the
QED Lagrangian from summing the contributions~8! and
~16! can be written as

DL8'
e4

360p2m4 @~H22E2!217~HE!2#

1
Qg~Q22g2!

60p2M4 ~HE!~H22E2!, ~17!

where theP- andT-invariant terms corresponding to vacuum
polarization by dyons have been dropped because they are
suppressed by factorsM24. Thus, their contribution to the
effective Lagrangian will be of the same order as that of the
ordinary QED multiloop amplitudes which we neglect.

III. PHOTON-PHOTON SCATTERING

Expression~17! yields the matrix element for low-energy
photon-photon scattering. In order to determine it, we substi-

tute into Eq.~17! the expansion

Fmn~x!5
i

~2p!4
E d4q~qmAn2qnAm!eiqx. ~18!

Corresponding to the second term of Eq.~17!, we find

Qg~Q22g2!

480p2M4 E d4x«mnrsF
mnFrsFabF

ab

5
1

~2p!12
E d4q1d

4q2d
4q3d

4q4d~q11q21q31q4!

3Am~q1!An~q2!Ar~q3!As~q4!M̃
mnrs, ~19!

where

M̃mnrs5M̃mnrs~q1 ,q2 ,q3 ,q4!

5
Qg~Q22g2!

60p2M4 «ab
mnq1

aq2
b@q4

rq3
s2grs~q3q4!#.

~20!

Symmetrizing this pseudotensor one obtains theP- and
T-violating part of the matrix element for light-by-light scat-
tering. With all momenta flowing inwards,k11k2
1k31k450, the matrix element takes the form

Mmnrs8 5 1
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5
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sk2
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ak3

mk4
b

1«ab
rsk1

nk2
mk3

ak4
b2«ab

mngrs~k3k4!k1
ak2

b2«ab
mrgns~k2k4!k1
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msgrn~k2k3!k1
ak4
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2«ab
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ak4
b2«ab

rsgmn~k1k2!k3
ak4

b#. ~21!

Since the interaction contains an« tensor, the coupling be-
tween two of the photons is different from that involving the
other two, and the familiar pairwise equivalence of the six
terms does not hold. The matrix element satisfies gauge in-
variance~with respect to any of the four photons!,

k1
mMmnrs8 ~k1 ,k2 ,k3 ,k4!50, etc. ~22!

We note that the above contribution to the matrix element is
proportional to the fourth power of the inverse dyon mass,
Mmnrs8 }M24. However, this result is only valid at low en-
ergies, where the photon momenta are small compared to

M , being obtained from an effective, nonrenormalizable
theory.

Thus, as a result of interference between two one-loop
diagrams corresponding to loops with dyons and those with
simply electrically charged particles there is an asymmetry
between the processes of photon splitting and photon coales-
cence@4#. The physical effect of this asymmetry will depend
on the photon spectrum and the directions of the photon
momenta with respect to the magnetic field. In particular, the
asymmetry vanishes when these are perpendicular, i.e., for
cosu50. Furthermore, the asymmetry is linear in the product
of the dyon charges, and proportional to the fourth power of
the electron to dyon mass ratio.
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IV. ELECTRIC DIPOLE MOMENT

The contribution of this matrix element~21! breaks the
P and T invariance of ordinary electrodynamics. Thus,
among the sixth-order radiative corrections to the electron-
photon vertex there are terms containing this photon-photon
scattering subdiagram with a dyon-loop contribution~see
Fig. 1!, that induce an electric dipole moment of the electron
@8#.2

Indeed, one can write the contribution of this diagram to
the electron-photon vertex as3

Lm~p8,p!5
e2

~2p!8
E d4k1d

4k3
1

k1
21 i e

1

k2
21 i e

1

k3
21 i e

3Mabgm~k1 ,k2 ,k3 ,k!

3ga
p” 81k” 11m

~p81k1!
22m21 i e

3gb
p”2k” 31m

~p2k3!
22m21 i e

gg, ~23!

whereMabgm(k1 ,k2 ,k3 ,k) is the polarization pseudotensor
representing the dyon box diagram contribution to the
photon-photon scattering amplitude, the low-energy limit of
which is given by the pseudotensorMabgm8 of Eq. ~21!.

In order to extract the electric dipole moment from the
general expression~23!, it is convenient, according to the
approach by@22#, to exploit the identity

Mabgm8 ~k1 ,k2 ,k3 ,k!52kn
]

]km Mabgn~k1 ,k2 ,k3 ,k!, ~24!

which can be obtained upon differentiating the gauge invari-
ance condition of the polarization tensor@cf. Eq. ~22!# with
respect tokm.

Substituting Eq.~24! into Eq. ~23!, we can write the
eeg matrix element as

Meeg~p8,p,k!5em~k!ū~p8!Lm~p8,p!u~p!

5em~k!knū~p8!Lmn~p8,p!u~p!, ~25!

whereem(k) is the photon polarization vector and

Lmn~p8,p!52
e2

~2p!8
E d4k1d

4k3
1

k1
21 i e

1

k2
21 i e

1

k3
21 i e

3
]

]km Mabgn~k1 ,k2 ,k3 ,k!ga

3
p” 81k” 11m

~p81k1!
22m21 i e

3gb
p”2k” 31m

~p2k3!
22m21 i e

gg. ~26!

Since the matrix element~25! is already proportional to the
external photon momentumk, one can putk50 in Lmn after
differentiation to obtain the static electric dipole moment.

Then, following@22#, we note that due to Lorentz covari-
ance ofLmn , it can be written in the form

Lmn~p8,p!5~Ãgmn1B̃smn1C̃Pmgn1D̃Pngm

1ẼPmPn!g51•••, ~27!

where we have omitted terms that do not violate parity, as
well as those proportional tokm , and where smn

5(gmgn2gngm)/2, andPm5pm1pm8 .
Substituting this expression into the matrix element

Meeg(p8,p,k) of Eq. ~25!, one can see that there are two
contributions to theP-violating part, arising from theB̃ and
C̃ terms. In order to project out the dipole moment from Eq.
~25!, one has to compare Eq.~27! with the phenomenological
expression for the electric dipole momentde @23#:

Meeg~p8,p,k!5em~k!knū~p8!
de
2m

g5smnu~p!. ~28!

In the nonrelativistic limit it corresponds to the interaction
Hamiltonian2(de/2m)sE. Thus, multiplying Eq.~27! by
smng5 and taking the trace we have

de52
m

24
Tr@smng5L

mn#. ~29!

In order to provide an estimate of the induced electric
dipole moment we need to estimateLmn. The first task is to
evaluate the polarization pseudotensorMabgm corresponding
to the virtual dyon one-loop subdiagram. If we were to sub-
stitute forMabgm the low-energy formMabgm8 of Eq. ~21!
into Eq. ~23!, we would obtain a quadratically divergent in-
tegral.

On the other hand, straightforward application of the
Feynman rules in QED with magnetic charge~see, e.g.,@15#!
would give for the photon-by-photon scattering subdiagram4

in Fig. 1:

2This has been noted by Khriplovich@21#, see also a recent paper
by Flambaum and Murray@7#.
3Of course, there are more diagrams.

4It should be noted that the expression~21! contains contributions
from such loop diagrams with all possible combinations of either
three or one magnetic-coupling vertexGr .

FIG. 1. Typical three-loop vertex diagram. The closed line rep-
resents a dyon loop.
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Mabgm~k1 ,k2 ,k3 ,k!5
Qg3

2p4E d4qTrS Ga

1

q”1k” 12M
Gb

1

q”2k” 32k”2M
Gg

1

q”2k”2M
gm

1

q”2M
D . ~30!

HereGa represents the magnetic coupling of the photon to
the dyon, which we take according to Ref.@16# to be

Gm52 i«mnrs

gnkrns

~n•k!
. ~31!

The vertex function depends onkr, the photon momentum
entering the vertex, and onns, a unit constant spacelike vec-
tor corresponding to the Dirac singularity line. It was shown
by Zwanziger@24# that although the matrix element depends
onn, the cross section as well as other physical quantities are
n independent.

Calculations using this technique are very complicated
and can only be done in a few simple situations@15#, for
example, in the case of the charge-monopole scattering prob-
lem @25#. We will here avoid this approach.

While the integration overq in Eq. ~30! is logarithmically
divergent@the magnetic couplings in Eq.~30# are dimension-
less!, after renormalization the sum of such contributions
must, in the low-energy limit, reduce to the form given in
Eq. ~21!. We also note that the substitution of Eq.~30! into
Eq. ~26! yields a convergent integral. Thus, the following
method for evaluatingLmn suggests itself. We divide the
region of integration into two domains:~i! the momentak1
andk3 are small compared toM , and~ii ! the momenta are of
orderM ~or larger!.

In the first region, the form~21! can be used, but since the
integral is quadratically divergent, the integral will be pro-
portional toM2. Together with the overall factorM24, this
will give a contribution}M22. For large values of the pho-
ton momenta, the other form, Eq.~30!, can be used. This
gives a convergent integral, and dimensional arguments de-
termine the scale to beM22. It means that

uLmnu;
e2Qg~Q22g2!

~4p2!3M2 . ~32!

The numerical coefficient has been estimated as 1/(4p2)3,
one factor 1/4p2 from each loop, and the 1/24 of Eq.~29! is
assumed canceled by a combinatorial factor from the number
of diagrams involved. This is of course a very rough assess-
ment.

Now we can estimate the order of magnitude of the elec-
tron dipole moment generated by virtual dyons. It is obvious
from Eqs.~29! and ~32! that in order of magnitude one can
write

de;
e2Qg~Q22g2!

~4p2!3
m

M2 . ~33!

This estimate can be used to obtain a new bound on the
dyon mass. Indeed, recent experimental progress in the
search for an electron electric dipole moment@26# gives a
rather strict upper limit:de,9310228e cm. If we suppose
that Q;e, then from Eq. ~33! one can obtain
M>23106m'103 GeV. This estimate shows that the dyon
mass belongs at least to the electroweak scale.

The above estimate coincides with the bound obtained by
De Rújula @3# for monopoles, from an analysis of data from
the CERNe1e2 collider LEP, but it is weaker than the result
given in@7#, where the limitM>105 GeV was obtained. The
authors of Ref.@7# used the hypothesis that a radial magnetic
field could be induced due to virtual dyon pairs. In order to
estimate the effect, they used the well-known formula for the
Ueling correction to the electrostatic potential, simply re-
placing the electron charge and mass with those of the mono-
pole. But the Ueling term is just a correction to the scalar
Coulomb potential due to vacuum polarization and cannot
itself be considered as a source of a radial magnetic field.
Indeed, there is only one second-order term in the effective
Lagrangian that can violate theP and T invariance of the
theory, namely,DL8}EH. But in the framework of QED
there is no reason to consider such a correction because it is
just a total derivative. The reference to theu term, used in
@7# to estimate the electric charge of the dyon, is only rel-
evant in the context of a nontrivial topology~e.g., in the
’t Hooft–Polyakov monopole model! where their limit ap-
plies. In this case there are arguments in favor of stronger
limits on the monopole~dyon! mass~see, e.g.,@20#!.

One should note that the dyon-loop diagram considered
above can also contribute to the neutron electric dipole mo-
ment. The experimental valuedn,1.1310225e cm @27# will,
in the naive quark model withm'10 MeV, allow us to
obtain an estimate of the dyon lower mass bound which is
similar to the one obtained for the electron.
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