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The measurements of reactionsp2p↑→p2p1n at 17.2 GeV/c and p1n↑→p1p2p at 5.98 and 11.85
GeV/c on polarized targets at CERN provide model-independent and solution-independent evidence for a
narrow scalar states(750). The originalx2 minimization method and the recent Monte Carlo method for the
amplitude analysis of data at 17.2 GeV/c are in excellent agreement. Both methods find that the mass distri-
bution of the measured amplitudeuS̄u2S with recoil transversity ‘‘up’’ resonates near 750 MeV while the
amplitudeuSu2S with recoil transversity ‘‘down’’ is large and nonresonating. The amplitudeuSu2S contributes
as a strong background toS-wave intensityI S5(uSu21uS̄u2)S and distorts the determinations ofs resonance
parameters fromI S . To avoid this problem we perform a series of Breit-Wigner fits directly to the measured
distributionuS̄u2S. The inclusion of various backgrounds causes the width ofs(750) to become very narrow.
Our best fit with at-averaged coherent background yieldsms5753619 MeV andGs5108653 MeV. These
values are in excellent agreement with the Ellis-Lanik theorem for the width of scalar gluonium. The gluonium
interpretation ofs(750) is also supported by the absence ofs(750) in reactionsgg→pp. We also show how
data on polarized target invalidate essential assumptions of past determinations ofpp phase shifts which
explains the absence ofs(750) in the conventional phase shiftd0

0. We examine the interference ofs(750)
with f 0(980) and find it has only a very small effect on the determination of thes(750) mass and width. The
data on the amplitudeuS̄u2S in the mass range of 1120–1520 MeV show the existence of a scalar resonance
f 0(1300) with a mass of 1280612 MeV and a width of 192626 MeV. Our results emphasize the need for a
systematic study of production processes on the level of spin amplitudes measured in experiments with
polarized targets.@S0556-2821~97!05409-X#

PACS number~s!: 14.40.Cs, 13.85.Hd, 13.88.1e

I. INTRODUCTION

Amplitude analyses of pion production reactions such as
pN→ppN orKN→KpN are important for two special rea-
sons. First, these reactions provide information about unnatu-
ral exchange amplitudes which are not accessible in two-
body reactions. Second, such amplitude analyses enable us to
study resonance production on the level of spin-dependent
amplitudes rather than spin-averaged cross section
d2s/dmdt. In 1978, Lutz and Rybicki showed@1# that mea-
surements of pion production in meson-nucleon scattering on
transversely polarized target yield in a single experiment
enough observables that almost complete and model-
independent amplitude analysis can be performed.

The high statistics measurement ofp2p→p2p1n at
17.2 GeV/c at CERN Proton Synchrotron~PS! on an unpo-
larized target@2# was later repeated with a transversely po-
larized proton target at the same energy@3–7#. Model-
independent amplitude analyses were performed for various
intervals@3–6# of dimeson mass of small momentum trans-
fers2t50.005–0.2 (GeV/c)2 and over a large interval@7#
of momentum transfer2t50.221.0 (GeV/c)2.

Additional information was provided by the first measure-
ment ofp1n→p1p2p andK1n→K1p2p reactions@8,9#
on polarized deuteron target at 5.98 and 11.85 GeV/c, also

done at CERN-PS. The data allowed to study thet evolution
of the mass dependence of the moduli of amplitudes@10#.
Detailed amplitude analyses@11,12# determined the mass de-
pendence of amplitudes at larger momentum transfers
2t50.2–0.4 (GeV/c)2.

All amplitude analyses@3–12# of pion production on po-
larized targets found clear evidence for large and nontrivial
unnaturalA1-exchange amplitudes in the dipion mass range
from 400 to 1800 MeV. This experimental finding is very
important since previously theA1 exchange amplitudes were
assumed absent. In particular, all determinations ofpp
phase shifts from unpolarized data onp2p→p2p1n are
based on the assumption of vanishingA1 exchange ampli-
tudes@13–19#. Without this assumption the determination of
pp phase shifts cannot even proceed. The existence of large
and nontrivialA1 exchange amplitudes inpN→p1p2N re-
actions casts a serious doubt about the validity of the con-
ventionalpp phase shifts. The existence ofA1 exchange is
also crucial for our understanding of the spin structure of the
nucleon. All analyses of nucleon internal spin structure de-
pend on the behavior of polarized structure function
g1(x,Q

2) which is controlled byA1 exchange forx→0 @see
Eq. ~4.2.23! of Ref. @20##.

Another important finding of measurements of
p2p→p2p1n andp1n→p1p2p reactions on polarized
targets is the evidence for a narrow scalar state
I50 011(750). It is important to recognize that the discov-
ery of this state was possible only because the measurements*Electronic address: svec@hep.physics.mcgill.ca
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on polarized targets enable a model independent separation
of theS-wave andP-wave contributions to the reaction cross
sectionS[d2s/dmdt. Specifically, the data on polarized
targets determine the moduliuSu2S and uS̄u2S of the two
S-wave amplitudes with recoil nucleon spin ‘‘down’’ and
‘‘up,’’ respectively. There are two solutions foruSu2S, and
independently two solutions foruS̄u2S. Hence, there are four
independent solutions for the S-wave intensity
I S5(uSu21uS̄u2)S which we labelI S( i , j ), i , j51,2 with the
indices i and j referring to the two solutions foruSu2S and
uS̄u2S, respectively.

Motivated by the emerging evidence for the scalar reso-
nances(750) from several previous analyses@21–24#, a
new amplitude analysis of measurements of
p2p→p2p1n and p1n→p1p2p on polarized targets
was recently performed@25#. To ascertain the existence of
the s(750) state, special attention was paid to error propa-
gation and selection of physical solutions for amplitudes. A
clear and solution-independent signal for a narrows(750)
was obtained in this improved analysis. The CERN-Munich
data at 17.2 GeV/c and small momentum transfers@4# show
resonant behavior at 750 MeV in both solutions foruS̄u2S.
The Saclay data at 5.98 and 11.85 GeV/c and larger momen-
tum transfers@8# show resonant behavior at 750 MeV in all
four solutions forS-wave intensity at both energies. How-
ever, only a tentative determination of the mass and width of
thes(750) state was attempted in this study.

The aim of the present work is a more reliable determi-
nation of mass and width of thes(750) resonance from
model-independent amplitude analyses of CERN-Munich
data onp2p→p2p1n on polarized target at 17.2 GeV/c.
There are three important issues that we address in the pro-
cess.

The first issue is the question of which mass distribution
should be used for Breit-Wigner fits to determine the reso-
nance parameters ofs(750) state. The previous CERN-
Munich analyses@5–7# fitted a Breit-Wigner formula to par-
tial wave intensities, and we followed the same procedure in
Ref. @25#. However, theS-wave intensity at lower momen-
tum transfers at 17.2 GeV/c shows a clear resonant structure
only in solutions I S(1,1) and I S(2,1) while the solutions
I S(1,2) andI S(2,2) lack sufficient decreases ofI S above 800
MeV to indicate a narrow resonance. This behavior in
I S5(uS̄u21uSu2)S is caused by the large and nonresonating
amplitude uSu2S. The amplitudeuSu2S thus behaves as a
large and nonresonating background to the resonating ampli-
tude uS̄u2S and this distorts the determination of resonance
parameters ofs(750) from Breit-Wigner fits toI S . To avoid
this problem, it is necessary to perform Breit-Wigner fits
directly to the resonant mass distributionsuS̄u2S. Both solu-
tions for uS̄u2S resonate and the evidence fors(750) is thus
entirely solution independent.

The second issue is which resonance shape formula is
to be used in Breit-Wigner fits touS̄u2S. The previous
analyses @2,5–7,25# used the Pisˇút-Roos shape formula
which multiplies the standard Breit-Wigner formula~with a
phase space! by an additional mass-dependent factorF
5(2J11)(m/q)2. In their analysis ofpN→ppN reaction
amplitudes@26#, Pišút and Roos assumed the absence ofA1

exchange amplitudes and assumed that the mass dependence
of pion production amplitudes is given bypp scattering am-
plitudes. The partial wave expansion ofpp amplitudes then
directly leads to the additional factorF. However, because
of the existence of large and nontrivialA1 exchange ampli-
tudes inpN→p1p2N reactions and because there is no
proof that the mass dependence ofpN→ppN production
amplitudes is really described by the energy dependence of
partial waves inpp scattering, it is useful to perform Breit-
Wigner fits to theuS̄u2S mass distribution using the standard
@27# phenomenological shape formula in which the Pisˇút-
Roos factor is absent~i.e., F51! to see if there are differ-
ences in the determination of resonance parameters of
s(750). The comparison of fits using both shape formulas
finds only small differences.

The third issue is the question of background in the reso-
nant mass distributionuS̄u2S. Nonresonating background
comes, e.g., from the isospinI52 contribution to uS̄u2S.
While it is difficult to exactly parametrize the unknown
background, we estimated the background contribution using
three different approaches. In each case we find that inclu-
sion of background leads to a significant reduction of the
width of s(750) to somewhere around 100 MeV. Back-
ground is obviously important for the width determination of
s(750) and thus to our understanding of the constituent
structure of thes(750) state. We also examine the interfer-
ence ofs(750) with f 0(980) and find it has only a small
effect on the mass and width ofs(750).

The paper is organized as follows. In Sec. II we review
the basic formalism and two methods of amplitude analysis.
In Sec. III we derive the Pisˇút-Roos shape formula and de-
scribe the phenomenological shape formula for Breit-Wigner
fits. In Sec. IV we present our fits to the measured resonating
amplitudeuS̄u2S and describe our approaches to the inclu-
sion of a coherent background. In Sec. V we study the inter-
ference ofs(750) with f 0(750) and also perform fits in the
broad mass range 600–1520 MeV which show evidence for
a scalar resonancef 0(1300). In Sec. VI we present our fits to
S-wave intensityI S in p2p→p2p1n at 17.2 GeV/c and in
p1n→p1p2p at 5.98 and 11.85 GeV/c. In Sec. VII we
review the assumptions of past determinations ofpp phase
shifts and show how they are invalidated by the data on
polarized targets. This explains the absence of the narrow
s(750) state in conventional phase shiftd0

0. In Sec. VIII we
answer critical questions concerning the evidence for a nar-
row s(750). In Sec. IX we propose to identify thes(750)
state with lowest mass gluonium 011(gg) and discuss the-
oretical and experimental support for this interpretation of
s(750). The paper closes with a summary in Sec. X.

II. BASIC FORMALISM

A. Phase space and amplitudes

From the point of view of Breit-Wigner fits to various
mass distributions inp2p→p2p1n it is necessary to
determine the part of the phase space which depends on the
dipion massm and contributes to the mass distribution. Con-
sider reactiona1b→11213 such asp2p→p2p1n with
four-momentum conservation P5pa1pb5p11p21p3
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5pd1p3 , wherepd5p11p2 is the dipion momentum. The
spin averaged cross section is given by

ds5
1

Flux~s!

1

~2sa11!~2sb11! (
ln ,lp

uMln,0lp
u2dXLIPS3,

~2.1!

where the flux

Flux~s!54A~papb!
22ma

2mb
254Mpp lab ~2.2!

with ma5m mass of pion andmb5M mass of proton. The
lp and ln are the proton and neutron helicities. We will
work with the usual kinematic variables of c.m. energy
squareds, momentum transfert, dipion massm, and angles
u,f describing the angular distribution ofp2 in the
p2p1 rest frame. Following the procedure described on pp.
18 and 19 of Ref.@28# and usingdm252mdm, we can write
the Lorentz-invariant phase space as

dXLIPS3~P,p1 ,p2 ,p3!5q~m2!G~s!dmdtdV, ~2.3!

whereq is the pion momentum in the c.m. system~c.m.s.! of
the dipion system,

q~m2!5A0.25m22m25
m

2
A12S 2m

m D 2 ~2.4!

andG(s) is the energy-dependent part of phase space:

G~s!5
1

~2p!4
1

8A@s2~m1M !2#@s2~m2M !2#
.

~2.5!

Hence

ds

dmdtdV
5
K~s!

4p
q (

lp ,ln
uMln ,0lp

~s,t,m,u,f!u2,

~2.6!

where

K~s!5
2pG~s!

Flux~s!
. ~2.7!

The dipion state does not have a definite spin and helicity.
To obtain dipion states of definite spinJ and helicityl, we
expand

Mln ,0lp
5 (

J50

`

(
l52J

1J

A~2J11!Mlln ,0lp
J ~s,t,m!dl0

J ~u!eilf.

~2.8!

We now integrateuMln ,0lp
u2 over dV. Using orthogonality

relations for thed functions and spherical harmonics, we
obtain, for the reaction cross section,

d2s

dmdt
5q~m2!K~s!(

J50

`

(
l,ln ,lp

uMlln ,0lp
J ~s,t,m!u2.

~2.9!

In Eq. ~2.9! it is the amplitudesMlln ,0lp
J or their combina-

tions which exhibit a resonant Breit-Wigner behavior. From
~2.9! we see that this behavior is modified by a phase space
factor q(m2) which is common to all mass distributions in
pN→p1p2N.

To introduce the amplitudes required for the amplitude
analysis we first define

Hlln ,0lp
J 5Aq~m2!AK~s!Mlln ,0lp

J . ~2.10!

We will also consider only theJ50 ~S-wave! and J51
(P-wave! contributions for dipion massesm below 1000
MeV. With a notation

S5d2s/dmdt, ~2.11!

we now define normalized helicity amplitudes with a definite
t-channel naturality

H01,01
0 5S0AS, H01,02

0 5S1AS,

H01,01
1 5L0AS, H01,02

1 5L1AS,

H611,01
1 5

1

&
~N06U0!AS,

H611,02
1 5

1

&
~N16U1!AS. ~2.12!

In Eq. ~2.12! n5ulp2lnu50,1 is the nucleon helicity flip.
At large s, the unnatural helicity nonflip amplitudes
S0 ,L0 ,U0 and the unnatural helicity flip amplitudes
S1 ,L1 ,U1 exchangeA1 and p quantum numbers in thet
channel, respectively. Both natural exchange amplitudesN0
andN1 exchangeA2 at larges.

The amplitude analysis of data on polarized targets is per-
formed using normalized recoil nucleon transversity ampli-
tudes defined as

S5
1

&
~S01 iS1!, S̄5

1

&
~S02 iS1!,

L5
1

&
~L01 iL 1!, L̄5

1

&
~L02 iL 1!,

U5
1

&
~U01 iU 1!, Ū5

1

&
~U02 iU 1!,

N5
1

&
~N02 iN1!, N̄5

1

&
~N01 iN1!. ~2.13!

The amplitudesS,L,U,N andS̄,L̄,Ū,N̄ correspond to re-
coil nucleon transversity ‘‘down’’ and ‘‘up,’’ respectively
@9,11#. The ‘‘up’’ direction is the direction of normal to the
scattering plane defined according to Basel convention by
pW p3pW pp , wherepW p andpW pp are the incident pion and dime-
son momenta in the target nucleon rest frame.

The normalized transversity amplitudes satisfy condition
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uSu21uS̄u21uLu21uL̄u21uUu21uŪu21uNu21uN̄u251.
~2.14!

The unnormalized transversity amplitudes areuAu2S and
uĀu2S, whereA5S,L,U,N. Finally we define spin-averaged
partial wave intensities for amplitudesA5S,L,U,N:

I A5~ uA0u21uA1u2!S5~ uAu21uĀu2!S. ~2.15!

Obviously

S5
d2s

dmdt
5I S1I L1I U1I N . ~2.16!

B. Two methods of amplitude analysis

For invariant masses below 1000 MeV, the dipion system
in reactionspN→p1p2N is produced predominantly in
spin statesJ50 ~S wave! and J51 ~P wave!. The experi-
ments on transversely polarized targets then yield 15 spin-
density-matrix~SDM! elements describing the dipion angu-
lar distribution @8,9#. The measured SDM elements are
expressed in terms of twoS-wave and sixP-wave normal-
ized transversity amplitudes@Eq. ~2.13!# @1,11#. These rela-
tions involve eight moduli and six cosines of relative phases
of nucleon transversity amplitudes@Eq. ~2.13!#. Amplitude
analysis expresses analytically@1,11# the eight normalized
moduli and the six cosines of relative phases of nucleon
transversity amplitudes in terms of measured SDM elements.
There are two similar solutions in each (m,t) bin. However,
in many (m,t) bins the solutions are unphysical: either a
cosine has magnitude larger than one or the two solutions for
moduli are complex conjugate with a small imaginary part.
Unphysical solutions also complicate the error analysis.

The occurrence of unphysical solutions is a common dif-
ficulty in all amplitude analyses. Two methods are used to
find physical solutions and determine their errors. They are
~a! the x2 minimization method and~b! the Monte Carlo
method.

In thex2 method one minimizes a function

x25(
i51

M FObsi~meas!2Obsi~calc!

D i
G2, ~2.17!

where Obsi ~meas! are the experimentally measured quanti-
ties, D i are their experimental errors, and Obsi ~calc! are
corresponding expressions in terms of the amplitudes
~moduli and cosines of relative phases!. The analytical solu-
tions for the moduli and cosines serve as initial values. This
x2 method was used in all CERN-Munich analyses@3–7# of
p2p→p2p1p at 17.2 GeV/c. Since the two analytical so-
lutions ~initial values! are very close, thex2 method leads to
a unique solution in many (m,t) bins. A particular exception
is the mass range below 900 MeV. More recently thex2

method was used in direct reconstruction of amplitudes of
pp elastic amplitudes from 0.8 to 2.7 GeV using polarized
data obtained at SATURN II at Saclay@29#.

The basic idea of Monte Carlo method is to vary ran-
domly the input SDM elements within their experimental
errors and perform amplitude analysis for each new set of the
input SDM elements. The resulting moduli and cosines of

relative angles are retained only when all of them have
physical values in both analytical solutions. Unphysical so-
lutions are rejected. The distributions of accepted moduli and
cosines define the range of their physical values and their
average value in each (m,t) bin. The Monte Carlo amplitude
analysis of Ref.@25# is based on 30 000 random variations of
the input SDM elements. The Monte Carlo method was first
used in 1977 in an amplitude analysis@30# of pp elastic
scattering at 6 GeV/c and later in an amplitude analysis@31#
of reactions p2p→K1K2n and p2p→KS

0KS
0n at 63

GeV/c. In his review paper@32#, James advocates the use of
the Monte Carlo method as perhaps the only way to calculate
the errors in the case of nonlinear functions which produce
non-Gaussian distributions. The method has the added ad-
vantage that it can separate the physical and unphysical so-
lutions and that it can retain the identity of the two analytical
solutions.

The results for the two solutions for the unnormalized
moduli of S-wave amplitudesuS̄u2S and uSu2S obtained by
Monte Carlo amplitude analysis of CERN-Munich data at
17.2 GeV/c are shown in Fig. 1. We find that both solutions
for the amplitudeuS̄u2S resonate around 750 MeV while
both solutions for the amplitudeuSu2S show nonresonant
behavior and increase with dipion massm.

The results foruS̄u2S and uSu2S obtained byx2 minimi-
zation method using the same CERN-Munich data at 17.2
GeV are shown in Fig. 2. We again find that both solutions
for the amplitudeuS̄u2S resonate around 750 MeV and that
both solutions for the amplitudeuSu2S show nonresonant
behavior and an increase with dipion massm. The compari-
son of Fig. 1 and Fig. 2 shows that the Monte Carlo method

FIG. 1. Mass dependence of unnormalized amplitudesuS̄u2S
and uSu2S measured inp2p↑→p2p1n at 17.2 GeV/c at
2t50.00520.20 (GeV/c)2 using the Monte Carlo method for am-
plitude analysis~Ref. @25#!. Both solutions for the amplitude
uS̄u2S resonate at 750 MeV while the amplitudeuSu2S is nonreso-
nating in both solutions.
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and thex2 minimization method are also in excellent nu-
merical agreement. However, the amplitudes obtained by the
Monte Carlo method show a considerably smoother behavior
which, as we shall see later, gives much lowerx2 values in
Breit-Wigner fits. The unnormalized moduliuS̄u2S and
uSu2S in Figs. 1 and 2 were calculated using
S5d2s/dmdt from Fig. 12 of Ref.@2#.

At this point we note that the Fig. 2 is based on Fig. 10 of
Ref. @4# and Fig. VI-21 of Ref.@3# ~to resolve error bars!.
The authors of these papers present only normalized moduli
uS̄u anduSu and consequently did not see the resonant behav-
ior of unnormalized amplitudeuS̄u2S. The resonant behavior
of amplitudeuS̄u2S at 750 MeV went also unobserved in the
subsequent analysis in Ref.@5# which was using polarized
data in 40 MeV bins in the mass range from 600 to 1800
MeV. It is possible to reconstruct the amplitudesuS̄u2S and
uSu2S from the information given in Ref.@5#. As we shall see
in Sec. V ~Fig. 5! both solutions foruS̄u2S resonate below
900 MeV while both solutions foruSu2S are nonresonating,
in agreement with Figs. 1 and 2. It is interesting to note that
the evidence for a narrow resonances(750) was hidden in
the very first analyses of CERN-Munich data~Refs.@3#, @4#,
and @5#!.

III. RESONANCE SHAPE FORMULAS

A. Pišút-Roos shape formula

Before we review the Pisˇút-Roos derivation of their reso-
nance shape formula, we first recall some properties of par-

tial waves in elastic scattering of scalar particles. The
T-matrix amplitude of isospinI has partial wave expansion

TI~s,cosu!58p (
L50

`

~2L11!TL
I ~s!PL~cosu!. ~3.1!

The unitarity in elastic scattering then requires~see Ref.@28#,
pp. 38–40! thatTL

I has a form

TL
I ~s!5

As
q

sin dL
I eidL

I
5

As
q

1

cotg dL
I 2 i

, ~3.2!

whereq is the pion c.m.s. momentum anddL
I is the corre-

sponding phase shift. Notice that the factorAs/q is induced
by the unitarity alone. At a resonancemR , the relativistic
Breit-Wigner formula forTL

I then reads

TL
I 5

As
q

2mRG~s!

~s2mR
2 !1 imRG~s!

, ~3.3!

whereG(s) is an energy-dependent width.
Let us now return to pion-production process

p2p→p2p1n and to amplitudesMlln ,0lp
J (s,t,m) defined

in Eq. ~2.8!. In their analysis@26#, Pišút and Roos assumed
that the following amplitudes vanish for allJ:

M01,01
J 50,

M611,01
J 5M611,02

J 50. ~3.4!

The conditions~3.4! mean that allA1-exchange amplitudes
vanish and that the naturalA2-exchange amplitudes also van-
ish. Only pion exchange amplitudeM01,02

J contribute and
they have a general form

M01,02
J ~s,t,m!5Q~s,t !A2J11TJ~m!Af ~m!1MB

J ~s,t,m!,
~3.5!

whereTJ(m) are thepp→pp partial wave amplitudes with
isospin decomposition

TJ5TI51
J for J odd,

TJ5
2

3
TI50
J 1

1

3
TI52
J for J even, ~3.6!

in reactionp1p2→p1p2. In Eq. ~3.5! the functionf (m)
is a phenomenological function that is supposed to account
for absorption, and initial-state and final-state interactions. In
practice one putsf (m)51. The functionQ(s,t) factorizes
the s and t dependence. The termMB

J (s,t,m) is a back-
ground.

Taking into account the factorqK(s) in Eq. ~2.9! and Eq.
~3.3!, Pišút and Roos arrive at a resonant parametrization of
the reaction cross section:

d2s

dmdt
5q~2J11!Smq D 2 mR

2G2

~m22mR
2 !21mR

2G2 f ~m!N~s,t !

1background terms. ~3.7!

FIG. 2. Mass dependence of unnormalized amplitudesuS̄u2S
and uSu2S measured inp2p↑→p2p1n at 17.2 GeV/c at
2t50.00520.20 (GeV/c)2 using thex2 minimization method for
amplitude analysis. Based on Fig. 10 of Ref. 4 and Fig. VI-21 of
Ref. @3#. Both solutions for the amplitudeuS̄u2S resonate at 750
MeV while the amplitudeuSu2S is nonresonating in both solutions.
The analysis used the same data as in Fig. 1~20 MeV mass bins!.
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Averaging overt over an interval̂ t1 ,t2& gives a shape for-
mula for the mass distribution:

I av~s,m!5q~2J11!Smq D 2 mR
2G2

~m22mR
2 !21mR

2G2 f ~m!N~s!

1background terms, ~3.8!

where

I av~s,m!5
1

t22t1
E
t1

t2 d2s~s,t,m!

dmdt
dt,

N~s!5
1

t22t1
E
t1

t2
N~s,t !dt5

K~s!

t22t1
E
t1

t2
uQ~s,t !u2dt.

~3.9!

Setting f (m)51 and ignoring the background we get the
Pišút-Roos resonance shape formula@26# for the t-averaged
mass distribution:

I av~m!5NqF~m!uABWu2, ~3.10!

whereN is the normalization constant,q is the phase space
factor,F(m) is the Pišút-Roos shape factor,

F~m!5~2J11!Smq D 25 4~2J11!

12S 2m

m D 2 , ~3.11!

andABW is the Breit-Wigner amplitude

ABW5
mRG

mR
22m22 imRG

. ~3.12!

The Pišút-Roos resonance shape formula~3.10! has been ex-
tensively used to fit partial wave intensities in previous am-
plitude analyses ofpN→p1p2N on polarized targets
~Refs. @5#, @6#, @7#, and @25#!. Averaging experimental data
over different intervals oft ~e.g., in adjacentt bins! will in
general lead to mass distributionsI av(m) with some differ-
ences in the experimental resonance shape. These differences
in I av may result in differences in the values of resonance
parameters determined in differentt intervals using Eq.
~3.10! to fit the averaged data. This problem was recognized
already by Pisˇút-Roos in their paper@26#.

B. Phenomenological resonance shape formula

In general, the experimental distributionI (m) in a certain
mass region is fitted to a functional form@27#

I ~m!5aRI R~m,mR ,G!1aBI B~m!, ~3.13!

whereaR andaB give the fractions of resonant contribution
and incoherent background. NormallyI R is taken as a square
of the Breit-Wigner amplitude multiplied by a phase space
factor. A coherent term may be added to the Breit-Wigner
amplitude, typically a constant term. In general, the back-
groundI B(m) is a polynomial.

In the case ofp2p→p2p1n reaction, the relevant phase
space factor is just the pion momentumq in thep1p2 c.m.

system and one can write for mass distributions in this reac-
tion a phenomenological resonance shape formula

I ~m!5Nq~m!$uABWu21B%, ~3.14!

whereN is overall normalization factor andB is the back-
ground term. We can takeB50 or B5constant. When
B50, the phenomenological shape formula~3.14! is ob-
tained from Pisˇút-Roos resonance shape formula~3.10! by
setting their shape factorF[1. We see from Eq.~3.11! that
Pišút-Roos formula~3.10! converges to phenomenological
formula ~3.14! for largem when backgroundB50.

IV. THE MASS AND WIDTH OF s„750… FROM FITS
TO THE S-WAVE AMPLITUDE zS̄z2S

As seen in Figs. 1 and 2, the Monte Carlo method and the
x2 method yield very similar results for theS-wave ampli-
tudesuS̄u2S anduSu2S in p2p→p2p1n at 17.2 GeV/c and
for 2t50.00520.20 (GeV/c)2. Both methods show that the
amplitudeuS̄u2S resonates in both solutions while the ampli-
tude uSu2S is nonresonating in both solutions. The Monte
Carlo results appear to be smoother than thex2 results. The
Monte Carlo method found no physical solution at mass bin
890 MeV. The solution found byx2 method at this mass is
far off from the general trend of data in solution 1 for
uS̄u2S. For these reasons the mass bin 880–900 MeV was
excluded from the fits touS̄u2S.

To determine the best values of the mass and width of
s(750) state from the mass distribution of the resonating
amplitudeuS̄u2S we used four types of fitting approaches and
used ax2 criterion to determine the best fits. In the first
approach we used a single Breit-Wigner fit. In the second
approach we added an incoherent constant background to the
single Breit-Wigner. In the third and fourth approaches we
used two different versions of constant coherent background.
In each approach we used both Pisˇút-Roos and phenomeno-
logical resonance shape formula and found they give very
similar results. The inclusion of background leads to the nar-
rowing of the width ofs(750). The bestx2 solution is ob-
tained by the fourth approach leading to a conclusion that
s(750) is a narrow state with a width about 100 MeV. The
fitting was done using the CERN optimization program
FUMILI @33#.

A. Single Breit-Wigner fit

In this approach the mass distributionuS̄u2S is fitted to a
formula

uS̄u2S5qFNSuABWu2, ~4.1!

whereq is the phase space factor~2.4!. The factorF is equal
either

F5~2J11!Smq D 2 ~4.2!

for Pišút-Roos shape formula or

F51 ~4.3!
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for the phenomenological shape formula.ABW is the Breit-
Wigner amplitude

ABW5
mRG

mR
22m22 imRG

, ~4.4!

wheremR is the resonant mass. The mass-dependent width
G(m) depends on spinJ and has a general form

G5GRS qqRD
2J11 DJ~qRr !

DJ~qr !
. ~4.5!

In Eq. ~4.5! qR5q(m5mR) andDJ are the centrifugal bar-
rier functions of Blatt and Weiskopf@34#:

D0~qr !51.0,

D1~qr !51.01~qr !2, ~4.6!

wherer is the interaction radius.
The results of the fit are shown in Fig. 3 for the Pisˇút-

Roos and phenomenological shape formulas. The corre-
sponding curves~solid lines! for both shape formulas are
nearly identical and cannot be distinguished in the figure.
The numerical results are presented in Table I. The fits to
uS̄u2S obtained byx2 method have significantly higher val-
ues ofx2/NDF. However, both methods give as mass in the

range 730–750 MeV and a width in the range 230–250
MeV. Only the solution 1 of thex2 method gives a lower
width around 190 MeV.

An important feature of the fits touS̄u2S with single Breit-
Wigner formula noticeable in Fig. 3 is that all fits lie below
the maximum values of the mass distributions for each solu-
tion and the method of analysis. This inability of the single
Breit-Wigner formula to reproduce the resonant shape of the
amplitudeuS̄u2S suggests that background contributions are
important and their effect on the mass and width ofs state
should be investigated, at least approximately.

B. Breit-Wigner fit with incoherent background

In this case we fit the mass distribution foruS̄u2S to a
formula

uS̄u2S5qFNS$uABWu21B%, ~4.7!

whereB is the incoherent background added to the Breit-
Wigner formula~4.1!. In general,B is a polynomial inm.
However, since we have only 14 data points in the resonant
mass range of 600–880 MeV, we will takeB5const.

The results of the fit are shown in Fig. 3 for the phenom-
enological shape formula~dashed lines!. The results with
Pišút-Roos shape formula are very similar. The numerical
results are given in Table II. We notice a dramatic improve-
ment of the fit to the solution 2 for both methods which
yields a betterx2/NDF and a narrow width of about 100
MeV. There is also some improvement of the fit to the solu-
tion 1 in particular for thex2 method solution. This improve-
ment is again associated with a lowerx2/NDF and a narrower
width of 202 and 147 MeV for the Monte Carlo andx2

methods, respectively. The mass of thes state remains in the
range of 730–745 MeV.

While the fits to solutions 2 are now much improved, the
fits to solutions 1 are still not satisfactory with the fitted
curves still below the maximum values of these mass distri-
butions. To make further progress we turn to coherent back-
ground contributions.

FIG. 3. The fits to amplitudeuS̄u2S using the single Breit-
Wigner parametrization~4.1! with Pišút-Roos shape factor~4.2! and
with phenomenological shape factorF51. The two fits cannot be
distinguished~solid line!. The fitted parameters are given in Table I.
The dashed lines represent fits touS̄u2S using the Breit-Wigner
parametrization~4.7! with constant incoherent background and with
phenomenological shape factorF51. The fitted parameters are
given in Table II.

TABLE I. Results of the fits to the mass distributionuS̄u2S
measured inp2p→p2p1n at 17.2 GeV/c using a single Breit-
Wigner formula~4.1!. The notation MC andx2 indicates the solu-
tions obtained by the Monte Carlo andx2 minimization methods,
respectively.

uS̄u2S
Solution

ms

~MeV!
Gs

~MeV! Ns x2/NDF

Pišút-Roos shape formula
1~MC! 73666 230632 1.4060.12 0.388
2~MC! 745612 240659 1.7160.23 0.276
1(x2) 73864 191616 1.5060.11 0.662
1(x2) 752610 253646 1.7960.15 0.968
Phenomenological shape formula
1~MC! 73266 231633 6.5060.57 0.418
2~MC! 740611 241661 7.9461.11 0.288
1(x2) 73364 192616 7.0060.50 0.740
2(x2) 747610 256647 8.2960.74 0.986
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C. Breit-Wigner fit with coherent background

The nonresonant behavior of the amplitudeuSu2S ~recoil
nucleon transversity down! strongly suggest the presence of
a coherent nonresonating background. A part of coherent
background also comes from the contribution of isospin
I52 amplitudes@see Eq.~3.6!# which we neglected in the
single Breit-Wigner fit. To understand the origins of the co-
herent background and to discuss its form for fits touS̄u2S it
is useful to express the unnormalized moduli ofS-wave
transversity amplitudes in terms of unnormalized helicity
amplitudes. Using Eq.~2.13! we write

uSu2S5
1

2
uS01 iS1u2S5qFuF01 iF 1u2,

uS̄u2S5
1

2
uS02 iS1u2S5qFuF02 iF 1u2, ~4.8!

whereF0 andF1 are unnormalizedS-wave helicity ampli-
tudes. The termsqF have the same meaning as in Eq.~4.1!
and anticipate the use of Eq.~4.8! for Breit-Wigner fits to
mass distribution ofuS̄u2S. Near the resonance with mass
mR we assume the following form of the helicity amplitudes

Fn~s,t,m!5Rn~s,t,m!ABW~m!1Bn~s,t,m!, ~4.9!

wheren50,1 is the nucleon helicity flip,ABW is the Breit-
Wigner amplitude~4.4!, Rn(s,t,m) is the pole term, and
Bn(s,t,m) is the nonresonating background which includes
the contribution from the nonresonating isospinI52 ampli-
tudes. The energy variables is fixed and will be omitted in
the following. Since the experimental mass distributions are
averaged over broadt bins, we will eventually average also
over the momentum transfer variablet. With the notation
e561, we can then write Eq.~4.8! in a compact form as

F01 i eF15Re~ t,m!ABW~m!1Be~ t,m!, ~4.10!

whereRe5R01 i eR1 andBe5B01 i eB1 . It is useful to fac-
tor out the phase ofRe and define

Re5uReueife,

Ce5Bee
2 ife. ~4.11!

Then Eq.~4.10! takes the form

F01 i eF15$uReuABW1Ce%e
ife ~4.12!

and the moduli squared of Eq.~4.8! read

uF01 i eF1u25uReu2uABWu21~ReCe!
21~ ImCe!

2

12uReu$ReCe ReABW1ImCe ImABW%.

~4.13!

We now recall that

ReABW5SmR2m2

mRG D uABWu2[wuABWu2

ImABW5uABWu2. ~4.14!

Hence,

uF01 i eF1u25$uReu212uReuReCew12uReuImCe%uABWu2

1~ReCe!
21~ ImCe!

2. ~4.15!

Since the amplitudeuSu2S(e511) does not show a clear
resonant behavior~Figs. 1 and 2!, we can conclude from Eq.
~4.15! that the sum of terms in the parentheses must be small
or zero. This most likely means thatuR1u is small or zero
implying that the pole terms in helicity amplitudes are re-
lated approximately asR0'2 iR1 .

For the resonating amplitudeuS̄u2S(e521) the second
and third terms in the parentheses in Eq.~4.15! represent the
effect of coherent background. In general the functions
uR2u and C2 will depend on botht and m. Since these
functions are not known and since we have only 14 data
points in the resonance mass region 600–880 MeV, we will
work in the approximation of constant background. At this
point there are two possibilities.

~1! We assume thatuR2u andC2 are constants indepen-
dent oft andm. In this case no averaging overt is necessary
and we can write Eq.~4.15! in the form

uS̄u2S5qFNS$@112wB112B2#uABWu21B1
21B2

2%,
~4.16!

where

NS5uR2u2, B15
ReC2

uR2u
, B25

ImC2

uR2u
. ~4.17!

This possibility is equivalent to assuming that the constant
parts of uR2u andC2 dominate in the resonant mass range
600–880 MeV. We also notice that in this case the incoher-
ent partB1

21B2
2 is correlated with the coherent contribution

TABLE II. Results of the fits to the mass distributionuS̄u2S measured inp2p→p2p1n at
17.2 GeV/c using a Breit-Wigner formula with a constant incoherent background~4.7!. The notation MC and
x2 as in Table I.

uS̄u2S
Solution

ms

~MeV!
Gs

~MeV! B NS x2/NDF

Phenomenological shape formula
1~MC! 7316 6 2026110 0.1560.55 5.7562.54 0.416
2~MC! 744614 1036 74 0.7360.49 5.1161.84 0.144
1(x2) 7366 4 1476 43 0.1960.17 6.1360.84 0.696
2(x2) 745641 986 41 0.7060.28 5.7061.30 0.626
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(2wB112B2)uABWu2 in the formula~4.16! through the com-
mon parametersB1 andB2 .

~2! In the second possibility, we assume thatuR2u and
C2 are both dependent ont andm. In this case we must
average Eq.~4.15! over t over the experimentally measured
interval ^t1 ,t2&. The averaging of Eq.~4.15! over t yields

uS̄u2S5qF$@r12wa12b#uABWu21c%, ~4.18!

where

r5^uR2u2&, a5^uR2uReC2&,

b5^uR2uImC2&, c5^~ReC2!21~ ImC2!2&.
~4.19!

In Eq. ~4.19! the symbol̂ & represents averaging overt over
interval ^t1 ,t2&. In general, the functionsr ,a,b,c will de-

pend on the massm. Since we do not know these functions,
we will assume constant values. But then there is no distinc-
tion betweenr and 2b which can be combined into one
parameterNS5r12b as they are two constants in a sum.
Then Eq.~4.18! has the form

uS̄u2S5qFNS$@112wB1#uABWu21B%, ~4.20!

whereB15a/NS andB5c/NS are the coherent and incoher-
ent contributions to the resonance shape formula. This ap-
proximation is equivalent to assumption that the functions
uR2u andC2 depend mostly ont and only weakly onm.
Notice that in this case the incoherent contributionB is not
correlated with the coherent contribution as the parameters
B andB1 are independent. We will refer to the first possibil-
ity ~1! as Breit-Wigner fit with constant coherent background
and to the second possibility~2! as the Breit-Wigner fit with
t-averaged constant coherent background.

The results of the Breit-Wigner fit with constant coherent
background are shown in Fig. 4~solid lines! and Table III.
The results of the Breit-Wigner fit with thet-averaged con-
stant coherent background are given in Fig. 4~dashed lines
where distinguishable from the solid lines! and Table IV.
Both figures and tables refer to the phenomenological shape
formula with F51. The results with Pisˇút-Roos resonance
shape formula@F given by Eq.~4.2!# are very similar for the
masses and widths although there are some differences in the
fitted values of the constantsB1 , B2 , or B1 andB.

An inspection of Fig. 4 shows much improved fits to the
data on mass distribution ofuS̄u2S. The overall best fit~as
judged by the lowest values ofx2/NDF! is provided by the
Breit-Wigner fit with thet-averaged constant coherent back-
ground. However, the improvements inx2/NDF appear only
in solution 1 of Monte Carlo method and solution 2 of the
x2 method. Again, the Monte Carlo method achieves better
values ofx2/NDF compared to thex2 method of amplitude
analysis.

The improvements in the fits brought about by the inclu-
sion of coherent background have important consequences
for the fitted values of the mass and width ofs(750) state.
From Tables III and IV we find that the mass ofs in solution
1 is about 30 MeV higher than thes mass found in solution
2. The Monte Carlo method gives the best value ofs mass
774 MeV in solution 1 and 744 MeV in solution 2~Table
IV !. Thex2 method gives the best value ofs mass 761 MeV
in solution 1 and 733 MeV in solution 2~Table IV!. The data
on polarized target cannot distinguish these two solutions.
Since the two masses are close, we can work with a solution

FIG. 4. The fits to amplitudeuS̄u2S using the Breit-Wigner pa-
rametrization~4.16! with constant coherent background and with
phenomenological shape factorF51 ~solid lines!. The fitted pa-
rameters are given in Table III. The dashed lines represent the fits to
amplitudeuS̄u2S using the Breit-Wigner parametrization~4.20! with
t-averaged constant coherent background and with phenomenologi-
cal shape factorF51. The fitted parameters are given in Table IV.

TABLE III. Results of the fits to the mass distributionuS̄u2S measured inp2p→p2p1n at 17.2 GeV/c using a Breit-Wigner formula
with constant coherent background~4.16!. The notation MC andx2 as in Table I.

uS̄u2S
Solution

ms

~MeV!
Gs

~MeV! B1 B2 NS x2/NDF

Phenomenological shape formula
1~MC! 770619 114617 0.9060.43 1.3460.84 1.0960.61 0.136
2~MC! 745631 104676 0.0261.07 1.8461.14 1.0960.90 0.144
1(x2) 761613 138619 0.3460.16 0.6960.45 2.4161.14 0.362
2(x2) 738620 1036112 20.1760.65 1.3060.50 1.7960.86 0.898
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average. The solution average fors mass is 759622 MeV
for Monte Carlo method and 747616 MeV for the x2

method. The average over the two methods givess mass
753619 MeV.

The most significant effect of the inclusion of coherent
background is the reduction of the value of the width ofs.
The Monte Carlo method gives for the best value ofs width
similar values of 101 and 103 MeV in solutions 1 and 2,
respectively~Table IV!. The x2 method gives for the best
value of s width 134 MeV in solution 1 and 93 MeV in
solution 2 ~Table IV!. The data on polarized target cannot
distinguish these two solutions, but the high values of
x2/NDF for x2 method tend to favor the values fors width
from the Monte Carlo method which has low values of
x2/NDF. The solution average for thes width is
102661 MeV for Monte Carlo method. The solution average
for the s width is 113644 MeV for thex2 method. Since
the error on thes width is larger for the Monte Carlo
method, the two results are essentially compatible. The av-
erage over the two methods givess width 108653 MeV.

In conclusion, we propose to adopt the solution and
method averages from the best fit values of Table IV as the
standard values of mass and width of thes state. The ob-
tained values are

ms5753619 MeV, Gs5108653 MeV. ~4.21!

V. THE INTERFERENCE WITH f 0„980… IN FITS
TO AMPLITUDE zS̄z2S

Törnqvist suggested@35,36# that the interference of
s(750) with f 0(980) resonance could influence the determi-
nation of resonance parameters ofs(750). In the old phase
shift analyses~obtained using the invalid assumption of ab-
sence ofA1 exchange!, the resonancef 0(980) plays an im-
portant role of smoothly interpolating the ‘‘down’’ solution
for d0

0 below 900 MeV with the results ford0
0 above 1000

MeV.
We will now investigate the effect of interference of

s(750) with f 0(980) on the determination of resonance pa-
rameters ofs(750). We will find that the effect is very
small. This is consistent with the fact thatf 0(980) is a very
narrow resonance and it is positioned sufficiently far away
from the narrow and strong resonances(750).

The experimental data in thef 0(980) mass region are
given in the CERN-Munich analysis@5# of p2p→p2p1n
on polarized target at 17.2 GeV/c for dipion masses 600–
1800 MeV. From Fig. 2 and Fig. 6 of Ref.@5# it is possible

to reconstruct the amplitudesuS̄u2S and uSu2S. The two so-
lutions are shown in Fig. 5. The amplitudeuS̄u2S resonates at
750 MeV in solution 1 and at 800 MeV in solution 2. It
shows a high value at 960 MeV and a pronounced dip at
1000 MeV, indicating an interference off 0(980) with back-
ground in this mass region around 1000 MeV. The structures
are less dramatic inuSu2S which does not shows(750) but
a dip at 1000 MeV is still observable.

To proceed, we extend our parametrization~4.9! of
uS̄u2S to include f 0(980) resonance. Recall from Eq.~4.8!
that uS̄u2S5qFuF02 iF 1u. Now we write, for the helicity
amplitudesF0 andF1 ,

Fn5Rn
~s!~s,t,m!ABWs~m!1Rn

~ f !~s,t,m!ABWf~m!

1Bn~s,t,m!, ~5.1!

where indexs refers tos(750) and f refers to f 0(980).
Then

F02 iF 15Rs~s,t,m!ABWs
1Rf~s,t,m!ABWf

1B~s,t,m!.
~5.2!

Assuming that the coefficientsRs ,Rf and the background
B are independent oft andm, we get an extension of the
parametrization~4.16!:

uS̄u2S5qFNS$@112wsB112B2#uABWs
u21B1

21B2
21@C1

2

1C2
2#uABWf

u212@~wsuABWs
u21B1!~wfC12C2!

1~ uABWs
u21B2!~C11wfC2!#uABWf

u2%, ~5.3!

where

wR5
mR
22m2

mRG
, G5GRS qqRD , R5s, f . ~5.4!

If we assume thatRs , Rf , andB depend ont and perform
t averaging, the extension of parametrization~4.20! then
reads

uS̄u2S5qFNS$@112wsB1#uABWs
u21B12@ws~wfC12C2!

1~C11wfC2!#uABWf
u2uABWs

u2

1~D11wfD2!uABWf
u2%. ~5.5!

In the above parametrizations~5.3! and~5.5! the coefficients
NS , B1 , B2 , (B), C1 , C2 , D1 , D2 are real constants. The

TABLE IV. Results of the fits to the mass distributionuS̄u2S measured inp2p→p2p1n at 17.2 GeV/c using a Breit-Wigner formula
with t-averaged constant coherent background~4.20!. The notation MC andx2 as in Table I.

uS̄u2S
Solution

ms

~MeV!
Gs

~MeV! B B NS x2/NDF

Phenomenological shape formula
1~MC! 774614 101644 0.7360.31 0.2960.14 3.9960.96 0.108
2~MC! 744631 103679 0.7360.54 0.0160.23 5.1061.90 0.144
1(x2) 761612 134641 0.2560.17 0.1560.07 5.7460.82 0.362
2(x2) 733620 93648 0.8060.39 20.1260.19 5.3161.53 0.592
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data between 900 and 1120 MeV exist only in 40 MeV mass
bins. Thus there is not enough data to fit the resonance pa-
rameters off 0(980). Instead we fix the mass off 0(980) at
980 MeV and its width at 48 MeV in the Breit-Wigner am-
plitudeABWf

. Also, in our fits we took foruS̄u2S below 880
MeV the results from our Monte Carlo analysis~in 20 MeV
bins! and between 900 and 1120 MeV we took the results of
CERN-Munich analysis~in 40 MeV bins! from Fig. 5.

The two parametrizations~5.3! and ~5.5! yield virtually
identical fits from 600 to 1120 MeV and the same values for
mass and width ofs(750). The fit for parametrization~5.3!
is shown in Fig. 6 and the numerical values of the parameters
are given in Table V. There is a small improvement of
x2/NDF in Solution 1 which shows a better fit with the
f 0(980) interference. Comparison with the corresponding
Table III shows a small increase in the mass ofs in both
solutions. There is a decrease of thes width in solution 1
from 114 to 95 MeV and an increase ins width in Solution
2 from 104 to 135 MeV. The solution averages are

ms5768622 MeV, Gs5115638 MeV. ~5.6!

The effect off 0(980) interference is thus a small increase of
average mass and width ofs as compared to values in Eq.
~4.21!. It is not possible to claim@36# that the low mass and
the narrow width ofs(750) can be explained by the neglect
of interference ofs(750) with f 0(980) in our fits.

Both fits reproduce well thes resonance peaks below 880
MeV in both solutions and the interference patterns between
920 and 1120 MeV. Particularly noteworthy in Fig. 6 is the
dramatic drop inuS̄u2S between 960 and 1000 MeV due to
destructive interference off 0(980) with the background. The
good fit in this region suggests that the assumption of con-
stant coherent background and resonance couplings is a good
approximation.

We have also attempted to fit the whole mass region of
600–1520 MeV using a three resonance parametrization with
a constant background and resonance couplings. The fit was
not successful as thef 0(1300) resonance was not well repro-
duced. This indicates that the background above 1120 MeV

FIG. 5. Mass dependence of unnormalized amplitudesuS̄u2S
and uSu2S measured in p2p→p2p1n at 17.2 GeV/c at
2t50.00520.20 (GeV/c)2 in 40 MeV mass bins from 600 to
1520 MeV. Based on Figs. 2 and 6 from Ref.@5#. The amplitude
uS̄u2S resonates at 750 in solution 1 and at 800 MeV in solution 2
while the amplitude foruSu2S is nonresonating in both solutions in
this mass range.

FIG. 6. The fits to amplitudeuS̄u2S using the Breit-Wigner pa-
rametrization~5.3! below 1120 MeV and a single Breit-Wigner
formula with incoherent background above 1120 MeV. The phe-
nomenological shape factorF51. The fitted parameters are given
in Tables V and VI.
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is different and the assumption of constant background for
such a large mass range does not work. Next we fitted the
f 0(1300) resonance in the mass range of 1120 to 1520 MeV
to a single Breit-Wigner with incoherent background. The
results are shown in Fig. 6 for the two solutions~differing in
values ofuS̄u2S at 1480 MeV!. The Solution 1 above 1120
MeV connects smoothly with both solutions below 1120
MeV while the Solution 2 shows a small discontinuity at
1120 MeV. Surprisingly, the incoherent background in both
solutions is consistent with zero. This again indicates that
above 1100–1200 MeV the background~if any! is different
from the low mass region below 1100 MeV. The numerical
results of the fit tof 0(1300) in the mass region 1120–1520
MeV are given in Table VI. We note the similarity of mass
and width of resonancesf 0(1300) andf 2(1270).

VI. THE MASS AND WIDTH OF s„750… STATE
FROM THE FITS TO S-WAVE INTENSITY I S

Previous amplitude analyses@4–6,25# of p2p→p2p1n
andp1n→p1p2p data on polarized targets fitted only cer-
tain partial wave intensities using the Pisˇút-Roos resonance
shape formula without any background. It is of interest to
perform Breit-Wigner fits to theS-wave intensityI S and
compare the results with the results of fits to resonating am-
plitude uS̄u2S in p2p→p2p1n at 17.2 GeV/c. Because of
lower statistics, data forp1n→p1p2p at 5.98 and 11.85
GeV/c allow fits only toS-wave intensityI S . This is, thus,
our primary aim in fitting theS-wave intensity: to extract
information about the mass and width ofs in
p1n→p1p2p reaction measured at larger momentum
transfers2t50.2–0.4 (GeV/c)2.

Let us recall that theS-wave intensityI S is defined as

I S~s,t,m!5~ uSu21uS̄u2!S5~ uS0u21uS1u2!S. ~6.1!

Since there are two independent solutions for the amplitudes
uSu2 and uS̄u2, there are four solutions for theS-wave inten-
sity. We label these four solutions asI S(1,1), I S(1,2),
I S(2,1), andI S(2,2), where

I S~ i , j !5~ uS~ i !u21uS̄~ j !u2!S, i , j51,2. ~6.2!

The results for the four solutions ofI S obtained by the Monte
Carlo amplitude analysis are shown in Fig. 7. The results for
I S(1,1) andI S(2,2) obtained by thex

2 minimization method
are shown in Fig. 8. Again, there is a remarkable agreement
between the results of these two different methods of analy-
sis. The solutionsI S(1,1) andI S(2,1) are clearly resonating
but the solutionsI S(1,2) and I S(2,2) do not show a clear
resonant behavior. This is due to the large nonresonating
contribution from the amplitudeuSu2S ~see Figs. 1 and 2!.
The amplitudeuSu2S represents a nontrivial nonresonating
background in all four solutions and is thus expected to dis-
tort the results of Breit-Wigner fits toI S .

We first performed fits toI S using a single Breit-Wigner
formula without any background

I S5qFNSuABWu2. ~6.3!

In all fits toS-wave intensities we used the Pisˇút-Roos shape
factor F5(2J11)(m/q)2. The results are shown as solid
lines in Figs. 7 and 8 and in Tables VII and Tables VIII for
the Monte Carlo andx2 methods, respectively. We notice in
Figs. 7 and 8 that the single Breit-Wigner fit is well below
the maximum values of the mass distributionI S . In the
Monte Carlo analysis the mass ofs is around 766 MeV in all
four solutions. The width is around 260 MeV for the first
three solutions and is larger at 303 MeV for the solutions
I S(2,2). In thex2 method thes mass and width in solution
I S(1,1) is in agreement with the Monte Carlo results, but the
width of I S(2,2) is larger at 408 MeV and also the mass is
higher at 786 MeV.

TABLE V. Results of the fit to the mass distributionuS̄u2S in the mass range from 600 to 1120 MeV taking into account the interference
of s(750) with f 0(980) using the parametrization~5.3!. The notation MC andx2 as in Table I.

uS̄u2S
Solution

ms

~MeV!
Gs

~MeV! B1 B2 NS x2/NDF

Phenomenological shape formula
1(MC,x2) 778613 95627 1.2060.35 0.8560.33 1.2460.39 0.096
2(MC,x2) 758632 135649 0.5460.69 1.0060.28 1.8560.83 0.162

C1 C2

1(MC,x2) 0.4260.52 1.2560.39
2(MC,x2) 20.3560.67 0.9760.55

TABLE VI. The results of the fit to the mass distributionuS̄u2S in the f 0(1300) mass region from 1120
to 1520 MeV using a single Breit-Wigner formula with incoherent constant background. The notationx2 as
in Table I.

uS̄u2S
Solution

m
~MeV!

G
~MeV! B N x2/NDF

1(x2) 1284612 209629 0.00160.32 5.9660.62 1.393
2(x2) 1276611 175624 0.00160.09 6.2160.70 1.738
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Next we performed a Breit-Wigner fit with a constant
incoherent background using the formula

I S5qFNS$uABWu21B%, ~6.4!

whereB is the constant background term. The results are
shown as dashed lines in Figs. 7 and 8 and in Tables VII and
VIII for the Monte Carlo andx2 methods, respectively.
While the masses ofs remain the same, there is a general
reduction of the width ofs associated with improved fits to
the data and lower values ofx2/NDF. In Monte Carlo
method the width ofs is reduced to 210 MeV in the first
three solutions toI S . However, the most dramatic and unex-
pected change occurs in the solutionI S(2,2) in both meth-
ods. There is a considerable improvement in the fit to the
data and the width is drastically reduced to 188 MeV in both
methods indicating the existence of a narrows state even in
the broad looking mass distribution.

The best determination ofs width from the fits to
S-wave intensityI S is still double the best value obtained in
fits directly to the amplitudeuS̄u2S ~Table IV!. This discrep-
ancy shows that the determination of resonance parameters
from the spin-averaged intensities is not fully reliable when
there is a presence of a large nonresonating nontrivial back-
ground as is the case of the amplitudeuSu2S. The character-
istic feature of this situation is that theS-wave intensity does
not show a clear resonant structure in all four solutions.

This situation does not occur in the data onS-wave inten-
sity in p1n→p1p2p at larger momentum transfers
2t50.220.4 (GeV/c)2. The results from Monte Carlo am-
plitude analysis are shown in Figs. 9 and 10 at 5.98 and
11.85 GeV/c, respectively. We note that all four solutions at
both energies show clear resonant structures. This suggests
that the determination of resonance parameters from
S-wave intensities at these momentum transfers should be
more reliable. However, this advantage is somewhat offset
by the lower statistics of the data and large errors.

We have again performed fits using single Breit-Wigner
formula ~6.3! and the Breit-Wigner fit with constant incoher-
ent background using formula~6.4!. The results are shown in
Figs. 9 and 10 and in Table IX and Table X for incident
momenta of 5.98 and 11.85 GeV/c, respectively. The fit with
constant background~dashed lines! is a clear improvement
over a single Breit-Wigner fit~solid lines!. The improvement
of the fit with the constant background is again associated
with lower values ofx2/NDF and with reduction of the width
of s in all solutions at both energies. However, there are
differences in values for the mass and the width ofs be-
tween the solutions as well as between energies. At 5.98
GeV/c, the mass ranges from 706 to 745 MeV and the width
ranges from 145 to 262 MeV. At 11.85 GeV/c, the mass is
higher and ranges from 756 to 782 MeV while the width is
lower ranging from 117 to 202 MeV. The differences are
probably due to lower statistics.

FIG. 7. Four solutions for theS-wave intensityI S measured in
the reaction p2p↑→p2p1n at 17.2 GeV/c and
2t50.00520.2 (GeV/c)2 using the Monte Carlo method for am-
plitude analysis~Ref. @25#!. The solid curves are fits to single Breit-
Wigner parametrization~6.3!. The dashed curves are fits to Breit-
Wigner parametrization~6.4! with incoherent background. The
fitted parameters are given in Table VII.

FIG. 8. Two of the four solutions for theS-wave intensityI S
measured in the p2p↑→p2p1n at 17.2 GeV/c and
2t50.00520.2 (GeV/c)2 using thex2 minimization method for
amplitude analysis. The data are based on Fig. 14~a! of Ref. @4# and
Fig. 12 of Ref.@2#. The solid and dashed curves are Breit-Wigner
fits as in Fig. 7. The fitted parameters are given in Table VIII.
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The solution averages for the mass and width ofs from
fits to I S are as follows. At 5.98 GeV/c

ms5730627 MeV, Gs5195681 MeV. ~6.5!

At 11.85 GeV/c

ms5768617 MeV, Gs5166654 MeV. ~6.6!

At 17.2 GeV/c

ms576769 MeV, Gs5204675 MeV. ~6.7!

The best values for the mass and width ofs obtained from
fits to theS-wave intensities at the three energies are in gen-
eral agreement. The small differences are likely due to the
fact that the approximation of constant incoherent back-
ground may work differently at various energies and mo-
mentum transfers. The differences in mass ofs from the fits
to uS̄u2S and toI S are small. The difference in the value of
the width from the best fits touS̄u2S with coherent back-
ground and the fits toI S are somewhat large but the results
are still consistent. At 17.2 GeV/c they are due to large non-
resonating contributions from the amplitudeuSu2S. The dif-
ferences also reflect the need for the inclusion of coherent
background and a better description than a constant. This in
turn would require more data of high statistics in the reso-
nance region 600–900 MeV.

VII. REMARKS ON THE DETERMINATIONS
OF pp PHASE SHIFTS

The amplitude analyses of measurements of
pN↑→p1p2N on polarized targets provide model-
independent and solution-independent evidence for a narrow
scalar stateI50 011(750). The question of how to under-
stand the absence of such a state in the conventional
S-wave phase shiftd0

0 in pp scattering arises@2,13–19#.
Of course, there are no actual measurements of pion-pion

scattering and there is no partial-wave analysis of
pp→pp reactions in the usual sense. Thepp phase shifts
are determined indirectly from measurements of
p2p→p2p1n on unpolarized targets using several strong
enabling assumptions. One of these crucial assumptions—the
absence ofA1 exchange amplitudes—leads to predictions for
polarized spin density matrix~SDM! elements and for the
measured amplitudes, and it is thus directly testable in the
measurements on polarized targets. As we shall see below,
the assumption of an absence ofA1-exchange amplitudes is
totally invalidated by the data on polarized targets. The po-
larization measurements also cast some doubt on the funda-
mental assumption of factorization of massm and momen-
tum transfert in the crucial pion exchange amplitudes. We
must use the results of the measurements on polarized targets
to judge the validity ofpp phase shifts, and not vice versa.
We are thus led to the conclusion that the indirect and
model-dependent determinations ofpp phase shifts cannot
be correct. This explains the absence ofI50 011(750)

TABLE VII. Results of the fits to the four solutions of theS-wave intensity measured inp2p→p2p1n at 17.2 GeV/c using the Monte
Carlo method for amplitude analysis. The fits are made with Breit-Wigner parametrization~6.3! and Eq.~6.4! with the Pišút-Roos shape
factor.

I S
Solution

ms

~MeV!
Gs

~MeV! B NS x2/NDF

Single Breit-Wigner fit
~1,1! 76665 258619 1.9860.07 0.450
~1,2! 769612 263645 2.2660.17 0.498
~2,1! 766610 255637 2.1960.15 0.240
~2,2! 768612 303649 2.4860.16 0.816
Breit-Wigner fit with constant background
~1,1! 76765 2106431 0.1960.17 1.6960.23 0.365
~1,2! 768612 209699 0.20640 1.9260.61 0.470
~2,1! 76669 208682 0.1760.32 1.9160.47 0.218
~2,2! 765610 188676 0.4160.34 1.8560.42 0.700

TABLE VIII. Results of the fits to two of four solutions of theS-wave intensity measured in
p2p→p2p1n at 17.2 GeV/c using thex2 minimization method for amplitude analysis. The fits are made
with Breit-Wigner parametrization~6.3! and ~6.4! with the Pišút-Roos shape factor.

I S
Solution

ms

~MeV!
Gs

~MeV! B NS x2/NDF

Single Breit-Wigner fit
~1,1! 76068 269629 2.0060.13 0.414
~2,2! 786621 408690 2.2460.16 1.140
Breit-Wigner fit with constant background
~1,1! 76168 227668 0.1260.19 1.8460.28 0.394
~2,2! 780613 187677 0.6360.31 1.5160.31 0.864
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resonance in thed0
0 phase shift from these analyses.

We will now review the basic assumptions common to all
determinations ofpp phase shifts@2,13–19#. A priori, there
is no connection between the partial wave amplitudes in
pp→pp scattering and the production amplitudes in
pN→p1p2N reactions. We recall that inpN→p1p2N
there are twoS-wave production amplitudesS(s,m,t) and
S̄(s,m,t) @or S0(s,m,t) andS1(s,m,t)# while in pp→pp
there is oneS-wave amplitude~or phase shiftd0

0! dependent
only on the energyE. Also, in pN→p1p2N there are six
P-wave production amplitudes L,L̄,U,Ū,N,N̄ ~or
Ln ,Un ,Nn ,n50,1! which depend on variabless,m,t while
in pp→pp there is again oneP-wave amplitude~or phase
shift d1

1! dependent only on the energyE. To make the con-
nection between the production amplitudes in
pN→p1p2N and the partial-wave amplitudes in
pp→pp the following assumptions of factorization and
identification are postulated in all determinations ofpp
phase shifts from unpolarized data onpN→p1p2N.

The starting point is the dimeson helicityl50 pion ex-
change amplitudesS1 andL1 in the t channel. It is assumed
that thet andm dependence in these amplitudes factorizes

S1~s,m,t !5N
A2t

t2m2 F0~ t !
m

Aq
f 0~m!,

L1~s,m,t !5N
A2t

t2m2 F1~ t !
m

Aq
f 1~m!, ~7.1!

where t is the momentum transfer at the nucleon vertex,m
and q are the dipion mass and thep2 momentum in the
p2p1 c.m. frame. The form factorsFJ(t) describe thet
dependence and the functionsf J(m), J50,1, describe the
mass dependence.N is a normalization constant. Further-
more, the functionsf J(m) are assumed to be the partial-wave
amplitudes inp2p1→p2p1 reaction at c.m. energym:

f 05
2

3
f 0
I501

1

3
f 0
J52,

f 15 f 1
I51. ~7.2!

The partial wave amplitudesf J
I with definite isospinI are

defined so that in thepp elastic region

f J
I 5sindJ

I eidJ
I
. ~7.3!

The phase shiftsdJ
I are determined from the amplitudesS1

and L1 which are calculated from the data on
p2p→p2p1n on an unpolarized target. However, the cal-
culation of amplitudesS1 andL1 from thep2p→p2p1n
data cannot be done without additional assumptions. There
are simply more amplitudes than data. To proceed further all
determinations ofpp phase shifts must assume that all
A1-exchange amplitudes vanish:

S05L05U0[0. ~7.4!

FIG. 9. Four solutions for theS-wave intensityI S measured in
p1n↑→p1p2p at 5.98 GeV/c and2t50.220.4 (GeV/c)2 using
the Monte Carlo method for amplitude analysis~Ref. @25#!. The
solid and dashed curves are Breit-Wigner fits as in Fig. 7. The fitted
parameters are given in Table IX.

FIG. 10. Four solutions for theS-wave intensityI Smeasured in
p1n↑→p1p2p at 11.85 GeV/c and2t50.220.4 (GeV/c)2 us-
ing the Monte Carlo method for amplitude analysis~Ref. @25#!. The
solid and dashed curves are Breit-Wigner fits as in Fig. 7. The fitted
parameters are given in Table X.
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With the assumption~7.4!, two solutions for theS-wave
phase shiftd0

0 are found@15,16#: the ‘‘down’’ solution which
is nonresonating and the ‘‘up’’ solution which resonates at
the mass around 770 MeV with a width of about 150 MeV.
The resonating solution was rejected because it disagreed
with the p0p0 mass spectrum from a low-statistics experi-
ment @37# on p2p→p0p0n at 8 GeV/c.

There is no theoretical proof of factorization@Eq. ~7.1!#
and identification@Eq. ~7.2!# of functionsf J with pp partial-
wave amplitudes. It is not obvious that thepp phase shifts
calculated fromp2p→p2p1n data using the assumptions
~7.1!–~7.3! would coincide withpp phase shifts determined
directly from real pion-pion scattering. Only such compari-
son could test the assumption~7.2!.

The factorization~7.1! implies that the mass spectrum of
amplitudesuS1u2 and uL1u2 is independent oft. This conse-
quence of factorization can be tested in measurements of
pN→p1p2N on polarized targets. In Fig. 11 we show the
t evolution of the mass dependence of the lower and upper
bounds @10# on normalized moduliuLu2, uL̄u2, uUu2, and
uŪu2. The data at t520.068 (GeV/c)2 are from
p2p→p2p1n at 17.2 GeV/c, the rest are from
p1n→p1p2p at 5.98 GeV/c. Figure 11 shows a clear and

pronounced dependence of mass spectra of amplitudesuLu2

and uL̄u2 on momentum transfert. In particular, there is a
clear change of mass spectrum below2t50.25 (GeV/c)2, a
region of t relevant to determinations ofpp phase shifts.
While this change could be entirely due toA1 exchange am-
plitude L0 , this cannot be guaranteed. The factorization as-
sumption~7.1! thus cannot be taken for granted and further
tests of this assumption are required in future high statistics
measurements ofpN→p1p2N on polarized targets.

The assumption~7.4! of the absence ofA1-exchange am-
plitudes has several consequences that can be directly tested
in measurements on polarized targets. From Eq.~2.13! we
see that the absence ofA1-exchange amplitudes implies

uAu5uĀu for A5S,L,U. ~7.5!

The equality of moduli of amplitudes with the recoil nucleon
transversity ‘‘down’’ and ‘‘up’’ is not observed experimen-
tally. We can see in Figs. 1 and 2 that theS-wave amplitudes
uSu and uS̄u are clearly unequal at 17.2 GeV/c and
2t50.005–0.20 (GeV/c)2. In Fig. 11 we see that the
P-wave amplitudesuLu and uL̄u are different in everyt bin

TABLE IX. Results of the fits to the four solutions of theS-wave intensity measured in
p1n→p1p2p at 5.98 GeV/c using the Monte Carlo method for amplitude analysis. The fits are made with
Breit-Wigner parametrization~6.3! and Eq.~6.4! with the Pišút-Roos shape factor.

I S
Solution

ms

~MeV!
Gs

~MeV! B NS x2NDF

Single Breit-Wigner fit
~1,1! 723622 282668 0.5360.10 0.888
~1,2! 696636 3336128 1.1360.34 0.118
~2,1! 740632 2966116 1.0260.29 0.204
~2,2! 714627 3626102 1.5260.30 0.194
Breit-Wigner fit with constant background
~1,1! 746616 145669 0.1860.10 0.5960.18 0.712
~1,2! 706639 262624 0.1360.39 1.0560.44 0.114
~2,1! 745630 1656112 0.2360.21 0.9760.42 0.094
~2,2! 724625 2116117 0.2560.20 1.4160.42 0.124

TABLE X. Results of the fits to the four solutions of theS-wave intensity measured inp1n→p1p2p at
11.85 GeV/c using Monte Carlo method for amplitude analysis. The fits are made with Breit-Wigner param-
etrization~6.3! and ~6.4! with the Pišút-Roos shape factor.

I S
Solution

ms

~MeV!
Gs

~MeV! B NS x2/NDF

Single Breit-Wigner fit
~1,1! 7786 10 158621 1.1960.12 2.158
~1,2! 7496 31 353688 1.4760.25 0.430
~2,1! 7526 20 237652 1.5060.27 0.844
~2,2! 7496 19 309663 1.9260.24 0.632
Breit-Wigner fit with constant background
~1,1! 78269 117626 0.0860.03 1.1360.16 1.024
~1,2! 770624 202674 0.0960.04 1.5260.32 0.080
~2,1! 763618 153655 0.1260.05 1.4660.39 0.236
~2,2! 756615 200659 0.1160.05 1.9360.33 0.212
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from 0.005 to 0.60 (GeV/c)2, and that the difference is larg-
est at smallt, the region of most importance to the determi-
nation ofpp phase shifts.

The A1-exchange is large and nontrivial also above 900
MeV and in higher partial wavesD andF. This finding of
the CERN-Munich analysis@5# of p2p→p2p1n data on a
polarized target in the mass range 600–1800 MeV is shown
in Fig. 12. The figure shows the ratios of moduli of ampli-
tudes with recoil nucleon transversity ‘‘down’’ and ‘‘up’’ for
S-, P-, D-, and F-wave amplitudes with dimeson helicity
l50 which are directly relevant for the determination of the
corresponding phase shifts. The deviations from 1 indicate
the strength of theA1 exchange. We can see in Fig. 12 that
theA1 exchange is important in all waves up to 1800 MeV at
small 2t50.005–0.20 (GeV/c)2. The determinations of
pp phase shifts above 900 MeV also assumed the absence
of A1-exchange amplitudes. We must conclude that the de-
terminations ofpp phase shifts fromS wave toF wave in
the mass region from 600 to 1800 MeV are not reliable.
Theoretical calculations and analyses based on these phase
shifts are therefore not reliable as well.

Below 1000 MeV, where theS andP wave dominate, the

assumptions~7.4! lead to predictions for polarized SDM el-
ements that can be directly compared with the data. The
predictions of Eq.~7.4! are @25#

rss
y 1r00

y 12r11
y 522~r00

y 2r11
y !512r121

y , ~7.6!

Rer10
y 5Rer1s

y 5Rer0s
y [0. ~7.7!

The data for polarized SDM elements clearly rule out these
predictions as is shown in Figs. 13 and 14 for
p2p→p2p1n at 17.2 GeV/c. We find that
rss
y 1r00

y 12r11
y and 22(r00

y 2r11
y ) have large magnitudes

but opposite signs while 2r121
y has a small magnitude. The

interference terms Rer10
y , Rer1s

y , and Rer0s
y are all dissimilar

and have large nonzero values. On the basis of this evidence
we again must conclude that the past determinations ofpp
phase shifts from unpolarized data onpN→p1p2N are
questionable.

The assumption of the absence ofA1-exchange ampli-
tudes means that the pion production inpN→p1p2N reac-
tions does not depend on nucleon spin. What the measure-
ments ofpN→p1p2N on polarized targets found is that
the pion production depends strongly on nucleon spin. The
dynamics of the pion production is not as simple as has been
assumed in the past determinations ofpp phase shifts. New
determinations ofpp phase shifts are now required that do
take into account the existence ofA1 exchange. Since the
contributions ofA1-exchange amplitudes are large and non-
trivial, the revisions ofpp phase shifts will be significant.
The new revisedS-wave phase shiftd0

0 is then expected to

FIG. 11. Thet evolution of the mass dependence of moduli
squared of t-channel normalized transversity amplitudesuLu2,
uL̄u2, uUu2, and uŪu2 in p1n↑→p1p2p at 5.98 GeV/c together
with the results for p2p↑→p2p1n at 17.2 GeV/c and
t50.068 (GeV/c)2.

FIG. 12. The ratio of amplitudes with recoil nucleon transversity
‘‘down’’ and ‘‘up’’ with dimeson helicity l50. The deviation from
unity shows the strength ofA1-exchange amplitudes. Based on Fig.
6 of Ref. @5#. In our notation,gS5S, hS5S̄, gP5L, hP5L̄.
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show evidence for narrow scalar states(750) in agreement
with the measurements on polarized targets.

VIII. QUESTIONS CONCERNING EVIDENCE
FOR NARROW s„750…

A. Up-down ambiguity and analyticity constraints

Recently it has been claimed@36,38,39# that pp phase
shift d0

0 can be determined from theS-wave intensitiesI S
obtained in our amplitude analysis ofp2p→p2p1n on a
polarized target at 17.2 GeV/c, and that it would show the
old up-down ambiguity ofd0

0. Only the up solution indicates
a narrows state and it is excluded because it is inconsistent
with the Roy equations@40#. From this it was concluded that
s(750) does not exist@38# or that the evidence must be
treated with reservation@36,39#.

To answer this objection we first recall from Eq.~2.15!
that

I S5~ uS0u21uS1u2!S. ~8.1!

Here the amplitudeS1 is connected tod0
0 through Eqs.~7.1!

and~7.3!, andS0 is the unknownA1-exchange amplitude. It
is obvious from this expression that the determination ofd0

0

from data onI S depends on the model used forA1 exchange
amplitudeS0 . The data on the polarized target require large
A1-exchange amplitudes. At present theA1-exchange ampli-
tudes are not known. We must therefore conclude that the
phase shiftd0

0 cannot be determined from the data on
S-wave intensityI S at present.

Nevertheless, the data onI S do tell us something very
important about the solutions ford0

0. There are four solutions
for I S : I S(1,1), . . . ,I S(2,2). Consequently there will be a
fourfold ambiguity in d0

0 for any given model of

A1-exchange amplitudeS0 . However, as can be seen in Fig.
7, the four solutions forI S are all very similar quantitatively.
Consequently the four solutions ford0

0 are expected to be
very close to each other and similar. This contrasts with the
large differences between the old up and down solutions.
Figure 15 shows theS-wave intensity normalized to 1 at the
maximum for down~curve A! and up ~curve B! solutions
from the typical analysis of Estabrooks and co-workers
@15,16#. The large differences between the up and down so-
lutions contrast sharply with the small differences shown be-
tweenS-wave intensitiesI S(1,1) andI S(2,2) in Fig. 15. On
the basis of the similar behavior of all solutions forI S we do
not anticipate the emergence of the old up-down ambiguity
problem ind0

0. It is even possible that the small differences
between the four solutions forI S can be explained entirely as
a small ambiguity inA1-exchange amplitudeS0 leading to a
unique determination ofd0

0 from the data on polarized target.
The above discussion applies also to the determination of

P-wave phase shiftd1
1 from I L5(uL0u21uL1u2)S. The am-

plitude L1 is connected tod1
1 by Eqs.~7.1! and ~7.3! while

L0 is another unknownA1-exchange amplitude. The four
solutions for I L are again very close so we expect similar
solutions ford1

1.
Assuming a model forA1-exchange amplitudesS0 and

L0 , the obtained phase shiftsd0
0 and d1

1 can be tested for
consistency with dispersion relations@40# ~Roy equations!. If
an inconsistency is found it means that we have to modify
our model forA1-exchange amplitudesS0 and L0 , and try
again. It is important to realize that Roy equations do not test
the validity of the experimentally measured amplitudes
uSu2, uS̄u2, uLu2, uL̄u2, or intensitiesI S andI L . The Roy equa-
tions are constraints only onpp phase shifts which follow
from the analyticity properties of partial wave amplitudes in
pp→pp scattering. However, the requirement of a consis-

FIG. 14. Test of predictions Rer10
y 5Rer1s

y 5Rer0s
y 50 due to

vanishing A1 exchange inp2p↑→p2p1n at 17.2 GeV/c and
2t50.00520.2 (GeV/c)2.

FIG. 13. Test of predictions rss
y 1r00

y 12r11
y

522(r00
y 2r11

y )512r121
y due to vanishingA1 exchange in

p2p↑→p2p1n at 17.2 GeV/c and2t50.00520.2 (GeV/c)2.
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tency of phase shifts with the Roy equations can be used to
constrain the possible models ofA1-exchange amplitudes.

We conclude that the experimental evidence for the nar-
row states(750) is not in contradiction with analyticity and
dispersion relations forpp partial waves. The existence of
A1 exchange and narrows(750) are experimental findings
from measurements on polarized targets independent of the
Roy equations. These experimental facts cannot be refuted
by comparisons with standard phase shifts because these
were obtained using an invalid assumption of absence of
A1 exchange.

B. The absence ofs„750… in gg˜p1p2

and central production pp˜ppp1p2

Morgan and Pennington suggested discounting the evi-
dence for existence of narrows(750) inpN→p1p2N be-
cause this state has not been observed in thegg→p1p2

reaction @38# and in central production @38,41#
pp→ppp1p2. However, there are good reasons why one
would not expect to observe narrows(750) in these pro-
cesses.

In the next section we shall argue that the narrow
s(750) is the lowest mass scalar gluonium 011(gg). The
principal support for this proposal is precisely the fact that
thes(750) state is not observed in thegg→p1p2 reaction.
Since gluons do not couple directly to the photons, we expect
s(750) not to appear in the reactiongg→p1p2 if it is pure
gluonium or if it has only a smallqq̄ component.

The reactionpp→ppp1p2 was measured@42# at the
CERN Intersecting Storage Rings~ISR! in a search for scalar
gluonium. The structures reported in the momentsH(11) and
H(31) near m(p1p2)'750 MeV are consistent with
s(750) andr0(770) interference.

Assuming parity conservation there are fiveS-wave am-
plitudes and 15P-wave amplitudes in this reaction. The
s(750) state may contribute only to someS-wave ampli-
tudes and not to the others, as it does inp2p→p2p1n with
amplitudes uS̄u2S and uSu2S. As we see in Fig. 7, the
S-wave intensityI S(2,2) does not immediately suggest the
existence of a narrows(750). With fiveS-wave amplitudes
in pp→ppp1p2 it is very likely thats(750) stays hidden.
We can observe s(750) in p2p→p2p1n and
p1n→p1p2p reactions only when these production pro-
cesses are measured on polarized targets, and theS- and
P-wave amplitudes can be separated in a model-independent
way. For the same reasons we may sees(750) in central
production pp→ppp1p2 only when measurements with
polarized initial protons are made and the resonating
S-wave amplitudes can be isolated. The ISR experiment does
not separate theS- andP-wave amplitudes, and thus is not
conclusive.

C. Comparison with other results for the s state

The DM2 Collaboration measured@43# p1p2 mass dis-
tribution in J/c→vp1p2 decays and observed a quite
broad low mass resonance@see Fig. 13~a! of Ref. @43##. In-
terpreted as anI50 011 s state, a single Breit-Wigner fit
givesms5(414620) MeV, Gs5(494658) MeV. There is
no indication for such a state in our data onS-wave intensity
I S in p1n→p1p2p at 5.98 and 11.85 GeV/c ~see Figs. 9
and 10 above!. The reasons for the discrepancy are not clear
at the present.

Several recent theoretical analyses@44–46# claimed exis-
tence of as meson with a mass around 1000 MeV and a
broad width of 460–880 MeV. These analyses use as an
input the S-wave phase shiftd0

0 and thus neglect theA1

exchange and other spin effects observed in pion production
~see, e.g., Eq.~5! in Ref. @44#!. It is possible that when these
analyses include in their fitsA1 exchange that they will find
a narrows in agreement with the CERN data on polarized
targets.

IX. CONSTITUENT STRUCTURE OF THE
s„750… RESONANCE

In the usual quark model meson resonances areqq̄ states.
The mass ofs(750) is too low for it to be aqq̄ state. The
massM of theqq̄ state increases with its angular momentum
L asM5M0(2n1L), wheren is the degree of radial exci-
tation. The lowest mass scalar mesons are3P0 states with
masses expected to be around 1000 MeV or higher.

It was suggested that 011(700) could be a four-quark
qq̄qq̄ state in the MIT bag model@47#. However, more de-
tailed studies ofqq̄qq̄ systems conclude that pure multiquark
hadrons do not exist@48,49# with p1p2 decay@50#. We can
also exclude the possibility thats(750) is a hybrid state
qq̄g. The lowest mass hybrid state must be a 021 or 121

state. Calculations based on bag models, QCD sum rules,

FIG. 15. S-wave intensity normalized to 1 at maximum value.
The data correspond to solutionsI S(1,1) and I S(2,2) at 17.2
~GeV/c! from Ref.@25#. The smooth curves are predictions of phase
shift analysis forp1p2→p1p2 from Ref.@15#. The dashed curve
is the accepted solution down, the dot-dashed curve is the rejected
solution up.
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lattice QCD, and a string model all estimate@51# the masses
of 011(qq̄g) states to be above 1500 MeV.

Ellis and Lanik discussed the couplings of scalar gluo-
nium s on the basis of the low-energy theorems of broken
chiral symmetry and scale invariance, implemented using a
phenomenological Lagrangian@52#. They obtained for
s→p1p2 decay the following partial width:

G~s→p1p2!5
~ms!5

48pG0
, ~9.1!

where G0[^0u(as /p)FmnF
mnu0& is the gluon-condensate

term @53# parametrizing the nonperturbative effects in QCD.
The numerical values were estimated by the ITEP group@53#
to beG0'0.012 (GeV)4 or up toG0'0.030 (GeV)4 in later
calculations@54,55#. Several recent estimates ofG0 all agree
on the values aroundG0'0.020 (GeV)4 @56–58#. It is very
interesting to note, that when we takeG050.015 (GeV)4 the
Ellis-Lanik theorem ~9.1! predicts partial width
G(s→p1p2)5107 MeV for the massms5753 MeV.
This result is in perfect agreement with Eq.~4.21!, where
Gs5108653 MeV. When we use forms the value 768
MeV obtained in interference fits withf 0(980) then the
Ellis-Lanik theorem predicts a partial width
G(s→p1p2)5118 MeV, again in perfect agreement with
Eq. ~5.6!, whereGs5115638 MeV. However,Gs is the full
width of s(750) so these results onG(s→p1p2) represent
upper limits. When we useG050.020 (GeV)4, which is the
average of the latest values forG0 @56–58#, we get for the
partial widthG(s→p2p1)50.75Gs with a very reasonable
branching fraction of 75% for thep2p1 channel. From this
agreement with the Ellis-Lanik theorem we can conclude
that thes(750) is best understood as the lowest mass gluo-
nium state 011(gg).

The gluonium interpretation ofs(750) gathers further
support from the lack of observation ofs(750) in the reac-
tions gg→p1p2 and gg→p0p0. Since gluons do not
couple directly to photons we expects(750) not to appear in
reactionsgg→pp if it is a pure gluonium state or if it
contains only a smallqq̄ component. This conclusion is sup-
ported by the PLUTO and DELCO data@59,60#. However,
the more recent DM1/2 data@61,62# show an excess over the
Born term expectation that is attributed to the formation of a
broad scalar resonance with a two-photon width of
(1066) MeV. This would suggest someqq̄ component in
the s(750) state. The most recent results@63# are on
gg→p0p0 which show no evidence for a scalar state near
750 MeV.

Lattice QCD calculations by several groups@64–67# ini-
tially concluded that the gluonium ground state 011(gg) has
a mass near ther0 meson: 740640 MeV. The most recent
lattice QCD calculations predict a much higher mass of the
lowest scalar gluonium: the UKQCD group@68# predicts
1550650 MeV while the IBM group @69,70# predicts
1740670 MeV. However, it is important to remember that
these calculations are for quenched QCD so there is no cou-
pling of the primitive gluonium to quarks. The coupling of
gluonium to two pseudoscalars may have a significant effect
on the gluonium mass and width@41#.

We conclude that while the gluonium interpretation of the
s(750) state is in agreement with low-energy theorems of

broken chiral symmetry and scale invariance, it is at variance
with the most recent lattice QCD calculations. It is necessary
to study this discrepancy and understand its origins and im-
plications.

Finally we note that the anomalous energy dependence of
pp andnp elastic polarizations and the departure from the
mirror symmetry inpN elastic polarizations at intermediate
energies require a low-lying Regge trajectory@71,72# corre-
sponding tos(750). These anomalous structures in the po-
larization data may have been the first evidence for a gluo-
nium exchange in two-body reactions.

X. SUMMARY

The measurements of reactionsp2p↑→p2p1n at 17.2
GeV/c andp1n↑→p1p2p at 5.98 and 11.85 GeV/c on a
polarized target provide model-independent and solution-
independent evidence for a narrow scalar states(750). The
amplitude analyses ofp2p↑→p2p1n at small t using the
x2 minimization method@4# and the Monte Carlo method
@25# yield very similar results for moduli of transversity am-
plitudes and cosines of their relative phases. In particular
they agree that the transversity ‘‘up’’S-wave amplitude
uS̄u2S resonantes near 750 MeV while the transversity
‘‘down’’ amplitude uSu2S is nonresonating and constitutes a
large background in the spin-averagedS-wave intensity
I S5(uSu21uS̄u2)S. For this reason it is preferable to deter-
mine resonance parameters ofs(750) directly from the mea-
sured mass distribution ofuS̄u2S.

We have performed several types of Breit-Wigner fits to
uS̄u2S. We have shown that the Pisˇút-Roos resonance shape
formula and phenomenological shape formula give similar
results. Single Breit-Wigner fits yield a width ofs(750) in
the range 192–256 MeV. We have studied the effect of back-
ground in three approaches: the incoherent background, the
constant coherent background, and thet-averaged constant
coherent background. The last method yields the best fit with
the lowestx2/NDF. The solution and method average for the
s mass and width from this best fit are

ms5753619 MeV, Gs5108653 MeV. ~10.1!

We also performed the conventional fits to spin-averaged
S-wave intensityI S . We found again that the inclusion of
background~incoherent in this case! reduces the fitted value
of thes width and improvesx2/NDF. Nevertheless, the di-
rect fits to uS̄u2S are preferable at 17.2 GeV. Due to lower
statistics at 5.98 and 11.85 GeV/c, we must use results for
I S to obtains resonance parameters. All four solutions reso-
nate at these larger momentum transfers but yield a broader
s width: Gs5195681 MeV at 5.98 GeV/c and
Gs5166654 MeV at 11.85 GeV/c. We conclude that the
best overall estimate of the mass and width ofs(750) are the
values in Eq.~10.1! from the best fit touS̄u2S ~Table IV!.

We have also examined the interference ofs(750) with
f 0(980) and found that it has only a small effect on the mass
and width ofs(750). A fit to amplitudeuS̄u2S in the mass
range above 1120 MeV shows evidence for a scalar state
with average mass 1280612 MeV and width
192626 MeV.
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The conventionalS-wave phase shiftsd0
0 show no evi-

dence for the narrows(750) state. It must be reiterated, that
the past determinations ofpp phase shifts from unpolarized
data on p2p→p2p1n assumed the absence of
A1-exchange amplitudes. This assumption is invalidated by
measurements ofp2p→p2p1n, p1n→p1p2p, and
K1n→K1p2p on polarized targets which find large and
nontrivialA1-exchange contributions. New determinations of
pp phase shifts are required that do take into account the
existence ofA1 exchange. SinceA1-exchange contributions
are large, the revisions ofpp phase shifts will be significant
and should provide evidence for a narrows(750) state in
agreement with the CERN data on polarized targets.

The mass ofs(750) is too low for it to be aqq̄ state. We
proposed to identifys(750) with the lowest mass scalar
gluonium 011(gg). This proposal is supported by the per-
fect agreement with the Ellis-Lanik theorem~9.1! relating
the decay width of scalar gluoniumG(s→p1p2) to its
massms . Another experimental support for the gluonium
interpretation ofs(750) is its absence ingg→p1p2 reac-
tion. However, the low mass ofs(750) is at variance with

the more recent calculations of lattice QCD which predict
masses of scalar gluonium above 1500 MeV.

Experiments with polarized targets have opened a whole
new approach to experimental hadron spectroscopy by mak-
ing accessible the study of hadron production on the level of
production spin amplitudes. We may expect that a new gen-
eration of high statistics measurements of various pion pro-
duction processes@12,73,74# at different values oft @10# will
further develop hadron spectroscopy and our understanding
of hadron dynamics.

ACKNOWLEDGMENTS

I wish to thank V. P. Kanavets, P. Lichard, M. D. Scad-
ron, J. Stern, and especially N. A. To¨rnqvist for their interest,
and their stimulating correspondence. This work was sup-
ported by Fonds pour la Formation de Chercheurs et l’Aide a`
la Recherche~FCAR!, Ministère de l’Education du Que`bec,
Canada.

@1# G. Lutz and K. Rybicki, Max Planck Institute, Munich, Inter-
nal Report No. MPI-PAE/Exp. E1.75, 1978~unpublished!.

@2# G. Grayeret al., Nucl. Phys.B75, 189 ~1974!.
@3# J. G. H. de Groot, Ph.D. thesis, University of Amsterdam,

1978.
@4# H. Beckeret al., Nucl. Phys.B150, 301 ~1979!.
@5# H. Beckeret al., Nucl. Phys.B151, 46 ~1979!.
@6# V. Chabaudet al., Nucl. Phys.B223, 1 ~1983!.
@7# K. Rybicki and I. Sakrejda, Z. Phys. C28, 65 ~1985!.
@8# A. de Lesquenet al., Phys. Rev. D32, 21 ~1985!.
@9# A. de Lesquenet al., Phys. Rev. D39, 21 ~1989!.

@10# M. Svec, A. de Lesquen, and L. van Rossum, Phys. Rev. D42,
934 ~1990!.

@11# M. Svec, A. de Lesquen, and L. van Rossum, Phys. Rev. D45,
55 ~1992!.

@12# M. Svec, A. de Lesquen, and L. van Rossum, Phys. Rev. D45,
1518 ~1992!.

@13# S. D. Protopopescuet al., Phys. Rev. D7, 1279~1973!.
@14# B. Hyamset al., Nucl. Phys.B64, 134 ~1973!.
@15# P. Estabrooks and A. D. Martin, inpp Scattering-1973, Pro-

ceedings of the International Conference onpp Scattering,
Tallahassee, 1973, edited by D. K. Williams and V. Hagopian,
AIP Conf. Proc. No. 13~AIP, New York, 1973!, p. 37.

@16# P. Estabrooks and A. D. Martin, Nucl. Phys.B79, 301 ~1974!.
@17# P. Estabrooks and A. D. Martin, Nucl. Phys.B95, 322 ~1975!.
@18# K. L. Au, D. Morgan, and M. R. Pennington, Phys. Rev. D35,

1633 ~1987!.
@19# B. S. Zou and D. V. Bugg, Phys. Rev. D48, R3948~1993!.
@20# M. Anselmino, A. Efremov, and E. Leader, Phys. Rep.261, 1

~1995!.
@21# J. T. Donohue and Y. Leroyer, Nucl. Phys.B158, 123 ~1979!.
@22# SeeS-wave intensityI S in Fig. 2 of Ref.@5#.
@23# SeeS-wave intensityI S in Fig. 10 of Ref.@11#.
@24# M. Svec, A. de Lesquen, and L. van Rossum, Phys. Rev. D46,

949 ~1992!.

@25# M. Svec, Phys. Rev. D53, 2343~1996!.
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