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We obtain an expression for the Dalitz plot of semileptonic decays of polarized hyperons including radiative
corrections to ordera and neglecting terms of the orderaq/pM1, whereq is the four-momentum transfer and
M1 is the mass of the decaying hyperon. Our results are specialized to exhibit the angular correlation between
such polarization and the momentum of the emitted hyperon. The model dependence of radiative corrections is
kept in a general form within this approximation which is suitable for model-independent experimental analy-
sis. Our final result, valid for charged as well as for neutral hyperons, allows us to obtain the angular spin-
asymmetry coefficient of the emitted hyperon.@S0556-2821~97!04709-7#

PACS number~s!: 14.20.Jn, 13.30.Ce, 13.40.Ks

I. INTRODUCTION

Measurements of form factors of hyperon semileptonic
decays~HSD’s! through the observation of the polarization
of the decaying hyperon are more than just a complement of
the measurements with unpolarized hyperons. Without the
former not even parity violation could be established in such
decays. Both types of measurements are necessary to achieve
a determination of all the form factors that dress the weak
interaction vertex in these decays. For this task it is required
that, in addition to high statistics experiments, theoretical
expressions as general and accurate as possible be available.
In this latter respect radiative corrections must be taken into
account. This has been done already for the Dalitz plot~DP!
of unpolarized decaying hyperons@1#. However, radiative
corrections depend on spins. It is the purpose of this paper to
obtain the radiative corrections to the DP of polarized initial
hyperons. In order to be able to integrate over the photon
variables one is required to choose, in the center-of-mass
frame of the decaying hyperon, the angular correlation be-
tween the polarization of the decaying hyperon and the di-
rection of the emitted hyperon or charged lepton. We believe
it is more useful to choose the former. So this is what we do
here.

We shall follow the same approach of Ref.@1#. The vir-
tual radiative corrections~Sec. II! will be separated into
model-independent~MIP! and model-dependent~MDP!
parts, according to the gauge-invariant analysis originally in-
troduced by Sirlin@2# to study the radiative corrections to
neutronb decay. The MIP is finite in the ultraviolet and fully
contains@3# the infrared divergence. We shall not compro-
mise our calculation to any one model. The MDP can be
totally absorbed into the already existing strong-interaction
form factors, without introducing new ones. Because of this,
our results will be suitable for model-independent experi-
mental analyses. The price for this is that the measured form
factors will be not the pure strong-interaction form factors
but new ones which are modified by the MDP of radiative

corrections. There is no loss here, because strictly speaking it
is only these modified form factors that can actually be ex-
perimentally determined. The resolution of which part of
them is due to strong interactions only and which part be-
longs to radiative corrections is really a theoretical problem
only. To deal with the bremsstrahlung contribution to radia-
tive corrections~Sec. III! we shall use the Low theorem@4#.
In our calculation we shall neglect terms of order
aq/pM1, whereq is the four-momentum transfer andM1 is
the mass of the decaying hyperons. No model dependence
appears then in the bremsstrahlung correction.

Our results will be presented in two ways. We shall first
obtain the radiative corrections in an integral form, i.e., leav-
ing indicated the triple integration over the photon three-
momentum. However, the infrared divergence of the brems-
strahlung part will be explicitly extracted~and canceled with
its virtual counterpart! along with the finite contributions@5#
that accompany it. This presentation will be ready for nu-
merical integration and up to this point it will represent a first
final result. Next~Sec. IV!, we shall proceed to perform ana-
lytically the triple photon integrals. This will lead to our
second final result~Sec. V!: a completely analytical expres-
sion for the DP of initially polarized hyperons including
order-a radiative corrections. Moreover, we also give the
expression for the angular spin-asymmetry coefficient of the
emitted hyperon with radiative corrections up to the order of
approximation previously mentioned. In Appendix A we de-
scribe the manner in which the integrals were handled and
reduced to forms already computed. For the sake of com-
pleteness, in Appendixes B and C we reproduce the main
results of Refs.@1,6#. This makes this article self-contained.
Appendix D contains an internal cross-check.

To our knowledge, there is one previous paper@7# ad-
dressing the radiative corrections to the DP of polarized de-
caying hyperons. In this paper the virtual corrections are
handled also following Ref.@2#. However, the bremsstrah-
lung contributions calculated are very model dependent.
First, the baryons are assumed to be pointlike. And second,
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the photon variables are integrated numerically in a, so to
speak, global fashion by fixing the several form factors at
prescribed values, given by the CVC~conserved vector cur-
rent! and the PCAC~partially conserved axial-vector current!
hypotheses. The final results of Ref.@7# are presented in
numerical tables for fixed values of the energies of the lepton
and emitted baryon,E andE2. This method has shortcom-
ings that limit its applicability considerably. The CVC and
PCAC hypotheses are reliable only forDS50 decays. SU~3!
breaking affects them appreciably inDSÞ0 decays and they
are completely unreliable in charm decays. Baryons are not
pointlike and extra contributions appear from their structure,
introducing uncertainties of orderaq/M1. Also, the fixed
values ofE andE2 used in producing the numerical tables
will not agree in general with the values used to define the
bins of an experiment. Both methods, the one of Ref.@7# and
ours, will lead to the same results forDS50 decays and still
may give reasonable agreement withDSÞ0, but will differ
considerably inDCÞ0 decays. A comparison for twoDS
Þ0 decays with Ref.@7#, using exactly the same values of
the corresponding form factors, is given in Appendix E. The
agreement is quite reasonable.

The method we follow in this paper is not committed to
any particular model. It exhibits theaq/M1'0 approxima-
tion explicitly and does not require that the form factors be
fixed at any particular values. Instead of producing numerical
tables, we have produced detailed expressions that can be
evaluated at any set of values ofE andE2 chosen by the
user. Such an evaluation can be performed numerically or
analytically within a Monte Carlo simulation. The advantage
of the analytical expressions is to reduce enormously the
computational effort involved in the Monte Carlo procedure.

Our long results have been organized to be used in a
straightforward fashion. They will be reliable up to a preci-
sion around 0.5% over most of the DP. For high statistics
experiments, with tens of thousands of events of HSD’s not
involving heavy quarks, this precision should be very satis-
factory. If charm quarks are involved, our results should be
acceptable in experiments with thousands of events@8#. If
higher statistics experiments with these quarks are envis-
aged, our results represent a useful first approximation, but
they should eventually be refined.

II. VIRTUAL RADIATIVE CORRECTIONS

We first introduce our notation and conventions and next
we obtain the virtual radiative corrections. Let us consider
the HSD

A→B1 l1 n̄ l , ~1!

and denote the four-momenta and masses of the decaying
and emitted hyperons, the charged lepton, and the neutrino
involved in the process byp15(E1 ,p1), p25(E2 ,p2),
l5(E,l), and pn5(En

0 ,pn) and byM1, M2, m, andmn ,
respectively. We will assume throughout this paper that
mn50. p̂2 will denote a unit vector along the direction of
p2, etc.p2, l , andpn will also denote the magnitudes of the
corresponding three-momenta when specializing our calcula-

tions to the center-of-mass frame ofA. No confusion is ex-
pected because in this case our expressions will not be mani-
festly covariant.

The uncorrected transition amplitudeM0 for process~1! is
given by the product of matrix elements of the hadronic and
leptonic currents,

M05
GV

A2
@ ūB~p2!Wm~p1 ,p2!uA~p1!#@ ūl~ l !Omvn~pn!#,

~2!

where

Wm~p1 ,p2!5 f 1~q
2!gm1

f 2~q
2!

M1
smnqn1

f 3~q
2!

M1
qm

1Fg1~q2!gm1
g2~q

2!

M1
smnqn1

g3~q
2!

M1
qmGg5 .

~3!

HereOm5gm(11g5) andq5p12p2 is the four-momentum
transfer. Our metric andg-matrix convention are those of
Ref. @1#. The leptonic current has the usual (V2A) structure.
For the baryon term the (V2A) structure of the underlying
quark transition is masked by the effects of the strong inter-
actions.f i andgi , the conventional vector and axial-vector
form factors, are functions ofq2 and, unless explicitly noted
otherwise, we always deal with their values atq2Þ0.

The polarization of the initial hyperon can be taken into
account by introducing the projection operator@9#

S~s1!5
12g5s”1

2
, ~4!

where the polarization four-vectors1 obeys the conditions
s1•s15(s1

0)22s1•s1521 ands1•p150. In the center-of-
mass frame ofA, s1 reduces to a purely spatial unit vector
which gives the spin direction. The observable effects of spin
polarization can be studied through the replacement

uA~p1!→S~s1!uA~p1! ~5!

in the corresponding spinor for the decaying hyperon.
The virtual radiative corrections to the DP of decay~1!

can be obtained using a similar procedure to Ref.@1#, which
is an extension of the procedure introduced in Ref.@2#. De-
tails are not needed to be repeated here. It is only important
to point out that such corrections can be separated into a MIP
Mv that is finite and calculable and into a MDP which can be
absorbed intoM0 through the definition of effective form
factors. Hereafter this fact will be denoted by putting a prime
onM0.

With the above considerations, the complete decay ampli-
tude with virtual radiative correctionsMV is

MV5M081Mv . ~6!

The MIP, given by Eq.~4! of Ref. @1#, is

Mv5
a

2p
@M0f~E!1Mp1

f8~E!#, ~7!
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wheref(E) andf8(E), given, respectively, in Eqs.~5! and
~6! of this reference, are

f~E!52F 1barctanhb21G lnF l

mG2
1

b
~arctanhb!2

1
1

b
LF 2b

11bG1
1

b
arctanhb2

11

8

1H p2/b1
3

2
ln~M2 /m! ~NDH! ,

3

2
ln~M1 /m! ~CDH! ,

~8!

f8~E!5Fb2
1

b Garctanhb. ~9!

According to our approximation, all the terms of the order
aq/pM1 and (aq/pM1)ln(q/M1) have been neglected in
Eqs. ~8! and ~9!. In these equationsb5 l /E and L is the
Spence function defined as

L~x!5E
0

x

dt
1

t
ln~ u12tu!. ~10!

l is the infrared-divergence cutoff that will be canceled by
its analogue in the bremsstrahlung contribution; NDH and
CDH stand for neutral and charged decaying hyperons, re-
spectively.

The second matrix element in Eq.~7! is

Mp1
5S E

mM1
D GV

A2
@ ūBWluA#@ ūlp” 1Olvn#. ~11!

Within our order of approximationWl(p1 ,p2) in Eqs.~7!
and ~11! is reduced to

Wl~p1 ,p2!5 f 1~0!gl1g1~0!glg5 . ~12!

The DP with virtual radiative corrections is now obtained
by leavingE2 andE as the relevant variables in the differ-
ential decay rate for process~1!. After making the replace-
ment ~5! in Eq. ~6!, squaring it, and rearranging terms, we
can express

(
spins

uMVu25
1

2(spins uMV8 u22
1

2(spins uMV
~s!u2. ~13!

HereMV8 does not contains1 explicitly whereasMV
(s) does.

Notice that we keep in Eq.~13! the one-half factor and the
minus sign arising from the definition of the projection op-
erator, Eq.~4!. This distinction is useful because it enables us
to express the differential decay rate as

dGV5
dE2dEdV2dw l

~2p!5
M2mmnF12(spins uMV8 u22

1

2(spins uMV
~s!u2G

[dGV82dGV
~s! , ~14!

where dGV8 refers to the first term of the sum within the
square brackets. It corresponds to the expression for the dif-

ferential decay rate with virtual radiative corrections of un-
polarized hyperons given by Eq.~10! of Ref. @1#, with only a
slight difference: We have chosen, without loss of generality,
a coordinate frame in the center-of-mass system ofA with
the z axis along the emitted hyperon three-momentum.

After a long but otherwise standard calculation the decay
rate is compactly given by

dGV5
GV
2

2

dE2dEdV2dw l

~2p!5
2M1HA081

a

p
~A18f1A19f8!

2 ŝ1•p̂2FA091
a

p
~A28f1A29f8!G J . ~15!

A08 , A18 , A19 , A09 , A28 , andA29 depend on the kinematical
variables and are quadratic functions of the form factors.
Their dependence on the kinematical variables is

A085Q1EEn
02Q2Ep2~p21 ly0!2Q3l ~p2y01 l !

1Q4En
0p2ly02Q5p2

2ly0~p21 ly0!, ~16!

A185D1EEn
02D2l ~p2y01 l !, ~17!

A195D1EEn
0 , ~18!

A095Q6Ep21Q7Ely0 , ~19!

A2852D3En
0ly01D4E~p21 ly0!, ~20!

A295D4E~p21 ly0!, ~21!

wherey0 is the cosine of the angle between the directions of
emission of the charged lepton andB, and is given by

y05
~En

0!22p2
22 l 2

2p2l
~22!

and by energy conservation

En
05M12E22E. ~23!

The coefficientsQi ( i51, . . . ,7) arelong quadratic func-
tions of the form factors whereas the coefficientsDj
( j51, . . . ,4)depend only on the leading form factors. Their
explicit forms are given in Appendix B.

The primes in Eqs.~16!–~21! indicate that the form fac-
tors f 18 andg18 , containing the model dependence of the vir-
tual radiative corrections, are the ones that appear in them.
This involves a rearrangement of terms of second order in
a in Eq. ~15!, but the remarkable fact is that to first order in
a only f 18 andg18 can be experimentally determined@1#.

III. BREMSSTRAHLUNG AMPLITUDE
AND INFRARED DIVERGENCE

In addition to the virtual radiative corrections, the brems-
strahlung counterpart must be included in order to obtain the
complete radiative corrections to the DP of process~1! up to
the order of approximation mentioned above. In this section
we turn to the four-body decay
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A→B1 l1 n̄ l1g, ~24!

where g represents a real photon with four-momentum
k5(w,k), and because of energy and momentum conserva-
tion, E15E21E1En1w andp15p21 l1pn1k.

First we will give the amplitude of process~24!; next, we
will extract the infrared divergence. Afterwards, we will give
a complete expression for the differential bremsstrahlung de-
cay rate which along with Eq.~15! gives the DP with radia-
tive corrections of process~1!.

Within our approximation and following the Low theorem
@4# the transition amplitudeMB of process~24! is given by

MB5
eGV

A2
@ ūBWluA#@ ūlOlvn#F 2l •e

2l •k1l2 1
2p1•e

l222p1•k
G

1
eGV

A2
@ ūBWluA#@ ūle”k”Olvn#F 1

2l •k1 i« G
[Ma1Mb , ~25!

whereMa andMb stand for the first and second summands,
respectively. As in the virtual case, we have to make the
substitution~5! in order to study spin effects. Observe that
Eq. ~25! is gauge invariant and model independent; the
model dependence does not contribute to zeroth order in
aq/pM1. Wl should be the complete expression defined in
Eq. ~3!; however, to our order of approximation we must use
Eq. ~12! instead.e is the photon polarization four-vector and
l is a small mass given to the photon to regularize the infra-
red divergence.

Because we concern ourselves with the radiative correc-
tions to process~1! and not with the process~24! itself, our
analysis will be restricted to the three-body region of the DP
of the latter defined by@1#

E2
min<E2<E2

max ~26!

and

m<E<Em , ~27!

with

E2
max, min5

1

2
~M12E6 l !1

M2
2

2~M12E6 l !
~28!

and

Em5
M1

22M2
21m2

2M1
. ~29!

That is, although we assume that real photons are not de-
tected, we also assume that events whose energiesE and
E2 do not satisfy the three-body energy-momentum conser-
vation restrictions of Eqs.~26!–~29! are rejected.

The bremsstrahlung contribution to the differential decay
rate is given by@9#

dGB5
M2mmn

~2p!8
d3p2
E2

d3l

E

d3k

2w

d3pn

En

3 (
spins

uMBu2d4~p12p22 l2pn2k!. ~30!

By analogy with the virtual case, the spin-independent
amplitudeMB8 can be separated from the spin-dependent one
MB

(s) so that

(
spins

uMBu25
1

2 (
spins

uMB8 u22
1

2 (
spins

uMB
~s!u2, ~31!

where we also keep the one-half factor and the minus sign
coming from Eq.~4!. Thus

dGB5dGB82dGB
~s! . ~32!

With only minor changes, we can identifydGB8 with the
bremsstrahlung differential decay rate for unpolarized hyper-
ons given by Eq.~55! of Ref. @1#, which leaves the triple
integration over the photon variables to be performed nu-
merically. Such an expression can be reduced to the compact
form ~the upper indicesa andb replace the indices I and II
of this reference!

dGB85dGB
ir1dGB

a1dGB
b . ~33!

The explicit form of each contribution is

dGB
ir5$A18@ Î 0~k/l!1C1C1#1C2%dV, ~34!

where

dV5
a

p

GV
2

2

dE2dEdV2dw l

~2p!5
2M1 . ~35!

Here Î 0(k/l) fully contains the infrared divergence andC
andC1 are the finite terms that come along with it. We do
not need their explicit forms here. Likewise,C2 is given by

C25D2p2l
b2

2
~11y0!E

21

1

dx
12x2

~12bx!2
, ~36!

wherex is the cosine of the angle betweenl andk.
On the other hand,

dGB
a52dV

p2l

2pE21

1

dx
b2

2

12x2

~12bx!2
~D1E1D2lx !

3E
21

y0
dyE

0

2pdwk

D
~37!

and
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dGB
b5dV

p2l

2pE21

1

dxE
0

2p

dwkE
21

y0
dy

1

2ED~12bx!

3HD1FEnw1~11bx!EEn2
m2Enw

l •k G
1D2pn•F k̂~E1w!1 l2

m2k

l •k G J , ~38!

with

En5En
02w, ~39!

D5En
01~p21 l!• k̂. ~40!

wk is the azimuthal angle of the photon andy is the cosine of
the angle betweenl andp2. Furthermore,

w5
F

2D
, ~41!

where

F52p2l ~y02y!. ~42!

Now we turn to studydGB
(s) and collect both results after-

wards. For convenience, let us splitdGB
(s) into two parts

dGB
~s!5dGB

I 1dGB
II , ~43!

where dGB
I contains (uMa

(s)u2 and dGB
II contains

((uMb
(s)u212 Re@Ma

(s)#@Mb
(s)#†). dGB

I contains infrared-
divergent terms as well as infrared-convergent ones and
dGB

II is infrared convergent.
Explicitly we have

(
spins

uMa
~s!u25

e2GV
2

2

4M1

M2mmn
@2D3ŝ1• lEn

01D4ŝ1•p2E

1D4ŝ1• lE1D3ŝ1• lw1D4ŝ1•kE#

3(
e

S l •el •k
2
p1•e

p1•k
D 2. ~44!

The infrared divergence is contained in the first three terms
within the square brackets. The remaining two terms con-
verge in the infrared. In order to deal with the infrared di-
vergence properly, we will trace a close parallelism with the
analysis of Ref.@10#, which refers to the radiative corrections
to the DP ofKe3

6 decays. This approach can be adapted to our
case by using the invariant massh5(pn1k)2, which in the
center-of-mass frame ofA is given by

h5M1
21M2

21m222M1E22M1E212EE222p2ly .
~45!

y andh are related through

y5y02
h

2p2l
. ~46!

On the other hand, the most general form ofŝ1• l̂ depends
on bothu l andw l , the polar and azimuthal angles ofl, re-
spectively. The terms directly proportional to coswl drop off
after integrating overw l from 0 to 2p. Hereafter those terms
will not be considered. With the proper orientation of the
coordinate axes (p2 along thez axis!, the dependence on
cosul is further reduced toy. Thus,dGB

I will not show ex-

plicitly ŝ1• l̂ any longer.
The sum over e is still awaiting. In all infrared-

convergent terms the ordinary covariant summation can be
used. However, in the infrared-divergent terms the longitu-
dinal degree of freedom must be included. We can accom-
plish this by using the Coester representation@11# in which

(
e

~a•e!~b•e!5a•b2
~a•k!~b•k!

w2 , ~47!

wherea andb are arbitrary four-vectors and

w25k21l2. ~48!

The expression fordGB
I once the explicit separation of the

infrared-divergent terms from the infrared-convergent ones is
performed becomes

dGB
I 5dV ŝ1•p̂2A28

1

8p
dh

d3k

w

d3pn

En
d4~p12p22 l2pn2k!F 2p1• l

~p1•k!~ l •k!
2

m2

~ l •k!2
2

M1
2

~p1•k!2
G2dV

p2l

4p
dy

d3k

w

d3pn

En

3d4~p12p22 l2pn2k!H ~D3En
02D4E!ŝ1•p̂2

h

2p2
1FD3ŝ1•p̂2l S y02 h

2p2l
D 1D4ŝ1• k̂EGwJ b2

w2

12~ l̂• k̂!2

~12b l̂• k̂…2
.

~49!

The infrared-divergent integrand is easily identified as

I 0~E,E2 ,k,pn,h!5
1

8p
dh

d3k

w

d3pn

En
d4~p12p22 l2pn2k!F 2p1• l

~p1•k!~ l •k!
2

m2

~ l •k!2
2

M1
2

~p1•k!2
G . ~50!
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The invariant mass is now integrated from a small photon massl2 to its maximumhm given byhm52p2l (11y0). The
second part in Eq.~49! is infrared convergent. The use ofy as an integration variable in such expressions will allow us to apply
Eq. ~38! of Ref. @1#. Therefore, after performing the integration over thed function we have

dGB
I 5dV ŝ1•p̂2A28I 0~E,E2!1dV

1

2p

b2l

2 E
21

y0
dyE

21

1

dxE
0

2p

dwkFD3SEn
01

p2ly

D D ŝ1•p̂2
2D4ES ŝ1•p̂21 p2

D
ŝ1• k̂D G 12~ l̂• k̂!2

~12b l̂• k̂!2
. ~51!

The infrared-divergent integral is given explicitly in Eq.~27! of Ref. @10#. With only minor changes, it can be adapted to
our notation as

I 0~E,E2!5
1

b
arctanhbF2lnS 2ll D 1 lnS mhm

2

4~E1 l !r1
D G2

1

b
LS 2

a2

4r1
D 1

1

b
LS 2

4r2

a2 D 22lnSml D 2 lnS hm
2

2mEn
0~q22m2!

D ,
~52!

where

~E1 l !r65@En
0l 2~q22m2!2a2E/4#6$@En

0l 2~q22m2!2a2E/4#22m2a4/16%1/2, ~53!

with

a25hm~4p2l2hm!, ~54!

q25M1
222M1E21M2

2 . ~55!

The alternative approach to extract the infrared divergence and the finite terms that come along with it of Ref.@1# allows
us to verify that

I 0~E,E2!5 Î 0~k/l!1C1C1 . ~56!

Thus, both approaches lead to the same results. In the above expressions, we have put a hat onI 0(k/l) to avoid confusion.
On the other hand,dGB

II can be computed with no difficulty due to the fact that the trace calculation is carried out with
standard techniques. Thus

dGB
II5dV

p2b

4p E
21

y0
dyE

21

1

dxE
0

2p

dwk

1

D

1

~12b l̂• k̂!
H ŝ1• l̂F S w2

m2

E

1

~12b l̂• k̂!
1~11b l̂• k̂!ED lD 42EnlD 3G

1 ŝ1•p̂2Fw2
m2

E

1

~12b l̂• k̂!
1~11b l̂• k̂!EGp2D41 ŝ1• k̂F S w2

m2

E

1

~12b l̂• k̂!
1~11b l̂• k̂!EDwD4

2S w2
m2

E

1

~12b l̂• k̂!
1EDEnD3G J . ~57!

The infrared-convergent parts of Eqs.~37!, ~38!, ~51!, and
~57! can be cast into a very compact form, namely,

dGB
ic5dV@D1CA1D2CB2 ŝ1•p̂2~D3CC1D4CD!#.

~58!

The coefficientsCA , CB , CC , andCD are collected in Ap-
pendix D.

At this point we have reached our first final result. The DP
of polarized decaying hyperons with radiative corrections to
order a and in the approximation of neglecting terms of
orderaq/pM1 is obtained by adding Eqs.~51! and ~57! to
get the result for Eq.~43! and then by using Eq.~33! along
with this Eq.~43! to form Eq.~32!. Finally, the sum of Eqs.

~15! and ~32! gives the desired formula. The integrations
over the three-momentum of the real photon in Eqs.~37!,
~38!, ~51!, and~57! can be performed numerically.

It turns out that the remaining photon integrals can be
performed analytically. This we shall do in the next section.
This way a completely analytical result will be obtained.
This will be our second final result.

IV. ANALYTICAL INTEGRATIONS

The integrals over the real photon three-momentum indi-
cated in Eqs.~51! and~57! can be performed analytically. To
achieve this it is convenient to separate them in groups. Most
of them can be identified with analytical integrals obtained in
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Ref. @1#. Others are new, but they can be identified with
integrals performed in Ref.@6# or reduced to combinations of
such integrals. In Appendix A we give a complete list of the
integrations to be performed and explain how they can be
handled.

There are certain types of integrals arising from the terms
depending on the spin of the decaying hyperon whose form
is

E
21

1

dxE
0

2p

dwk

ŝ1• r̂

@En
01~p21 l!• k̂#m@12b l̂• k̂#n

, ~59!

where r̂ may denote l̂ , p̂2, or k̂, and m51,2,3 and
n50,1,2. It is important to remark that not all the possible
combinations ofm andn occur. The above integrals can be
performed analytically by exploiting the symmetries exhib-
ited in the integrands, i.e., their transformation properties
under rotations. The right orientation of the coordinate axes
will simplify our task enormously because most integrals can
be reduced to the forms computed in Refs.@1,6#, namely, to
the functionsu i ( i50, . . . ,16)defined there and reproduced
in Appendix C of the present paper for the sake of complete-
ness. Other integrals are simplified by integrating first over
the angular variables of the photon; the last integration step
is over y. There are five different types of these integrals,
viz.,

h05E
21

y0
dy, ~60!

h15E
21

y0
dy

1

G~y!
, ~61!

h21 j5E
21

y0
dy@G~y!#1/22 j lnFEn

01@G~y!#1/2

En
02@G~y!#1/2

G , ~62!

where j50,1,2 and

G~y!5En
0212p2l ~y2y0!. ~63!

In Eq. ~62! a subtle point arises. The integrand has a vertical
asymptote aty5y0. We therefore integrate from21 to
y02«, thus obtaining a function of«, and then find the limit
of this function when«→0. We will give the explicit results
at the end of this section.

Because of space limitations, it is impossible to detail the
full steps of integration. We will follow a straightforward
procedure and give only the relevant results.

We first obtain

dGB
ir1dGB

a5dV@~D11D2!u81D2u91A18u1#, ~64!

where

u85
p2lE

2
@~12b2!u222u31u4#, ~65!

u95
p2l

2
@2u02E~12b2!u31Eu41 lu5#. ~66!

In the above expressions we have used the definitions

u05
1

2
b2~11y0!E

21

1

dx
12x2

~12bx!2
, ~67!

u15I 0~E,E2!. ~68!

u2 , . . . ,u5 are given in Appendix C.D1 and D2 can be
found in Appendix B.

Next we obtain

dGB
b5dV@~D11D2!u-1D2u

IV#, ~69!

where

u-5
p2l

2 F2~En
01E!~12b2!u21F32b2

2
E1En

0Gu32 E

2
u4

2
l

2
u51

12b2

2
u62

2E2En
0

2E
u71

1

2
u82

1

4E
u9G , ~70!

u IV5
p2l

2
@2u02En

0~12bx0!u31En
0u4#, ~71!

with

x052
p2y01 l

En
0 . ~72!

u6 , . . . ,u9 are given in Appendix C.
Similarly we get

dGB
I 5dV ŝ1•p̂2@A28u11D3r11D4r2# ~73!

and

dGB
II5dV ŝ1•p̂2@D3r31D4r4#, ~74!

where

r15
l

2
@2En

0u02z1012z111~b221!z12#, ~75!

r25
E

2
@22lu02x1012x111~b221!x12#, ~76!

r35
b

4
@22En

0z111z21#1
1

2 F2En
0x111

E2En
0

2E
x211

x31

4E

1~12b2!En
0x122

1

2
~12b2!x22G , ~77!

r45
b

2 F2Ez1012Ez111
z21
2

2
m2

E
z12G1

p2
2b

2
g0

1
1

4 F2x2012x211
x31

2E
2
m2

E2 x22G . ~78!

The r i depend on other functions, viz.,z i , x i , andg0.
The first two types of functions come from the integrands
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containing ŝ1• l̂ and ŝ1• k̂, respectively, andg0 contains all
the terms directly proportional toŝ1•p̂2. Their explicit forms
are

z105
1
2 @h22~p2

21 l 2!h3#, ~79!

z11
E

52~E1En
0!~u32u4!1 lu51p2bu12, ~80!

z21
2E2 52@b~ l2p2y0!1~b223!En

023E#u31@b~ l2p2y0!

23~En
01E!#u423b~E1En

0!u51
p2by0
2E

u7

23Eb2u102
1

4E2 u16, ~81!

z12
E

52~E1En
0!~u22u3!1E~u32u4!1p2bu11, ~82!

x10

l
5h01~p2

22 l 2!h12
En
0

2
@h31~p2

22 l 2!h4#, ~83!

x2052En
0l @h01~p2

22 l 2!h1#2
l

2
h21 l 2~p2y01 l !h3

1
l

2
En
02~p2

22 l 2!h4 , ~84!

x11

E
5~11y0!lnF11b

12b G2b~E1En
0!u31 lu4 , ~85!

x21

2El
5~p2y0b12En

012E!u322~E1En
0!u422lu5

2
E1En

0

2E
u71

1

2
u82p2bu12, ~86!

x31

El
5@6E~b223!~E1En

0!28p2ly0#u31@18E~E1En
0!

12l ~4p2y023l !#u4118l ~E1En
0!u52

E1En
0

E
u9

118l 2u101u151
1

E
u16, ~87!

x125
2lh0

12b2 2 l ~E1En
0!u21Elu3 , ~88!

x22

l
5@2p2ly014E~E1En

0!#u224E~2E1En
0!u314E2u4

2~E1En
0!u61Eu722p2lu11, ~89!

g052
m2

E
u21Eu31

1

2
u7 . ~90!

u10, . . . ,u16 are given in Appendix C. Let us recall that all
the functionsu i are computed in Refs.@1,6#. On the other
hand, the functionsh i defined by Eqs.~60!–~62! are explic-
itly given by

h0511y0 , ~91!

h15
1

2p2l
lnF En

02

~p22 l !2
G , ~92!

h25
En
03

3p2l
H 12S p22 l

En
0 D 21 lnF 4En

02

En
022~p22 l !2

G
2S p22 l

En
0 D 3lnFEn

01p22 l

En
02p21 l G J , ~93!

h35
En
0

p2l
H lnF 4En

02

En
022~p22 l !2

G2
p22 l

En
0 lnFEn

01p22 l

En
02p21 l G J ,

~94!

h45
1

p2lEn
0 H lnFEn

022~p22 l !2

4~p22 l !2 G1
En
0

p22 l
lnFEn

01p22 l

En
02p21 l

G J .
~95!

We can now collect our partial results and the bremsstrah-
lung decay rate finally becomes

dGB5dGB82dGB
~s!

5dV$~D11D2!~u81u-!1D2~u91u IV !1A18u1

2 ŝ1•p̂2@A28u11D3~r11r3!1D4~r21r4!#%,

~96!

wheredV is given in Eq.~35!,

u81u-5
p2l

2 F2En
0~12b2!u21SEn

02
11b2

2
ED u31

E

2
u4

2
l

2
u51

12b2

2
u62

2E2En
0

2E
u71

1

2
u82

1

4E
u9G ,
~97!

u91u IV5
p2l

2
@u02~E1En

01bp2y0!u31~En
01E!u41 lu5#,

~98!

and

u052~11y0!Farctanhbb
21G . ~99!

All the integrals that remained indicated in Eqs.~51! and
~57! have now been analytically performed; i.e., these two
equations have the analytical counterparts given in Eqs.~73!
and ~74!, respectively. Thus, the complete bremsstrahlung
differential decay rate is collected in Eq.~96!.

As a cross-check, we also integrated numerically Eqs.
~37!, ~38!, ~51!, and~57! over the photon variables and com-
pared with the corresponding analytical results in Eqs.~64!,
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~69!, ~73!, and~74!. All this is included in Appendix D. One
can observe that both results coincide remarkably well. Let
us now turn to our closing section.

V. FINAL RESULTS AND DISCUSSIONS

The differential decay rate of HSD’s in the variablesE
and E2, that is, the DP, with nonzero polarization of the
initial hyperon including radiative corrections to ordera, is
given by

dG~A→Bl n̄ l !5dGV1dGB. ~100!

dGV is given by Eq.~15!. FordGB we have two forms. In the
first one the triple integration over the real photon variables
remains to be performed numerically. It is given by the sum
of Eqs. ~37!, ~38!, ~51!, and ~57!. The infrared divergence
and the finite terms that accompany it have been explicitly
and analytically extracted, however. The second form of
dGB is completely analytical; all integrations over the photon
variables have been explicitly performed. It is given by the
sum of Eqs.~64!, ~69!, ~73!, and~74!.

Our analytical result can be cast into the compact form

dG~A→Bl n̄ l !5
GV
2

2

dE2dEdV2

~2p!4
2M1HA081

a

p
F12 ŝ1•p̂2

3FA091
a

p
F2G J , ~101!

where

F15A18~f1u1!1A19f81~D11D2!~u81u-!

1D2~u91u IV !, ~102!

F25A28~f1u1!1A29f81D3~r11r3!1D4~r21r4!.
~103!

A08 , A18 , f, u0, A19 , f8, D1, D2, u81u-, andu91u IV have
been previously computed@1# and are given in Eqs.~16!,
~17!, ~8!, ~99!, ~18!, ~9!, ~B8!, ~B9!, ~97!, and ~98! in the
present paper.A09 , A28 , u1, A29 , D3, D4, r1, r2, r3, andr4
are new expressions and are, respectively, given in Eqs.~19!,
~20!, ~68!, ~21!, ~B10!, ~B11!, ~75!, ~76!, ~77!, and~78!.

Despite its length, the analytical form of Eq.~101! is ba-
sically simple and organized in a way that is easy to handle.
Its main usefulness lies in that it can be incorporated into a
Monte Carlo simulation of an experimental analysis, reduc-
ing considerably the computational effort required by the
triple integration pending in the first form of our result.

From the DP equation~101! we can proceed to obtain the
total transition rateR and the spin-asymmetry coefficient of
the emitted hyperonaB . This last quantity is defined as

aB52
N~uB,p/2!2N~uB.p/2!

N~uB,p/2!1N~uB.p/2!
, ~104!

whereN(uB,p/2) denotes the number of emitted hyperons
with momenta in the forward hemisphere with respect to the
polarization of the decaying hyperon, etc.

The uncorrected differential decay rate can be obtained
immediately if the terms proportional toa/p are dropped
from Eq. ~101!, i.e.,

dG05
GV
2

2

dE2dEdV2

~2p!4
2M1@A082 ŝ1•p̂2A09#, ~105!

with A08 andA09 given by Eqs.~16! and ~19!, respectively.
When we integrate this expression over the kinematical vari-
ables restricted to the three-body region of the DP we obtain,
for the uncorrected decay rateR0,

R05
GV
2

4p3M1B1 ~106!

and, for the uncorrected angular spin-asymmetry coefficient
of the emitted hyperon,

aB
052

B2

B1
, ~107!

where

B15E
m

EmE
E2

min

E2
max

A08dE2dE, ~108!

B25E
m

EmE
E2
min

E2
max

A09dE2dE. ~109!

Within our approximations, the radiatively corrected inte-
grated observables starting from Eq.~101!, turn out to be

R5
GV
2

4p3M1FB11
a

p
a1G ~110!

and

aB52
B21~a/p!a2
B11~a/p! a1

, ~111!

with

a15E
m

EmE
E2
min

E2
max

F1dE2dE, ~112!

a25E
m

EmE
E2
min

E2
max

F2dE2dE. ~113!

To our knowledge Eq.~101! is the only analytical expres-
sion available in the literature. There is, however, one previ-
ous paper@7# addressing the radiative corrections to the DP
of polarized decaying hyperons. In order to make a detailed
comparison we also need to produce numerical results. This
is done in Appendix E. The main advantage of the closed
analytical expression of the one of Sec. III, which is to be
integrated numerically, is that in a Monte Carlo simulation it
provides an enormous reduction of computer effort. The
feeding of such analytical results into a computer is not
worse than the feeding of the numerical results of Ref.@7#.
Thus in practice, the use of the analytical results is of great
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advantage over the use of the one to be integrated numeri-
cally or the use of numerical tables.

A generalized practice in experimental setups is the appli-
cation of kinematical cuts to the observed electron an emitted
hyperon kinematical variables. They result in that only a re-
gion of points and not the full DP is accessible in an experi-
ment. However, on each one point of the DP the photon
momentum integration limits do depend on the values of
(E,l) and (E2 ,p2) of that point, i.e.,kmin(E,l,E2 ,p2) and
kmax(E,l,E2 ,p2). Thus, the common kinematical cuts are au-
tomatically taken into account in the integration limits of the
emitted photons at each point. Therefore, our complete ex-
pression Eq.~101! is appropriate for Monte Carlo simulation.

Concerning the integrated observables the situation is dif-
ferent. In as much as experiments quote measurements of the
decay rate and asymmetry coefficients, the effects of the par-
ticular cuts and biases of an experiment are already taken
into account in the error bars of that experiment. However,
the definition of these observables is theoretical and indepen-
dent of the peculiarities and limitations of a specific experi-
mental setup. Accordingly, the theoretical expression of
those observables must be fully integrated, regardless of par-
ticular cuts and biases. This must be done so whether radia-
tive corrections are included or not.

Let us stress that our results are model independent and
are not compromised to any particular values of the different
form factors. All of the model dependence of radiative cor-
rections has been incorporated intof 1 andg1 form factors, in
our approximation of neglecting contributions of order
aq/pM1. This is indicated by putting a prime on them. For
nonheavy hyperons our results are reliable up to a precision
of around 0.5%. This precision is useful for experiments in-
volving several thousands of events. For experiments involv-
ing several hundreds of thousands of events or in decays
involving charm or heavier quarks Eq.~101! gives a good
first approximation. In these latter cases our results can be
improved following the approach of this paper. This, how-
ever, involves a non-negligible extra effort. We shall attempt
this elsewhere.

To conclude, let us remark that our results are valid both
for neutral or charged decaying hyperons and whether the
emitted charged lepton is an electron or a muon.
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APPENDIX A

Because of the inclusion of the polarization of the decay-
ing hyperon, some integrals that have not been computed yet
@1,6# appear. They are mainly of two kinds:

E
21

y0
dy@F~y!#m21E

S2
dVk

ŝ1• k̂

@En
01~p21 l!• k̂#m@12b l̂• k̂#n

[2p
~ ŝ1•p̂2!

p2l
xmn , ~A1!

wherey5p̂2• l̂ andF(y) was defined in Eq.~42!. S2 stands
for the surface of a unit sphere in three dimensions and
dVk is the element of solid angle of the photon.m51,2,3
andn50,1,2, discarding the valuesx30 andx32.

The second kind is

E
21

y0
dy@F~y!#p21E

S2
dVk

ŝ1• l̂

@En
01~p21 l!• k̂#p@12b l̂• k̂#q

[2p
~ ŝ1•p̂2!

p2l
zpq , ~A2!

with p51,2 andq50,1,2, without considering the values
z20 andz22.

Let us notice that the integrand in all these integrals re-
mains a scalar under rotations of the coordinates. Therefore,
we may choose the coordinate systems to compute the inte-
grations in which the integrand acquires the simplest form.

First, let us consider the particular case

I 15E
21

y0
dyE

S2
dVk

ŝ1• k̂

En
01~p21 l!• k̂

. ~A3!

After integrating overdVk we get

I 152pE
21

y0
dy

ŝ1•~p21 l!

G8 H 22
En
0

AG8
lnFEn

01AG8

En
02AG8

G J ,
~A4!

where

G85p2
21 l 212p2• l. ~A5!

If we return to our initial system,G8 reduces toG(y) de-
fined by Eq.~63!. The integral overdw l is trivial; it amounts
to an overall factor of 2p. Thus,

I 152p~ ŝ1•p̂2!E
21

y0
dy

p21 ly

G~y! H 22
En
0

AG~y!

3 lnFEn
01AG~y!

En
02AG~y!

G J
[2p

~ ŝ1•p̂2!

p2l
x10, ~A6!
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with x10 defined by Eq.~83!.
A similar procedure can be followed to compute

I 25E
21

y0
dyF~y!E

S2
dVk

ŝ1• k̂

@En
01~p21 l!• k̂#2

[2p
~ ŝ1•p̂2!

p2l
x20

~A7!

and so on.
It is important to remark that with this approach we are

able to improve two previous results. First, the value ofh3,
given by Eq.~94!, corresponds tou4 given by Eq.~102! of
Ref. @1#. Thus, the former value supersedes the latter. A fur-
ther simplification is

u822lu552~11y0!. ~A8!

The above results may help reduce the numerical computa-
tional effort involved.

On the other hand, the other integrals can be computed
with no difficulty if we consider the most general case

J1~a1 ,a2!5E
S2
dVk

ŝ1• k̂

@En
0a11~p21 l!• k̂#@a22b l̂• k̂#

,

~A9!

wherea1 anda2 are real parameters ranging from 0 to 1.
Observe that

]

]a1
J1~a1 ,a2!

52En
0E

S2
dVk

ŝ1• k̂

@En
0a11~p21 l!• k̂#2@a22b l̂• k̂#

~A10!

and

]

]a2
J1~a1 ,a2!

52E
S2
dVk

ŝ1• k̂

@En
0a11~p21 l!• k̂#@a22b l̂• k̂#2

~A11!

and so forth. Therefore, the remaining integrals can be ob-
tained by differentiating with respect either toa1 or to a2,
and setting both of them equal 1. At this point we can save a
considerable amount of work if we use the previous results
presented in Refs.@1,6#.

APPENDIX B

The coefficientsQi andDj involved in Eqs.~16!–~21! are
quadratic functions of the form factors. We shall repeat the
explicit forms of Ref.@1# for completeness,

TABLE I. Values ofCA in S2→nen decay by~a! integrating numerically and~b! using the corresponding analytical expressions. The
dimensions ofCA are GeV2.

s ~a!

0.8078 0.0545 0.0593 0.0429 0.0186 -0.0072 -0.0303 -0.0469 -0.0537 -0.0472 -0.0227

0.8036 0.1053 0.0739 0.0340 -0.0056 -0.0383 -0.0589 -0.0630 -0.0464 -0.0064

0.7994 0.1162 0.0833 0.0420 0.0020 -0.0297 -0.0478 -0.0482 -0.0276

0.7952 0.0899 0.0486 0.0096 -0.0200 -0.0351 -0.0317 -0.0069

0.7909 0.0531 0.0159 -0.0106 -0.0216 -0.0133

0.7867 0.0191 -0.0022 -0.0063

~b!

0.8078 0.0544 0.0592 0.0428 0.0185 -0.0074 -0.0304 -0.0470 -0.0538 -0.0474 -0.0228

0.8036 0.1049 0.0729 0.0327 -0.0068 -0.0393 -0.0600 -0.0644 -0.0482 -0.0064

0.7994 0.1163 0.0828 0.0414 0.0015 -0.0303 -0.0489 -0.0496 -0.0283

0.7952 0.0906 0.0492 0.0102 -0.0196 -0.0351 -0.0317 -0.0062

0.7909 0.0554 0.0182 -0.0088 -0.0201 -0.0119

0.7867 0.0229 0.0010 -0.0041

d 0.0500 0.1500 0.2500 0.3500 0.4500 0.5500 0.6500 0.7500 0.8500 0.9500

smax 0.8078 0.8078 0.8078 0.8078 0.8078 0.8078 0.8078 0.8078 0.8078 0.8078

smin 0.8043 0.7978 0.7925 0.7884 0.7857 0.7847 0.7854 0.7884 0.7939 0.8023
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Q15F1
2F2E22M2

M1
G1

1

2
F2
2FM21E2

M1
G1F1F2FM21E2

M1
G1F1F3F11

M2

M1
GF12

E2

M1
G1F2F3FM21E2

M1
GF12

E2

M1
G

1G1
2F2E21M2

M1
G2

1

2
G2
2FM22E2

M1
G1G1G2FM22E2

M1
G1G1G3FM2

M1
21GF12

E2

M1
G2G2G3FM22E2

M1
GF12

E2

M1
G

1M1
2Q5H FM12E2

M1
G22 1

2

q2

M1
2 J , ~B1!

Q252
F1
2

M1
2
G1
2

M1
2
F1F2

M1
1
G1G2

M1
1
F1F3

M1
F11

M2

M1
G1

F2F3

M1
FM21E2

M1
G1

G1G3

M1
FM2

M1
21G2

G2G3

M1
FM22E2

M1
G12

F1G1

M1

1M1Q5FM12E2

M1
G , ~B2!

Q35Q122F1
2FE22M2

M1
G22G1

2FE21M2

M1
G2M1

2Q5H F12
E2

M1
G22 q2

M1
2 J , ~B3!

Q45Q224
F1G1

M1
, ~B4!

Q55
F3
2

M1
2 FM21E2

M1
G2

G3
2

M1
2 FM22E2

M1
G22

F1F3

M1
2 12

G1G3

M1
2 . ~B5!

The new coefficients are

TABLE II. Values ofCB in S2→nen decay by~a! integrating numerically and~b! using the corresponding analytical expressions. The
dimensions ofCB are GeV2.

s ~a!

0.8078 0.0545 0.0595 0.0432 0.0191 -0.0067 -0.0297 -0.0463 -0.0531 -0.0466 -0.0223
0.8036 0.0825 0.0630 0.0305 -0.0042 -0.0338 -0.0527 -0.0562 -0.0408 -0.0053
0.7994 0.0604 0.0529 0.0273 -0.0022 -0.0272 -0.0416 -0.0410 -0.0228
0.7952 0.0392 0.0224 -0.0006 -0.0201 -0.0299 -0.0257 -0.0054
0.7909 0.0177 0.0017 -0.0124 -0.0177 -0.0101
0.7867 0.0052 -0.0035 -0.0044

~b!

0.8078 0.0545 0.0595 0.0432 0.0190 -0.0068 -0.0299 -0.0465 -0.0533 -0.0468 -0.0224
0.8036 0.0821 0.0622 0.0294 -0.0052 -0.0347 -0.0537 -0.0578 -0.0428 -0.0054
0.7994 0.0607 0.0529 0.0271 -0.0026 -0.0281 -0.0433 -0.0433 -0.0242
0.7952 0.0405 0.0232 -0.0004 -0.0209 -0.0315 -0.0272 -0.0050
0.7909 0.0195 0.0023 -0.0127 -0.0184 -0.0098
0.7867 0.0067 -0.0027 -0.0034

d 0.0500 0.1500 0.2500 0.3500 0.4500 0.5500 0.6500 0.7500 0.8500 0.9500

smax 0.8078 0.8078 0.8078 0.8078 0.8078 0.8078 0.8078 0.8078 0.8078 0.8078
smin 0.8043 0.7978 0.7925 0.7884 0.7857 0.7847 0.7854 0.7884 0.7939 0.8023
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Q65F1
2FE22M2

M1
2
p2by0
M1
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2FE21M2
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2
p2by0
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G12F1G1FE22p2by0
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G1~G1G22F1F2!Fp2by0M1
G1F2G2F211~1
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E

M1
1
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1
p2by0
M1

G1F1G2F211
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1~11b2!

E
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1
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E
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1
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2~12b2!

E
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1
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D G1F1G3F m2
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1

E

M1
D G2F3G1F m2

M1E
S 212

M2

M1
1

E

M1
D G

2~F2G31F3G2!F m2

M1E
SM12E22E

M1
D G , ~B6!

Q75F1
2F ~M11M2!~E22M2!

M1E
G1G1

2F ~M12M2!~E21M2!

M1E
G12F1G1FM1~2M11E212E!2m2

M1E
G1F1G2SE22M2

M1
D

3SM122E2E2

E D 2G1F2SE21M2

M1
D SM122E2E2

E D 1F3G1SE21M2

M1
D S m2

M1E
D 2G3F1SE22M2

M1
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M1E
D

1~F1F22G1G2!SE2
22M2

2

M1E
D . ~B7!

TheD1 andD2 coefficients of Eqs.~17! and ~18! are @1#

D15 f 18
213g18

2, ~B8!

D25 f 18
22g18

2 . ~B9!

and the new ones,D3 andD4, introduced in Eqs.~20! and
~21!, are

D352~2g18
21 f 18g18!, ~B10!

D452~g18
21 f 18g18!. ~B11!

In the above equations we have used the definitions

F15 f 181@11M2 /M1# f 2 , G15g182@12M2 /M1#g2 ,

F2522 f 2 , G2522g2 ,

F35 f 21 f 3 , G35g21g3 ,

TABLE III. Values ofCC in S2→nen decay by~a! integrating numerically and~b! using the corresponding analytical expressions. The
dimensions ofCC are GeV2.

s ~a!

0.8078 0.0547 0.0597 0.0434 0.0191 -0.0068 -0.0300 -0.0467 -0.0535 -0.0471 -0.0227
0.8036 0.1197 0.0972 0.0582 0.0156 -0.0221 -0.0483 -0.0573 -0.0445 -0.0063
0.7994 0.1436 0.1336 0.0951 0.0480 0.0047 -0.0261 -0.0377 -0.0249
0.7952 0.1770 0.1399 0.0869 0.0356 -0.0022 -0.0180 -0.0056
0.7909 0.2039 0.1388 0.0721 0.0212 -0.0020
0.7867 0.2426 0.1236 0.0309

~b!

0.8078 0.0547 0.0597 0.0434 0.0191 -0.0069 -0.0300 -0.0467 -0.0536 -0.0471 -0.0226
0.8036 0.1196 0.0971 0.0580 0.0157 -0.0217 -0.0478 -0.0575 -0.0457 -0.0069
0.7994 0.1432 0.1329 0.0946 0.0480 0.0050 -0.0262 -0.0387 -0.0263
0.7952 0.1756 0.1391 0.0872 0.0362 -0.0021 -0.0188 -0.0061
0.7909 0.2032 0.1398 0.0738 0.0222 -0.0021
0.7867 0.2456 0.1273 0.0325

d 0.0500 0.1500 0.2500 0.3500 0.4500 0.5500 0.6500 0.7500 0.8500 0.9500

smax 0.8078 0.8078 0.8078 0.8078 0.8078 0.8078 0.8078 0.8078 0.8078 0.8078
smin 0.8043 0.7978 0.7925 0.7884 0.7857 0.7847 0.7854 0.7884 0.7939 0.8023
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and

b5
l

E
.

APPENDIX C

In order to make this paper self-contained, we shall give
in this appendix the different functionsu i that were com-
puted in Refs.@1,6#. They are very long, but they have been
organized as

u i5
1

p2
~Ti

11Ti
2!, ~C1!

wherei52, . . . ,16, and

T2
656

17a6
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lnF 17b

12bx0
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6
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The following definitions are used in these expressions:
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En
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I 15
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arctanhb,
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APPENDIX D

In order to be sure that our calculations are correct, we
have cross-checked our results by performing numerically
the triple integrals involved in Eqs.~37!, ~38!, ~51!, and~57!

and then comparing these results with their analytical coun-
terparts in Eqs.~64!, ~69!, ~73!, and~74!.

From the former set of equations, the infrared-convergent
part of the bremsstrahlung decay rate can be rewritten in a
more convenient way as

dGB
ic5dV@D1CA1D2CB2 ŝ1•p̂2~D3CC1D4CD!#,

~D1!

where dV is given by Eq. ~35!; D1 , . . . ,D4 depend on
f 18(0) andg18(0) and are given by Eqs.~B8!, ~B9!, ~B10!,
and ~B11!, respectively.CA , CB , CC , andCD are easily
extracted from that set of equations: namely,

CA5
p2l

2pE21

1

dxE
21

y0
dyE

0

2p

dwk

1

2ED~12bx! H 2 l 2
12x2

12bx

1EnFw1~11bx!E2
m2

E

1

12bxG J , ~D2!

CB5
p2l

2pE21

1

dxE
21

y0
dyE

0

2p

dwk

1

2ED~12bx!

3H 2b l 2
x~12x2!

12bx

1pn•F k̂SE1w2
m2

E

1

12bxD1 lG J , ~D3!

TABLE IV. Values ofCD in S2→nen decay by~a! integrating numerically and~b! using the corresponding analytical expressions. The
dimensions ofCD are GeV2.

s ~a!

0.8078 0.0544 0.0591 0.0427 0.0184 -0.0074 -0.0304 -0.0469 -0.0536 -0.0470 -0.0224
0.8036 0.0894 0.0535 0.0101 -0.0312 -0.0636 -0.0814 -0.0799 -0.0554 -0.0070
0.7994 0.0834 0.0398 -0.0097 -0.0539 -0.0846 -0.0956 -0.0825 -0.0427
0.7952 0.0230 -0.0330 -0.0791 -0.1058 -0.1065 -0.0767 -0.0146
0.7909 -0.0619 -0.1098 -0.1285 -0.1101 -0.0498
0.7867 -0.1646 -0.1566 -0.0765

~b!

0.8078 0.0544 0.0591 0.0427 0.0184 -0.0074 -0.0304 -0.0469 -0.0536 -0.0470 -0.0223
0.8036 0.0894 0.0534 0.0103 -0.0306 -0.0627 -0.0808 -0.0802 -0.0570 -0.0077
0.7994 0.0833 0.0399 -0.0092 -0.0531 -0.0843 -0.0966 -0.0851 -0.0455
0.7952 0.0233 -0.0324 -0.0787 -0.1067 -0.1094 -0.0807 -0.0159
0.7909 -0.0613 -0.1103 -0.1312 -0.1146 -0.0531
0.7867 -0.1666 -0.1612 -0.0804

d 0.0500 0.1500 0.2500 0.3500 0.4500 0.5500 0.6500 0.7500 0.8500 0.9500

smax 0.8078 0.8078 0.8078 0.8078 0.8078 0.8078 0.8078 0.8078 0.8078 0.8078
smin 0.8043 0.7978 0.7925 0.7884 0.7857 0.7847 0.7854 0.7884 0.7939 0.8023
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p2
D
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3Fw2
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1

12b l̂• k̂
1~11b l̂• k̂!EG J , ~D5!

whereEn , En
0, w, F, D, andy0 are given by Eqs.~39!, ~23!,

~41!, ~42!, ~40!, and~22!, respectively.
In order to handle the scalar products containingŝ1 on the

right-hand side of Eqs.~D4! and ~D5!, one can follow the
procedure of Ref.@7# and make the replacements

ŝ1•p→~ ŝ1•p̂2!~p•p̂2! ~p5 l,p2 ,k,pn! ~D6!

or one can follow the approach discussed in the present pa-
per. Both procedures lead to the same results.

From Eq. ~96! the analytical counterparts ofCA , CB ,
CC , andCD are

CA5u81u-, ~D7!

CB5u81u-1u91u IV, ~D8!

CC5r11r3 , ~D9!

CD5r21r4 , ~D10!

whereu81u-, u91u IV, r1, r2, r3, and r4 are defined in
Eqs.~97!, ~98!, ~75!, ~76!, ~77!, and~78!.

The evaluation of such coefficients is presented in Tables
I, II, III, and IV respectively. In those tables, the dimension-
less quantitiesd ands are defined as

d5
E

Em
, s5

E2

M1
,

whereEm is given by Eq.~29!; smax and smin denote the
maximum and minimum values ofs within the three-body
region of the DP. For this comparison we shall work with the
S2→nen decay for definiteness.

APPENDIX E

The approach implemented in Ref.@7# to compute the
radiative corrections to the DP of polarized decaying hyper-
ons differs from ours mainly in two aspects.

First, in that reference it was assumed that real photons
are emitted by pointlike hadrons. This introduces model-
dependent uncertainties of the orderaq/pM1. This fact
makes those results unreliable beyondaq/pM1, just as ours.

Second, the dependence on form factors of the radiative
corrections is handled in that reference by fixing the form
factors. Unfortunately, if the CVC and PCAC hypotheses are
used to fix them, these assumptions are reliable inDS50
decays; they are affected by SU~3! breaking inDSÞ0, and
are completely unreliable in charm decays. Contrarily, our
approach is not compromised to particular values of the sev-
eral form factors.

Now, to make a comparison with Ref.@7# we need to
produce some numerical results.

From Eqs.~112! and ~113!, let

a15D1FD11D2FD2 , ~E1!

a25D3FD31D4FD4 , ~E2!

where

FD15E
m

EmE
E2

min

E2
max

@EEn
0~f1u11f8!1u81u-#dE2dE,

~E3!

FD25E
m

EmE
E2
min

E2
max

@2 l ~p2y01 l !~f1u1!1u81u-1u9

1u IV#dE2dE, ~E4!

FD35E
m

EmE
E2
min

E2
max

@2En
0ly0~f1u1!1r11r3#dE2dE,

~E5!

TABLE V. Numerical values of the integrated model-
independent radiative corrections to two hyperon semileptonic de-
cays. The dimensions ofFDi are GeV4.

Decay FD1 FD2 FD3 FD4

S2→nen -2.0431024 1.0831024 -4.5131025 -1.0831024

L→pen 5.6831025 8.4431026 4.4231025 3.5431025

TABLE VI. Numerical values of the relevant factors involved in our calculation. The several form factors are fixed as mentioned in the
text.Vus is taken from Ref.@8#. R is in units of 106 s21.

Decay (a/p)a1 ~GeV4) (a/p)(a1 /B1) (a/p)a2 ~GeV4) (a/p)(a2 /B2) R 100dR

S2→nen -4.17531027 -6.95331023 2.08631027 -5.20531023 5.972 -0.7
L→pen 3.46431027 1.63531022 2.45431027 1.97631022 2.944 1.6
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FD45E
m

EmE
E2
min

E2
max

@E~p21 ly0!~f1u11f8!1r2

1r4#dE2dE. ~E6!

The numerical computation of the quantitiesFDi , being in-
dependent of the different form factors, can be made once
and for all. In Table V we have tabulated the numerical
values ofFDi for some decays as an intermediate step in our
calculation.

In Table VI we display the numerical values of
some relevant coefficients as well as the relative radia-
tive corrections to the decay rate. Notice that the corrections

~a/p!~a1 /B1) and (a/p)(a2 /B2) are both small and of the
same order of magnitude. Table VII contains radiative cor-
rections to the angular spin-asymmetry coefficient of the
emitted hyperon. The masses of the particles involved are
those given in Ref.@8#. The values of the form factors were
fixed as@7#

S2→nen, g1 / f 1520.34, f 2 / f 1520.97,

L→pen, g1 / f 150.72, f 2 / f 150.97.

We have also neglected theq2 dependence of the form fac-
tors and the contributions fromf 3, g2, and g3. In those
tables, we define

dR5~R2R0!/R0,

da5aB2aB
0 .

The da and dR corrections toS2→nen andL→pen
decays are in acceptable agreement, within our approxima-
tions, with those computed in Refs.@7# and @12#, respec-
tively.
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TABLE VII. Comparison with Ref.@7#.

Decay 100aB
0 100da

This paper Ref.@7# This paper Ref.@7#

S2→nen 66.7 66.7 0.1 0.0
L→pen -58.6 -58.6 -0.2 -0.1
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