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Radiative corrections to the semileptonic Dalitz plot with angular correlation
between polarized decaying and emitted hyperons
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We obtain an expression for the Dalitz plot of semileptonic decays of polarized hyperons including radiative
corrections to ordex and neglecting terms of the ordeqg/ =M 4, whereq is the four-momentum transfer and
M is the mass of the decaying hyperon. Our results are specialized to exhibit the angular correlation between
such polarization and the momentum of the emitted hyperon. The model dependence of radiative corrections is
kept in a general form within this approximation which is suitable for model-independent experimental analy-
sis. Our final result, valid for charged as well as for neutral hyperons, allows us to obtain the angular spin-
asymmetry coefficient of the emitted hyper¢80556-282(97)04709-7

PACS numbeps): 14.20.Jn, 13.30.Ce, 13.40.Ks

I. INTRODUCTION corrections. There is no loss here, because strictly speaking it
is only these modified form factors that can actually be ex-
Measurements of form factors of hyperon semileptonicperimentally determined. The resolution of which part of
decays(HSD'’s) through the observation of the polarization them is due to strong interactions only and which part be-
of the decaying hyperon are more than just a complement dbngs to radiative corrections is really a theoretical problem
the measurements with unpolarized hyperons. Without thenly. To deal with the bremsstrahlung contribution to radia-
former not even parity violation could be established in suchive correctiongSec. Il) we shall use the Low theorefd].
decays. Both types of measurements are necessary to achidne our calculation we shall neglect terms of order
a determination of all the form factors that dress the weakxq/7M ¢, whereq is the four-momentum transfer amd, is
interaction vertex in these decays. For this task it is requirethe mass of the decaying hyperons. No model dependence
that, in addition to high statistics experiments, theoreticabppears then in the bremsstrahlung correction.
expressions as general and accurate as possible be available Our results will be presented in two ways. We shall first
In this latter respect radiative corrections must be taken int@btain the radiative corrections in an integral form, i.e., leav-
account. This has been done already for the Dalitz (69 ing indicated the triple integration over the photon three-
of unpolarized decaying hyperori4]. However, radiative momentum. However, the infrared divergence of the brems-
corrections depend on spins. It is the purpose of this paper tstrahlung part will be explicitly extracte@nd canceled with
obtain the radiative corrections to the DP of polarized initialits virtual counterpajtalong with the finite contributiong5]
hyperons. In order to be able to integrate over the photothat accompany it. This presentation will be ready for nu-
variables one is required to choose, in the center-of-masserical integration and up to this point it will represent a first
frame of the decaying hyperon, the angular correlation befinal result. Next(Sec. IV), we shall proceed to perform ana-
tween the polarization of the decaying hyperon and the dilytically the triple photon integrals. This will lead to our
rection of the emitted hyperon or charged lepton. We believesecond final resulSec. \j: a completely analytical expres-
it is more useful to choose the former. So this is what we desion for the DP of initially polarized hyperons including
here. order« radiative corrections. Moreover, we also give the
We shall follow the same approach of REL]. The vir-  expression for the angular spin-asymmetry coefficient of the
tual radiative correctiongSec. I) will be separated into emitted hyperon with radiative corrections up to the order of
model-independent(MIP) and model-dependenfMDP)  approximation previously mentioned. In Appendix A we de-
parts, according to the gauge-invariant analysis originally inscribe the manner in which the integrals were handled and
troduced by Sirlin[2] to study the radiative corrections to reduced to forms already computed. For the sake of com-
neutrongB decay. The MIP is finite in the ultraviolet and fully pleteness, in Appendixes B and C we reproduce the main
contains[3] the infrared divergence. We shall not compro- results of Refs[1,6]. This makes this article self-contained.
mise our calculation to any one model. The MDP can beAppendix D contains an internal cross-check.
totally absorbed into the already existing strong-interaction To our knowledge, there is one previous papgr ad-
form factors, without introducing new ones. Because of thisdressing the radiative corrections to the DP of polarized de-
our results will be suitable for model-independent experi-caying hyperons. In this paper the virtual corrections are
mental analyses. The price for this is that the measured forrhandled also following Ref[2]. However, the bremsstrah-
factors will be not the pure strong-interaction form factorslung contributions calculated are very model dependent.
but new ones which are modified by the MDP of radiativeFirst, the baryons are assumed to be pointlike. And second,
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the photon variables are integrated numerically in a, so taions to the center-of-mass frame Af No confusion is ex-
speak, global fashion by fixing the several form factors aipected because in this case our expressions will not be mani-
prescribed values, given by the C\(€onserved vector cur- festly covariant.

reny and the PCAGQGpartially conserved axial-vector current The uncorrected transition amplitubig for procesq1) is
hypotheses. The final results of R¢¥] are presented in given by the product of matrix elements of the hadronic and
numerical tables for fixed values of the energies of the leptoteptonic currents,

and emitted baryon: and E,. This method has shortcom-

ings that limit its applicability considerably. The CVC and Gy —

PCAC hypotheses are reliable only #86=0 decays. S(B) MO:E[UB(pZ)Wﬂ(pl!DZ)UA(pl)][UI(I)O,uU AP,
breaking affects them appreciably A5+ 0 decays and they

are completely unreliable in charm decays. Baryons are not

pointlike and extra contributions appear from their structure,yhere

introducing uncertainties of ordexq/M;,. Also, the fixed

values ofE andE, used in producing the numerical tables ) f,(9?) f3(9?)

will not agree in general with the values used to define théVu(P1,P2)=f1(a%) 7.+ M, wdT Ty e

bins of an experiment. Both methods, the one of R&fand
ours, will lead to the same results fAiS=0 decays and still
may give reasonable agreement wiIS+ 0, but will differ
considerably inAC+#0 decays. A comparison for twAS
#0 decays with Ref[7], using exactly the same values of ©)
the corresponding form factors, is given in Appendix E. TheHereO
agreement is quite reasonable.

@

92(9%) 9s(9*)
gl(q2)7M+ Ml O-,uqu-"_M—lq;L Ys5-

+

»= Yu(1+ vs) andq=p;—p; is the four-momentum
. ; . . transfer. Our metric and-matrix convention are those of
The ”.‘eth‘)d we follow |n'tr.1|s paper is not comm!tted to Ref.[1]. The leptonic current has the usu®l-{ A) structure.
any particular model. It exhibits theq/M,~0 approxima- For the baryon term theM— A) structure of the underlying

;:gg de;(tp;ﬁ'tly ;r&gufgfja?fésrﬁﬂi'tfagh?; tl:g dfl?(;m f?witr?lresri?:gguark transition is masked by the effects of the strong inter-
yp y P 9 ctions.f; andg;, the conventional vector and axial-vector

tables, we have produced detailed expressions that can . 2 Iy
evaluated at any set of values Bfand E, chosen by the lf'(?rm factors, are functions af- and, unless explicitly noted

user. Such an evaluation can be performed numericall O?therwise, we always deal with their valuesct<0.
: P y The polarization of the initial hyperon can be taken into

analytically within a Monte Carlo simulation. The advantage . . S
of thye anglytical expressions is to reduce enormously %hgccount by introducing the projection operaf6}
computational effort involved in the Monte Carlo procedure. 1— ysb;

Our long results have been organized to be used in a 2(31)=T, (4)
straightforward fashion. They will be reliable up to a preci-
sion around 0.5% over most of the DP. For high sta’E|st|c here the polarization four-vecta; obeys the conditions
experiments, with tens of thousands of events of HSD’s no -5,=(5,)%—5,-5,= — 1 ands,-p,;=0. In the center-of-
involving heavy quarks, this precision should be very satis—* >t ‘1 S S1 1 P1=".

factory. If charm quarks are involved, our results should be 1253 frame of\, s, reduces to a purely spatial unit vector

acceptable in experiments with thousands of evégis If which gives the spin direction. The observable effects of spin

higher statistics experiments with these quarks are envisF-)CJlanz"jltlon can be studied through the replacement

aged, our results represent a useful first approximation, but

(s 5
they should eventually be refined. Ua(P) = 2(S1)UA(PY) ©

in the corresponding spinor for the decaying hyperon.
The virtual radiative corrections to the DP of decdy
can be obtained using a similar procedure to IREf. which

We first introduce our notation and conventions and nex{S an extension of the procedure introduced in R&f. De-

we obtain the virtual radiative corrections. Let us considerf@ils are not needed to be repeated here. It is only important
the HSD to point out that such corrections can be separated into a MIP

M, that is finite and calculable and into a MDP which can be
o absorbed intoMy through the definition of effective form
A—B+Il+y, (1) factors. Hereafter this fact will be denoted by putting a prime
on M.

. With the above considerations, the complete decay ampli-
and denote the four-momenta and masses of the decayiRgqe with virtual radiative correctiondy, is

and emitted hyperons, the charged lepton, and the neutrino
involved in the process byp,=(E;,p1). p2=(E>,p,), My=Mj+M, . (6)
|=(E,l), and p,=(E%,p,) and byM;, M,, m, andm,,

respectively. We will assume throughout this paper that The MIP, given by Eq(4) of Ref.[1], is

m,=0. p, will denote a unit vector along the direction of
p,, etc.p,, |, andp, will also denote the magnitudes of the
corresponding three-momenta when specializing our calcula-

II. VIRTUAL RADIATIVE CORRECTIONS

o
M, =5_—[Mog(E)+Mp ¢ (E)], Y
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where@(E) and ¢’ (E), given, respectively, in Eq$5) and  ferential decay rate with virtual radiative corrections of un-
(6) of this reference, are polarized hyperons given by E@LO) of Ref.[1], with only a
slight difference: We have chosen, without loss of generality,

1 1 i i -
_ol T _ AL 2 a coordinate frame in the center-of-mass systerd afith
¢(B)=2 Barctanlﬁ Liin m B(arctanlﬁ) the z axis along the emitted hyperon three-momentum.
1 1 1 After a long but otherwise standard calculation the decay
- - _=- rate is compactly given by
+ﬁ|‘ 173 +Barctantﬁ 8
3 _CydEdEd e [ @ Aty
7B+ =In(My/m)  (NDH Vo2 (@n)p 1| Aot 7 (Aadt Al
B 2 ( 2 ) ( ) ’
+ 3 (8) A n, %o "o
EIn(Ml/m) (CDH) , —S1°P2 0+;(A2¢+A2¢ |- (19
1 Ab, AL, AT, AG, A, andAj depend on the kinematical
¢'(E)=| B— = |arctantg. (9) variables and are quadratic functions of the form factors.
B Their dependence on the kinematical variables is
According to our approximation, all the terms of the order Al=0O.EE°— O.E +1va)— Oal 1
ag/7M, and (@g/7M,)In(g/M;) have been neglected in 0= QiEE, = QoEPa(P2+1Y0) = Qal (P2Yo 1)
Egs. (8) and (9). In these equationg=I/E andL is the +Q4E%p,lyo— Qspalyo(patlyo), (16)
Spence function defined as
.1 A1=D1EE)~ Dol (Pyot 1), (17
L x)=f dt—-In(|1—-t|). (10
(x)= | dtgin(j1—t| Al=D,EE?, (18)
\ is the infrared-divergence cutoff that will be canceled by Al=QgEp,+ Q-Ely, (19)
its analogue in the bremsstrahlung contribution; NDH and 0 ’
S(?FI)DeI:ti\s/té:};d for neutral and charged decaying hyperons, re- A= —D3E8Iyo+ D.E(patlyo), (20)
The second matrix element in E() is "
@ A3 =DE(p2+1Yo), 21
:(i> E[U_BW)\UA][Wplo)\U 1. (11)  Wherey, is the cosine of the angle between the directions of
Pr\mMy NA ’ emission of the charged lepton aBd and is given by
Within our order of approximatiolV, (p; ,p,) in Egs.(7) (E®)2—p3—12
and(11) is reduced to Yo= %5 (22)
P2
Wy (P1,P2) =f1(0) ¥ +91(0) ¥y 5. (12} and by energy conservation

The DP with virtual radiative corrections is now obtained
by leavingE, andE as the relevant variables in the differ-
ential decay rate for proceg$). After making the replace-
ment (5) in Eq. (6), squaring it, and rearranging terms, we tio

E°=M,—E,—E. (23

The coefficient®); (i=1, ...,7) ardong quadratic func-
ns of the form factors whereas the -coefficie

can express (j=1,...,4)depend only on the leading form factors. Their
1 1 explicit forms are given in Appendix B.
> |MV|2=§2 MY 2~ 52 M2, (13 The primes in Eqs(16)—(21) indicate that the form fac-
Spins Spins Spins torsf; andg;, containing the model dependence of the vir-

tual radiative corrections, are the ones that appear in them.
This involves a rearrangement of terms of second order in
a in Eq. (15), but the remarkable fact is that to first order in
« only f; andg; can be experimentally determingdi].

Here M\, does not contairs; explicitly whereasM{® does.
Notice that we keep in Eq13) the one-half factor and the
minus sign arising from the definition of the projection op-
erator, Eq(4). This distinction is useful because it enables us

to express the differential decay rate as
IIl. BREMSSTRAHLUNG AMPLITUDE

dE,dEdQ,d 1 1 AND INFRARED DIVERGENCE
dry =2 Momm, 5 [My[2-5 Y, (M2
(2m) 2spins 2spins . . Lo .
In addition to the virtual radiative corrections, the brems-
=dr,—dry’, (14)  strahlung counterpart must be included in order to obtain the
complete radiative corrections to the DP of procgssup to
where dT'y, refers to the first term of the sum within the the order of approximation mentioned above. In this section

square brackets. It corresponds to the expression for the difve turn to the four-body decay
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A—B+l+p+7y, (24) dr.— M,mm, d®p, d3l d3k d3p,
B~ 2m® E, E 2w E,
where y represents a real photon with four-momentum
k=(w,k), and because of energy and momentum conserva- « Mal284(D:—D-— 1 —D —k 30
tion, E;=E,+E+E_ +w andp;=p,+I+p,+k. s,%s' 6l “0"(P1= P2 P, k). (30

First we will give the amplitude of proce$24); next, we
will extract the infrared divergence. Afterwards, we will give By analogy with the virtual case, the spin-independent

a complete expression for the differential bremsstrahlung deémplitudeM’ can be separated from the spin-dependent one
cay rate which along with Eq15) gives the DP with radia- MO so thatB
B

tive corrections of procesd).
Within our approximation and following the Low theorem
4] the transition amplitud®lg of process(24) is given b 1 b 1
[ ] p B p 5( ) g Y 2 |MB|2:_Z |MB|2__E |M(BS)|2’ (31)
spins 2 spins 2 spins

2l-€ N 2p;-€
21-k+X%  A2—2p;-k

eGy _
MB:_Z[UBW)\UA][UIOAUv]

5

where we also keep the one-half factor and the minus sign
coming from Eq.(4). Thus

2l k+ie dlg=dl'p—dry. (32)

e _ _
+ _GZV[UBW)\UA][UIékO)\UV]

%

=Ma+Ms, (25 With only minor changes, we can identiyT'y with the

. bremsstrahlung differential decay rate for unpolarized hyper-
whereM, andM, stand for the first and second summands,ns given by Eq(55) of Ref. [1], which leaves the triple
respectively. As in the virtual case, we have to make thentegration over the photon variables to be performed nu-
substitution(5) in order to study spin effects. Observe thatmerically. Such an expression can be reduced to the compact

Eq. (25 is gauge invariant and model independent; theorm (the upper indices andb replace the indices | and i
model dependence does not contribute to zeroth order igs this reference

ag/7M . W, should be the complete expression defined in
Eq. (3); however, to our order of approximation we must use

r_ ir a b
Eq. (12) instead.e is the photon polarization four-vector and dl'g=dl'g+dl'g+dlg. (33
\ is a small mass given to the photon to regularize the infra-
red divergence. The explicit form of each contribution is
Because we concern ourselves with the radiative correc-
tions to processl) and not with the proces®4) itself, our AT = fA/TT - (K/\) + C+ Ca 1+ C1dO 34
analysis will be restricted to the three-body region of the DP o= {Aillo(k/) 1]+ Catd2, 39
of the latter defined by1]
where
ENN<E,<EJ (26)
do- @ G2 dE,dEdQ,d g, .
and T 2 (277)5 1- (35
mM<E<Ep, (27 Herely(k/\) fully contains the infrared divergence a
. andC; are the finite terms that come along with it. We do
with not need their explicit forms here. Likewisg, is given by
Emax, min_ 1 M E-+| % 28 Bz L 1-x2

2 =5(My—E= )+m (28) szszz|7(1+YO)f_ldey (36)

and . .
wherex is the cosine of the angle betwekandk.
5 2. 2 On the other hand,
£ _Ml—M2+m (29
m 2M, pol (1 B2 1-x2
ngZ —dQ 2—f dX? W(DlE'F D,lx)

That is, although we assume that real photons are not de- T
tected, we also assume that events whose eneBiaad Yo 2d,
E, do not satisfy the three-body energy-momentum conser- Xf 1dyf0 o (37)

vation restrictions of Eqg26)—(29) are rejected.
The bremsstrahlung contribution to the differential decay
rate is given by9] and
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) pol 1 27 Yo 1 The infrared divergence is contained in the first three terms
dl“,fszf de d‘PkJ dym within the square brackets. The remaining two terms con-
-t 0 -1 verge in the infrared. In order to deal with the infrared di-
m?E,w vergence properly, we will trace a close parallelism with the
x Dl[ E,w+(1+BX)EE,— K } analysis of Ref[10], which refers to the radiative corrections
to the DP ofK _; decays. This approach can be adapted to our
. m2k case by using the invariant mass= (p,+k)?, which in the
+Dapy | K(E+W)+1= 51, (38  center-of-mass frame & is given by
with 7=M3Z+M3+m?—2M,E—2M,E,+2EE,— 2p,ly.
45
E,=E%-w, (39 45
A and » are related through
D =E%+ (p,+1)-k. (ag Y7 g
¢y is the azimuthal angle of the photon ayds the cosine of y=Yo— 7 _ (46)
the angle betweehandp,. Furthermore, O 2p,l
W= % (41) On the other hand, the most general formspfi depends

on both 6, and ¢, the polar and azimuthal angles lpfre-
spectively. The terms directly proportional to gpslrop off
after integrating ovep, from 0 to 27r. Hereafter those terms
F=2p,l(yo—Y). (42)  Wwill not be considered. With the proper orientation of the
coordinate axesp, along thez axig), the dependence on
Now we turn to studydl'$? and collect both results after- cosf, is further reduced ty. Thus,dI'5 will not show ex-
wards. For convenience, let us spilit*gs) into two parts plicitly “sl.i any longer.
The sum overe is still awaiting. In all infrared-
convergent terms the ordinary covariant summation can be
. . used. However, in the infrared-divergent terms the longitu-
where dFIB contains E|M§)|2 and dF'E'; contains  ying degree of freedom must be inc?luded. We can acgom-

2 t ! e _ ; _ - v
E_(|ME,S)| +2 RgMPI[MPTT). dl'g  contains infrared-  pjish this by using the Coester representafibti] in which
divergent terms as well as infrared-convergent ones and

where

dry)=dry+dry, (43)

dI'} is infrared convergent. (a-k)(b-k)
Explicitly we have > (a-€)(b-e)=a-b— —r (47)
e’GS  4M,

> IMP2

—Dss; - IE2+Dys, - p,E
& 2 MmeV[ 3S11E, T DyS - P2

wherea andb are arbitrary four-vectors and

- - - 2=k2+\2. 4
+D4S; IE+D3S; - W+ D5 -KE] W A “8)

) The expression fonil"{3 once the explicit separation of the
2 ('_6_ P1- 6) (44) infrared-divergent terms from the infrared-convergent ones is
Ik pg-k/ - performed becomes

€

. d3k d3p 2p;-1 m? M2 p,l  d3k d3p
| _ . ’ v el —pn — _ _ _ d
2 T.02
o 0 A~ A 7 ~ - 7 ~ A B 1—(l-k)
X 84 (p1—p2—1-p, k){(DsEu DAE)Sl'p2_2p2+ Ds%'Dz'(Yo 2p,] +D451'kE}W]_W2 —(1_,3?.'2)2-
(49

The infrared-divergent integrand is easily identified as

1 d%d?® 2p,-| m? M?
p P1 1 } (50

IO(E’EZ!kvan):%an EV y(pl_pz_l_p"_k)[(plk)(lk)_(lk)z_(plk)z
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The invariant mass is now integrated from a small photon ma&st its maximumy,, given by 7,=2p,l(1+Y,). The
second part in Eq49) is infrared convergent. The useyfs an integration variable in such expressions will allow us to apply
Eq. (38) of Ref.[1]. Therefore, after performing the integration over th&unction we have

| “ 1 B2 (Yo 1 2m poly\~ -
-1 -1 0
0.€[ 8 ot P25, k) i 5D
S p2 S (1_ﬂ’|\|2)2

The infrared-divergent integral is given explicitly in EQ7) of Ref.[10]. With only minor changes, it can be adapted to
our notation as

|o(E.E,) = <arctantg| 2In| 2| +1n| || _L o2 L A o (T T
o B,Eo) = garctantp 2In| = 1+In| 220 |7 B Ay ) T et T @) AN N TN 2wy )
(52
where
(E+Dr.=[E%2%(q?—m?)—a’E/4] = {[E%?(q?>— m?) — a’E/4]?— m?a*/16}*2, (53
with
= Nm(4p2l — 7m), (59
q?=M35—2M,E,+M3. (55)

The alternative approach to extract the infrared divergence and the finite terms that come along with if bf &lefws
us to verify that

lo(E,Ep)=1o(k/IN)+C+Cy. (56)

Thus, both approaches lead to the same results. In the above expressions, we have putl g(k&t)oto avoid confusion.
On the other hand;iI"EL can be computed with no difficulty due to the fact that the trace calculation is carried out with
standard techniques. Thus

| % Yo 1 21 1 - m? 1
dra=dQ 1olyf_loleo d(pk—D(l_’BT.R)[Sl |Hw Ea a0 )+(1+3| K)E|ID,~E,IDs
+ m’ +(1+81-k)E D+”|2( m* ! +(1+B1-k)E |wD
W—— —————— Kl W——=———+ . w
1 P2 E(lﬁ ) (1+4i- poDsts; E (1-410) (1+8 4
(W= =
E (1—ﬁ|-k)

The infrared-convergent parts of E¢87), (38), (51), and  (15) and (32) gives the desired formula. The integrations

(57) can be cast into a very compact form, namely, over the three-momentum of the real photon in E&),
_ o (39), (51), and(57) can be performed numerically.
dIg=dQ[D;Ca+D,Cg—5;-pa(D3Cc+D4Cp)]. It turns out that the remaining photon integrals can be

(58) performed analytically. This we shall do in the next section.

o _ This way a completely analytical result will be obtained.
The coefficientsC,, Cg, Cc, andCp, are collected in Ap-  This will be our second final result.

pendix D.

At this point we have reached our first final result. The DP
of polarized decaying hyperons with radiative corrections to
order « and in the approximation of neglecting terms of The integrals over the real photon three-momentum indi-
order ag/ 7M1 is obtained by adding Eq$51) and(57) to  cated in Eqs(51) and(57) can be performed analytically. To
get the result for Eq43) and then by using Eq33) along  achieve this it is convenient to separate them in groups. Most
with this Eq.(43) to form Eq.(32). Finally, the sum of Eqs. of them can be identified with analytical integrals obtained in

IV. ANALYTICAL INTEGRATIONS
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Ref. [1]. Others are new, but they can be identified withIn the above expressions we have used the definitions
integrals performed in Ref6] or reduced to combinations of

such integrals. In Appendix A we give a complete list of the 1, 1 1-x?
integrations to be performed and explain how they can be 0o=5 B (1+Yo) ,1dx—(l—,8x)2’ (67)
handled.
There are certain types of integrals arising from the terms 0,=14(E,E,). (68)
depending on the spin of the decaying hyperon whose form
is 0,, ...,05 are given in Appendix CD,; and D, can be
o found in Appendix B.
1 2m S r Next we obtain
f de d(Pk 0 = oo (59)

o LB (et DKL ALK dr8=dO[(D;+D,) 6" +D,6V], (69)
where r may denotel, p,, or k, and m=1,2,3 and \here
n=0,1,2. It is important to remark that not all the possible
combinations ofm andn occur. The above integrals can be p,l 0 ) - B2 0 E
performed analytically by exploiting the symmetries exhib- 6" =—-| —(E,+E)(1=5%) 0,+| —5—E+E, 0= 5 0,
ited in the integrands, i.e., their transformation properties
under rotations. The right orientation of the coordinate axes | 1-p? 2E— ES 1
will simplify our task enormously because most integrals can ot 0 —5— 07508~ 72 09|, (70

be reduced to the forms computed in Ré¢fs6], namely, to
the functionsg; (i=0, . . . ,16)defined there and reproduced D,
in Appendix C of the present paper for the sake of complete- 0'V=72[ — 60— Eg(l— BXo) 05+ 5804]: (71
ness. Other integrals are simplified by integrating first over
the angular variables of the photon; the last integration Steevith
is overy. There are five different types of these integrals,
viz.

: P2yotl

Yo v

Moo= f_ldy' (60)

bg, . . .,0g are given in Appendix C.
Similarly we get

Yo 1
= [ Tdy=——, 61 NP
(e f—l yG(Y) (61) dlg=dQs;- po[As0;+D3py+Dyp,] (73
Yo L [ESHIG(y)2 and
772+j:f dy[G(y)]*? ]In[W’ (62) I
-1 v y dl'g=dOs;-py[ Dsps+Dypal, (74)
wherej=0,1,2 and where

G(y)=EY +2p,l(y—yo). (63 L )
plZE[ZEVHO_glO+2§11+(B —1){10l, (79
In Eq. (62) a subtle point arises. The integrand has a vertical
asymptote aty=y,. We therefore integrate from-1 to E
Yo— &, thus obtaining a function of, and then find the limit I ot +(B2—
of this function where—0. We will give the explicit results P2 2[ A 80~ xawk 2xart (B~ Lxtsal (79
at the end of this section.

Because of space limitations, it is impossible to detail the B 0
full steps of integration. We will follow a straightforward 3= 7L~ 2E.{11t Ll + 5
procedure and give only the relevant results.

E—ES X31
—Edxn+ TXzDL 1E

We first obtain 1
| +(1- B2)ENX 125 (1= B Xz, (77
dlg+dlE=dQ[(D,;+D,) 0 +D,0"+A;60:], (64
B ln ™| P38
where pa=75| ~ELwot 2Bint 5~ = l| T 5%
e _ — 20+ Xz m
0’ =5 L= B) 82 205+ ba], 3 *t2 _X20+2X21+E_?X22}- (78

The p; depend on other functions, viz;, x;, and y,.

H_pzl 2
0'="1260-E(1-5 )03 B 04+ 105]. 8 The first two types of functions come from the integrands
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containing%l'f and :Q,l Kk, respectively, andy, contains all

the terms directly proportional t§ - p,. Their explicit forms
are

{10=3[ 72— (P5+12) 3], (79
ST 0
E—_(E+EV)(‘93_‘94)+|‘95+P2,3912a (80)
4
527 = B~ P2yo) + (2~ 3)ES~3E65+ [ (1~ p2yo)
—3(E%+E)]0,— 3B8(E+E2) g5+ pZZﬁEyO 0,
1
—3EB%010— ag2 t1e (82)
4

= (E+EN (0, 05) + E(05~ 04) +P2B011, (82)

0
X10

EV
T =m0+ (P31 =5 s+ (312 7). (83

=—E%[ 7o+ (p3—12 L +12 +1
X20 Al 70+ (P3—19) 71] 572 (P2Yot 1) 73

[
+5EPE 1% 74, (84

1+
X”—(1+ Yolln| 7 ﬂ—ﬁ(E+ES)93+|94, (85)
X21
S = (P2YoB+2E,+2E) 63— 2(E+E}) 6,—21 65
E+E° 1
TS 97+ 03— P2B012, (86)

)|(5_3|1:[6E(/32_3)(E+ E%)—8p,ly,] 65+ [ 18E(E+E?)

0

v

+21(4p,yo—31)]04+ 18(E+E®) 65— L
, 1
+ 18' 010+ 015+ E 916’ (87)
2l g 0
X12— 1 ﬁz_I(E‘i‘E )02+E|03, (88)
A2 _[2p,ly o+ AE(E+ES)]0,~ AE(2E +ED) b+ 4E%0,
—(E+E®) 05+ E6,—2p,l 641, (89
m? 1

5709

019, . - . 016 are given in Appendix C. Let us recall that all
the functions#, are computed in Ref§1,6]. On the other
hand, the functionsy; defined by Eqs(60)—(62) are explic-
itly given by

70=1+Yo, (9D
1 =
" 2pa (o 17/ 2
=4 [P 2 | 4
"2 3p,l E E¥— (p,—1)?
3 0
po—I E,+po—I
( £ ) In S—— ] (93
Bl 4EY | ppmt [ES+p,-
T | E (2] ED —po+|
(99
1 {I ES—(p,—1?] E° E8+p2—l]
= n + n .
4 p,IEY 4(p,—1)? po—| | ES—po+I
(95

We can now collect our partial results and the bremsstrah-
lung decay rate finally becomes

dlg=dl'g—dI'y
=dQ{(D1+D,) (8" +6")+Dy(6"+6Y)+AL6,
—81-Po[Ay01+ Da(p1+ p3) + Dalpot pa) 1},
(96)
whered(} is given in Eq.(35),

Pl 1+ p? E
0'+ 6 2[ E%1-8%)6,+| E°— 5 E|0at 50,

| 1-p2  2E-E° 1 1
- 565+ 2 06 2E 7+ 208 Eag y
(97)

|
0"+9'V=p72[90—(E+E3+,3p2y0)93+(E3+E)94+|95],
(98)
and
arctanig

All the integrals that remained indicated in E¢S1) and
(57) have now been analytically performed; i.e., these two
equations have the analytical counterparts given in E8.
and (74), respectively. Thus, the complete bremsstrahlung
differential decay rate is collected in E®6).

As a cross-check, we also integrated numerically Egs.
(37), (38), (51), and(57) over the photon variables and com-
pared with the corresponding analytical results in EGd),
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(69), (73), and(74). All this is included in Appendix D. One The uncorrected differential decay rate can be obtained

can observe that both results coincide remarkably well. Leimmediately if the terms proportional ta/# are dropped
us now turn to our closing section. from Eq. (102, i.e.,

GZ dE,dEdQ -
Y. FINA.L RESULTS AND DISCUS?IONS | dF°:7V (2277)4 22M1[A6_31' pzAS], (105
The differential decay rate of HSD's in the variablgs
and E,, that is, the DP, with nonzero polarization of the \jth A} and A} given by Egs.(16) and (19), respectively.
initial hyperon including radiative corrections to orderis  When we integrate this expression over the kinematical vari-
given by ables restricted to the three-body region of the DP we obtain,
for the uncorrected decay raR®,

2
\%
dI'y is given by Eq(15). FordI'g we have two forms. In the ROZWM 1B1 (106)

first one the triple integration over the real photon variables

remains to be performed numerically. It is given by the suManq, for the uncorrected angular spin-asymmetry coefficient
of Egs. (37), (38), (51), and (57). The infrared divergence f the emitted hyperon,

and the finite terms that accompany it have been explicitly

and analytically extracted, however. The second form of 0 B,
dI'g is completely analytical; all integrations over the photon @B~ T g (107)
variables have been explicitly performed. It is given by the !
sum of Eqs(64), (69), (73), and(74). where
Our analytical result can be cast into the compact form
Em [E,max ,
_ G§ dE,dEdQ, e .. B1= fm L ” i AGdERdE, (108
dF(A—>B|V|):7(ZT)42M1 Ayt ;Cbl—srpz 2
« B,= f o f & ALAE,dE (109
X Ag+—c1>2H, (101) 2w Jegn O
a
where Within our approximations, the radiatively corrected inte-
grated observables starting from Ed01), turn out to be
D,=A1(p+0,)+Ap'+(D1+Dy)(6" +60") G2 o
= — + J—
+D,(6"+6"Y), (102 R= gV Bt T2 (110
Dy=Ay(p+ 601)+ A0 +D3(p1+p3)+Da(patpa). and
(103 B+ (alm)ay
ag= (111

AL, AL, @, 00, A], ¢', Dy, Dy, 0"+ 6", and@”+ 6" have Bit+(a/m)a;’
been previously computed] and are given in Eqs(16), .
(17), (®), (99), (18), (9), (B8), (BY), (97), and (98) in the ~ With
present papery, Ay, 64, A3, D3, D4, p1, po, p3, andpy £ rpmax
are new expressions and are, respectively, given in @§s. alzf mf 2 ®,dE,dE, (112
(20), (68), (21, (B10), (B11), (75), (76), (77), and(78). m JE;"
Despite its length, the analytical form of EG.0J) is ba-
sically simple and organized in a way that is easy to handle. Em [E2
Its main usefulness lies in that it can be incorporated into a az= Jm fEmin PodEdE.
Monte Carlo simulation of an experimental analysis, reduc- 2
ing cqnsidera_tbly the 'corr_lputatio.nal effort required by the T4 our knowledge Eq(101) is the only analytical expres-
triple integration pending in the first form of our result. sion available in the literature. There is, however, one previ-
From the DP equatio(iL01) we can proceed to obtain the o5 papef7] addressing the radiative corrections to the DP
total transition rateR and the spin-asymmetry coefficient of o polarized decaying hyperons. In order to make a detailed
the emitted hyperomg . This last quantity is defined as comparison we also need to produce numerical results. This
is done in Appendix E. The main advantage of the closed
_ N(0g<m/2)—N(0g>m/2) (104) analytical expression of the one of Sec. Ill, which is to be
N(Og<m/2)+N(0g>w/2)’ integrated numerically, is that in a Monte Carlo simulation it
provides an enormous reduction of computer effort. The
whereN(0g</2) denotes the number of emitted hyperonsfeeding of such analytical results into a computer is not
with momenta in the forward hemisphere with respect to thavorse than the feeding of the numerical results of R€F.
polarization of the decaying hyperon, etc. Thus in practice, the use of the analytical results is of great

(113

ap
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advantage over the use of the one to be integrated numeri- .,
cally or the use of numerical tables. J dy[F(y)]m*J dQy

A generalized practice in experimental setups is the appli- 7 1 S
cation of kinematical cuts to the observed electron an emitted A A
hyperon kinematical variables. They result in that only a re- 5277(51' P2) Yo (A1)
gion of points and not the full DP is accessible in an experi- pal
ment. However, on each one point of the DP the photon
momentum integration limits do depend on the values of o
(E,l) and €,,p,) of that point, i.e..kmn(E,l,.E»,p,) and  Wherey=p,-| andF(y) was defined in Eq(42). S* stands
KmaxdE.|,E2,P,). Thus, the common kinematical cuts are au-for the surface of a unit sphere in three dimensions and
tomatically taken into account in the integration limits of the d€2x is the element of solid angle of the photan=1,2,3
emitted photons at each point. Therefore, our complete ex@ndn=0,1,2, discarding the valuggo and xs,.
pression Eq(101) is appropriate for Monte Carlo simulation. ~ The second kind is

Concerning the integrated observables the situation is dif-
ferent. In as much as experiments quote measurements of the o
decay rate and asymmetry coefficients, the effects of the par- fyod [F( )]p_lf 40 S
ticular cuts and biases of an experiment are already taken ) _; Ny 2 k[E?/+(p2+|).|2]p[l_’3T.|2]q
into account in the error bars of that experiment. However,
the definition of these observables is theoretical and indepen- ~ o~
dent of the peculiarities and limitations of a specific experi- 5277(31' P2)
mental setup. Accordingly, the theoretical expression of P,
those observables must be fully integrated, regardless of par-
ticular cuts and biases. This must be done so whether radiavith p=1,2 andq=0,1,2, without considering the values
tive corrections are included or not. {20 and{y;.

Let us stress that our results are model independent and Let us notice that the integrand in all these integrals re-
are not Compromised to any particu|ar Values Of the differenmains a Scalar Under I‘Otat.ions Of the COOI’dinateS. Theref.ore,
form factors. All of the model dependence of radiative cor-We may choose the coordinate systems to compute the inte-
rections has been incorporated ifitoandg, form factors, in grations in which th_e integrand acquires the simplest form.
our approximation of neglecting contributions of order FirSt 16t us consider the particular case
ag/7M . This is indicated by putting a prime on them. For
nonheavy hyperons our results are reliable up to a precision o
of around 0.5%. This precision is useful for experiments in- l.— fyodyf Q ;- K (A3)
volving several thousands of events. For experiments involv- 1 <2 k E(V)+(p2+ - k'
ing several hundreds of thousands of events or in decays
involving charm or heavier quarks E¢LO1) gives a good
first approximation. In these latter cases our results can bgfter integrating overd(), we get
improved following the approach of this paper. This, how-

8-k
[ES+ (pp+1)-K]™[1—B1-K]"

$oq: (A2)

-1

ever, involves a non-negligible extra effort. We shall attempt Yo &-(potl) { E(V’ ESJF JG” ]
this elsewhere. ;=27 | dy Y - =In| —; =1 (,
To conclude, let us remark that our results are valid both -1 VG’ E,— VG’
for neutral or charged decaying hyperons and whether the (A4)
emitted charged lepton is an electron or a muon.
where
G'=p3+12+2p,-1. (A5)
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[1,6] appear. They are mainly of two kinds: pol
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TABLE I. Values ofC, in 3~ —nev decay by(a) integrating numerically an¢b) using the corresponding analytical expressions. The
dimensions ofC, are Ge\?.

o @
0.8078 0.0545 0.0593 0.0429 0.0186 -0.0072 -0.0303 -0.0469 -0.0537 -0.0472 -0.0227
0.8036 0.1053 0.0739 0.0340 -0.0056 -0.0383 -0.0589 -0.0630 -0.0464 -0.0064
0.7994 0.1162 0.0833 0.0420 0.0020 -0.0297 -0.0478 -0.0482 -0.0276
0.7952 0.0899 0.0486 0.0096 -0.0200 -0.0351 -0.0317 -0.0069
0.7909 0.0531 0.0159 -0.0106 -0.0216 -0.0133
0.7867 0.0191 -0.0022 -0.0063
(b)
0.8078 0.0544 0.0592 0.0428 0.0185 -0.0074 -0.0304 -0.0470 -0.0538 -0.0474 -0.0228
0.8036 0.1049 0.0729 0.0327 -0.0068 -0.0393 -0.0600 -0.0644 -0.0482 -0.0064
0.7994 0.1163 0.0828 0.0414 0.0015 -0.0303 -0.0489 -0.0496 -0.0283
0.7952 0.0906 0.0492 0.0102 -0.0196 -0.0351 -0.0317 -0.0062
0.7909 0.0554 0.0182 -0.0088 -0.0201 -0.0119
0.7867 0.0229 0.0010 -0.0041
o 0.0500 0.1500 0.2500 0.3500 0.4500 0.5500 0.6500 0.7500 0.8500 0.9500
gmaxX 0.8078 0.8078 0.8078 0.8078 0.8078 0.8078 0.8078 0.8078 0.8078 0.8078
gmin 0.8043 0.7978 0.7925 0.7884 0.7857 0.7847 0.7854 0.7884 0.7939 0.8023
J
with y10 defined by Eq(83). aT”Jl(ozl,ozz)
A similar procedure can be followed to compute
2 5k (52 5k
|2:j dyF(Y)szQk o F 5 =27 T X20 =—E) L4 — o =
—-1 5 [E,+(pot+1)-Kk] P2 S [E a1+ (pat+1)-kK]Ta,—Bl-K]
(A7) (A10)

and so on. d
It is important to remark that with this approach we are®"
able to improve two previous results. First, the valuengf
given by Eq.(94), corresponds t@, given by Eq.(102) of
Ref.[1]. Thus, the former value supersedes the latter. A fur- ¢
ther simplification is (9712‘]1(“1'“2)

05— 21 65=2(1+Yy). (A8) :_fz sk (A11)
S

Qk[E8a1+(p2+l>-R][az—ﬁi-k]z

The above results may help reduce the numerical computa-
tional effort involved.
On the other hand, the other integrals can be computednd so forth. Therefore, the remaining integrals can be ob-
with no difficulty if we consider the most general case tained by differentiating with respect either &g or to a5,
and setting both of them equal 1. At this point we can save a
o considerable amount of work if we use the previous results
s -k presented in Refg1,6].

“[ESay+ (po+1)-Kl[ay— BT-K]
(A9) APPENDIX B

Jl(al,a2)= f ZdQ
S

The coefficient®Q; andD; involved in Eqs(16)—(21) are
where @; and a, are real parameters ranging from 0 to 1.quadratic functions of the form factors. We shall repeat the
Observe that explicit forms of Ref.[1] for completeness,
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TABLE Il. Values of Cg in 2~ —nev decay by(a) integrating numerically an¢b) using the corresponding analytical expressions. The

dimensions ofCg are Ge\2.

(o @
0.8078 0.0545 0.0595 0.0432 0.0191 -0.0067 -0.0297 -0.0463 -0.0531 -0.0466 -0.0223
0.8036 0.0825 0.0630 0.0305 -0.0042 -0.0338 -0.0527 -0.0562 -0.0408 -0.0053
0.7994 0.0604 0.0529 0.0273 -0.0022 -0.0272 -0.0416 -0.0410 -0.0228
0.7952 0.0392 0.0224 -0.0006 -0.0201 -0.0299 -0.0257 -0.0054
0.7909 0.0177 0.0017 -0.0124 -0.0177 -0.0101
0.7867 0.0052 -0.0035 -0.0044
(b)
0.8078 0.0545 0.0595 0.0432 0.0190 -0.0068 -0.0299 -0.0465 -0.0533 -0.0468 -0.0224
0.8036 0.0821 0.0622 0.0294 -0.0052 -0.0347 -0.0537 -0.0578 -0.0428 -0.0054
0.7994 0.0607 0.0529 0.0271 -0.0026 -0.0281 -0.0433 -0.0433 -0.0242
0.7952 0.0405 0.0232 -0.0004 -0.0209 -0.0315 -0.0272 -0.0050
0.7909 0.0195 0.0023 -0.0127 -0.0184 -0.0098
0.7867 0.0067 -0.0027 -0.0034
1) 0.0500 0.1500 0.2500 0.3500 0.4500 0.5500 0.6500 0.7500 0.8500 0.9500
g 0.8078 0.8078 0.8078 0.8078 0.8078 0.8078 0.8078 0.8078 0.8078 0.8078
gmin 0.8043 0.7978 0.7925 0.7884 0.7857 0.7847 0.7854 0.7884 0.7939 0.8023
2E,~M,] 1 __[M,+E, M,+E, ) E, M,+E, E,
=F? + SF3 ———— |+ FFy| ——— | +F,F4{ 1+ 1——=|+F,F 1- —=
Ql l[ Ml } 2 2[ Ml 12 Ml 173 Ml Ml 23 Ml Ml
2E,+M 1 M,—E - E M,—E E
2 2 2 ol M2 Ep 2~ E2 2 2 27 B2 2
-=G +G;G +G1G3 ———1||1-—=|-G,G -—=
1[ Ml 2 2[ Ml } ' 2[ ! 3[M H M } z 3[ Ml H MJ
M;—E,]> 1 ¢?
2 1 2
+
MlQSH M, } 2 M) 6D
Q2= M, M; M;  M; M, My M; | M, M, [M; M, | M, M,
Mi—E,
+M1Qs M : (B2)
1
_ o| E2—= M2 o E2+ My 2 27 @
Q3=Q1—2F7 M, —2G7 ™, ~MiQs 1=l (B3)
FlGl
Q4=Qx—4 Mo (B4)
1
2 2
22 M2+E2 _% MZ_EZ . F1F3 GlG3 (BS)
M2 M, M2 M, M2 M3

The new coefficients are
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TABLE lIl. Values of C¢ in 3~ —nev decay by(a) integrating numerically an¢b) using the corresponding analytical expressions. The
dimensions ofC. are Ge\?.

o @
0.8078 0.0547 0.0597 0.0434 0.0191 -0.0068 -0.0300 -0.0467 -0.0535 -0.0471 -0.0227
0.8036 0.1197 0.0972 0.0582 0.0156 -0.0221 -0.0483 -0.0573 -0.0445 -0.0063
0.7994 0.1436 0.1336 0.0951 0.0480 0.0047 -0.0261 -0.0377 -0.0249
0.7952 0.1770 0.1399 0.0869 0.0356 -0.0022 -0.0180 -0.0056
0.7909 0.2039 0.1388 0.0721 0.0212 -0.0020
0.7867 0.2426 0.1236 0.0309
(b)
0.8078 0.0547 0.0597 0.0434 0.0191 -0.0069 -0.0300 -0.0467 -0.0536 -0.0471 -0.0226
0.8036 0.1196 0.0971 0.0580 0.0157 -0.0217 -0.0478 -0.0575 -0.0457 -0.0069
0.7994 0.1432 0.1329 0.0946 0.0480 0.0050 -0.0262 -0.0387 -0.0263
0.7952 0.1756 0.1391 0.0872 0.0362 -0.0021 -0.0188 -0.0061
0.7909 0.2032 0.1398 0.0738 0.0222 -0.0021
0.7867 0.2456 0.1273 0.0325
6 0.0500 0.1500 0.2500 0.3500 0.4500 0.5500 0.6500 0.7500 0.8500 0.9500
oM 0.8078 0.8078 0.8078 0.8078 0.8078 0.8078 0.8078 0.8078 0.8078 0.8078
g™min 0.8043 0.7978 0.7925 0.7884 0.7857 0.7847 0.7854 0.7884 0.7939 0.8023
E>—M;  pBy Ex+ My pyBy E>—p2By pﬂy
2| =2 2 2 0 2| =2 2 2 0 2 2 0 2 0
= - + — + |+ +
QG Fl{ Ml Ml G Ml Ml 2F1Gl Ml (GlGZ F FZ) FZGZ (1
E Ez P2BYo M, pzﬁYo M2 pzﬁyo
+B)—+—+ + + 2 (1+ -1-—= + +
,B)Ml M, M, Fi1Gy —1 M, (1 5) M, —GiF, —1 1 ,3) M,
2 2 2
E> pzﬁ)’o M m Mz E
2
- ——=— + +—=+ — -—4+—
FsGs [W(l (1= ﬁ) M, P13y E M, E -1 M, M, ~FGl e M, E -1 M, M,
(F,G +FG)[ m (MI_EZ_E” (B6)
293 3992 M 1E M 1 ’
(M{+M>)(E,—M,) (M{—M>)(Es+M>) M;(—M;+E,+2E)—m? E,—M
Q7:F% 1 2 2 2 +G§ 1 2 2 2 +2F1G1 1 1 2 +Fle 2 2
M,E M,E M,E M,
M,—2E—E, E,+M,\[M;—2E—E, E,+My| [ m? E,—M,| [ m?
X|——=| — + —| =] - =
( E ) G1F2 M, E FaG1 M, M,E GsF M, M,E
F.F,—G,G Ea— M3 B7
+ - —.
( 1t 2 1 2) M E ( )
|
The D, andD, coefficients of Eqs(17) and(18) are[1] D4:2(912+f191)- (B11)

D;=f1?+39;%

D,=f1%-9;%

(B8) In the above equations we have used the definitions

(B9)

F1:f1+[1+M2/Ml]f2, Glzgi_[l_MZIMl]QZ!

and the new oned); andD,, introduced in Eqs(20) and
(21), are

Ds=2(—g;°+f{g}),

F2:_2f2, GZZ_Zgz,

(B10) Fs=f,+f3, Gz=0,+03,
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and Tg = —2(1=po+E%x) T Edxo+a*)1; —E(xo+a%)J;,
(C8)
gt
CE’ T 3E 3(1-p, 3E%
_9:__ B 0 2 M2 +
41 2|2(| p2+EvXO)+ 4B| + 4|2 +BG }Il
APPENDIX C . .
*+\2 *\2
In order to make this paper self-contained, we shall give ;EVZ(X°+a +) - EVZ(X°+a +) IS +G1;
in this appendix the different functiong that were com- 41%(1+pa~) 417(1+pa”)
puted in Refs[1,6]. They are very long, but they have been 3E0  3EYE%+Ix,)
organized as +] = 4,8|V v 4|V2 t,@Gi}JltGiJ;, (C9)
1
— + - _ _ _
Gi_pz(Ti +Ti )v (Cl) TIOZ%(XSI 1)|n(11xo)+%[(a*)?’Il]In(l:a*)
wherei=2, .. .,16, and = 3[xa+(@")®IN[+ (xo+a®)]+3(1-xg)(a* = 1)
T2
. 1Fat [ 158 | (1=xg)n(1*xp) —3(0=D[1-(a")], (C10
5 == —In +
2 (1xp)(1+Ba”) [1-PB%y (1£B)(1-BXo) 1
. 1zas - TL=T51=@{ES[<1—ﬂxo)JrJl]—<BES+I—pz>l4
e —In(l*xa”
(AT pac) H(-pa)la}, (1
(Xo+a®)In(Ex,*xa™)
L ) © N R 0
0 T12:T12:M[Ey(1—,3xo)31+ZEVX0+2(|_Pz)
1 1-8 1-BXq 1+pBa” 0
Ts=Ts 2ﬁHl—ﬁxo e i (BES+1—py)l] (C12
1+pa” 1-BX%, 1-8 L 1, )
- Ti=T=— 5—E%(1-x2), C13
+L 1+ 1+pa" 1+8a" 137 1137 7 5 W(1=Xp) (C13
—_ + =+ + — + + + +
P | W ittt | €3  Tw=Ell+xg+2a”(xe¥l)=a (xe+a )3 =3;)],
1-8 1+8 (C14)
Ti=(X=1)In(1xxp) = (1+a%)In(1+a*) T15=3EY2p,(1+yo) +1(1—x3)]— (E9)?(xo+a*)?
—(Xg+a%)In(xxo*a”), (C4 X (I3 x13)-21EYxo+a")a*(J; +1;), (C19H
Tt=—l{(1—x2)ln(1+x )+ (XpF1a*+1 . 3
A Tio=41% 552201~ Po+ Elxo) + BEL(1-X5)]
_(1_ax2 + 2 ,*2 +
(1-a™9)In(1xa™)+(xg—a~)In[x(xo+a™)]}, _3(|—p2+,3E8)_ . +p2(E8)2 |
(CH - 257 P2(1+Yo) o1z "t
. BEXXo+a®)]  BEY(xpt+a’) (E,)%(xp+a")? . .
TG = _|+p2i 1+Ba: 1= (1+,8a:)2 1 2|(1+Bat) (BJl+‘]2 iBlli|2)
,[go_ BENX0taN)]  BEVG+ET) +<3E8(1—ﬂxo>+<ES)2<E8+IXO> c16
v 1+’8a1 4 (1+ﬁa1)2 1 2,82 2|2 1f-

0 ¥ 0 ¥ . . . .
LEXota’) o E(xota’) o The following definitions are used in these expressions:

_(1+Bai)2 2 (1+Ba1)2 2 (C6) 0
P2Yot | . E)xp;
+ I_ﬁEg(XoJrat) _Elxp+a®) | x0=—?v—, af=—""2,
T7 =|P2— 1+ 1+Bat 1+ l+,3at |2
and
0 BEY(Xo+a") E%xo+a®)
+|E%— i _ R ES )
v 1+pa~ ' 1+Ba” 2 _BESZ(Xo+a—)2_ai(ai2—1)

(C7) C = a1t pa)? T a1t gad)
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TABLE IV. Values of Cp in X~ —nev decay by(a) integrating numerically an¢b) using the corresponding analytical expressions. The
dimensions ofCp are Ge\2.

o @
0.8078 0.0544 0.0591 0.0427 0.0184 -0.0074 -0.0304 -0.0469 -0.0536 -0.0470 -0.0224
0.8036 0.0894 0.0535 0.0101 -0.0312 -0.0636 -0.0814 -0.0799 -0.0554 -0.0070
0.7994 0.0834 0.0398 -0.0097 -0.0539 -0.0846 -0.0956 -0.0825 -0.0427
0.7952 0.0230 -0.0330 -0.0791 -0.1058 -0.1065 -0.0767 -0.0146
0.7909 -0.0619 -0.1098 -0.1285 -0.1101 -0.0498
0.7867 -0.1646 -0.1566 -0.0765

(b)
0.8078 0.0544 0.0591 0.0427 0.0184 -0.0074 -0.0304 -0.0469 -0.0536 -0.0470 -0.0223
0.8036 0.0894 0.0534 0.0103 -0.0306 -0.0627 -0.0808 -0.0802 -0.0570 -0.0077
0.7994 0.0833 0.0399 -0.0092 -0.0531 -0.0843 -0.0966 -0.0851 -0.0455
0.7952 0.0233 -0.0324 -0.0787 -0.1067 -0.1094 -0.0807 -0.0159
0.7909 -0.0613 -0.1103 -0.1312 -0.1146 -0.0531
0.7867 -0.1666 -0.1612 -0.0804
) 0.0500 0.1500 0.2500 0.3500 0.4500 0.5500 0.6500 0.7500 0.8500 0.9500
o 0.8078 0.8078 0.8078 0.8078 0.8078 0.8078 0.8078 0.8078 0.8078 0.8078
gmin 0.8043 0.7978 0.7925 0.7884 0.7857 0.7847 0.7854 0.7884 0.7939 0.8023

2 and then comparing these results with their analytical coun-
I1=/—3arctanb8, terparts in Eqs(64), (69), (73), and(74).

From the former set of equations, the infrared-convergent

part of the bremsstrahlung decay rate can be rewritten in a

£ =In a’+1 more convenient way as
2 ai_l ’
dI'§=dQ[D;Ca+D,Cg—5;- P2(D3Cc+D4Cp)1,
=2 (D1)
3 aiZ_ 11
2 where d() is given by Eq.(35); D4, ...,D, depend on
'4:1_/32’ f1(0) andg;(0) and are given by EqsB8), (B9), (B10),
and (B11), respectively.C,, Cg, Cc, and Cp are easily
1 [ +B 1-8 ] extracted from that set of equations: namely,
Ji=—=1{In +In
YoBLUT11-8%) 18X
c pzlf d fyod Fwd 1 { 2 ,1-x?
+_ + X
2 a“+Xg a“+Xol|’ ,
ot 1 +E,[WH(1+BE-F 1= ,Bx] (D2)
Ja=-2 -1 a +xo/
] 2] 1 1 c pzlf J’yo f%d 1
4T3 1- 8% 1-Bxo| B=S Y], 9P«2ED(1-Bx)
x(1—x2)
APPENDIX D ,3|2
1-pBx
In order to be sure that our calculations are correct, we 2 4
i ; m
have_cross—check(—;-d our re_sults by performing numerically +p,- K ELw— — 1|} (D3)
the triple integrals involved in Eq$37), (38), (51), and(57) E 1-p8x
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TABLE V. Numerical values of the

integrated model-

5717

The evaluation of such coefficients is presented in Tables

independent radiative corrections to two hyperon semileptonic det, |I, Ill, and IV respectively. In those tables, the dimension-

cays. The dimensions db,; are GeVt.

Decay ®p; ®p, Dps Dpy
5" —nev -2.04x10°% 1.08X10 % -451x107° -1.08 x10*
A—per 5.68X10° 8.44%x10° 4.42x10°° 3.54x10°°
A ﬂpz yO 2m
S+ poC f f dxf quk T =
EC 1y 1—(T-k) E,| .
[ﬁlsl pzp—+D “——sl-l
s k| 1 m = D4
e (%
S P,Co= fy(’df d de
Sl p2 D™ A y X Pk <~ ~ T l’(\
-~ ~P2|1 (T'R) P2
+5s, - k= — = —=5,-P,
-k Ak DSP
X m_ 1 +(1+81-kE (D5)
W— — ———= . y
E1-p8-k

whereE,, E%, w, F, D, andy, are given by Eqs(39), (23),
(41), (42), (40), and(22), respectively.

In order to handle the scalar products contairspgn the

right-hand side of Eqs(D4) and (D5), one can follow the

procedure of Ref[7] and make the replacements

S-p—(5-P2)(p-P2)  (p=lpy,k,p,)  (D6)

less quantitiesy and o are defined as

En' 7 My’

where E,, is given by Eq.(29); ¢™* and ¢™" denote the
maximum and minimum values ef within the three-body
region of the DP. For this comparison we shall work with the
2~ —nev decay for definiteness.

APPENDIX E

The approach implemented in Réf7/] to compute the
radiative corrections to the DP of polarized decaying hyper-
ons differs from ours mainly in two aspects.

First, in that reference it was assumed that real photons
are emitted by pointlike hadrons. This introduces model-
dependent uncertainties of the ordeg/mM,. This fact
makes those results unreliable beyargl 77M 4, just as ours.

Second, the dependence on form factors of the radiative
corrections is handled in that reference by fixing the form
factors. Unfortunately, if the CVC and PCAC hypotheses are
used to fix them, these assumptions are reliablé 8= 0
decays; they are affected by &) breaking inAS+0, and
are completely unreliable in charm decays. Contrarily, our
approach is not compromised to particular values of the sev-
eral form factors.

Now, to make a comparison with R€f7] we need to
produce some numerical results.

From Egs.(112) and(113), let

D1®p;+D,®py, (ED)

a,=D3®p3+ D, Ppy, (E2)

or one can follow the approach discussed in the present pjthere

per. Both procedures lead to the same results.
From Eq.(96) the analytical counterparts d€,, Cg,
Cc, andCyp, are

Ca=0'+0", (D7)
Cg=0'+0"+0"+6", (D8)
Cc=p1tps, (D9)
Co=p2tps, (D10

where '+ 6", 6"+ 6"V, p;, p,, p3, andp, are defined in

Egs.(97), (99), (75), (76), (77), and(78).

TABLE VI. Numerical values of the relevant factors involved in our calculation. The several form factors are fixed as mentioned in the

text. V is taken from Ref[8]. R is in units of 1 s,

Em E max
CI)Dl:f f * [EEY%$+0,+ ')+ 0+ 0"]dE,dE,
m Ezmln
(E3)
d)Dz—j fmm —l(poyotH(p+6)+0"+6"+6"

+ 6"V ]dE,dE, (E4)

E max
D3_J Jmln [ ESIYO(¢+91)+P1+p3]dE2dE,
(ES

Decay @/ m)a; (Gev?h (alm)(a,/B;) (alm)a, (GeV*) (alm)(ay/B,) R 1005R
3~ —nev -4.175x10°7 -6.953x10°3 2.086x10° 7 -5.205x 103 5.972 0.7
A—pev 3.464%x10°7 1.635x10°? 2.454x10°7 1.976 X102 2.944 1.6
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TABLE VII. Comparison with Ref[7].

Decay 100 1006a

This paper Ref[7] This paper Ref[7]

3" —nev 66.7 66.7 0.1 0.0
A—pev -58.6 -58.6 -0.2 -0.1

Em [E3™
Opy= fm fEmi” [E(p2+1yo)(p+ 61+ ") +p,
2

The numerical computation of the quantitids,;, being in-

(alm)(a,/B;) and (a/7)(a,/B,) are both small and of the
same order of magnitude. Table VII contains radiative cor-
rections to the angular spin-asymmetry coefficient of the
emitted hyperon. The masses of the particles involved are
those given in Ref[8]. The values of the form factors were
fixed as[7]

27—>neV, gl/fl:_034l f2/f1:_097,
A—>pev, g1/f12072, f2/f1:097

We have also neglected tlgg dependence of the form fac-
tors and the contributions fronfi;, g,, and gs. In those
tables, we define

5R=(R—R%/R°,

dependent of the different form factors, can be made once

and for all. In Table V we have tabulated the numerical

— _ 0
da=ag—ag.

values of®y; for some decays as an intermediate step in our

calculation.

The Sa and SR corrections toX, ~—nev and A— pev

In Table VI we display the numerical values of decays are in acceptable agreement, within our approxima-
some relevant coefficients as well as the relative radiations, with those computed in Refg7] and[12], respec-
tive corrections to the decay rate. Notice that the correctiongively.

[1] D. M. Tun, S. R. Jieez W., and A. Gara, Phys. Rev. D0,
2967(1989.

[2] A. Sirlin, Phys. Rev164, 1767 (1967.

[3] N. Meister and D. R. Yennie, Phys. Rel30, 1210(1963.

[4] F. E. Low, Phys. Rev110, 974 (1958.

[5] T. Kinoshita and A. Sirlin, Phys. Rel13 1652(1959.

[6] D. M. Tun, S. R. Jigez W., and A. Gara, Phys. Rev. D44,
3589(1991).

[7] F. Glick and K. Tdh, Phys. Rev. D46, 2090(1992.

[8] For a review of the current experimental situation of HSD’s

see Particle Data Group, L. Montarettal,, Phys. Rev. D60,
1173(1994.
[9] J. D. Bjorken and S. D. DrelRelativistic Quantum Mechanics

(McGraw-Hill, New York, 1964.

[10] E. S. Ginsberg, Phys. Ret62, 1570(1967.

[11] M. Jauch and F. RohrlichThe Theory of Photons and Elec-
trons (Addison-Wesley, Reading, MA, 1955

[12] K. Toth, K. Szego and A. Margaritis, Phys. Rev. B3, 3306
(1986.



