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The induced pseudotensor constant~weak electricity! of the nucleon is calculated in the framework of the
chiral quark-soliton model. This quantity originates fromG-parity violation and, hence, is proportional to
mu2md . We obtain formu2md525 MeV a value ofgT /gA520.0038.@S0556-2821~97!00209-9#

PACS number~s!: 14.20.Dh, 12.40.2y, 13.30.Ce

I. INTRODUCTION

Neutronb decay is a powerful tool to probe the structure
of the nucleon. In particular, it provides a precise measure-
ment of the triplet axial constant of the nucleongA , so that it
is a touch stone for any model of nucleon structure. The
underestimation of the nucleon axial charge in the solitonic
picture of the nucleon was for a long main critical point of
soliton models of the nucleon. Recently it was shown@1,2#
that in the chiral quark-soliton model of the nucleon
(xQSM! the rotational 1/Nc corrections to thegA bring its
value close to the experimental one. Also these corrections
improve considerably the agreement of the electromagnetic
characteristics of baryons@3–5# calculated in thexQSM
with an experiment.

In the present paper we investigate the other thangA axial
characteristic of the nucleon-induced pseudotensor constant
~weak electricity! of the nucleongT . The neutron-to-proton
transition matrix element of the axial-vector current
Jm
55ūgmg5d can be written in terms of three form factors:

^P~p8!uJm
5 uN~p!&5ūp~p8!H gAgmg51

gT
Mp1Mn

ismng5qn

1gPqmg5J un~p!, q5p82p, ~1!

whereMp (Mn) is the proton~neutron! mass and we use the
convention of Bjorken and Drell for Dirac matrices and
spinors. The axial-vectorgA and pseudoscalargP contants1

were extensively analyzed theoretically and measured in ex-
periments, while less is known about the pseudotensor con-
stantgT . The pseudotensor current has the oppositeG parity
to that of the axial vector current and hence is proportional to
the parameter of isospin symmetry breaking. There are two
different sources of isospin symmetry breaking: Electromag-
netic interactions andu andd quark mass difference. In this

work we calculate the hadronic part of thegT proportional to
mu2md in the limit of a large number of colors,Nc→`.

Even though in realityNc53, the limit of largeNc fur-
nishes a useful guideline. At largeNc the nucleon is heavy
and can be viewed as a classical soliton of the pion field@7#.
An example of the dynamical realization of this idea is given
by the Skyrme model@8#. A far more realistic effective chiral
Lagrangian of thexQSM is based on the interaction of dy-
namically massive constituent quarks with pseudo Goldstone
meson fields. It is given by the functional integral over the
quark (c) in the background pion field@9–12#:

exp~ iSeff@p~x!# !5E DcDc̄expS i E d4xc̄Dc D , ~2!

whereD is the Dirac operator

D5 i ]”2m̂2MUg5. ~3!

Ug5 denotes the pseudoscalar chiral field

Ug55exp~ ipatag5!5
11g5

2
U1

12g5

2
U†. ~4!

The m̂ is the matrix of the current quark masses
m̂5diag(mu ,md). The M stands for the dynamical quark
mass arising as a result of the spontaneous chiral symmetry
breaking.

The effective chiral action given by Eq.~2! is known to
contain automatically the Wess-Zumino term and the four-
derivative Gasser-Leutwyler terms, with correct coefficients.
Therefore, at least the first four terms of the gradient expan-
sion of the effective chiral Lagrangian are correctly repro-
duced by Eq.~2!, and chiral symmetry arguments do not
leave much room for further modifications. Equation~2! has
been derived from the instanton model of the QCD vacuum
@12#, which provides a natural mechanism of chiral symme-
try breaking and enables one to express the dynamical mass
M and the ultraviolet cutoffL intrinsic in Eq.~2! through the
LQCD parameter. It should be mentioned that Eq.~2! is of a
general nature: one can use Eq.~2! without referring to the
instantons.

An immediate implication of the effective chiral theory
Eq. ~2! is the quark-soliton model of baryons@13#. Accord-
ing to these ideas the nucleon can be viewed as a bound state
of Nc ~53! valencequarks kept together by a hedgehoglike
pion field whose energy coincides by definition with the ag-
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gregate energy of quarks from the negative Dirac sea. Such a
semiclassical picture of the nucleon is well justified in the
limit Nc→`—in line with more general arguments by Wit-
ten @7#. Further studies showed that thexQSM is successful
in reproducing the static properties and form factors of the
baryons using just one parameter set~see the recent review
@14#!. The powerful numerical method to carry out the cal-
culation of theN2D splitting and nucleon matrix elements
of arbitrary quark bilinear operators has been developed in
Refs.@15,16#. This method is also used in the present paper.

II. COMPUTING WEAK ELECTRICITY

The transition matrix element Eq.~1! can be computed as
the Euclidean functional integral in thexQSM:

^Puūgmg5duN&5
1

Z limT→`

expS ip0T22 ip08
T

2D
3E d3xd3yexp~2 ip8W •yW1 ipW •xW !

3E DUE DcE Dc†

3Jp~yW ,T/2!ūgmg5dJn
†~xW ,2T/2!

3expF E d4zc†Dc G . ~5!

The nucleon currentJN (N5p,n) is built of Nc quark fields:

JN~x!5
1

Nc!
e i1••• i Nc

G
JJ3TT3

a1•••aNcca1i1
~x!•••caNc

iNc
~x!. ~6!

a1•••aNc
denote spin-flavor indices, whilei 1••• i Nc desig-

nate color indices. The matricesG
JJ3TT3

a1•••aNc are taken to endow

the corresponding current with the quantum numbers
JJ3TT3.

In the largeNc limit the integral over Goldstone fields
U in Eq. ~5! can be calculated by the steepest descent
method ~semiclassical approximation!. The corresponding
saddle point equation admits a static soliton solution, an ex-
ample of which is the hedgehog field configuration

Us~xW !5exp@ inW •tWP~r !#. ~7!

P(r ) denotes the profile function satisfying the boundary
condition P(0)5p and P(`)50, which is determined by
solving the saddle point equations~for details see Ref.@14#!.
The soliton is quantized by introducing collective coordi-
nates corresponding to SU(2)I isospin rotations of the soli-
ton @and simultaneously SU(2)spin in spin space#:

U~ t,xW !5R~ t !Us~xW !R†~ t !, ~8!

whereR(t) is a time-dependent SU(2) matrix. The quantum
states arising from this quantization have the quantum num-
bers corresponding to the nucleon andD.

Calculating the functional integral Eq.~5! we obtain the
following expression for the neutron to proton transition el-
ement of the axial-vector current:

^Puūgmg5duN&5Nc~Mp1Mn!E d3xeiq–xE dRfp* ~R!

3E dv

2p
trS K xU 1

v1 iH1 i ~mu2md!R
†t3R

3g0gmg5R
†t11 i2RUxL Dfn~R!, ~9!

where fS3T3
S5T(R) is the rotational wave function of the

nucleon (fp5f (1/2)(1/2)
(1/2) , fn5f (1/2)2(1/2)

(1/2) ) given by the
Wigner finite-rotation matrix@8,13#

fS3T3
S5T~R!5A2S11~21!T1T3D2T3 ,S3

S5T ~R!, ~10!

and the integral over the SU~2! group is normalized by
*dR51. The one-particle Dirac HamiltonianH in a back-
ground of the static pion field Eq.~7! has a form

H5g0gk]k1 iM g0Us
g51

1

2
~mu1md!. ~11!

Projecting the general expression Eq.~9! onto the
pseudotensor structure one obtains

gT~q
2!

Mp1Mn
5NcE d3xeiqx

q3

uqu2E dRfp* ~R!

3E dv

2p
trS K xU 1

v1 iH1 i ~mu2md!R
†t3R

3g5R
†t11 i2RUxL Dfn~R!. ~12!

Let us now show that the above expression is zero in the
isospin symmetry limit (mu5md). To prove this we intro-
duce the following unitary transformation of the Dirac and
Pauli matrices connecting them to the transposed ones:

WgmW
215gm

T , WtaW2152~ta!T. ~13!

Evidently thenWHW215HT. Using properties of the trace
tr(MT)5tr(M ) and tr(WMW21)5tr(M ) one can write

TABLE I. Axial vector gA and pseudotensorgT constants of the
nucleon as a function of the constituent quark massM ,
mu2md525 MeV.

M @MeV# gA @2# gT /gA

370 1.26 20.0029
400 1.24 20.0035
420 1.21 20.0038
450 1.16 20.0040
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trS K xU 1

v1 iH1 i ~mu2md!R
†t3R

g5R
†t11 i2RUxL D5trSWK xU 1

v1 iH1 i ~mu2md!R
†t3R

g5R
†t11 i2RUxL DW21T

52trS K xU 1

v1 iH2 i ~mu2md!R
†t3R

g5R
†t11 i2RUxL D .

This immediately implies that the pseudotensor constant given by Eq.~12! is zero in the isosymmetric limit and the first
nonzero result appears expanding Eq.~12! in mu2md to linear order. The result for the pseudotensor constantgT in the leading
order of 1/Nc expansion (gT;Nc) and the linear order inmu2md has a form@17#

gT
Mp1Mn

5
iNc~mu2md!

24 E dv

2p
SpS 1

v1 iH
g0t

i
1

v1 iH
« i jkt

j xkg5D «ab3E dRfp* ~R!D11 i2,a
~1! ~R!D3,b

~1!~R!fn~R!. ~14!

The integral over soliton orientations in the second line of
Eq. ~14! can be easily calculated by using the relations

«ab3D16 i2,a
~1! ~R!D3,b

~1!~R!56 iD16 i2,3
~1! ~R! ~15!

and

E dRfp* ~R!D11 i2,3
~1! ~R!fn~R!522/3. ~16!

The functional trace in the first line of Eq.~14! was esti-
mated in Ref.@17# by means of the gradient expansion

gT
Mp1Mn

'
Nc~mu2md!

9396p2M
Im E d3xH «klmtr ~U]kU

†] lUtm!

2
i

4
«klm«abmtr @tb]kU~taU2U†ta!] lU

†#

2
i

2
xi«klm«abitr @tbU†]kU~ta] lU

2] lU
†ta!U†]mU#2

i

2
xi«klm«abitr @~tbU†ta

2taU†tb!]kU
†] lU]mU

†U#J . ~17!

This approximation is justified only for a soliton of large size
RM@1. The real nucleon has a radius of order 1/M and
hence the Eq.~17! can be used only as an order of magnitude
estimate.

III. NUMERICAL RESULTS AND CONCLUSION

In order to evaluate exactly the functional trace in Eq.
~14!, we diagonalize the HamiltonianH, Eq. ~11!, numeri-
cally in the Kahana-Ripka discretized basis@18#. The con-
stituent quark massM is fixed to 420 MeV in our model by
reproducing best many static baryon observables and form
factors in the model~in particular, the isospin mass splittings
for octet and decuplet baryons@19,14#!. To make sure of the
numerical calculation, we compare our results forgT with
the analytical ones of the gradient expansion Eq.~17! justi-
fied in the limit of large soliton size. Our numerical proce-
dure is in good agreement within a few percent with the
analytical results of the gradient expansion in the large soli-
ton size limit.

The results of our calculation are summarized in Table I.
For completeness we give in Table I also results forgA ob-
tained in@2#. Let us note that the present result is comparable
to a recent calculation of the nucleon pseudotensor constant
with the QCD sum rule technique@20# which gives
gT /gA520.015160.0053. Both the QCD sum rule result
and ours are in agreement with the bag model calculation
(gT /gA520.00455) @20,21#, whereas they seem to be
smaller than preliminary experimental data@22# ranging
from 20.2160.14 to 0.1460.10. However, the accuracy of
the experiment is not enough to be compared in a reasonable
way with the results of theoretical calculations.
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