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I. INTRODUCTION

There has recently been renewed interest in semiclassical
mechanisms of pion production in high-energy collisions of
hadrons and of heavy ions@1–11#. One hypothesis in par-
ticular is that pieces of strong-interaction vacuum with an
unconventional orientation of the chiral order parameter may
be produced in high-energy collisions@12#. This disoriented
chiral condensate~DCC! is then supposed to decay into a
coherent semiclassical pion field having the same chiral ori-
entation.

The primary signature of this mechanism is the presence
of large, event-by-event fluctuations in the fraction,f , of
produced pions that are neutral. Conventional mechanisms of
particle production, including those used in standard Monte

Carlo simulations, predict that the partition of pions into
charged and neutral species is governed by a binomial dis-
tribution which, in the limit of large multiplicity, leads to a
sharp value off'1/3. We refer to this asgenericpion pro-
duction. On the other hand, for the decay of a pure DCC
state the distribution of neutral fraction is very different, fol-
lowing an inverse square-root law in the limit of large mul-
tiplicity @1–7,12#. Some other production scenarios involv-
ing the common feature of coherent final states lead to
identical f distributions@9,10,13–15#.

Sophisticated phenomenological techniques have been de-
veloped in order to study the properties of multiparticle final
states, and much has been done on multiplicity distributions,
correlations, and fluctuations@16–20#. Most of the practical
studies, however, have considered the properties of a single
species at a time. In the case of DCC, formal tools for the
study of the joint distribution of neutral and charged pions
are required, and here there is much less data and corre-
sponding analysis experience@21–25#.

The authors of this paper comprise the MiniMax Collabo-
ration ~Fermilab T-864!, who for the last three years have
carried out an exploratory search for signals of DCC at the
C0 area of the Fermilab Tevatron collider@26#. The heart of
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our detector is a telescope of 24 multiwire proportional
chambers~MWPC’s!, with a 1.0 radiation-length lead con-
verter inserted after the eighth plane, so that charged tracks
and converted photons can be counted event by event. The
acceptance in the lego space of pseudorapidityh and azi-
muthal anglef is roughly a circle of radius 0.65 centered at
h54.1. In 1995–1996, 83106 triggered events atAs51.8
TeV were recorded. The purpose of this paper is not to report
the results of this experiment, but rather to describe the tech-
niques we are using as the basis of our data analysis strategy.
We believe these techniques have much wider applicability
and may be of value in other searches for DCC signals.

Even from this very brief description of the experiment, it
should be clear that we face many challenges in trying to
infer either the presence or absence, within limits, of DCC
signals from the data. These include the following:~a! The
MiniMax acceptance is small, so that it is improbable that
both g ’s from a p0 enter the detector acceptance;~b! the
conversion efficiency perg is about 50%;~c! not all g ’s
come from p0’s; ~d! not all charged tracks come from
p6’s; ~e! because of the small acceptance, the multiplicities
are rather low, so that statistical fluctuations are very impor-
tant; ~f! detection efficiencies for charged tracks andg ’s are
momentum dependent and are not the same;~g! efficiency
functions may be dependent upon the observed multiplicity
or other parameters;~h! the efficiency for triggering when no
charged track or convertedg is produced within our accep-
tance is relatively low and different from that for events in
which at least one charged particle or convertedg is de-
tected.

Nevertheless, we find that there do exist observables
which are robust in the sense that, even in the presence of
large ~uncorrelated! efficiency corrections and convolutions
from producedp0’s to observedg ’s, the observables take
very different values for pure DCC and for generic particle
production. Each such observable is a ratio, collectively re-
ferred to asR, of certain bivariate normalized factorial mo-
ments, that has many desirable properties, including the fol-
lowing: ~1! The R’s do not depend upon the form of the
parent pion multiplicity distribution;~2! theR’s are indepen-
dent of the detection efficiencies for finding charged tracks,
provided these efficiencies are not correlated with one an-
other or with other variables such as total multiplicity or
background level;~3! some of theR’s are also independent
of the g efficiencies in the same sense as above. In the re-
maining cases, theR’s depend only upon one parameterj
which reflects the relative probability of both photons from a
p0 being detected in the same event;~4! In all casesR is
independent of the magnitude of the null trigger efficiency;
see comment~h! above;~5! the ratiosR possess definite and
very different values for pure generic and pure DCC pion
production.

The idealizations implicit in the realization of properties
1–5 include the assumptions that particles other than pions
can be ignored, that there is no misidentification of charged
particles with photons, and that the production process can
be modeled as a two-step process, with a parent-pion multi-
plicity distribution posited, followed by a particular charged
or neutral partitioning of that population by, e.g., a binomial
or DCC distribution function. In addition, there is the vital
assumption that detection efficiencies for finding ap6 or g

do not depend upon the nature of the rest of the event. The
validity of these idealizations is not contradicted by the
simulations presented in this paper. This idealized model
thus appears to be a good basis for a first-order analysis of
the properties of the ratiosR. We anticipate that this will
remain true for observations more general than those of the
MiniMax experiment.

The layout of this paper is as follows. In Sec. II we review
the conventional formalism@16–20# of single-variable-
generating functions and factorial moments used in describ-
ing global multiplicity distributions. We then develop the
extensions required to describe the bivariate case of distribu-
tions ofp6’s andp0’s. The modifications needed to accom-
modate the decay ofp0’s into g ’s, as well as the inclusion of
less-than-perfect detection efficiencies for charged tracks and
g ’s, are considered in Sec. III. In Sec. IV we introduce the
robust observablesR and demonstrate their sensitivity to
charged-particle–photon correlations and their insensitivity
to detection inefficiencies and the overall aspects of the pri-
mary production process for a wide class of production mod-
els. The DCC distribution is shown to fall into that class, but
with distinctly different values of theR’s that clearly distin-
guish it from the generic distribution under realistic experi-
mental conditions. Generalizations of the formalism which
allow for the admixture of both generic and DCC charged
and neutral production are considered in Sec. V. In Sec. VI
we estimate, by Monte Carlo simulation as well as by use of
the UA5 charged-particle and photon data at 200 GeV and
900 GeV@25#, the effects on theR’s from the realistic com-
plications discussed in the preceding paragraph. Concluding
remarks are made in Sec. VII. A number of new results con-
cerning the interpretation and representation of the standard
DCC probability distribution that are needed to establish our
results concerning DCC production are presented in the Ap-
pendix.

II. GENERATING FUNCTIONS FOR CHARGED-PION
AND NEUTRAL-PION DISTRIBUTIONS

The entire content of a set of probabilities$P(N)% for the
production ofN particles in a fixed region of phase space can
be encapsulated into the generating function

G~z!5 (
N50

`

zNP~N!, ~1!

whose derivatives evaluated atz51 yield the factorial mo-
ments

f i[S diG~z!

dzi D
z51

5^N~N21!•••~N2 i11!&. ~2!

It is often useful to expressP(N) as a Poisson transform
@27# where one introduces a spectral representation in terms
of Poisson distributions with a weighting functionr(m):

P~N!5E
0

`

dm r~m!
mN

N!
e2m, ~3!

where
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E
0

`

dm r~m!51. ~4!

The Poisson transform isolates the random statistical fluctua-
tions from the physics contained inr(m). As an example, the
negative binomial parametrization

r~m!5
lk

G~k!
mk21e2lm, ~5!

wherel5k/^N&, gives a fairly good two-parameter descrip-
tion of charged multiplicity distributions@16,17#. From Eqs.
~1! and ~3! we also obtain a spectral representation for the
generating function:

G~z!5E
0

`

dm r~m!em~z21!, ~6!

where now the factorem(z21) reflects the purely random
character of the Poisson distribution.

The generating function formalism has been widely used
to study charged-hadron multiplicity distributions@16–
20,27#. We next generalize this formalism to bivariate distri-
butions of charged and neutral pions. Among our motiva-
tions for doing this is the simple manner in which detection
inefficiencies and particle decays can be handled with gen-
erating functions@27#. These features are particularly impor-
tant in dealing with the MiniMax experimental situation.
Here, the parentp0’s are not reconstructed from the ob-
servedg ’s and the efficiencies for detecting both the charged
particles and the photons are less than perfect. These exten-
sions are taken up in detail in succeeding sections. Some
earlier work in this connection is contained in Refs.@21–25#.

Let p(nch,n0) denote the probability distribution for the
occurrence ofnch andn0 charged and neutral pions, respec-
tively, in a multiparticle event within a given phase-space
region. As in the single-variable case, the content of this
bivariate distribution can be conveniently represented by the
generating function for factorial moments defined by

G~zch,z0!5 (
nch ,n050

`

p~nch,n0!zch
nchz0

n0 . ~7!

The partial derivatives of G(zch,z0) evaluated at
zch5z051 generate the factorial moments referring to
charged~ch! and neutral~0! particles:

f i , j~ch,0![S ] i , jG~zch,z0!

]zch
i]z0

j D
zch5z051

. ~8!

For example, we have

f 1,0~ch,0!5^nch&,

f 0,1~ch,0!5^n0&,

f 1,1~ch,0!5^nchn0&,

f 2,0~ch,0!5^nch~nch21!&. ~9!

Next, letP(N) be the probability for producing a total of
N pions with any distribution of charge among them. Then,
p(nch,n0) can be written as the product of two disjoint prob-
ability distributions:

p~nch,n0!5P~N! p̂~nch,n0 ;N!, ~10!

whereN5nch1n0, and

(
N50

`

P~N!51, ~11!

(
nch50,n050

`

dN,nch1n0
p̂~nch,n0 ;N!51. ~12!

What we call the generic model for the charged-neutral
distributionp̂(nch,n0 ;N) involves no correlations, namely, a
binomial ~bin! distribution ofnch andn0:

p̂bin~nch,n0 ;N!5S Nn0D f̂ n0~12 f̂ !nch. ~13!

Here, f̂ is the mean fraction ofp0’s, which is expected to be
about 1/3 as a consequence of isospin symmetry. If we sub-
stitute Eq.~13! into Eq.~10! and explicitly denote the depen-
dence onf̂ , the generating function~7! becomes, in the bi-
nomial case,

Gbin~zch,z0 ; f̂ !5(
N

P~N!@ f̂ z01~12 f̂ !zch#
N, ~14!

which only depends on the linear combination

z[ f̂ z01~12 f̂ !zch. ~15!

Conversely, if a generating functionG(zch,z0) is a function
only of z, the charged and neutral pions are binomially dis-
tributed.

If P(N) is a Poisson distribution, lnGbin(zch,z0 ; f̂ ) is lin-
ear inz. The simulations of generic production described in
Sec. VI yield generating functions that, to good approxima-
tion, depend only on a fixed linear combination ofzch and
z0; the incorporation of the modeling of the MiniMax detec-
tor into these simulations is found to alter this linear behav-
ior slightly.

Much of the simplicity of the generic case is also realized
for what can be called the binomial transform

p̂~nch,n0 ;N!5S Nn0D E01d f p~ f ! f n0~12 f !nch ~16!

of the normalized distributionp( f ),

E
0

1

d f p~ f !51. ~17!

This leads to a wide class of possible pion factorial-moment-
generating functions, namely,
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G~zch,z0!5E
0

1

d f p~ f !Gbin~zch,z0 ; f !, ~18!

whereGbin(zch,z0 ; f ) is given by Eq.~14! with f̂ replaced by
an arbitrary f , 0< f<1. Combining Eqs.~3! and ~14! we
obtain

G~zch,z0!5E
0

`

dm r~m!E
0

1

d f p~ f !em[ z~ f !21], ~19!

where againz( f ) is given by Eq.~15! with f̂ replaced by an
arbitrary f .

The forms ofp( f ) and r(m) depend on the production
model and the detector. The uncorrelated, generic case~14!
corresponds top( f )5d( f2 f̂ ), where f̂ is some fixed value
of f .

It is shown in the Appendix that for a simple DCC model
@1–7# and with a sampling prescription appropriate to the
experimental situation,p( f )51/(2Af ). Although the same
bivariate distribution is realized in other hadronic production
models leading to coherent states@9,10,13–15#, we refer to
this case as the DCC model. We note that in the DCC model

^n0&52^nch&, just as in the generic case forf̂51/3.
It is quite possible that the parent pion distribution

P(N) or, equivalently,r(m), will be different for the DCC
and generic production mechanisms. This distinction is im-
portant for our considerations of admixtures of the two
mechanisms. We investigate some possible scenarios for
such admixtures in Sec. V.

III. GENERATING FUNCTIONS FOR CHARGED-
PION–PHOTON DISTRIBUTIONS

For a detector that is designed to observe charged par-
ticles and convertedg ’s within its acceptance, events are
classified only according to the numbers of charged particles
and photons,nch and ng , respectively. With sufficiently
large statistics, we can determine probabilitiesp(nch,ng) for
observing these combinations over some portion or all of the
available phase space.

In order to obtain the charged-pion and photon generating
function, incorporating bothp6 andg detection efficiencies
from G(zch,z0), we extend Pumplin’s cluster theorem@27#
to the bivariate case. Consider a generating function
G(zch,z0) that refers to charged and neutral ‘‘clusters.’’ Sup-
pose, for the sake of simplicity, the charged clusters decay in
a number of ways into charged particles and likewise for the
decay of neutral clusters into neutral particles. For each of
these decay scenarios there is a probability distribution and a
corresponding generating function,gch(zch) or g0(z0), re-
spectively. The bivariate generating function of the factorial
moments of the final charged and neutral particle production
is thenG„gch(zch),g0(z0)…. If the charged clusters do not
decay, thengch(zch)5zch. On the other hand, the decay
p0→gg with perfect photon detection efficiency corre-
sponds tog0(zg)5zg

2 .
More realistically, there is a probabilityech for observing

a given primary charged pion in the detector and a probabil-
ity 12ech for not observing it. These possibilities can be

regarded as the two ‘‘decay’’ modes of the primary charged
pion which is otherwise regarded as stable. Similarly, there
are probabilitiesem , m50,1,2, with

e01e11e251, ~20!

for observingm photons from ap0 decay and each possibil-
ity can be regarded as a decay mode of thep0 cluster. If
these probabilities are identified with what we suppose are
the independent, i.e., uncorrelated, efficiencies for the re-
spective detection options, the generating function for the
distribution of observed particles, including efficiencies, is
obtained fromG(zch,z0) by replacingzch by the generating
function

gch~zch!5~12ech!1echzch, ~21!

andz0 by the generating function

g0~zg!5e01e1zg1e2zg
2 . ~22!

For the class of production models characterized by Eq.
~18!, the preceding considerations lead to the following
factorial-moment-generating function for the distribution of
observed charged pions and photons:

Gobs~zch,zg!5E
0

1

d f p~ f !Gbin„gch~zch!,g0~zg!; f …. ~23!

The charged-pion–photon factorial moments are

f i , j~ch,g![S ] i , jG~zch,zg!

]zch
i]zg

j D
zch5zg51

, ~24!

which introduces the bivariate indexing (i , j ) with respect to
charged particles and photons employed henceforth. For ex-
ample, the two lowest orders of factorial moments are

f 1,0~ch,g!5^nch&5^12 f &ecĥ N&, ~25!

f 0,1~ch,g!5^ng&5^ f &~e112e2!^N&, ~26!

f 2,0~ch,g!5^nch~nch21!&5^~12 f !2&ech
2 ^N~N21!&,

~27!

f 1,1~ch,g!5^nchng&5^ f ~12 f !&ech~e112e2!^N~N21!&,
~28!

f 0,2~ch,g!5^ng~ng21!&5^ f 2&~e112e2!
2^N~N21!&

12e2^ f &^N&. ~29!

In Eqs. ~25!–~29! the overall statistical averages for the
charged, the photon, and the charged-photon factorial mo-
ments are expressed, in an obvious notation, in terms of the
independent moments taken with respect to theP(N) and
p( f ) distributions.
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Finally, we turn to the effect of the MiniMax trigger on
these considerations. The MiniMax trigger requires, among
other things, a coincidence in the signals from scintillator
counters located behind both the converter and the entire
tracking telescope. In consequence, events in which no
charged particle or convertedg goes through the acceptance
of the detector are triggered with different~and lower! effi-
ciencye than that for events in which either a charged par-
ticle or g conversion products go through the aperture. An
effective model for the effect of the MiniMax trigger on the
probability pobs(nch,ng) for observing an event withnch
charged particles andng convertedg ’s passing through the
acceptance is given by the proportionalities

ptrig~0,0!5eapobs~0,0!, nch5ng50, ~30!

and

ptrig~nch,ng!5apobs~nch,ng!, nch1ng.0. ~31!

Here,ptrig(nch,ng) is the measured probability of seeing an
event, including the effects of both the trigger and the par-
ticle detection efficiencies, whilepobs(nch,ng) presumes per-
fect triggering. If

a5@11~12e!pobs~0,0!#21, ~32!

ptrig will be properly normalized ifpobs is.
The bivariate factorial moments transform homoge-

neously under the transformations~30!–~32! incorporating
differential trigger efficiencies:

f i , j~ch,g!→a f i , j~ch,g!. ~33!

IV. ROBUST OBSERVABLES

The second-order factorial moments~25!–~29! represent
the lowest-order correlative effects among charged pions and
photons. We see from Eq.~29! that theg-g correlations are
distinguished by the term 2e2^ f &^N& for observing the two
photons from a single neutral pion, so that this average will
not be a component of a robust measure involving only first-
and second-order moments. This suggests the construction of
a measure from the moments~25!–~28! in the form of a ratio
in order to cancel out as many effects as possible, apart from
the p( f ) averages, that reflect the particular details of the
production mechanism.

Consider, then, the ratio

r 1,15
^nchng&^nch&

^nch~nch21!&^ng&
. ~34!

For generating functions of the form~23!, we find from Eqs.
~25!–~28! that

r 1,15
^ f ~12 f !&^~12 f !&

^~12 f !2&^ f &
, ~35!

an expression in which all reference to the background dis-
tribution P(N) and the efficienciese1, e2, andech have can-
celed out. Further, we see that

r 1,1→r 1,1 ~36!

under the transformations~30!–~32! so thatr 1,1 is a ‘‘robust
observable’’ in the sense referred to in Sec. I.

It follows from Eq. ~35! that

r 1,1<1, ~37!

where the equality is realized for generic pion production,
p( f )5d( f2 f̂ ),

r 1,1~generic!51, ~38!

independently off̂ . The realization of the limit~38! in the
UA5 data at 200 GeV and 900 GeV@25#, and in Monte Carlo
simulations at 1.8 TeV, both of which include nonpionic
sources of charged particles and photons, is considered in
Sec. VI.

For a DCC distribution,p( f )51/(2Af ), one finds

r 1,1~DCC!5 1
2 . ~39!

This clearly distinguishes the pure DCC and generic distri-
butions.

The values~38! and ~39! represent the limiting extremes
of a mixture of generic and DCC distributions. Generally,
broad ~DCC! and narrow~generic! statistical distributions
can be distinguished in a mixture of the two by means of
higher-order moments that are sensitive to the tail of the
charged-particle–photon distribution. Robust combinations
of these higher-order moments that are generalizations of
r 1,1 will be of greatest practical value in an analysis of data
in which a discernible fraction of DCC form is expected to
appear.

Let us first note that the normalized factorial moments

Fi[
^N~N21!•••~N2 i11!&

^N& i
~40!

are unity if the parent distributionP(N) is Poisson. There-
fore, deviations from purely random fluctuations are mea-
sured by the departure of theFi ’s from unity. A bivariate
generalization of theFi ’s is given by

Fi , j5
^nch~nch21!•••~nch2 i11!ng~ng21!•••~ng2 j11!&

^nch&
i^ng& j

. ~41!
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In particular, one finds that

Fi ,05
Fi^~12 f ! i&

^~12 f !& i
~42!

and

Fi ,15
Fi11^ f ~12 f ! i&

^ f &^~12 f !& i
, ~43!

whereFi refers to thei th normalized factorial moment~40!
of the P(N) distribution for the total multiplicity. We note
that

Fi , j→a12 i2 jFi , j ~44!

under the transformations~30!–~32!.
Evidently, r 1,15F1,1/F2,0. From Eqs.~42! and ~43! we

find a generalization ofr 1,1 to a familyR of robust observ-
ables:

r i ,15
Fi ,1

Fi11,0
5

^~12 f !&^ f ~12 f ! i&

^ f &^~12 f ! i11&
. ~45!

Moreover, one finds that, for alli>1,

r i ,1~generic!51,

r i ,1~DCC!5
1

i11
~46!

in the two cases. Thusr i ,1 becomes more sensitive to the
difference between DCC and generic production mecha-
nisms with increasing order of the moments. This reflects the
broadness characteristic of the DCC distribution in the neu-
tral fraction f compared to the generic case.

The ratios

r i , j5
Fi , j

Fi1 j ,0
~47!

are not robust because the momentsFi , j for arbitrary i and
j are not independent of the photon detection efficiencies.
However, the terms involving these efficiencies can be ex-
pessed in terms of only one combination of these parameters,
namely,

j5
2e2

~e112e2!^ng&
, ~48!

along with the mean number of photons, as

Fi , j5 (
m50

[ j /2]

cj ,mjmFi1 j2m

^~12 f ! i f j2m&

^~12 f !& i^ f & j2m . ~49!

The coefficientscj ,m are obtained from the identity, true for
any differentiable function,D(z2),

djD~z2!

~dz! j
5 (

m50

[ j /2]

cj ,m2
m~2z! j22m

dj2mD~z2!

~dz2! j2m . ~50!

The first fewcj ,m are @28#

cj ,051,

cj ,15 j ~ j21!/2,

cj ,253 j !/4! ~ j24!!. ~51!

One can use the ratiosr i , j ’s in the analysis of experimen-
tal distributions, with the understanding that the parameter
j is to be determined from the data. Generally, we have the
bounds and limiting values

r i , j~generic!>1, ~52!

@r i , j~generic!#j5051, ~53!

and

@r i , j~DCC!#j505
i ! ~2 j21!!!

~ i1 j !!
. ~54!

V. SENSITIVITY TO DCC ADMIXTURES

We next turn to the question of what can be said about
robust observables when there is an admixture of DCC and
generic multipion production. There is a considerable theo-
retical uncertainty about how such an admixture would arise
in hadronic collisions and so there are many possibilities for
extending the development given in the preceding sections.
Our objective in this section is only to provide a formalism
in which the sensitivity of experimental results to the pres-
ence of DCC or some other anomalous mechanism can be
investigated. Thus it will suffice to address this question only
in the context of a few simple limiting models of pion pro-
duction containing both generic and DCC components. Spe-
cifically, we consider modifications of the generating-
function formalism we have developed in the preceding
sections in three different scenarios for mixing DCC and
generic multiparticle production. Then, we examine the im-
pact of these modifications on the values of the robust ob-
servables.

A. Exclusive production

First, let us consider the possibility of what we refer to as
exclusiveproduction. That is, in a given event, particle pro-
duction is either the result of the formation of a DCC with
probability l, or it is generic with binomially distributed
charged and neutral particles with probability 12l. The pic-
ture of exclusive production could be regarded as a first-
order phenomenology of very high-energy cosmic-ray inter-
actions, which seem to divide themselves into what appear to
be generic and anomalous classes@29#.

The generating function for the exclusive production of
charged pions and the photons resulting fromp0 decay is
simply the weighted sum of the generic and DCC generating
functions:

Gexcl~zch,zg ,l!5~12l!Ggeneric~zch,zg!1lGDCC~zch,zg!.
~55!

Here,Ggeneric(zch,zg) andGDCC(zch,zg) are obtained from
Eq. ~23! for the casesp( f )5d( f2 f̂ ) and p( f )51/(2Af ),
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respectively, and where the distributionsP(N) of the total
number of pions are generally different in the two cases.

The expressions for the momentsr i ,1 obtained using
Gexcl(zch,zg ,l) interpolate between the generic and DCC
limits asl varies between 0 and 1. For example, since

f i , j
excl5~12l! f i , j

gen1l f i , j
DCC5 f i , j

genF11lS f i , jDCCf i , j
gen 21D G ,

~56!

it follows, using the results of Sec. III, that one can write

r 1,1
excl~l!5

F11lS 2

15f̂ ~12 f̂ !

^N~N21!&DCC

^N~N21!&Gen
21D GF11lS 2

3~12 f̂ !

^N&DCC

^N&Gen
21D G

F11lS 8

15~12 f̂ !2
^N~N21!&DCC

^N~N21!&Gen
21D GF11lS 1

3 f̂

^N&DCC

^N&Gen
21D G . ~57!

Note that this expression explicitly depends on the relative
size of the DCC and the generic factorial moments. Techni-
cally, this ratio is no longer ‘‘robust’’ in the sense of the
preceding section. However, it still does not depend upon
efficiency corrections. In addition, the extra dependence will
be anadvantageif DCC dominates the high-multiplicity tail
of the distribution.

B. Independent production

A second possible production scenario is where the occur-
rence of DCC in an event is independent of the pions that are
produced generically. Independent production implies that
the probabilityPDCC(N) for producingN DCC pions is in-

dependent of the probabilityPgeneric(N) for producingN bi-
nomially distributed pions, so that the generating function
factors into a product:

Gind~zch,zg!5Ggeneric~zch,zg!GDCC~zch,zg!. ~58!

Thus we find

f i , j
ind5 (

a50

i

(
b50

j S ia D S jb D f i2a, j2b
gen f a,b

DCC. ~59!

Hence, using the results of the previous sections, it follows
that, for example,

r 1,1
ind5

F11
^N&Gen^N&DCC

^N~N21!&GenS 2

3~12 f̂ !
1

1

3 f̂
D 1

2^N~N21!&DCC

15f̂ ~12 f̂ !^N~N21!&Gen
GF11

2^N&DCC

3~12 f̂ !^N&Gen
G

F11
^N&Gen^N&DCC

^N~N21!&GenS 4

3~12 f̂ !
D 1

8^N~N21!&DCC

15~12 f̂ !2^N~N21!&Gen
GF11

1^N&DCC

3 f̂ ^N&Gen
G . ~60!

Again, the sensitivity to the independent production of DCC
is dependent on the ratios of DCC and generic factorial mo-
ments, but not on the efficiency corrections.

We note that in the independent production model

lnGind~zch,zg!5 lnGgeneric~zch,zg!1 lnGDCC~zch,zg!,
~61!

which suggests an analysis in terms of a bivariate generali-
zation of single-variable cumulant moments@16,18–20#. We
define bivariate cumulants fori1 j.0 by

ki , j5S ] i1 j

]zch
i ]zg

j lnGD
zch5zg51

. ~62!

From Eq. ~58! we see that in this production scenario, the
cumulants are additive:

ki , j
ind5ki , j

generic1ki , j
DCC. ~63!

For single-variable probability distributions, cumulants re-
flect nonrandom correlations in that they vanish for a Poisson
distribution. In the bivariate case their properties as a mea-
sure of correlations are not so direct.

As with the bivariate normalized factorial moments~41!,
we introduce normalized bivariate cumulant moments:

Ki , j5^nch&
2 i^ng&2 j S ] i1 j

]zch
i ]zg

j lnGD
zch ,zg51

. ~64!

In the independent model we obtain forKi , j
ind the weighted

sum

Ki , j
ind5lch

i lg
j Ki , j

DCC1~12lch!
i~12lg! jKi , j

generic, ~65!

where
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lch,g5
^nch,g&DCC

^nch,g&
~66!

are the fractions of the mean charged or photon multiplicities
attributed to the DCC.

The formulas for the normalized cumulant moments for
DCC and generic subsamples are obtained in a straightfor-
ward manner. As before, most of the efficiency corrections
cancel out. However, the cumulant moments do not scale
homogeneously under the differential trigger inefficiency
characteristic of MiniMax. While this is disadvantageous for
the early MiniMax analyses, there is reason to expect that
they will be eventually of substantial utility in MiniMax as
well as in other experiments.

C. Associated production

A third possibility for the contamination of a DCC signal
by generic multiparticle production is what can be called
associated production. For example, in the Baked Alaska
model@8# the number of DCC pions is estimated to scale as

NDCC;~Ngeneric!
3/2. ~67!

A simpler case, which is also a credible scenario, is where
the amount of DCC production is, on the average, propor-
tional to the amount of generic production. It then follows
using the cluster theorem@27# that

Gassoc~zch,zg ;l!5E
0

1

d fb pb~ f b!E
0

1

d fd pd~ f d! (
N50

`

P~N!

3@~12l!gb~zch,zg!1lgd~zch,zg!#N,

~68!

where,

gA~zch,zg!5 f Ag0~zg!1~12 f A!gch~zch!, ~69!

pb~ f b!5d~ f b2 f̂ !, ~70!

pd~ f d!51/~2Af d!, ~71!

and the indexA takes the valuesb andd in the binomial and
DCC cases, respectively. As before, one can carry out the
calculation of the robust observables which results in formu-
las that interpolate as a function of the fractionl of DCC
admixture between the generic and DCC limits. Note that in
this case there would be only a single parentP(N), common
to both the generic and DCC production. Using the results of
the previous section, one can calculate, for example,

r 1,1
assoc~l!5

@~12l!2 f̂ ~12 f̂ !1 1
3 l~12l!~11 f̂ !1 2

15 l2#@~12l!~12 f̂ !1 2
3 l#

@~12l!2~12 f̂ !21 4
3 l~12l!~12 f̂ !1 8

15 l2#@~12l! f̂1 1
3 l#

, ~72!

which, in contrast with the other two cases, Eqs.~57! and
~60!, is a fully robust observable.

D. Other particles

A similar framework can be used to discuss the sensitivity
of the predictions to the production of particles other than
pions. This is of potential concern, sinceK andh0 produc-
tion may be a substantial fraction of pion production
@17,25,30#. In particular, theh0/p0 ratio can be quite large
leading to an excess ofg ’s over the case of pions alone,
where^ng&5^nch&.

Relatively little is known aboutK andh0 distributions at
the highest energies, especially in forward directions, so,
while an independent production model might be more accu-
rate, we will limit our considerations at the moment to the
context of an ‘‘associated’’ production model. In essence, we
are thus assuming that a system of parent partons is created
in the collision process, and that this system then evolves
into a system ofN hadrons with probabilityP(N), with the
hadrons independently partitioned into various species.

Let the indexi run over the various types of hadrons that
are produced. Thei th type of hadron is produced with rela-
tive probabilityl i ~with ( il i51). These hadrons then decay
into charged particles andg ’s, and each species of hadron is

characterized by a generating function for detecting the prod-
ucts of that species:

gi~zch,zg!5(
nch

(
ng

ench ,ng

~ i ! zch
nchzg

ng , ~73!

wheregi(1,1)51. Then, the observed generating function,
neglecting DCC production, can be written as

Gobs~zch,zg!5(
N

P~N!F(
i

l igi~zch,zg!GN. ~74!

We can now make a few observations about the impact of
contamination of the predictions that arise fromK and h0

production. The following estimates of the effects of various
particle types on the magnitude ofr 1,1 draw upon the simu-
lations specific to MiniMax reported in Sec. VI.

First, we note that theK6’s, which are seen simply as
charged particles in MiniMax, appear just as another source
of charged particles from the collision point and so modify
the neutral fraction, but are otherwise benign. Similarly, the
KL’s have, on an average, a decay length much longer than
the length of the MiniMax detector. In consequence, they are
only detected, but not identified, when they interact strongly
in the converter used to identify photons. On the relatively
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rare occasions whenKL’s do interact in the converter, they
are misidentified asg ’s. This will also influence the net neu-
tral fraction that is observed, but is also otherwise benign. In
conclusion, the associated production ofK6’s andKL’s will
not change the values of ther i , j ’s predicted in Sec. IV for
‘‘generic’’ production.

The case ofKS production is rather interesting since the
KS decay modes,KS→p1p2(69%),KS→p0p0(31%), are
essentially those of an isosinglet DCC with one pair of pions.
That is, in regard to the statistics of the particles produced,
KS decays are essentially identical to those of the smallest
conceivable domain of DCC’s. As such,KS production is, in

principle, of interest from the point of sensitivity to very
small domains of DCC.

Let us consider associated production ofKS’s with frac-
tion lKS

. The generating function for studying the modifica-
tion of generic production is thus

GKS
~zc ,zg ;lKS

!5(
N

P~N!@~12lKS
!ggen~zc ,zg!

1lKS
gKS~zc ,zg!#N . ~75!

Using previous methods, one finds that

@r 1,1
KS~l!#21511

2^N&lKS
e2,0
KS

^N~N21!&@~12lKS
!~12 f̂ !ech1lKS

~e1,0
KS12e2,0

KS!#2
, ~76!

which is manifestly not robust.
KS’s are not DCC domains; they are, rather, particles of

well-defined mass and a lifetime such that most of them have
decayed before reaching the MiniMax detector, and their de-
cay products have strong correlations and are not vertexed to
the collision point. As a consequence, in MiniMax the accep-
tance for two charged pions from a singleKS is about 4%.
Consequently, the impact ofKS production on the MiniMax
systematics is expected to be quite small.

One can similarly study the impact ofh0 production on
the idealized predictions of Sec. IV. Theh0 has a wider
variety of decay modes and all of the charged particles and
g ’s from the decays are collision vertexed. Thus
gh0(zc ,zg) is more complicated, but the calculations follow
closely those outlined forKS decays. In addition to having
decay modes with more than a single charged particle, there
are decay modes with intrinsic charged-g correlations, as
well as the charged-charged correlations which entered into
the KS analysis. The conclusion is, nevertheless, much the
same.

E. Detector effects

Finally, we note that the formalism we have developed
can be extended to consider contamination due to detector-
related effects. For example, in detectors which identifyg
rays by electromagnetic calorimetry, charged hadrons can
also be identified as photons when they interact strongly in
the calorimeter. For example, in WA98@31#, a heavy-ion
experiment at CERN which has instituted a DCC search, this
is expected to occur approximately 20% of the time. Such
misidentifications can be handled by using an appropriate
form of the generating functiongi(zch,zg). For example,

gp6~zch,zg!5e0,0
p6

1e1,0
p6
zch1e1,1

p6
zchzg ~77!

would be suitable if some fractione11
p6

of the charged pions
were tagged as both charged particles and photons because
of the calorimeter’s response.

VI. ROBUST OBSERVABLES IN PRACTICE

We now turn to the utilization of the robust observables
for analyzing collider data, both actual or simulated. As we
saw in the last section, the assumptions made earlier are
idealizations that are violated by some types of production
mechanisms and by less than ideal detector performance. In
this section we examine the properties of the robust moments
in the context of the UA5 data and Monte Carlo simulations
of the MiniMax detector in order to assess the importance of
these violations in practice.

A. r 1,1 from UA5

For collider energies of 200 GeV and 900 GeV, UA5
measured the inclusive charged-particle and photondN/dh
distributions, as well as the corresponding charged-charged
and the charged-photon correlation functions,
Cch,ch(hch50,hch) andCg,ch(hg50,hch), respectively@25#.
Here, hch and hg denote the charged-particle and photon
pseudorapidities, respectively. The measurements were car-
ried out over about four units ofuhchu. The mean values
^nch& and^ng& can be calculated for different pseudorapidity
bins using the experimentaldN/dh distributions. Under the
assumption thatCch,ch(h1 ,h2) and Cg,ch(h1 ,h2) depend
only on the absolute value ofuh12h2u, the second-order
moments that enter intor 1,1 can also be calculated for corre-
sponding pseudorapidity bins. Despite large uncertainties in
the UA5 photon data and the validity of our assumptions
about the correlation functions, we findr 1,151.060.10 for
the different energies and various bin choices.

B. Simulations

While we believe the robust observables will find general
application in experimental searches for DCC, we are moti-
vated here primarily by the MiniMax experimental situation.
In this context, in order to make a rough check of the validity
of the assumptions we have made in the opening sections, we
next describe a series of complete simulations of the Mini-
Max experiment.
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Minimum bias events are generated inPYTHIA version
5.702 andJETSET7.401 @32#. The output ofPYTHIA is then
used as input to the simulation of the detector response using
GEANT, version 3.21@33#. The GEANT output is then put
through a full tracking and analysis chain. The resulting fre-
quency distributions for observingnch charged tracks and
ng converted photons are then used to calculate the various
robust observables. Similar studies, in which the output of
PYTHIA is replaced or augmented by the output of a DCC
generator, are also carried out. We find the results of these
simulations to be in agreement with expectations from our
calculations in the previous sections.

1. Standard Monte Carlo program

PYTHIA is used to simulate the minimum bias collisions at
As51.8 TeV. Default values are taken for all parameters
except that particles with a mean decay length greater than 1
cm were not allowed to decay.

There are no published data on multiparticle production at
1.8 TeV in the pseudorapidity interval covered by MiniMax,
so there is no independent check on the accuracy of the
simulations. For recent measurements at 630 GeV@34#, the
agreement betweenPYTHIA and thedN/dh data, in a range
of pseudorapidity including that of MiniMax, is less than
ideal. Nonetheless, thePYTHIA output represents a useful
benchmark.

The particles generated in a simulated collision are then
taken as input into aGEANT simulation of the detector and its
environment. The experimental data give evidence of a large
background of particles aising from interactions in material
immediately surrounding the detector. Therefore, many
nearby objects are included in the simulation.GEANT propa-
gates the particles through the detector and its surroundings
and produces a simulation of the data that are produced by
the actual detector. Despite care in including all relevant as-
pects of the detector and its environment, theGEANT data
show a smaller number of reporting wires in the MWPC’s
than do the actual data by a factor of 2.

GEANT data are written to a file that is used as input to the
same code that is used for the analysis of the actual MiniMax
data. The analysis proceeds in two stages. First, a tracking
code is used to find track segments in front~heads! of and
behind~tails! the converter plane. The output of this calcu-
lation is used by a second code~vertexer! that determines the
number of charged particles andg ’s observed in the event. In
so doing, it counts a charged track to be a head that can be
joined to at least one tail. Ag conversion is taken to be one
or more tails emanating from the same point in the converter
without an accompanying head. Candidate charged andg
tracks are required to point to within some given distance
from the collision point in order to remove secondary par-
ticles from material adjacent to the detector and fake tracks
arising from chance combinations of random reporting wires.
The parameters used in the vertexer are determined by opti-
mizing the reconstruction of the events generated byPYTHIA

andGEANT.
This track-reconstruction procedure is still under develop-

ment. It does not satisfy all of the assumptions made in Sec.
I regarding tracking efficiency. In particular, the reconstruc-
tion efficiency may depend on the multiplicity and proximity
of tracks.

2. DCC generator

DCC production is modeled according to the 1/(2Af ) dis-
tribution. For the present simulation, the DCC domain size in
h2f space is taken to be on the order of the detector ac-
ceptance. The c.m. momentum of the DCC is directed at the
center of the acceptance with a reasonably largepT . We
assume that the number of pions in the DCC is independent
of the central pseudorapidity of the DCC. The ratio of the
mean energy density of DCC pions to that of generically
produced pions is then approximately constant; we take the
ratio to be unity.

DCC’s are generated using what could be called a ‘‘snow-
ball’’ model in reference to the low pion momenta in the
DCC c.m. The numberNDCC of DCC pions is chosen using a
Poission distribution with meanmDCC.

The neutral fraction is generated using the transformation
method, where, ifx is a uniform deviate,f5x2 is distributed
according to 1/(2Af ). A uniform deviatexi is then generated
for each of theNDCC pions; if xi, f , the pion is defined to be
neutral, otherwise it is defined to be charged. This procedure
implements the 1/(2Af ) distribution exactly; if one takes the
viewpoint that the isosinglet distribution is more fundamen-
tal, then this procedure can be viewed as an approximation to
it which is valid in the limit that the total number of pions is
large, and one is sampling a subset of the DCC. The actual
distribution is, of course, an experimental question.

Each of the pions is assigned a three-momentum in the
DCC c.m. system by drawing from a zero-mean Gaussian
distribution with a variancêpW •pW &53sp

2 .
The DCC is then boosted such that the momentum of the

DCC c.m. is in the direction of the center of the MiniMax
detector ath54.1, so that the DCC pions have^pT&;sp . If
the pions are not too relativistic in the DCC c.m. frame, the
boosted DCC domain is approximately circular inh2f
space, with radiusRDCC;sp /pT .

The results we report next are based on Monte Carlo
simulations in whichsp50.1 GeV andpT50.14 GeV;
hence,RDCC;0.7, the typical radius of a hadronic jet. The
Poisson mean for the number of DCC pions has the value
mDCC55.0,which corresponds to an energy density in lego
space comparable to that of generic production. The Monte
Carlo simulation of DCC production is used to generate pure
DCC events. These events are then run through the same
GEANT simulation as thePYTHIA events, except that the trig-
ger is not used since no particles go in thep̄ direction.

C. Results

Once the number of charged tracks andg ’s passing into
the acceptance is determined, the moments andr i j are calcu-
lated. Statistical errors are estimated assuming Poisson fluc-
tuations and the standard propagation of errors formalism
@35#.

The results obtained for approximately 53104 PYTHIA

events which would be seen by the detector~pass trigger
cuts! and 23104 pure DCC events are shown in Table I. The
PYTHIA results are given for perfect charged andg-finding
efficiencies, and then from the output of running these events
through theGEANT simulation. The DCC events were also
processed byGEANT. For purposes of comparison, the pre-
dicted values for idealized binomial and DCC distributions
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are included. For those ratios involving higher-order mo-
ments of the number of observed, convertedg ’s, the predic-
tions are nonrobust, as discussed in Sec. IV, and depend on
j, which is determined from the relationship betweenf 0,2,
f 2,0, and ^ng&, assuming a binomial distribution. The same
values are used in correcting the DCC predictions for the
higher-order moments. In particular, it is assumed that
2e2 /(e112e2)'0.0860.01 obtained fromPYTHIA for ge-
neric production has the same value for DCC production.
This is certainly violated in practice, for the simulated DCC
pions have significantly lower̂pT&;sp than those gener-
ated byPYTHIA, and hence the probability of bothg ’s from a
p0 decay being in the acceptance, which is reflected ine2,
will be different. In addition, theFi ’s are also taken to be the
same in the DCC case as in thePYTHIA case, which is also
clearly a poor assumption. We have chosen to display the
data in the manner shown, however, in order to illustrate the
problems which will arise in DCC searches using these mo-
ments.

There is a general agreement between the ‘‘predictions’’
based on the analysis in Sec. IV of this paper, and the results
of these full simulations. One of the striking features of these
results is how well the combinedPYTHIA andGEANT simu-
lation, which includes a photon conversion efficiency of
about 50%, an 80% efficiency for detecting converted pho-
tons, resonance production, simulations of detector effects,
among other features, matches the predictions of a simple
binomial model.

In order to illustrate the effect of an admixture of DCC
with generic events, where the amount of DCC produced is
independent of the amount of generic production, DCC do-
mains from the DCC generator combined withGEANT are
added to various fractions of randomPYTHIA combined with
GEANT events. This represents a mixture of the independent
and exclusive models considered in Sec. V. The effect on the
r i ,1 is shown in Table II.

These simulations support the expectation that the robust
observables introduced in this paper will be a useful analysis
tool, even though all of the technical requirements of robust-
ness may not be met. Thus these observables provide a well-
defined framework for describing correlations in such a way
that many systematic uncertainties cancel out.

VII. CONCLUDING REMARKS

Most of the experimental analyses and theoretical studies
of multihadron production have concentrated only on
charged-hadron production, for which the bulk of the data
have been taken; for exceptions to this, see@21–25#. The
questions we have addressed concerning the neutral-hadron
component of multiparticle production have received little
attention, but are vital for our MiniMax experiment.

The robust observablesR, which are here proposed, ap-
pear, on the basis of the analytic calculations and Monte
Carlo simulations we have presented, to be of considerable
value in all future analyses of combined charged-particle and

TABLE I. Robust observablesr i , j for generic events simulated byPYTHIA and pure DCC events simulated
with the ‘‘snowball’’ model. Comparisons with ther i , j ’s obtained with binomially distributed pions and the
1/(2Af ) classical limit of DCC’s.

PYTHIA PYTHIA andGEANT DCC andGEANT binomial 1/(2Af )
i j r i j6s r i j

r i j6s r i j
r i j6s r i j

r i j r i j

1 1 1.026 0.01 1.006 0.02 0.576 0.01 1.00 0.50
2 1 1.056 0.04 1.016 0.02 0.436 0.03 1.00 0.33
3 1 1.156 0.10 1.046 0.13 0.386 0.05 1.00 0.25
0 2 1.246 0.02 1.366 0.04 1.556 0.06 1.36 1.80
1 2 1.246 0.06 1.366 0.10 0.666 0.06 1.30 0.62
2 2 1.346 0.15 1.476 0.26 0.446 0.09 1.25 0.31
0 3 1.766 0.12 2.136 0.25 2.986 0.39 1.89 3.54
1 3 1.756 0.26 2.036 0.43 1.196 0.31 1.74 0.90
0 4 3.276 0.62 3.066 0.94 6.826 2.18 2.70 7.34

TABLE II. The effect on ther i ,1 of an admixture of DCC and generic~PYTHIA! events. DCC domains
from the DCC generator orGEANT are added to various fractions of randomPYTHIA or GEANT events. The first
column represents the fraction of events in which a DCC is overlaying a generic event. A DCC fraction of 1
means that DCC has been added to every event, not that the events are pure DCC as in Table I.

DCC fraction r 1,16s r1,1
r 2,16s r2,1

r 3,16s r3,1
Events

0.00 1.016 0.02 1.026 0.05 1.096 0.14 51741
0.02 1.006 0.02 1.006 0.05 1.016 0.15 51741
0.05 0.976 0.02 0.936 0.05 0.956 0.10 51741
0.10 0.956 0.02 0.896 0.04 0.896 0.08 51741
0.20 0.936 0.02 0.836 0.04 0.776 0.07 51741
0.50 0.846 0.01 0.716 0.03 0.686 0.06 40000
1.00 0.746 0.01 0.606 0.03 0.556 0.06 20000
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photon distributions in high-energy hadron and heavy-ion
collisions, and especially with respect to the search for dis-
oriented chiral condensate.

While these observables are manifestly robust, there are
still clear limitations to their use which must eventually be
addressed. We have said little about momentum-dependent
efficiencies; this will, at the formal level, require generating
functions to be generalized to generating functionals@22–
24#. At this level, even the choice of the parent generating
functional may have considerable ambiguity due to a lack of
consensus on the underlying physics, e.g., can the Poisson-
transform structure of Eq.~6! be simply generalized?

At a more practical level, the issue of correlated efficien-
cies, especially with respect to total multiplicity and back-
ground level, is vital. Here, the features of the individual
experiment and its environment are essential, and a strong
interplay between simulations and the analysis of real data is
required.

Finally, in experiments with large acceptance, even for
pure DCC production, the chiral order parameter may be
different in different portions of theh2f, or lego, phase
space. In this case the formalism we have presented must
undergo further generalization.

Nevertheless, we believe that the analysis strategy we
have described can serve as a very useful starting point for
the experimental search for disoriented chiral condensates.
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APPENDIX: DCC DISTRIBUTIONS

The distribution

P@n;N#5S 2NN!2nn! D
2 ~2n!!

~2N11!!
, ~A1!

whereN and n<N are non-negative integers, was discov-
ered by Horn and Silver@15# in the context of coherent-state
production models. For this reason we will refer to it as the
coherentdistribution. It was later found that the coherent
distribution was an appropriate final state for a simple model
of a zero isospin DCC@6#. In both physical contexts, the
distribution is relevant to the case of an even total number
2N of pions and, necessarily, because of zero isospin, to an
even number 2n of p0’s. In the mathematical considerations
that follow, n andN are regarded as arbitrary non-negative
integers.

In @6# it was shown that

P@n;N#→
1

2Af
1

N
, ~A2!

as N,n→`, with n/N[ f constant, in agreement with the
classical expectations for a DCC@1–5,7,11#. Generally, a
bivariate distribution can be expressed as a continuous bino-
mial distribution weighted over the infinite-sampling limit:

P@n;N#5SNn D E
0

1 d f

2Af
f n~12 f !~N2n!. ~A3!

The representation~A3! can be established by rewriting Eq.
~A1! in terms of theb function,

B~x,y!5
G~x!G~y!

G~x1y!
~A4!

as

P@n;N#5
1

2 SNn DB~n1 1
2 ,11N2n!, ~A5!

which is found using the identity

G~n1 1
2 !5

~2n!!

22nn!
G~ 1

2 !. ~A6!

The standard integral representation of theb function @36#
yields Eq.~A3!. The identity~A5! establishes the connection
between the coherent-state production model of Martinis
et al. @9# for I50 and the analysis of@6,15#. The continuous
binomial distribution~A3! allows one to calculate all aver-
ages in the same explicit manner as for the binomial distri-
bution for a particularf and then integrate the result overf
with the indicated weighting leading to exact results for the
various moments. The direct use of Eq.~A1! to calculate
averages is awkward.

A problem arises with the original interpretation of distri-
bution~A1! in connection with a realistic detector or, equiva-
lently, a sampling consisting of a finite number of pions. The
limited sampling of such a detector means that typically one
sees only a portion of the particular group of the correlated
pions that are thought to be the earmark of a DCC. Within
that sampling, we need to find the distribution induced by the
DCC and with it we can carry out a generating-function
analysis. We show that the coherent distribution is self-
similar in that the combined neutral and charged distribution
of a finite number of pions chosen from a sampling space
distributed using the limit of Eq.~A1! for N→`, is given in
fact by Eq.~A1!, but now withN andn regarded as the total
number and the number ofp0’s, respectively, whether they
are even or odd.

In support of these remarks, let us consider the problem of
the combined neutral and charged distribution of an arbitrary
subset, even or odd, of a DCC corresponding to 2N pions
that are distributed according toP@n;N#. Suppose, then, that
because of limited sampling we observent<2N pions. The
joint probability distribution function for findingn0 neutral
pions andnch5nt2n0 charged pions is then a product with
P@n,N# of the hypergeometric distribution@35# of the two
relevant binomial samplings:

Q@n0 ;nt ;N#5 (
n>

1
2 n0

N2
1
2 nc S 2nn0 D S 2~N2n!

nch
D F S 2Nnt D G

21

P@n;N#,

~A7!
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where realizing equality in either of the limits is possible
only when these limits are even. The nature of the summa-
tion limits in Eq. ~A7! complicates a direct proof of the cor-
rect normalization, viz.,

(
n050

nt

Q@n0 ;nt ;N#51, ~A8!

however, Eq.~A8! has been verified numerically.
Because of the limited sample, one cannot regardN in Eq.

~A7! as known. Therefore, the case where all that is known is
thatN@1 is of special interest. In this case we find using Eq.
~A2!, the Stirling approximation, and passing to the con-
tinuum limit of f , that

Q@n0 ;nt ;N#→P@n0 ;nt#, ~A9!

where

P@n0 ;nt#5S ntn0D E01 d f2Af
f n0~12 f !~nt2n0!, ~A10!

which has precisely the same form as Eq.~A3!. Here, how-
ever, the respective functional parameters are the number of
neutral and total pions sampled from the DCC, rather than
half those numbers as they are for all of the pions of a full
DCC. Thus the induced representation~A10! is a quasicoher-
ent distribution that goes over to the classical DCC distribu-
tion ~A2! in the infinite-nt limit which, in practice, may not
be too large, because of the accuracy of the Stirling approxi-
mation for fairly small numbers.

The similar forms of Eqs.~A3! and ~A10! show that, in
regard to an infinite sampling space, the coherent distribution
generates a self-similar-induced distribution. In addition, the
procedure used to arrive at Eq.~A10! indicates how one uses
the continuum limit of the coherent distribution to define a
sampling of a finite number of pions from an infinite sam-
pling space. This remark then also explains the use of the

form ~A3! when it is applied to the full DCC: It represents a
sampling algorithm carried out by means of neutral pairs of
pions to induce a DCC of a finite, even number of pions out
of the infinite sample.

The distribution~A10! refers to a collection of pions that
need not have a net zero charge, the signal characteristic of a
full DCC, but yet makes no reference to the total charge. For
the sampling algorithm used to obtain Eq.~A10!, the abso-
lute magnitude of total charge will obviously be binomially
distributed about zero ifnch is even, and about unity if it is
not; this extended form of Eq.~A10! should be used when
the sign of the pions can be distinguished. When they cannot,
the means and variances have interpretations that are differ-
ent from a DCC.

Finally, let us weightP@n0 ;nt# with respect to a parent
distributionP@nt#. Then, the relevant generating function is

GDCC~zch,z0!5 (
nt ,nch ,n050

`

dnt ,nch1n0
P@n0 ;nt#P@nt#zch

nchz0
n0 .

~A11!

Representation~A10! when combined with Eq.~A7! yields

GDCC~zch,z0!5E
0

1 d f

2Af
Gbin~zch,z0 ; f !, ~A12!

which we interpret as the generating function of the factorial
moments of the numbers of charged and neutral pions
sampled from a very large DCC sample space.

The distributionp( f )51/(2Af ) has been associated with
the decay of a DCC in the classical limit. Thus, the generat-
ing function ~A12! can be considered applicable to the situ-
ation in which the phase-space domain of the particles result-
ing from the DCC is very much larger than the acceptance of
the detector. Then, one can picture DCC production as cor-
responding to an event distribution for which the neutral
fraction f is a random variable distributed according to
1/(2Af ), a depiction reflected in Eq.~A12!.
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