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Previous calculations of the polarizabilities of the nucleon within the framework of heavy baryon chiral
perturbation theory have included the contribution of theD(1232) only in its effects on various contact terms
or have been performed in chiral SU~3! where systematic errors are difficult to control. Herein, we perform a
corresponding calculation in chiral SU~2! whereinD~1232! is treated as an explicit degree of freedom and the
expansion is taken to third order in soft momenta, the pion mass, and the quantityMD2MN , collectively
denotede. We present the results of a systematicO(e3) calculation of forward Compton scattering off the
nucleon, extract the electric polarizabilityāE , the magnetic polarizabilityb̄M , and the spin polarizabilityg,
and compare with available information from experiments and from previous calculations. Concluding with a
critical discussion of our results, we point out the necessity of a futureO(e4) calculation. @S0556-
2821~97!04909-6#

PACS number~s!: 13.60.Fz, 11.30.Rd, 14.20.Dh

I. INTRODUCTION

Understanding of the implications of QCD within the re-
gime of low energy physics has during the past decade be-
come accessible via the technique of chiral perturbation
theory ~ChPT! @1#. Initial applications were in the arena of
Goldstone boson interactions@2# together with a few calcu-
lations in the baryon sector@3,4#, using relativistic baryon
ChPT. In recent years use of so-called heavy baryon methods
@5,6# has generated much interest in calculations involving
baryons and a great deal of work has been done studying
strong, weak, and electromagnetic physics in the near thresh-
old region @7#. In this work we will focus on SU~2! heavy
baryon chiral perturbation theory~HBChPT!, which has be-
come the most fully developed sector within baryon ChPT
@7–9#. Thus far, consistent extension to higher energies in
SU~2! HBChPT has been limited by treatment of the impor-
tantD(1232) resonance only in terms of its contribution to
the various counterterms which arise in such calculations.
The technique by which to address this deficiency was de-
veloped some time ago@10# by including theD(1232) as an
explicit degree of freedom in a chiral perturbative scheme.1

Recently, a reformulation of this formalism which allows for
a systematic and explicit calculation of higher order terms in
an expansion of soft momenta, the pion mass, and the mass

differencemD2mN has been given@12,13# and in this paper
we apply this technique to the problem of forward nucleon
Compton scattering and the polarizabilities of the nucleon.
Nucleon Compton scattering is an area of research which has
recently received a great deal of attention, both experimen-
tally and theoretically, and in the next section we review the
status of such work. In Sec. III we give a brief introduction
to the formalism necessary to include theD(1232) in chiral
calculations, and in Sec. IV apply this to evaluateD contri-
butions toN2g scattering, examine its influence on the po-
larizabilities, and give a critical discussion of ourO(e3) re-
sults. Finally, in a concluding Sec. V we summarize our
findings.

II. COMPTON REVIEW

To lowest order the spin-averaged amplitude for Compton
scattering on the nucleon is given by the Thomson amplitude

Amp52
Q2

M
ê• ê8, ~1!

whereQ,M represent the nucleon charge, mass andê,ê8 and
km5(v,kW ),k8m5(v8,kW8) specify the polarization vectors
and four-momenta of the initial and final photons, respec-
tively. In next order are generated contributions arising from
electric and magnetic polarizabilities,āE and b̄M , which
measure the response of the nucleon to the application of
quasistatic electric and magnetic fields

Amp5 ê• ê8S 2
Q2

M
1vv84pāED1 ê3kW• ê83kW84pb̄M

1O~v4!. ~2!

1Using the formalism of@10#, Butler and Savage@11# have given
an estimate of the contribution of the spin-3

2 resonances to the elec-
tric and magnetic polarizabilities of the nucleon. However, this cal-
culation was performed in SU~3! and made a number of approxi-
mations, so that a direct comparison with systematic SU~2! work is
not possible.
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The associated differential scattering cross section on the
proton is given by

ds

dV
5S e2

4pM D 2S v8

v D 2F 1
2 ~11cos2u!

2
4pMvv8

e2
@ 1
2 ~ āE1b̄M !~11cosu!2

1 1
2 ~ āE2b̄M !~12cosu!2#1••• G . ~3!

Thus by measurement of the differential Compton scattering
cross section one can extract the electric and magnetic polar-
izabilities, provided~i! the energy is large enough that these
terms are significant with respect to the Thomson contribu-
tion but ~ii ! not so large that higher order effects dominate.

This has been accomplished for the proton in the energy
regime 50 MeV,v,100 MeV, yielding@14#

āE
p5~12.160.860.5!31024 fm3,

b̄M
p 5~2.170.870.5!31024 fm3. ~4!

@Note: In practice one generally uses the results of unitarity
and the validity of the forward scattering dispersion relation
which yields the Baldin sum rule

āE
p1b̄M

p 5
1

2p2E
0

`dv

v2 s tot
p ~v!5~14.260.3!31024 fm3

~5!

as a constraint, since the uncertainty associated with the in-
tegral over the photo-absorption cross sections tot(v) is
smaller than that associated with the polarizability measure-
ments.#

Since the neutron has no charge, such a Thomson-
polarizability interference experiment is not possible, so al-
ternative methods must be used. The most precise measure-
ment involves a recentn-Pb scattering experiment, wherein
the dipole moment induced in the moving neutron because of
the nuclear charge acts back on the Pb nucleus. This second
order process and the resulting 1/r 4 interaction proportional
to the electric polarizability can be detected in a transmission
experiment via the characteristic linear dependence on the
beam momentumk. This experiment was recently performed
at ORNL and yielded results@15#

āE
n5~12.661.562.0!31024 fm3,

b̄M
n 5~3.271.572.0!31024 fm3 ~6!

quite similar to those of the proton. In this experiment only
the electric polarizability is measured directly. However, us-
ing the unitarity sum rule result

āE
n1b̄M

n 5
1

2p2E
0

`dv

v2 s tot
n ~v!5~15.860.5!31024 fm3,

~7!

the magnetic polarizability can be extracted.

On the theoretical side, constituent quark-based ap-
proaches which rely on the sum rule@16#

āE5
Z2

3M K (
i51

3

ei~rW i2RW c.m.!
2L

12(
nÞ0

U K nU(
i51

3

ei~rW i2RW c.m.!zU0L U2
En2E0

~8!

are bound to fail since the sum over intermediate states com-
ponent of Eq.~8! is in almost any reasonable model identical
for both neutron and proton, leading to a prediction

āE
p2āE

n.
a

3M
^r p

2&53.831024 fm3, ~9!

in conflict with the experimental result thatāE
n>āE

p @18#.
The solution to the problem lies in a proper treatment of the
pion degrees of freedom of the nucleon, which is suggested
by the feature that the leading pion loop contributions to
neutron and proton are identical, in agreement with experi-
ment. The problem can best be addressed using the technique
of heavy baryon chiral perturbation theory@7#, within which
atO(p3) one finds a result@8#

āE
p5āE

n510b̄M
p 510b̄M

n 5
5agA

2

96pFp
2mp

512.231024 fm3.

~10!

This O(p3) calculation represents the leading result forāE

and b̄M in ChPT, but gets the qualitative features of the
polarizabilities right and even agreement with experiment.
The results diverge as 1/mp in the chiral limit, giving support
to the idea that at these low energies the photon interacts
primarily with the long-range pion cloud of the nucleon. In
order to understand the experimental finding thatāE

n.āE
p ,

the leading ChPT result is not sufficient. One must include
higher order terms in order to find isospin-dependent effects
and to judge the convergence behavior of the series.2 A cal-
culation atO(p4) has been performed by Bernard, Kaiser,
Schmidt, and Meissner~BKSM! @20#. At this order four
counterterms are required, which were estimated by BKSM
by treating higher resonances, including theD resonance, as
very heavy with respect to the nucleon. The results of this
process are

āE
p5~10.562.0!31024 fm3,

b̄M
p 5~3.563.6!31024 fm3,

āE
n5~13.461.5!31024 fm3,

b̄M
n 5~7.863.6!31024 fm3, ~11!

where the uncertainty is associated with the counterterm con-
tribution from theD and from K,h loop effects. A very
interesting aspect of thisO(p4) calculation lies in the fact

2Higher order corrections to theO(p3) HBChPT results for the
polarizabilities have been discussed by L’vov@19#.
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that it identifies a mechanism to counter the large positive
contribution onb̄M because ofD~1232! resonance exchange,
which is a well-known problem in calculations of the mag-
netic polarizability via effective Lagrangians@17#. BKSM
found that atO(p4) ~negative! Np-loop contributions can
essentially balance out the~positive! D effects hidden in the
counterterms. Nevertheless, we observe that the uncertainties
of their O(p4) calculation are quite dramatic so that real
understanding of the ChPT predictions for the polarizabilities
will require more work. In particular, the large uncertainty in
b̄M is mainly related to poorly known couplings involving
D~1232!, which was used to determine some of the counter-
terms via ‘‘resonance saturation.’’ If one retainsD~1232! as
an explicit degree of freedom in the chiral calculation, as
done in ourO(e3) calculation of Sec. IV, one can in prin-
ciple determine allD couplings of interest from~other! ex-
periments in a systematic fashion. Furthermore, one does not
limit oneself to the narrow scope of ‘‘resonance saturation’’
for the spin-32 contributions. We refer to Sec. IV for further
discussion of this point.

Finally, with respect to the magnetic polarizability, we
note that the simple quark modelcanprovide a basic under-
standing of experiment. The prediction@16#

b̄M52
1

2M K (
i
ei~rW i2RW c.m.!

2L
2
1

6 K (
i
ei
2~rW i2RW c.m.!

2/mi L
12(

nÞ0

U K nU(
i

ei
2mi

s izU0L U2
En2E0

~12!

involves a substantial diamagnetic recoil contribution

b̄M
dia5H 210.231024 fm3 p,

28.531024 fm3 n,
~13!

which, when added to the large paramagnetic contribution
because of theD(1232) @21#,

b̄M
D 5H 11231024 fm3 p,

11231024 fm3 n,
~14!

gives results in basic agreement with the experimental find-
ings. Hence, it is clear that proper inclusion of theD degrees
of freedom is essential.

When spin dependence is included the situation becomes
somewhat more complex. In order to simplify the present
exploratory analysis, we restrict our attention to forward
scattering, in which case the amplitude can be written as

Amp5 f 1~v!ê• ê81 isW •~ ê83 ê !v f 2~v!, ~15!

where f 1(v), f 2(v) are both even functions under crossing,
v→2v, and are, therefore, functions only ofv2. In terms
of our previous notation we have

f 1~v!52
e2

4pM
1~ āE1b̄M !v21•••, ~16!

while in the case off 2(v) we can make a similar expansion
@22#

f 2~v!52
e2k2

2M2 1gv21•••, ~17!

wherek is the anomalous magnetic moment of the target and
the new structureg is the ‘‘spin polarizability.’’ As in the
case off 1(v) the form of the leading term in the expansion
is dictated by rigorous low energy theorems, while thev2

correction represents a probe of hadronic structure. One dif-
ference between the spin-dependent and spin-averaged am-
plitudes, however, is the asymptotic behavior asv→`. The
better behavior off 2(v) suggested by Regge theory allows
one to write an unsubtracted dispersion relation in this case,
leading to the strictures@23#

pe2k2

2M2 52E
0

`dv

v
@s2~v!2s1~v!#,

g5
1

4p2E
0

`dv

v3 @s2~v!2s1~v!#, ~18!

where s6(v) are the photo-absorption cross sections for
parallel and antiparallel alignments of photon and target he-
licities. The first of these relations, the Drell-Hearn-
Gerasimov~DHG! sum rule, has received a good deal of
attention recently. On the experimental side, efforts are being
mounted to measure the spin-dependent structure function
f 2(v) directly, thereby confirming the prediction of the low
energy theorem@24#. However, this has not yet been
achieved. On the theoretical end, there have been a number
of attempts to evaluate the dispersive integral of the DHG
using what information currently exists for the photo-
absorption cross sections. The existing data set is incomplete
in that helicity-dependent cross sections have not yet been
measured. Thus one uses existing multipole decompositions
from unpolarizedexperiments in order to perform the analy-
sis. Such decompositions are available, however, only in the
single-pion production channel so that above the two-pion
threshold model-dependent assumptions must be made. With
this caveat present results are somewhat higher than those
predicted by the low energy theorem

pe2kp
2

2M2 50.167 GeV22,

2E
0

`dv

v
@s2~v!2s1~v!#

5H 0.208 GeV22 Karliner @25#,

0.210 GeV22 Workman and Arndt@26#,

0.182 GeV22 Burkert and Li @27#,

~19!

and there have even been arguments made that challenge the
assumptions under which the DHG form was derived@28#.
However, resolution of these problems awaits reliable
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helicity-dependent cross section measurements, which
should be available in the near future.3

Using the same multipole analysis it is possible to evalu-
ate the dispersion integral involving the spin-dependent po-
larizability, yielding @29#

g5
1

4p2E
0

`dv

v3 @s2~v!2s1~v!#multipole

5H 21.331024 fm24 p,

20.431024 fm24 n.
~20!

For a detailed discussion of the contributions of the various
nucleon resonances to the sum rules of Eq.~18! and the
problems of the constituent quark model in describing the
DHG sum rule we refer the reader to the review article by
Drechsel@30#.

These results are in dramatic disagreement with the
O(p3) ChPT predictions@8#

gp5gn5
e2gA

2

96p3Fp
2mp

2 514.431024 fm24. ~21!

Unlike the case ofāE and b̄M , at present there exists no
correspondingO(p4) ChPT calculation that reconciles this
discrepancy. Presently, the best information about the sub-
leading behavior ofg comes from a relativistic baryon ChPT
calculation at the one-loop level@8#, yielding

gp
1 loop512.231024 fm4, gn

1 loop513.231024 fm4.
~22!

This calculation does not resolve the discrepancy with the
multipole analysis results of Eq.~20!. However, it is known
from phenomenological considerations4 thatD(1232) makes
a major contribution of opposite sign. In Sec. IV B we
present a systematic chiral calculation ofg with nucleons,
D ’s, and pions as explicit degrees of freedom.

Having given a brief summary of current research in this
area we now proceed to outline the formalism which allows
inclusion of theD~1232! in a consistent chiral power count-
ing framework.

III. SMALL SCALE EXPANSION IN HBChPT

The subject of SU~2! heavy baryon ChPT of nucleons and
pions has been well developed in recent years@8,7#. In the
conventional form one organizes the calculation according to
an O(pn) power counting, wherep denotes either a soft
momentum or the pion massmp . All nucleon resonances,
strange particles, vector mesons, etc., are integrated out, i.e.,
they only appear in higher order contact interactions. For
near threshold processes this program has proved highly suc-
cessful, for an outstanding review of the field we refer the

reader to Ref.@7#. However, phenomenologically, it is
known that in the nucleon sector the first nucleon resonance
D~1232! lies very close to the nucleon and can exert its in-
fluence even on processes at very low energies. This special
situation in the baryon sector has early on@10# prompted
suggestions to keep the spin-3

2 baryon resonances as explicit
degrees of freedom in the chiral Lagrangian in order to in-
clude all relevant physics and to improve the convergence of
the perturbation series.

If one retainsD~1232! as an explicit degree of freedom in
SU~2! HBChPT, one is faced with an additional dimension-
ful parameterD5MD2MN , which corresponds to the mass
splitting between the nucleon and theD resonance in the
chiral limit. Phenomenologically,D is a small parameter of
'300 MeV which, unlikemp , remains finite in the chiral
limit. As was shown in Refs.@10,12,13#, one can, neverthe-
less, set up a consistent field-theoretic HBChPT formalism
provided one organizes the calculation according to an
O(en) power counting, wheree now denotes a small scale of
either a soft momentum, the pion mass, or the mass splitting
D. Our formalism has been constructed in such a way that an
O(en) resultautomaticallycontains anyO(pn) result in @7#
plus additional terms involving theD~1232! resonance which
might be present to the order we are calculating.

In our calculation of Compton scattering below, which is
done toO(e3) in the small scale expansion, we shall need
only the lowest order vertices, the propagator involving the
D(1232), as well as possible counterterm contributions to
NNg,NNgg, andNDg. Details of how this can be achieved
in a general 1/M expansion are given in Refs.@12,13#. Here
we list only the minimal results necessary for the present
calculation.

The systematic 1/M expansion of the coupledND system
starts with the most general chiral-invariant Lagrangian in-
volving relativistic spin-12(cN) and spin-32(cm) fields

5

L5LN1LD1~LDN1H.c.!, ~23!

with

LD5c̄ i
mLmn

i j c j
n ,

Lmn
i j 52F ~ iD” i j2MDd i j !gmn2 1

4gmgl~ iD” i j2MDd i j !glgn

1
g1
2
gmnu”

i jg51
g2
2

~gmun
i j1um

i jgn!g5

1
g3
2

gmu”
i jg5gnG1•••,

LN5c̄NS iD” 2MN1
gA
2
u”g5DcN1•••,

LDN5gpNDc̄ i
m~gmn1zgmgn!wi

ncN1•••. ~24!
3A second area of interest is in the generalization of the DHG

form to include the deep inelastic region and its connection with the
integrated spin-dependent structure functiong1(k

2). However, we
shall not discuss this issue herein.
4This has also been pointed out by the authors of@8#.

5In order to take into account the isospin-3
2 property ofD~1232!,

we supply the Rarita-Schwinger spinor with an additional isospin
index i , subject to the subsidiary conditiont icm

i (x)50.
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We have only displayed the leading order terms, the ellipses
denote terms with more derivatives or insertions of the light
quark mass matrix. It is understood that they are included up
to the order one working in thee expansion. Following the
conventions of SU~2! HBChPT in the spin-12 sector@4,7#, we
have defined the structures

Dm
i jc j

n5~]md i j1Gm
i j !c j

n ,

Gm
i j5Gmd i j2 i e i jkTr@tkGm#,

Gm5
1

2
@u†,]mu#2

i

2
u†~vm1am!u2

i

2
u~vm2am!u†,

um
i j5umd i j2 i e i jkwm

k ,

wm
i 5

1

2
Tr@t ium#,

um5 iu†¹mUu
†,

¹mU5]mU2 i ~vm1am!U1 iU ~vm2am!,

U5u25expS i

Fp
t¢–p¢ D , ~25!

wherevm ,am denote external vector, axial-vector fields.
The ‘‘light’’ degrees of freedom of the spin-32 field, which

are retained in the effective low-energy theory, are identified
as

Tm
i ~x![Pv

1P~33!mn
3/2 c i

n~x!exp~ iM v•x!, ~26!

where we have introduced a spin-3
2 projection operator for

fields with fixed velocityvm

P~33!mn
3/2 5gmn2 1

3 gmgn2 1
3 ~v”gmvn1vmgnv” !. ~27!

The remaining components

Gm
i ~x!5~gmn2Pv

1P~33!mn
3/2 !c i

n~x!exp~ iM v•x! ~28!

are shown to be ‘‘heavy’’@12,13# and are integrated out.
Rewriting the Lagrangians of Eq.~23! in terms of the

spin-32 heavy baryon componentsTm andGm , and the corre-
sponding ‘‘light’’ and ‘‘heavy’’ spin-12 componentsN,h, de-
fined as

N~x!5Pv
1cNexp~ iM v•x!,

h~x!5Pv
2cNexp~ iM v•x!, ~29!

the general Lagrangians take the form

LN5N̄ANN1~ h̄BNN1H.c.!2h̄CNh,

LDN5T̄ADNN1ḠBDNN1h̄DNDT1h̄CNDG1H.c.,

LD5T̄ADT1~ḠBDT1H.c.!2ḠCDG. ~30!

MatricesA,B,C admit a low energy scale expansion—A,B
start at ordere1, whereasC has a leading term of order one.

This allows one to perform a systematic 1/M expansion, fol-
lowing an approach developed by Mannelet al. in the field
of heavy quark physics@31#, which was later applied to spin-
1
2 HBChPT by Bernardet al. @8#. The result of this procedure
is the effective action for the coupledND system@12,13#:

Seff5E d4x$T̄ÃDT1N̄ÃNN1@ T̄ÃDNN1H.c.#%, ~31!

with

ÃD5AD1g0D̃ND
† g0C̃N21D̃ND1g0BD

†g0CD
21BD ,

ÃN5AN1g0B̃N†g0C̃N21B̃N1g0BDN
† g0CD

21BDN ,

ÃDN5ADN1g0D̃ND
† g0C̃N21B̃N1g0BD

†g0CD
21BDN , ~32!

and

C̃N5CN2CNDCD
21g0CND

† g0 ,

B̃N5BN1CNDCD
21BDN ,

D̃ND5DND1CNDCD
21BD . ~33!

The vertices relevant for our calculation can be read off
directly from Eq. ~31!. Further analysis below will be di-
vided into two classes of contributions, one-loop graphs and
Born graphs. As one can see from Eq.~31!, any calculation
atO(e3) which has a nucleon in the initial~and final! state,
completelycontains aO(p3) calculation in the formalism of
@8#. Furthermore, it shows unambiguously which additional
diagrams involvingD~1232! must be appended.

A. Loop graphs

To ordere3, only one-loop graphs with vertices of order
e must be considered. Thus, the pieces in Eq.~31! we need
areAN

(1) ,AD
(1) , andADN

(1) . More explicitly, these are found as

AN
~1!5 iv•D1gAS•u,

ADN
~1!5gpNDwm

i ,

AD
~1!52@ iv•Di j2Dd i j1g1S•u

i j #gmn , ~34!

whereSm denotes the Pauli-Lubanski spin vector@7#. From
matricesAN

(1) andAD
(1) we determine the SU~2! HBChPT

propagators in momentum space with soft momentum6

rm5pm2Mvm :

S1/2~v•r !5
i

v•r1 ih
,

6Working to O(e3) and in the absence of anyO(e) Born dia-
grams because of our choice of gauge, we always can identify the
large massM with the physical mass of the nucleonMN . Mass
renormalization only becomes important in anO(e4) HBChPT cal-
culation of Compton scattering.
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Smn
3/2~v•r !5

2 iPmn
3/2

v•r2D1 ih
j I53/2
i j , ~35!

with Pmn
3/2 denoting the spin-32 HBChPT projector ind dimen-

sions@13#,

Pmn
3/25gmn2vmn1

4

d21
SmSn , ~36!

and

j I53/2
i j 5d i j2

1

3
t it j ~37!

being the corresponding isospin-3
2 projector. From Eq.~35!

one can see that theD propagator counts as a quantity of
ordere21 in our expansion scheme.

At present, we have no systematic determination of the
coupling constantgpND within the small scale expansion.7

For the time being we rely on the phenomenological analysis
of Davidson, Mukhopadhyay, and Wittman~DMW! @32#,
yielding

gpND
HHK5

Fp

mp
gpND
DMW'1.560.2, ~38!

wheregpND
HHK is the value employed in the present work. Fi-

nally, choosing the velocity vectorvm5(1,0,0,0) and work-
ing in the Coulomb gaugev•e5v•e850, we conclude that
we have to calculate 18 loop diagrams, displayed in Figs. 3
and 4 below. Details of the calculation are given in Appen-
dices B and C, and the results will be discussed in Sec. IV.

B. Born graphs

The Born graphs contributing atO(e3) Compton scatter-
ing are shown in Figs. 1 and 2, with the pertinent vertices
given in Table I. The structures not involving theD reso-
nance can be taken from Ref.@9#.8 We note that our use of
the Coulomb gauge dramatically reduces the number of dia-
grams. Also, the possible diagram of Fig. 2~1d! with an
anomalousp0→gg vertex does not contribute in forward
direction. Because of the fact that the photo-excitations of
D~1232! begin with the M1 transition, there exists no
gND vertex at O(e). Consequently, there is no

1/M -corrected interaction of this type atO(e2) in Table I.
However, the relativistic counterterm Lagrangian@12,32#

LctND5
ib1
2MN

c̄ i
m~gmn1ygmgn!grg5

1

2
Tr@ f1

rnt i #cN ~39!

provides theM1gND transition strength and leads to an
O(e2) structure:

ADN
~2!5

ib1
MN

Sn

1

2
Tr@ f1

nlt i #, ~40!

with the chiral field tensor being defined as@7#

fmn
6 5u†Fmn

R u6uFmn
L u†,

Fmn
L,R5]mFn

L,R2]nFm
L,R2 i @Fm

L,R ,Fn
L,R#,

Fm
R5vm1am , Fm

L5vm2am . ~41!

We note that the off-shell parametery in Eq. ~39! does not
contribute at ordere2 when going to the effective heavy
baryon Lagrangian, it will only enter atO(e3). However,
since theD propagator equation~35! counts as ordere21,
and we effectively have noO(e) vertices around, we do not
have to considere3 gNN or gND vertices to the order we
are working. Furthermore, the absence of anO(e) gND ver-
tex is also responsible for the fact that theO(e3) two-photon
sea gull term does not get renormalized byD interactions.
The only Born diagrams involvingD~1232! are therefore,
s- and u-channel resonance exchange with vertices from

7Study of this problem is underway and will be addressed in Ref.
@13#.
8In general, this is not the case. As will be shown in@13#, the

‘‘heavy components’’ of the relativistic spin-32 field modify the
counterterms of theNN Lagrangian starting atO(e2). In our spe-
cific case theNN vertices are unchanged.

FIG. 1.O(e2) Born graph in forward Compton scattering. Wig-
gly lines to the right~left! denote incoming~outgoing! photons,
dotted lines denote pions and solid lines represent nucleons.

FIG. 2. O(e3) Born contributions in forward Compton scatter-
ing. Wiggly lines to the right~left! denote incoming~outgoing!
photons, dotted lines denote pions and solid lines represent nucle-
ons.

TABLE I. Vertices for Born graphs in forward Compton scat-
tering.

Vertex Lagrangian

O(e)gNN AN
(1)→0 in Coulomb gauge

O(e)gND 22

O(e2)gNN AN
(2) andg0BN(1)†g0CN(0)21BN(1)

O(e2)gDN ADN
(2)

O(e2)ggNN g0BN(1)†g0CN(0)21BN(1)
O(e3)ggNN g0BN(2)†g0CN(0)21BN(1) 1 H.c.
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ADN
(2) @diagrams 2~2a! and 2~2b! in Fig. 2#. At present, the

magnitude of the finiteO(e2) countertermb1 is not known
very accurately. Until one has identified a suitable
b1-dependent observable which has both been calculated in
the small scale expansion and been reasonably well
measured,9 we will employ a phenomenological relation
found in Ref.@32#, which in our convention reads

b1'22.3
mp

2Fp
gpND
HHK'2~2.560.35!. ~42!

For the numerical estimate we have usedgpND
HHK of Eq. ~38!.

This completes the background necessary for the present ap-
plication.

IV. FORWARD COMPTON SCATTERING
AND NUCLEON POLARIZABILITIES

Having outlined our formalism, in this section we inves-
tigate the influence of theD(1232) resonance on the nucleon
polarizabilities. We restrict ourselves to the case of forward
scattering, which provides information on the electric polar-
izability āE , the magnetic polarizabilityb̄M , and the spin
polarizability g. As mentioned above, for the spin-averaged
quantitiesāE andb̄M the results involving only nucleon and
pion degrees of freedom are already known toO(p4) @20# in
the chiral expansion. Here we present a systematic analysis
of theD(1232) contributions toāE ,b̄M , andg atO(e3). A
complete calculation of all polarizabilities atO(e4) includ-
ing pion, nucleon, andD degrees of freedom will be the
subject of future work.

A. Spin-averaged forward Compton scattering

Working in the gauge,e•v50, the spin-averaged Comp-
ton tensor in forward directionQmn can be written as

e8mQmnen5e2e8men
1

2
Tr@Pv

1Tmn~v,k!#

5e2@e8•eU~v!1e8•ke•kV~v!#, ~43!

where k is the four-momentum of a photon with energy
v5k•v. e(e8) refers to the polarization vector of the incom-
ing ~outgoing! forward scattering photon andTmn(v,k) is the
Fourier-transformed matrix element of two time-ordered
electromagnetic currents

Tmn~v,k!5E d4xeik•x^N~v !uT@Jm
em~x!Jn

em~x!#uN~v !&.

~44!

In the spin-averaged case all the information about the low
energy structure of the photon is contained in just two
functions10 U(v),V(v). However, there exists a structure-

independent constraint@22# with respect toU(v), stating
that in the limit of zero photon energy one has to obtain the
Thomson result of Eq.~1!:

U~0!5Z2/M , ~45!

whereZ refers to the charge number of the Compton target
andM is its mass. Furthermore,U(v) has to be even under
crossing symmetry;11 i.e.,U(v)5U(2v).

Keeping these two nontrivial constraints in mind we split
up the calculation ofU(v),V(v) into four separate compo-
nents:

U~v!5UN~v!Born1UN~v! loops1UD~v!Born1UD~v! loops,

V~v!5VN~v!Born1VN~v! loops1VD~v!Born1VD~v! loops.
~46!

We start with the calculation of the nucleon Born contribu-
tions toU(v),V(v). In the Coulomb gaugee•v50 there
exist nonzero contributions atO(e2) andO(e3), as shown
by the diagrams in Figs. 1 and 2. ToO(e3) we find

UN~v!Born5
1

MN

1

2
~11t3!,

VN~v!Born5
1

MN
2v

1

2
~11t3!, ~47!

with UN(v) solely stemming from theO(e2) sea gull dia-
gram of Fig. 1 andVN(v) arising from diagrams 2~1a! and
2~1b! of Fig. 2. We also note thatUN(0)

Born satisfies the
Thomson limit equation~45! for proton (Z51) and neutron
(Z50) targets, as expected. We, therefore, conclude that

UN~0! loops5UD~0!Born5UD~0! loops50, ~48!

and this will serve as a powerful constraint and check on our
calculation.

The O(e3) nucleon loop contributions to the spin-
averaged functions can be obtained from the nine diagrams
shown in Fig. 3 yielding,12 as detailed in Appendix B,

UN~v! loops52
11gA

2v2

192pFp
2mp

1O~v4!,

VN~v! loops52
gA
2

192pFp
2mp

1O~v2!. ~49!

Note that the loop effects are isospin independent~i.e., iden-
tical for neutron and proton! to this order. We have also
checked thatUN(v50)loops50 @Eq. ~48!#, by carefully ana-
lyzing the dimensionality dependence of the nine loop am-
plitudes as given in Appendix B.

Next, we evaluateD~1232! Born contributions to
U(v),V(v). At O(e3) we find two contributing diagrams,
as shown in Fig. 2. They yield

9Work along these lines is under way; V. Bernard, T. R. Hem-
mert, J. Kambor, and U.-G. Meissner~in preparation!.
10The auxiliary functionV(v) can be eliminated for real photons.

Nevertheless, one can obtain information about the magnetic polar-
izability b from it.

11U(v) is related to the functionf 1(v) of Eq. ~15! via
f 1(v)52(e2/4p)U(v).
12Equation~49! agrees with theO(p3) result of @8#.
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UD~v!Born52
8b1

2v2

9MN
2

D

D22v2 ,

VD~v!Born52
8b1

2

9MN
2

D

D22v2 , ~50!

whereb1 is theM1DNg coupling of Eq.~39!. Again, the
Thomson constraintUD(0)

Born50 holds, as required by Eq.
~48!.

Finally, the correspondingD loop contributions can be
found from the nine diagrams shown in Fig. 4. Analyzing the
invariant amplitudes given in Appendix C, we find

UD~v! loop52
gpND
2 v2

54p2Fp
2 F 9D

D22mp
2 2

9mp
2

~D22mp
2 !3/2

lnR

1
2

AD22mp
2
lnRG1O~v4!,

VD~v! loop52
gpND
2

54p2Fp
2

1

AD22mp
2
lnR1O~v2!, ~51!

with R defined as

R5
D

mp
1AD2

mp
2 21. ~52!

Again, we note the validity of the Thomson stricture
UD(v50)loops50.

In order to extract the nucleon electric and magnetic po-
larizabilities, we now define the nucleon Born term-
subtracted quantitiesÛ(v),V̂(v)

Û~v!5U~v!2UN~v!Born, ~53!

V̂~v!5V~v!2VN~v!Born, ~54!

and make the connections

āE1b̄M52
e2

8p

]2

]v2Û~v!uv50 , ~55!

b̄M52
e2

4p
V̂~v50!. ~56!

Adding up all three contributions,13 one finds āE and
b̄M to O(e3):

āE51
e2

4p

5gA
2

96pFp
2

1

mp
101

e2

4p

gpND
2

54pFp
2

1

p

3F 9D

D22mp
2 1

D2210mp
2

~D22mp
2 !3/2

lnRG
5@12.2~N loop!10 ~D pole!18.6 ~D loop!#

31024 fm3, ~57!

13TheNp-loop parts of Eqs.~57! and ~58! below agree with the
O(p3) calculation of@8#. In SU~3! an estimate of spin-32 contribu-
tions to āE and b̄M was given in@11#. āE and b̄M have also been
calculated in SU~2! relativistic baryon ChPT@33#.

FIG. 3. O(e3)Np-loop diagrams in forward Compton scatter-
ing. Wiggly lines to the right~left! denote incoming~outgoing!
photons, dotted lines denote pions and solid lines represent nucle-
ons.

FIG. 4. O(e3)Dp-loop diagrams in forward Compton scatter-
ing. Wiggly lines to the right~left! denote incoming~outgoing!
photons, dotted lines denote pions and solid lines represent nucle-
ons.
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b̄M51
e2

4p

gA
2

192pFp
2

1

mp
1

e2

4p

8b1
2

9MN
2

1

D

1
e2

4p

gpND
2

54pFp
2

1

AD22mp
2

1

p
lnR

5@1.2 ~N loop!112 ~D pole!11.5 ~D loop!#

31024 fm3. ~58!

In assessing these results, we observe that from theD pole
terms there exists a significant contribution to the magnetic
polarizability but none to the corresponding electric polariz-
ability at this order. The strong effect onb̄M is not surpris-
ing, as the largeM1 nucleon-D coupling is known to con-
tribute substantially to the magnetic polarizability@17,21#.
Also, we note that atO(e3) the Dp-loop contributions to
b̄M are of the same size as theNp-loop effects, which is
unexpected. Furthermore, and perhaps most surprisingly, we
find a largeDp-loop component ināE . Even though the
numerical values of theD contributions in Eqs.~57! and~58!
are understood to have sizable error bars because of qua-
dratic dependence on the presently poorly known couplings
gpND and b1, it is clear that one cannot expect to achieve
agreement with experiment at this order of the calculation,
the effects ofD~1232! are sizable and strongly renormalize
theNp-loop results. In theO(p4) calculation of@20# it has
been shown that the largeD-pole contribution inb̄M cancels
to a large extent againstNp-loop effects at that order. In
addition to the simpleD poles the counterterms of BKSM
have been determined via ‘‘resonance saturation.’’ The large
Dp-loop effects that we find atO(e3) are, therefore, not
accounted for14 in the counterterms of@20#. Unless one finds
a cancellation throughDp loops in a futureO(e4) calcula-
tion, one would have to conclude that ‘‘resonance satura-
tion’’ via simple pole graphs is suspect for counterterms in
the baryon sector.15 Future work will address this important
question. Finally, we note that the results forāE andb̄M are
isospin independent atO(e3). The surprising experimental
results āE

n.āE
p ,b̄E

n.bE
p cannot be addressed at this order

and also warrant an investigation at subleading order.
In order to obtain an estimate of the convergence of the

perturbation series and to check the field-theoretic consis-
tency of our calculation, it is useful to perform a chiral ex-
pansion of our results for the polarizabilities, yielding

āE
x51

e2

4p

1

6pFp
2

1

mp
H 5gA216

1
gpND
2

p

mp

D F11
1

9
lnS 2D

mp
D G

1OSmp
3

D3 D J , ~59!

b̄M
x 51

e2

4p

1

6pFp
2

1

mp
H gA2321

mp

D F b123p

~4pFp!2

MN
2

1
gpND
2

9p
lnS 2D

mp
D G1OSmp

3

D3 D J . ~60!

We note that the long-range pion cloud, which scales as
1/mp , provides the dominant singularity in the chiral limit,
as expected. Also, one can see that decoupling of theD
resonance in the chiral limit is manifest. Finally, we note that
the leading orderp4 terms in the chiral expansion of the
Dp-loop contributions is already a good approximation to
the full order e3 expressions. The contributions toāE and
b̄M are thereby changed by 15 and 7%, respectively, indicat-
ing that the bulk of the effects because ofD~1232! are ob-
tained at orderp4 in the chiral expansion. Of course, we
emphasize that these considerations are only anindicationof
what might happen at the next order, future work will ad-
dress these issues. We now move on to discuss the case of
spin-dependent quantities in Compton scattering.

B. Spin-dependent forward Compton scattering

In the presence of spin dependence the Compton tensor
for forward scattering of real photons, Eq.~43!, from a spin-
1
2 particle has to be expanded by extra~spin-dependent!
structures. Choosingvm5(1,0,0,0) and again working in the
Coulomb gaugee•v5e8•v50, we can write

e8mQmnen5e2@2 ê8• êU~v!1 ê8•kW ê•kWV~v!1 ivW~1!

3~v!sW •~ ê83 ê !1 ivW~2!~v!ê•kWsW •~ ê83kW !

1 ivW~3!~v!ê8•kWsW •~ ê3kW !#, ~61!

wherev5v•k denotes the energy of the forward scattering
photon with four-momentumkm . In the following we en-
force the transversality conditionê•kW5 ê8•kW50 and, there-
fore, only work with the auxiliary function16W(1)(v), which
contains the information about the spin-1

2 structure of the
target nucleon. Having factored out an extrav, we note that
W(1)(v) is even under crossing@i.e.,W(1)(v)5W(1)(2v)#
and receives contributions from four different sources, analo-
gously to Eq.~46!:

W~1!~v!5WN
~1!~v!Born1WN

~1!~v! loops1WD
~1!~v!Born

1WD
~1!~v! loops. ~62!

First, we calculate the nucleon Born contributions to
W(1)(v). They arise atO(e3) from the four diagrams 2~1a!–
2~1d! in Fig. 2. One finds

WN
~1!~v!Born52

1

4MN
2 $kp

2~11t3!1kn
2~12t3!%, ~63!

wherekp,(n) corresponds to the anomalous magnetic moment
14In particular, the counterterm contribution toāE has been esti-

mated to beda'2.031024 fm3 @20#.
15Of course, these counterterms can still be determined from other

experiments. A breakdown of the ‘‘resonance saturation’’ hypoth-
esis only means that the numerical value of the counterterms cannot
be understood within a simple resonancemodel.

16FromW(2)(v) andW(3)(v) one can obtain the third-order spin
polarizabilitiesg3 ,g4 of Ref. @34#. However, we relegate this analy-
sis to future work where we will study the complete set of third-
order spin polarizabilities of the nucleon.
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for a proton~neutron! target. As noted before, the contribu-
tion from the anomalous processp0→gg @diagram 2~1d! in
Fig. 2# vanishes in the forward direction. However, the sum
of the other three diagrams satisfies the famous low energy
theorem ~LET! due to Gell-Mann, Goldberger, and Low
@22#, with the two-photon sea gull diagram 2~1c! arising
from 1/M2 corrections~see Table I! playing a pivotal role.
RelatingWN

(1)(v)Born of Eq. ~63! to the functionf 2(v) of Eq.
~15! via f 2(v)5e2/4pW(1)(v), one finds in the limit of zero
photon energy

f 2~0!52
e2k2

8pMN
2 . ~64!

Having satisfied the low energy constraint we conclude that

WN
~1!~0! loop5WD

~1!~0!pole5WD
~1!~0! loop50, ~65!

which constitutes a nontrivial check on our calculations.
The O(e3)Np-loop contribution toW(1)(v) can be ob-

tained from just six diagrams~a!–~f! of Fig. 3. With details
of the calculation given in Appendix B, we find17

WN
~1!~v! loops5

gA
2

2Fp
2

v2

12p2mp
2 1O~v4!, ~66!

so that the LET constraintWN
(1)(0)loop50 is satisfied.

TheO(e3)D Born contributions to the spin-flip function
W(1)(v) are given by diagrams 2~2a! and 2~2b! of Fig. 2,
yielding

WD
~1!~v!Born52

4b1
2

9MN
2

v2

D22v2 . ~67!

Again, the LET stricture equation~65! holds explicitly.
Finally, the O(e3) Dp-loop contributions toW(1)(v)

arise from diagrams~a!–~f! in Fig. 4. With details of the
calculation given in Appendix C, we find

WD
~1!~v! loop5

gpND
2 v2

54p2Fp
2 F 3mp

2D

~D22mp
2 !5/2

lnR2
D212mp

2

~D22mp
2 !2G

1O~v4!, ~68!

whereR has been defined in Eq.~52!. Thed dependence of
the pertinent amplitudes in Appendix C, induced by the spin-
3
2 propagator of Eq.~35!, leads to a highly complex cancel-
lation pattern among the diagrams, ultimately yielding
WD

(1)(0)loop50 as required by Eq.~65!.
In analogy to the spin-independent discussion in Sec.

IV A we introduce the nucleon Born term-subtracted func-
tion

Ŵ~1!~v!5W~1!~v!2WN
~1!~v!Born ~69!

and obtain the spin polarizabilityg of the nucleon

g5
e2

8p

]2

]v2Ŵ
~1!~v!uv50 , ~70!

which was defined via Eq.~17!.

Summing the three contributions18 contained in
Ŵ(1)(v), one findsg to O(e3):

gO~e3!51
e2

4p

gA
2

24p2Fp
2

1

mp
2 2

e2

4p

4b1
2

9MN
2

1

D2

2
e2

4p

gpND
2

54p2Fp
2 F D212mp

2

~D22mp
2 !2

2
3mp

2D

~D22mp
2 !5/2

lnRG
5@4.5 ~N loop!24.0 ~D pole!20.4 ~D loop!#

31024 fm4. ~71!

We note that as in the case ofāE andb̄M , there is no isospin
dependence atO(e3). Also, Dp loops are only playing a
minor role in the spin polarizability at this order. Finally, the
large positive contribution of theNp loops is nearly com-
pletely canceled by theD Born graphs. In the case of the spin
polarizability we cannot yet make a direct experimental com-
parison, as explained in Sec. II. However, comparing with
the sum rule value given in Eq.~18! we see that the
D(1232) contribution goes in the right direction but is not
large enough in~negative! magnitude in order to bring about
experimental agreement. We also note that at present we do
not have anO(p4) calculation in HBChPT with which to
compare. However, the one-loop relativistic baryon results of
Eq. ~22! already give an indication that even if one extends
theO(p3) HBChPT result of Eq.~21! to the next order, one
will not be able to describeg without keepingD~1232! as an
explicit degree of freedom in the theory. Studying the chiral
limit of the spin polarizability supports this viewpoint. We
find

gx5
e2

4p

1

216p2Fp
2

1

mp
2 F9gA226b1

2 ~4pFp!2

MN
2

mp
2

D2

24gpND
2

mp
2

D2 1OSmp
4

D4 D G . ~72!

One observes that the 1/mp
2 singularity because of the pion

cloud of the nucleon remains leading in the chiral limit and
that D decoupling holds. We also note that theDp-loop
contributions increase in magnitude to20.631024 fm4 but
remain small. Most importantly, Eq.~72! shows us that all
D effects only start contributing atO(p5) in standard SU~2!
HBChPT. The spin-dependent polarizability of the nucleon
is, therefore, a prime example of how a theory with explicit
D degrees of freedom can dramatically improve the conver-
gence of the perturbation series. In light of the cancellations
in Eq. ~71! we are encouraged that atO(e4) one may be able
to achieve a good understanding of the spin polarizability
with the help of the small scale expansion.19

17Equation~66! below agrees with theO(p3) result of @8#.

18Our findings agree with theNp- andDp-loop results given in
@8#.
19There certainly have been many attempts in the literature to call

theD to the rescue in order to get reasonable numbers for the sum
rules of Eq.~18!. We emphasize again that our results in Eq.~71!
follow from the systematic small scale expansion inHBChPT, as
laid out in Sec. III.
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C. Critical discussion ofO„e3
… results

Before concluding it is useful to discuss some of the ar-
guments of which we are aware why anO(e3) calculation
can perform poorly on the phenomenological side and, on
the other hand, show all the correct field-theoretic constraints
of LET’s, heavy mass decoupling, correct chiral limit, etc.

~i! The heavy baryon propagator for nucleons of Eq.~35!
receives ‘‘propagator corrections’’ via 1/M vertices in matrix
ÃN
(2) of Eq. ~32!, which in one-loop diagrams only begin to

show up atO(e4). From a relativistic viewpoint these 1/M
corrections correspond to effects pertaining to the lower
components of a Dirac spinor.

~ii ! For the heavy baryon propagator of a spin-3
2 particle

there are analogous 1/M -induced propagator corrections in
matrix ÃD

(2) of Eq. ~32!. In this case they have the additional
effect of correcting the pure spin-3

2 projector of Eq.~35! by
bringing in some information about the off-shell spin-1

2 com-
ponents of a relativistic spin-32 particle. Phenomenologically,
it is well known that the spin-12 components of the relativistic
spin-32 propagator can play an important effect in some ob-
servables@35#. Again, at the one-loop level these effects only
start showing up atO(e4).

~iii ! In O(e3) calculations the incoming~and outgoing!
soft momentum of the baryon is usually a higher order effect.
Only at the next order does this momentum fully contribute
and the size of these ‘‘recoil corrections’’ can be quite large
for some observables.

~iv! Isospin is usually not broken in calculations at the
O(e3) level which can be a problem in some cases.

~v! Often one is calculating observables which are domi-
nated by loop effects. Therefore, one is only calculating the
leading order of these observables, although technically one
might have to work to third or fourth order in HBChPT. As
experience from many calculations in the meson sector of
ChPT teaches us, one should always consider the leading and
the first ~at least! nonleading order in an observable before
one can try to judge the quality of a ChPT result.

This list is certainly not complete. The concerns raised are
valid beyond our particular case of theO(e3) calculation of
the polarizabilities of the nucleon. In fact, most of these
points also apply to SU~2! HBChPT without explicitD de-
grees of freedom and ‘‘leading log’’ calculations in SU~3!
HBChPT. For our particular case of interest, the polarizabil-
ities of the nucleon, all of these points strongly suggest mov-
ing onto theO(e4) calculation.

V. CONCLUSIONS

The Compton scattering process offers the opportunity to
probe nucleon structure in a relatively clean fashion, via
measurement of various ‘‘polarizabilities’’ which probe the
nucleon response to quasistatic excitations. In particular, re-
cent years have seen the measurement of electric and mag-
netic polarizabilities for both neutron and proton and spin
polarizability measurements should be available by the mil-
lennium. On the theoretical side,O(p3) predictions forāE

and b̄M within heavy baryon chiral perturbation theory give
a surprisingly good picture of the experimental situation.
However, corresponding predictions for the spin polarizabil-
ity are not in good agreement with the values given from

DHG sum rule arguments. When extended toO(p4), reason-
able agreement is obtained forāE andb̄M , but at the cost of
considerable uncertainty associated with effects such as the
D(1232), which is included only as a very heavy particle
contributing to various counterterms. In this paper we have
removed this obstacle by treating theD(1232) as a specific
degree of freedom within the heavy baryon method. Our cal-
culation was performed toO(e3) wheree is taken as a soft
momentum, asmp or as the nucleon-D mass difference. We
find, perhaps not surprisingly, that inclusion ofD effects
makes large changes to all three polarizabilities.

The good agreement with experiment atO(p3) for āE and
b̄M is destroyed atO(e3), whereas the spin polarizability
g improves dramatically when compared with currently
available sum rule information. Furthermore, we have dis-
cussed consequences of our HBChPT results in the light of
existingO(p4) and relativistic one-loop calculations. Indeed,
we regard our calculation as merely preliminary and look
forward to extending this work to higher order.
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APPENDIX A: LOOP FUNCTIONS

We express the invariant amplitudes of Feynman dia-
grams containing pion loops around a nucleon in terms of
J functions, defined via

1

i E ddl

~2p!d
$1,l ml n ,l ml nl al b%

~v•l 2v2 i e!~mp
22l 22 i e!

5$J0~v,mp
2 !,gmnJ2~v,mp

2 !1vmvnJ3~v,mp
2 !

3~gmngab1perm.!J6~v,mp
2 !1•••%. ~A1!

Employing the identities

J2~v,mp
2 !5

1

d21
@~mp

22v2!J0~v,mp
2 !2vDp#, ~A2!

J6~v,mp
2 !5

1

d11 F ~mp
22v2!J2~v,mp

2 !2
mp
2v

d
DpG ,

~A3!

one concludes that all loop integrals can be expressed via the
basis-functionJ0. For theNp-loop integrals we use@7#

J0~v,mp
2 !524Lv1

v

8p2 S 122ln
mp

m D
2

1

4p2Amp
22v2arccos

2v

mp
, ~A4!

whereas for theDp-loop integrals we employ the analyti-
cally continued function

5608 55HEMMERT, HOLSTEIN, AND KAMBOR



J0~v,mp
2 !524Lv1

v

8p2 S 122ln
mp

m D 1
1

4p2Av22mp
2

3 lnF2
v

mp
1Av2

mp
2 21G . ~A5!

In Eqs.~A2!–~A5! we have used the same conventions as@7#

Dp52mp
2 S L1

1

16p2 ln
mp

m D1O~d24!,

L5
md24

16p2 F 1

d24
1
1

2
~gE212 ln4p!G , ~A6!

where we introduced the Euler-Mascharoni constant,
gE50.557215, and the scalem in the dimensional regular-
ization scheme we use for the evaluation of the integrals.

Finally, with Ji8 and Ji9 we define the first and second
partial derivative with respect tomp

2 ,

Ji8~v,mp
2 !5

]

]~mp
2 !
Ji~v,mp

2 !, ~A7!

Ji9~v,mp
2 !5

]2

]~mp
2 !2

Ji~v,mp
2 !. ~A8!

APPENDIX B: Np LOOPS
IN FORWARD COMPTON SCATTERING

Using theJ-function formalism defined in Appendix A
and the Lagrangians of Eq.~34!, one can get exact solutions
for the nineNp-loop diagrams of Fig. 3. Withem(em8 ) we
denote the polarization four-vector of the incoming~outgo-
ing! photon with constant four-momentumkm and energy
v. We find

Amp112
Np 5Cū~r !$2e•e8@J0~v,mp

2 !1J0~2v,mp
2 !#12@Sm ,Sn#e8men@J0~v,mp

2 !2J0~2v,mp
2 !#%u~r !, ~B1!

Amp3..6
Np5Cū~r !H 14e•e8E

o

1

dx@J28~vx,mp
2 !1J28~2vx,mp

2 !#28@Sm ,Sn#e8menE
o

1

dx@J28~vx,mp
2 !2J28~2vx,mp

2 !#

22e•ke8•kE
0

1

dxx~122x!@J08~vx,mp
2 !1J08~2vx,mp

2 !#12@Sm ,Sn#~e8•kkmen1e•ke8mkn!

3E
0

1

dxx~122x!@J08~vx,mp
2 !2J08~2vx,mp

2 !#J u~r !, ~B2!

Amp718
Np 5Cū~r !H 24e•e8~d11!E

o

1

dx~12x!@J69~vx,mp
2 !1J69~2vx,mp

2 !#14e•e8v2E
o

1

dx~12x!x2@J29~vx,mp
2 !

1J29~2vx,mp
2 !#2e•ke8•kE

0

1

dx~12x!@8x~2x21!1~2x21!2~d21!#@J29~vx,mp
2 !1J29~2vx,mp

2 !#

1e•ke8•kv2E
0

1

dx~12x!x2~2x21!2@J09~vx,mp
2 !1J09~2vx,mp

2 !#J u~r !, ~B3!

Amp9
Np5Cū~r !$12e•e8~d21!J28~0,mp

2 !%u~r !, ~B4!

with the common factor

C5 i
e2gA

2

2Fp
2 .

In order to evaluate the polarizabilities, we expand the nine amplitudes into a power series inv and only keep the terms of
interest:

Amp112
Np 5Cū~r !H 1e•e8Fmp

4p
2v2

1

8pmp
1O~v4!G1v@Sm ,Sn#e8menF2

1

2p2 S 32p2L1112ln
mp

l D
1v2

1

3p2mp
2 1O~v4!G J u~r !, ~B5!
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Amp3..6
Np5Cū~r !H 1e•e8F2

mp

2p
1v2

1

12pmp
1O~v4!G1v@Sm ,Sn#e8menF 1

2p2 S 96p2

~d21!
L1

5

3
12ln

mp

l D
2v2

1

6p2mp
2 1O~v4!G1e•ke8•kF2

1

24pmp
1O~v4!G1•••J u~r !, ~B6!

Amp718
Np 5Cū~r !H 1e•e8F5mp

8p
2v2

5

96pmp
1O~v4!G1e•e8F2v2

2

96pmp
1O~v4!G

1e•ke8•kF 1

32pmp
1O~v2!G1•••J u~r !, ~B7!

Amp9
Np5Cū~r !H 1e•e8F2

3mp

8p G J u~r !. ~B8!

In Sec. IV we construct the auxiliary functionsU(v),V(v), andW(v) from Eqs.~B5!–~B8!.

APPENDIX C: Dp LOOPS IN FORWARD COMPTON SCATTERING

Using the same conventions as in Appendix B with a new overall factor

D5 i
4e2gpND

2

3Fp
2 ,

we find the invariant amplitudes for the nine diagrams of Fig. 4:

Amp112
Dp 5Dū~r !H 2e•e8

d22

d21
@J0~v2D,mp

2 !1J0~2v2D,mp
2 !#2@Sm ,Sn#e8men

2

d21

3@J0~v2D,mp
2 !2J0~2v2D,mp

2 !#J u~r !, ~C1!

Amp3..6
Dp5Dū~r !H 4e•e8

d22

d21E0
1

dx@J28~vx2D,mp
2 !1J28~2vx2D,mp

2 !#14@Sm ,Sn#e8men
2

d21E0
1

dx

3@J28~vx2D,mp
2 !2J28~2vx2D,mp

2 !#22e•ke8•k
d22

d21E0
1

dxx~122x!@J08~vx2D,mp
2 !1J08~2vx2D,mp

2 !#

2@Sm ,Sn#~e8•kkmen1e•ke8mkn!
2

d21E0
1

dxx~122x!@J08~vx2D,mp
2 !2J08~2vx2D,mp

2 !#J u~r !, ~C2!

Amp718
Dp 5Dū~r !H 2e•e84

~d22!~d11!

~d21!
E
0

1

dx~12x!@J69~vx2D,mp
2 !1J69~2vx2D,mp

2 !#

1e•e8v24
d22

d21E0
1

dx~12x!2@J29~vx2D,mp
2 !1J29~2vx2D,mp

2 !#2e•ke8•k
d22

d21E0
1

dx~12x!~2x21!

3@8x1~2x21!~d21!#@J29~vx2D,mp
2 !1J29~2vx2D,mp

2 !#1e•ke8•kv2
d22

d21E0
1

dx~12x!x2~2x21!2

3@J09~vx2D,mp
2 !1J09~2vx2D,mp

2 !#J u~r !, ~C3!

Amp9
Dp5Dū~r !e•e82~d22!J28~2D,mp

2 !u~r !. ~C4!

In analogy to Appendix B we expand the amplitudes into a power-series in the photon energyv. With the definition

R5
D

mp
1AD2

mp
2 21,
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we find:

Amp112
Dp 5Dū~r !H 2e•e8

2

3 F32 d22

d21
2J0~2D,mp

2 !1
v2

4p2 S D

D22mp
2 2

mp
2

~D22mp
2 !3/2

lnRD 1O~v4!G
1@Sm ,Sn#e8men

v

6p2 F 3

d21
32p2L1112lnSmp

l D 1
2D

AD22mp
2
lnR

1v2S Dmp
2

~D22mp
2 !5/2

lnR2
D212mp

2

3~D22mp
2 !2D 1O~v4!G J u~r !, ~C5!

Amp3..6
Dp5Dū~r !H e•e8

1

9p2 F92 d22

~d21!2
96DLp216D lnSmp

l D 2D16AD22mp
2 lnR1v2S D

D22mp
2 2

mp
2

~D22mp
2 !3/2

lnRD
1O~v4!G1@Sm ,Sn#e8men

v

36p2 F9 22

~d21!2
96p2L212lnSmp

l D 2102
12D

AD22mp
2
lnR1v2S D212mp

2

~D22mp
2 !2

2
3Dmp

2

~D22mp
2 !5/2

lnRD 1O~v4!G2e•ke8•k
1

18p2 F 1

AD22mp
2
lnR1O~v2!G1•••J u~r !, ~C6!

Amp718
Dp 5Dū~r !H 2e•e8

1

72p2 F18~d22!

d~d21!2
64~4d21!DLp2160D lnSmp

l D 160AD22mp
2 lnR

1D1v2S 5D

D22mp
2 2

5mp
2

~D22mp
2 !3/2

lnRD 1O~v4!G2e•e8v2
1

36p2 F 1

AD22mp
2
lnR1O~v2!G

1e•ke8•k
1

24p2 F 1

AD22mp
2
lnR1O~v2!G1•••J u~r !, ~C7!

Amp9
Dp5Dū~r !e•e8

1

12p2 H 32 d22

d21
96DLp216D lnSmp

l D2D16AD22mp
2 lnRJ u~r !, ~C8!
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