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Previous calculations of the polarizabilities of the nucleon within the framework of heavy baryon chiral
perturbation theory have included the contribution of M@232) only in its effects on various contact terms
or have been performed in chiral 8) where systematic errors are difficult to control. Herein, we perform a
corresponding calculation in chiral $2) whereinA (1232 is treated as an explicit degree of freedom and the
expansion is taken to third order in soft momenta, the pion mass, and the qudntityM, collectively
denotede. We present the results of a systemalice®) calculation of forward Compton scattering off the
nucleon, extract the electric polarizability: , the magnetic polarizability,,, and the spin polarizability,
and compare with available information from experiments and from previous calculations. Concluding with a
critical discussion of our results, we point out the necessity of a futDfe*) calculation. [S0556-
2821(97)04909-9

PACS numbgs): 13.60.Fz, 11.30.Rd, 14.20.Dh

I. INTRODUCTION differencem, — my has been givefil2,13 and in this paper
we apply this technique to the problem of forward nucleon
Understanding of the implications of QCD within the re- Compton scattering and the polarizabilities of the nucleon.
gime of low energy physics has during the past decade béNucleon Compton scattering is an area of research which has
come accessible via the technique of chiral perturbatiofiecently received a great deal of attention, both experimen-
theory (ChPT) [1]. Initial applications were in the arena of tally and theoretically, and in the next section we review the
Goldstone boson interactiofig] together with a few calcu- Status of such work. In Sec. lll we give a brief introduction
lations in the baryon sectdB,4], using relativistic baryon !0 the formalism necessary to include th¢1232) in chiral
ChPT. In recent years use of so-called heavy baryon method&lculations, and in Sec. IV apply this to evaluatecontri-

[5,6] has generated much interest in calculations involvingfuf[ions, toN -y scattering, examine its influence on the po-
baryons and a great deal of work has been done studyin rlzablll_nes, ar_1d give a cr|t|_cal discussion of oO( e )_re—
ults. Finally, in a concluding Sec. V we summarize our

strong, weak, and electromagnetic physics in the near thresii-"

old region[7]. In this work we will focus on SIR) heavy indings.
baryon chiral perturbation theo§iBChPT), which has be-
come the most fully developed sector within baryon ChPT

[7—9]. Thus far, consistent extension to higher energies in To lowest order the spin-averaged amplitude for Compton
SU(2) HBChPT has been limited by treatment of the impor-scattering on the nucleon is given by the Thomson amplitude
tant A(1232) resonance only in terms of its contribution to

the various counterterms which arise in such calculations.
The technique by which to address this deficiency was de-
veloped some time agd 0] by including theA (1232) as an
explicit degree of freedom in a chiral perturbative schéme.whereQ,M represent the nucleon charge, mass ard and
Recently, a reformulation of this formalism which allows for k'u=(a),|2),k’u=(w’,|2’) specify the polarization vectors
a systematic and explicit calculation of higher order terms inand four-momenta of the initial and final photons, respec-
an expansion of soft momenta, the pion mass, and the masgely. In next order are generated contributions arising from
electric and magnetic polarizabilitiesz and 3,,, which
measure the response of the nucleon to the application of

1Using the formalism of10], Butler and SavagEl1] have given quasistatic electric and magnetic fields
an estimate of the contribution of the spjmesonances to the elec-

tric and magnetic polarizabilities of the nucleon. However, this cal-

Il. COMPTON REVIEW

2

Amp= — QVE'E’, (€]

2

culation was performed in S8) and made a number of approxi- ~AMP=e€-€'| — W"‘ww,‘”"aE +exXK-e' Xk'dmBy
mations, so that a direct comparison with systemati€2sWork is
not possible. +0O(w?). )
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The associated differential scattering cross section on the On the theoretical side, constituent quark-based ap-

proton is given by proaches which rely on the sum ryl&g|
do €2 \2/p'\2 72 3 L
N _ 1 - (. — 2
d_Q_(47TM) ( w) [2(14-00829) YET3M izl & (ri—Rcm)
ArMow’  — — ) 3 I 2
— gz Lz(aet Bu)(1+cosh) n| 2, &= Rem)z|0
+22,

8
2 E.—E, ®

+ (g~ Bu)(1—cos)2]+ - - - |. 3)

are bound to fail since the sum over intermediate states com-

Thus by measurement of the differential Compton sc:atterin%)Onent of Eq(8) is in almost any reasonable model identical

cross section one can extract the electric and magnetic pola or both neutron and proton, leading to a prediction
izabilities, provided(i) the energy is large enough that these a
terms are significant with respect to the Thomson contribu- al—al= m(rg):3.8>< 104 fm?3, 9
tion but (ii) not so large that higher order effects dominate.

This has been accomplished for the proton in the energy, conflict with the experimental result thaf=aP [18].

=

regime 50 Me\W » <100 MeV, yielding[14] The solution to the problem lies in a proper treatment of the
—_ 43 pion degrees of freedom of the nucleon, which is suggested
ag=(12.1£0.8£0.5x 10 " fm", by the feature that the leading pion loop contributions to
_ neutron and proton are identical, in agreement with experi-
BhH=(2.1¥0.8+0.5x107* fm°. (4)  ment. The problem can best be addressed using the technique

of heavy baryon chiral perturbation thedr¥j], within which
[Note: In practice one generally uses the results of unitarityat O(p3) one finds a resufi8]

and the validity of the forward scattering dispersion relation

which yields the Baldin sum rule

- — 5a92
al=al=108} =106} = g =7 — =12.2¢10°* fm’.

6mF2m,
1 (do s "’ (10)
ﬁfo Fo-tot(w):(l4'2t 0.3y x10 * fm _
(5) Thisg(pg) calculation represents the leading result éqr
and B, in ChPT, but gets the qualitative features of the
as a constraint, since the uncertainty associated with the irpolarizabilities right and even agreement with experiment.
tegral over the photo-absorption cross sectiog(w) is  The results diverge asrh/, in the chiral limit, giving support
smaller than that associated with the polarizability measureto the idea that at these low energies the photon interacts
ments] primarily with the long-range pion cloud of the nucleon. In
Since the neutron has no charge, such a Thomsorerder to understand the experimental finding th8t>af,
polarizability interference experiment is not possible, so althe leading ChPT result is not sufficient. One must include
ternative methods must be used. The most precise measuileigher order terms in order to find isospin-dependent effects
ment involves a recent-Pb scattering experiment, wherein and to judge the convergence behavior of the sériesal-
the dipole moment induced in the moving neutron because afulation atO(p?*) has been performed by Bernard, Kaiser,
the nuclear charge acts back on the Pb nucleus. This secoSthmidt, and Meissne(BKSM) [20]. At this order four
order process and the resulting “linteraction proportional counterterms are required, which were estimated by BKSM
to the electric polarizability can be detected in a transmissiomy treating higher resonances, including theesonance, as
experiment via the characteristic linear dependence on theery heavy with respect to the nucleon. The results of this
beam momenturk. This experiment was recently performed process are
at ORNL and yielded resulfsl5]

~P apb —
agt fy=

aP=(10.5+2.00X10"* fm3,

af=(12.6£1.5+2.0x10"* fm?, _
Bh=(3.5£3.6)x10 4 fm?,

an —1 &= -4 ¢ 3
Bh=(3.271.5%2.00x107* fm (6) W= (13.451.5X10°* fm?,
guite similar to those of the proton. In this experiment only an - «10-4 fm?3
the electric polarizability is measured directly. However, us- Pu=(7.8+3.6) X107 fm", (1)
ing the unitarity sum rule result where the uncertainty is associated with the counterterm con-

tribution from the A and fromK,#n loop effects. A very
interesting aspect of thi®(p*) calculation lies in the fact

[

do n —4 3
— 0 @) =(15.820.5)X10 * fm?,

()
2Higher order corrections to th®(p®) HBChPT results for the
the magnetic polarizability can be extracted. polarizabilities have been discussed by L'fd8)].

— 1
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that it identifies a mechanism to counter the large positivevhile in the case of ,(w) we can make a similar expansion

contribution onB,, because oA (1232 resonance exchange, [22]

which is a well-known problem in calculations of the mag-

netic polarizability via effective Lagrangiarid7]. BKSM e’k? 5

found that atO(p*) (negativé Nr-loop contributions can folw)== sy T ye™t - 17
essentially balance out tipositive) A effects hidden in the

counterterms. Nevertheless, we observe that the uncertaintie% . .
: 4 . : : Wherek is the anomalous magnetic moment of the target and
of their O(p®) calculation are quite dramatic so that real

understanding of the ChPT predictions for the polarizabilitiesthe new structurey is the “spin polarizability.” As in the

will require more work. In particular, the large uncertainty in case Offy(w) the form of the leading term in the expansion

. il lated t v k i ivolvi is dictated by rigorous low energy theorems, while the
f'\"lésg maw;]_y r:e ate Odpi)oayt nown coup mg?sthlnvo thg correction represents a probe of hadronic structure. One dif-
( 2_’ W Ich was used to de e£m|ne SOMe Of tN€ CoUNterya ance petween the spin-dependent and spin-averaged am-
terms via “resonance saturation. If one r etam$1232). as plitudes, however, is the asymptotic behavioras «. The
an ex_pI|C|t degrsee of free_dom in the chiral calculguon_, Sy otter behavior of ,(w) suggested by Regge theory allows
dpne in ourQ(e ) calculat!on of S_ec. IV, one can in prin- one to write an unsubtracted dispersion relation in this case,
ciple determine alA couplings of interest fronjothep ex-

. . . . leading to the stricture23
periments in a systematic fashion. Furthermore, one does not g 23]
limit oneself to the narrow scope of “resonance saturation”

) ) ) eZ 2 wd
for the spin3 contributions. We refer to Sec. IV for further e K _ _J' _“’[U (0)— 0, (0)]
discussion of this point. 2M* 0o I
Finally, with respect to the magnetic polarizability, we
note that the simple quark modedn provide a basic under- 1 (»dw
standing of experiment. The predictiph6] v= mfo ?[0_(w)—g+(w)], (18)
1 S B2
’BM__W<Z &(ri—Rem) > where 0. (w) are the photo-absorption cross sections for
parallel and antiparallel alignments of photon and target he-
1 S (7 —R. )2 licities. The first of these relations, the Drell-Hearn-
6\45 T em) /My Gerasimov(DHG) sum rule, has received a good deal of

) attention recently. On the experimental side, efforts are being

2 & 0 mounted to measure the spin-dependent structure function

n 7 2mi0iZ f,(w) directly, thereby confirming the prediction of the low

+2 2 E_E (12 energy theorem[24]. However, this has not yet been
n+ n~ Eo

achieved. On the theoretical end, there have been a number
of attempts to evaluate the dispersive integral of the DHG
using what information currently exists for the photo-
—10.2x10° 4 fm® p, absorption cross sections. The existing data set is incomplete
k _85x10-% fm®  n (13)  in that helicity-dependent cross sections have not yet _b_een
) ' measured. Thus one uses existing multipole decompositions

which, when added to the large paramagnetic contributioff@M Unpolarizedexperiments in order to perform the analy-

involves a substantial diamagnetic recoil contribution

“odia__
Vi

because of the (1232) [21] sis. Such decompositions are available, however, only in the
' single-pion production channel so that above the two-pion
— +12x10 4 fm® p, threshold model-dependent assumptions must be made. With

(14  this caveat present results are somewhat higher than those
predicted by the low energy theorem

gives results in basic agreement with the experimental find-
ings. Hence, it is clear that proper inclusion of thelegrees wezxf) )
of freedom is essential. vz 0167 Gev,
When spin dependence is included the situation becomes
somewhat more complex. In order to simplify the present
exploratory analysis, we restrict our attention to forward _
scattering, in which case the amplitude can be written as

M:

+12%x10°* fm® n,

*dw
o, o Lo-(@) o (e)]

Amp=fi(w)e- e’ +io (¢ X wfy(w), (15 0.208 GeV? Karliner [25],

2
wheref,(w),f,(w) are both even functions under crossing, =1 0:210 Gev™ Workman a”q Arndt[ 26], (19
w— —w, and are, therefore, functions only of. In terms 0.182 GeV? Burkertand Li[27],
of our previous notation we have
and there have even been arguments made that challenge the
assumptions under which the DHG form was deriy2€)].
However, resolution of these problems awaits reliable

2

fu(w)=— +(ag+ Byt -, (16)

47M
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helicity-dependent cross section measurements, whicteader to Ref.[7]. However, phenomenologically, it is

should be available in the near future. known that in the nucleon sector the first nucleon resonance
Using the same multipole analysis it is possible to evalu-A(1232 lies very close to the nucleon and can exert its in-

ate the dispersion integral involving the spin-dependent pofluence even on processes at very low energies. This special

larizability, yielding[29] situation in the baryon sector has early 0] prompted
suggestions to keep the spirbaryon resonances as explicit
1 (*dw multipole degrees of freedom in the chiral Lagrangian in order to in-
Y= Wfo Hlo-(w) =0 (o)] clude all relevant physics and to improve the convergence of
the perturbation series.
—1.3x10°% fm™* p, If one retainsA (1232 as an explicit degree of freedom in
= —04%x10°% fm~* n. (20 SU(2) HBChPT, one is faced with an additional dimension-

ful parameterA =M, — My, which corresponds to the mass
For a detailed discussion of the contributions of the variou$plitting between the nucleon and tke resonance in the
nucleon resonances to the sum rules of Ep) and the chiral limit. Phenomenologicallyd is a small parameter of
problems of the constituent quark model in describing the=300 MeV which, unlikem,, remains finite in the chiral
DHG sum rule we refer the reader to the review article bylimit. As was shown in Refd.10,12,13, one can, neverthe-

Drechsel[30]. less, set up a consistent field-theoretic HBChPT formalism

These results are in dramatic disagreement with th@rovided one organizes the calculation according to an
O(p®) ChPT prediction$8] O(€") power counting, where now denotes a small scale of

either a soft momentum, the pion mass, or the mass splitting

e’gi A. Our formalism has been constructed in such a way that an

L Ty e A 4.4<10°* fm™*. (2)  O(e" resultautomaticallycontains anyO(p") result in[7]
e plus additional terms involving th& (1232 resonance which

Unlike the case ofag anda,., at present there exists no might be present'to the order we are cqlculatmg. S
In our calculation of Compton scattering below, which is

correspondingd(p*) ChPT calculation that reconciles this 30 .
discrepancy. Presently, the best information about the subd—Orle t0O(¢%) in the small scale expansion, we shall need

leading behavior ofy comes from a relativistic baryon ChPT Zrzlilzglze) lo;’ysej;e?lrizr Vgg';(i:l?lse' zgirﬂreﬁ?;%‘tgggﬁgmgﬂsthg
calculation at the one-loop levEs], yielding ' P

NNvy,NNvyvy, andNA y. Details of how this can be achieved

y; ooP— 1 2 2% 1074 fm?, 7r11 loop_ | 3 2% 1074 fm?. ina general m expa_nsion are given in Refgl2,13. Here
(22) we list only the minimal results necessary for the present
calculation.

This calculation does not resolve the discrepancy with the The systematic M expansion of the coupleNA system
multipole analysis results of E¢20). However, it is known starts with the most general chiral-invariant Lagrangian in-
from phenomenological consideratiéribatA(1232) makes Volving relativistic spin3(yy) and spin3(y,) fields’
a major contribution of opposite sign. In Sec. IVB we
present a systematic chiral calculation pfwith nucleons, L=Ln+Ly+(LantH.C, (23
A’s, and pions as explicit degrees of freedom. .

Having given a brief summary of current research in thigWith
area we now proceed to outline the formalism which allows —
inclusion of theA (1232 in a consistent chiral power count- La=yiALY
ing framework.

Al =—{ iDT—M,89)g,,— 57,7 (DT —M,6'
Il. SMALL SCALE EXPANSION IN HBChPT ny ( 200937,y 20Ny

The subject of S(P) heavy baryon ChPT of nucleons and g i 92 i
pions has been well developed in recent yd8&;3]. In the 5 9wl st S (VU T ULY) Vs
conventional form one organizes the calculation according to
an O(p") power counting, whergp denotes either a soft O3 il
momentum or the pion mass_. All nucleon resonances, T v Ys Yy

strange particles, vector mesons, etc., are integrated out, i.e.,

they only appear in higher order contact interactions. For _ Oa

near threshold processes this program has proved highly suc- Ly= zﬂN(iD —My+ ?lﬂ'y5) Yyt
cessful, for an outstanding review of the field we refer the

‘CAN:gﬂ'NAlpiM(gMV-i_Z’)/M')/V)WiylﬂN-i_ Tt (24)
3A second area of interest is in the generalization of the DHG
form to include the deep inelastic region and its connection with the
integrated spin-dependent structure functipiik?). However, we %In order to take into account the isospirproperty ofA (1232,
shall not discuss this issue herein. we supply the Rarita-Schwinger spinor with an additional isospin
“This has also been pointed out by the authorE8jf indexi, subject to the subsidiary conditioﬁwL(x):O.
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We have only displayed the leading order terms, the ellipse$his allows one to perform a systematidMLexpansion, fol-
denote terms with more derivatives or insertions of the lighowing an approach developed by Manmrlal. in the field
quark mass matrix. It is understood that they are included upf heavy quark physics31], which was later applied to spin-

to the order one working in the expansion. Following the
conventions of S(2) HBChPT in the spirg sector[4,7], we
have defined the structures

Diy{=(9,8"+T )y,

I'=r,8—ie*T+T,],

1, o [ +
FM=§[U ,aﬂu]—iu (v#+aﬂ)u—§u(vﬂ—aﬂ)u ,

I]_u 5Ij Ijk k

o1 )
W'M=§Tr[ 7'u,l,

_int t
u,=iu'v, uu’,

v,u=d,U-i(v,+a,)U+iU(v,—a,),

i
U=u?=ex F—T-ﬂ'), (25)

Wherevﬂ =W denote external vector, axial-vector fields.
The “light” degrees of freedom of the spigfield, which

are retained in the effective low-energy theory, are identifie

as

T, (x)=P; P¥ ¥ (x)expiMv-X), (26)
where we have introduced a spjnprojection operator for

fields with fixed velocityv ,

P == 5 V¥ 5 (B0, Fv,78). (2D
The remaining components
GlL(X)=(0,,— P, P¥ ) i (x)expiMu-x)  (28)

are shown to be “heavy’[12,13 and are integrated out.

Rewriting the Lagrangians of Eq23) in terms of the
spin3 heavy baryon componenTgi andG ,, and the corre-
sponding “light” and “heavy” spin- componentsN h, de-
fined as

N(x)=P, ynexpiMuv-X),

h(x)=P, ynexpiMuv -x), (29
the general Lagrangians take the form
Ly=NAWN+ (hByN+H.c)—hCyh,
Lan=T Ay N+GByyN+hDy,T+hCysG+H.c.,
Ly=TA,T+(GB,T+H.c)—GC,G. (30)

Matrices A,B,C admit a low energy scale expansioodB

3 HBChPT by Bernarct al.[8]. The result of this procedure
is the effective action for the couplédA system[12,13:

Seﬁ=f AT AL T+NAWN+[TAWN+H.cI}, (31)
with

Ay= A+ YODLA ¥oCn "Dya+ YOBZ ¥0Cx ‘B,

An=An+ ')’OBL YoCn " Bn+ '}’OBZN ¥0Ca ‘Ban»

Aan=Aan+ Y0Dlia YoCn Bu+ 0B ¥oCa Ban, (32)
and

Cn=Cn—CnaCy 1')’OCLA Yo

gN = By+CnaCh Ban,

Dna=Dna+CnaCh By - (33
The vertices relevant for our calculation can be read off
directly from Eg.(31). Further analysis below will be di-
ided into two classes of contributions, one-loop graphs and
orn graphs. As one can see from E&1), any calculation
at O(€®) which has a nucleon in the initighnd fina) state,
completelycontains aO(p°®) calculation in the formalism of
[8]. Furthermore, it shows unambiguously which additional
diagrams involvingA (1232 must be appended.

A. Loop graphs

To ordere®, only one-loop graphs with vertices of order
€ must be considered. Thus, the pieces in &4) we need
are AP, AL, and AL, . More explicitly, these are found as

A'=iv-D+gaS-u,

ARR= ngAWM,

A =—Tiv-DI-A81+g;S-ul]g,,, (34)
whereS, denotes the Pauli-Lubanski spin vec{@]. From
matrlcesA(l) and A%Y) we determine the S@) HBChPT
propagators in momentum space with soft momefitum
r,=p,—Muv,:

i
v-r+in’

SYv-r)=

Sworking to O(e®) and in the absence of ar9(e) Born dia-
grams because of our choice of gauge, we always can identify the
large massV with the physical mass of the nucledvt . Mass
renormalization only becomes important in @Ge*) HBChPT cal-

start at order’, whereas has a leading term of order one. culation of Compton scattering.
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R " N

FIG. 1. O(€?) Born graph in forward Compton scattering. Wig- A
gly lines to the right(left) denote incoming(outgoing photons,
dotted lines denote pions and solid lines represent nucleons.

O (35 2, Bl

ladd glj
v-r—A+ig>=%2

(2.1b) (2.2b)

(2.1¢)

with Pz’f denoting the spif-HBChPT projector ird dimen-

sions[13], v W\(/

PI2=g, v, S, (36)
,u,v_g,uv U,uv d—1 "~ ) ) )
FIG. 2. O(€% Born contributions in forward Compton scatter-
and ing. Wiggly lines to the right(left) denote incoming(outgoing
photons, dotted lines denote pions and solid lines represent nucle-
ons.
gij =51— ETi 7 (37 . . . o
=372 3 1/M-corrected interaction of this type &(e“) in Table I.

However, the relativistic counterterm Lagrang{dr,32
being the corresponding isospinprojector. From Eq(35) ib 1
one can see that th& propagator counts as a quantity of Na_ "L + s T I 39
ordere ! in our expansion scheme. TV (Qper yyﬂyv)ypysz [P ]n (39)
AL present, we have no systematic determination .Of theprovides: theM1yNA transition strength and leads to an
coupling constany,y, within the small scale expansidn. O(e€?) structure:
For the time being we rely on the phenomenological analysis '

of Davidson, Mukhopadhyay, and WittmaidMW) [32], ib; 1 N
yielding A(Azr\)n:M—NSV—Tr[ffT'], (40)
F. with the chiral field tensor being defined 6§
O7Na = -GN ~1.5+0.2, (38) . ik Lo
™ f,w:U FL uTuF, ul,

whereg™tX is the value employed in the present work. Fi- FLR=g FLR— g FLR_i[FLR FLR],
nally, choosing the velocity vectar,=(1,0,0,0) and work- . . #
ing in the Coulomb gauge-e=v- €' =0, we conclude that Fh=v,+a,, FL=v,—a,. (41)

we have to calculate 18 loop diagrams, displayed in Figs. 3 )
and 4 below. Details of the calculation are given in Appen-'/& note that the off-shell parametgrin Eq. (39) does not

dices B and C, and the results will be discussed in Sec. lveontribute at ordere? when going to the effective heavy
' baryon Lagrangian, it will only enter a(e®). However,

since theA propagator equatio35) counts as ordee™?,
B. Born graphs and we effectively have n@(e) vertices around, we do not
The Born graphs contributing &(e%) Compton scatter- have to considee® yNN or yNA vertices to the order we
ing are shown in Figs. 1 and 2, with the pertinent verticesare working. Furthermore, the absence ofG{e) yNA ver-
given in Table I. The structures not involving thereso-  texis also responsible for the fact that f¢e®) two-photon
nance can be taken from R¢8].2 We note that our use of sea gull term does not get renormalized Myinteractions.
the Coulomb gauge dramatically reduces the number of dialhe only Born diagrams involvingh(1232 are therefore,
grams. Also, the possible diagram of Figld) with an  s- and u-channel resonance exchange with vertices from
anomalous7®— yy vertex does not contribute in forward
direction. Because of the fact that the photo-excitations of
A(1232 begin with the M1 transition, there exists no

TABLE I. Vertices for Born graphs in forward Compton scat-
ering.

YNA vertex at O(e). Consequently, there is no vertex Lagrangian
O(e€)yNN AP —0 in Coulomb gauge
"Study of this problem is underway and will be addressed in RefO(€) YNA - =
[13]. O(€?) yNN AR and yoB o B
8n general, this is not the case. As will be shown[i8], the = O(e?)yAN AR
“heavy components” of the relativistic spi-field modify the  O(€2)yyNN yoBP T yocO 1B
counterterms of th&N Lagrangian starting aD(e?). In our spe-  O(e3)yyNN yoBP y,CO 180 + Hec.

cific case theNN vertices are unchanged.
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AR, [diagrams 28 and 22b) in Fig. 2]. At present, the independent constrairi22] with respect toU(w), stating
magnitude of the finited(€2) countertermb; is not known  thatin the limit of zero photon energy one has to obtain the
very accurately. Until one has identified a suitable Thomson result of Eq(1):

b,-dependent observable which has both been calculated in U(0)=ZM (45)

the small scale expansion and been reasonably well '
measured, we will employ a phenomenological relation yherez refers to the charge number of the Compton target

found in Ref.[32], which in our convention reads andM is its mass. Furthermorél(w) has to be even under
m crossing symmetryti.e., U(w)=U(— ).
by~—2.3—g"k~—(2.5+0.35. (42 Keeping these two nontrivial constraints in mind we split
2F ; up the calculation oftJ(w),V(w) into four separate compo-

. . nents:
For the numerical estimate we have uggl{k of Eq. (38).

This completes the background necessary for the present apd ()= U y( @)™+ Up(@)'%P5+ U 4 (@) B+ U , (w)'PS
plication.
V(w) — VN( C())Born_}_ VN(w)Ioops+ VA( w)Born+ VA( C())Ioops_
IV. FORWARD COMPTON SCATTERING (46)

AND NUCLEON POLARIZABILITIES We start with the calculation of the nucleon Born contribu-

Having outlined our formalism, in this section we inves- tions to U(w),V(w). In the Coulomb gauge-v=0 there
tigate the influence of thA(1232) resonance on the nucleon exist nonzero contributions &(e?) and O(e€®), as shown
polarizabilities. We restrict ourselves to the case of forwardby the diagrams in Figs. 1 and 2. T&(€%) we find
scattering, which provides information on the electric polar-

izabiljty a—E the magne;ic polarizability3y, , and. the spin UN(w)Born:i 3(14”_3),

polarizability y. As mentioned above, for the spin-averaged My 2

quantitiesag and B, the results involving only nucleon and

pion degrees of freedom are already knowiDig?) [20] in V (w)Bom:L 1(1+ ) (47)
the chiral expansion. Here we present a systematic analysis N Mﬁw 2 30

of the A(1232) contributions targ,By , andy atO(e%). A _ . ) .
complete calculation of all polarizabilities &(e*) includ- ~ With Un(w) solely stemming from th@(e) sea gull dia-

ing pion, nucleon, and\ degrees of freedom will be the 9ram of Fig. 1 and/(w) arising from diagrams (da) and
subject of future work. 2(1b) of Fig. 2. We also note thalt)y(0)B°™ satisfies the

Thomson limit equatiorf45) for proton Z=1) and neutron

A. Spin-averaged forward Compton scattering (Z=0) targets, as expected. We, therefore, conclude that

Working in the gaugee-v =0, the spin-averaged Comp- Up(0)10oPs= 1, (0)BOM=U , (0)'°°Ps=0, (48)

ton tensor in forward directio® ,, can be written as o )
and this will serve as a powerful constraint and check on our

) oo 1 . calculation.
€0 ,,e" =% e" ST P, Tun(v,K)] The O(€®) nucleon loop contributions to the spin-
averaged functions can be obtained from the nine diagrams
=e’[€'-eU(w)+€ -ke-kV(w)], (43)  shown in Fig. 3 yielding? as detailed in Appendix B,

where k is the four-momentum of a photon with energy 1lgf\w2

w=k-v. e(€') refers to the polarization vector of the incom- Un(@)°%Ps= — 1927F 2. +0(%),
ing (outgoing forward scattering photon arid, ,(v,k) is the e
Fourier-transformed matrix element of two time-ordered

2
! da
electromagnetic currents loops_ _ ___SA 2
g Vn(w) 1927TF727m7T+O(a) ). (49
T,w(v,k)Zf d*xe* X(N(v) | T[IS(x)ISTX) 1IN(v)). Note that the loop effects are isospin independeet, iden-

(44) tical for neutron and protgnto this order. We have also
checked that) y(w=0)"°P>=0 [Eq. (48)], by carefully ana-
In the spin-averaged case all the information about the lowyzing the dimensionality dependence of the nine loop am-
energy structure of the photon is contained in just twoplitudes as given in Appendix B.
functions® U(w),V(w). However, there exists a structure- Next, we evaluate A(1232 Born contributions to
U(w),V(w). At O(€®) we find two contributing diagrams,
as shown in Fig. 2. They yield
Work along these lines is under way; V. Bernard, T. R. Hem-
mert, J. Kambor, and U.-G. Meissn@n preparatioi
0The auxiliary functionV(w) can be eliminated for real photons. 'U(w) is related to the functionf,(w) of Eq. (15 via
Nevertheless, one can obtain information about the magnetic polaf-(w)= — (e?/47)U(w).
izability B from it. 2Equation(49) agrees with the(p?) result of[8].
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(3a) (3b) (42)

......... : -

FIG. 3. O(e3)N-loop diagrams in forward Compton scatter-  FIG- 4. O(e®)Aar-loop diagrams in forward Compton scatter-
ing. Wiggly lines to the right(left) denote incomingloutgoing ~ Ng- Wiggly lines to the right(left) denote incoming(outgoing
photons, dotted lines denote pions and solid lines represent nucl@hotons, dotted lines denote pions and solid lines represent nucle-
ons. ons.

In order to extract the nucleon electric and magnetic po-
larizabilities, we now define the nucleon Born term-

subtracted quantities (v),V(w)

2 2
§] (w)Born: _ 8b1w A
4 M2 AZ=?’

8b2 A U(@)=U(w)~Uy(w)B", (53

VA(O))BOI’H:_ gMﬁ m! (50)

V() =V(w)—Vy(w)Em, (54)

whereb, is the M1ANy coupling of Eq.(39). Again, the  gnd make the connections
Thomson constraint) ,(0)8°™=0 holds, as required by Eq.

(48). — e & .
Finally, the corresponding\ loop contributions can be agt Bu=— QWU(“’)M:O' (55)
found from the nine diagrams shown in Fig. 4. Analyzing the
invariant amplitudes given in Appendix C, we find _ e? .
Bu=—7-V(w=0). (56)
22 2 .
loop goNA® 9A om:, o
Ua(w)®%P=— 5472F2 | A7—mZ (Az—mi)mlnR __Adding up all three contribution, one findsag and
ﬂM to O(ES):
2
+\/%InR +O((1)4), —_+e_2 59% i 8_2 gerA i
AT—my €T 4m 96nFim,  4m 54nFl w
9%Na 1 oA AZ—lOm,ZT InR
loop_ m X +
V(w)'o%P=— 5an?F2 mlnm O(w?), (51 A?—m2 " (AZ=mZ)3P n
=[12.2N loop) +0 (A pole)+ 8.6 (A loop)]
with R defined as 43
X10™% fm°, (57
A A?
R=—+/——1. (52
m, my 3The Nr-loop parts of Eqs(57) and (58) below agree with the

O(p®) calculation of[8]. In SU3) an estimate of spif-contribu-
Again, we note the validity of the Thomson stricture tions toag and 8y was given in[11]. ag and B, have also been
U,(w=0)9°Ps=0. calculated in S(P) relativistic baryon ChPT33].
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—_, e gi 1 . e? 8b2 1 = e2 1 1 (dgi m,[b? (4nF )2
A=t i 1007FZ m, 4w OMZ A M=t ar6afZm, |32 A |37 W2
2 3
62 gzNA 1 1 gﬂ'NA ( 2A m#)
£ Yx - + Inf—1||+0O|-—=|¢. 60
T ar 5amFE g or " m, A? (60)
=[1.2(N loop)+12 (A pole)+1.5(A loop)] We note that the long-range pion cloud, which scales as
. 1/m_, provides the dominant singularity in the chiral limit,
X104 fmd. (58 as expected. Also, one can see that decoupling ofAhe

resonance in the chiral limit is manifest. Finally, we note that

In assessing these results, we observe that from\tipsle the leading or_derp“ terms in the chiral expansiqn of the
terms there exists a significant contribution to the magnetic 7-100p contributions is already a good approximation to
polarizability but none to the corresponding electric polariz-the full order e” expressions. The contributions te- and
ability at this order. The strong effect g8y, is not surpris- Bu are thereby changed by 15 and 7%, respectively, indicat-
ing, as the larg¢M 1 nucleonA coupling is known to con- Ing that the bulk of the effects becausedf1232 are ob-
tribute substantially to the magnetic polarizabiliy7,21.  tained at ordemp* in the chiral expansion. Of course, we
Also, we note that aD(e%) the Aw-loop contributions to emphaslze that these considerations are oniylalnatlonpf

EA are of the same size as them-loop effects, which is what might happen at the next order, future work will ad-

unexpected. Furthermore, and perhaps most surprisingly, m%f‘?ss these issues. WE.’ now move on to d|sc_uss the case of

find a largeAm-loop component inag. Even though the spin-dependent quantities in Compton scattering.

numerical values of thA contributions in Eqs(57) and(58)

are understood to have sizable error bars because of qua-

dratic dependence on the presently poorly known couplings In the presence of spin dependence the Compton tensor

g.na @ndby, it is clear that one cannot expect to achievefor forward scattering of real photons, Eg3), from a spin-

agreement with experiment at this order of the calculation3 particle has to be expanded by extfspin-dependeit

the effects ofA (1232 are sizable and strongly renormalize structures. Choosing,=(1,0,0,0) and again working in the

the N-loop results. In thed(p?) calculation of[20] it has ~ Coulomb gauge-v=€"-v=0, we can write

been shown that the large-pole contribution in3y, cancels SN A em .

to a large extent againdw-loop effects at that order. In E’M/wEV:ez[_f"EU(‘*’HG""E"‘V(“’H""VV(D

addition to the simpleA poles the counterterms of BKSM S A A Al Ao

have been determir?ed viF:i “resonané:e saturation.” The large X (w)o- (X&) +ioW? (w)e ko (€' xK)

A-loop effects that we find aD(e”) are, therefore, not ; B N B (o

accounted fdf in the counterterms d20]. Unless one finds TloWw)e’ -ka-(exk)], 6D

a cancellation through 7 loops in a futureO(e*) calcula- wherew=uv -k denotes the energy of the forward scattering

tion, one would have to conclude that “resonance saturaphoton with four-momentunk . In the following we en-

tion” via simple pole graphs is suspect for counterterms inforce the transversality conditioa: k=¢’-k=0 and, there-

the baryon sector’ Future work will address this important ¢qe only work with the auxiliary functiol WY)(w), which

question. Finally, we note that the results tef and By are  contains the information about the sginstructure of the

isospin independent &@(e%). The surprising experimental target nucleon. Having factored out an exirawe note that

resultsag>af ,Bg>BE cannot be addressed at this orderw)(w) is even under crossing.e., W (w) =W(—w)]

and also warrant an investigation at subleading order. and receives contributions from four different sources, analo-
In order to obtain an estimate of the convergence of theyously to Eq.(46):

perturbation series and to check the field-theoretic consis-

B. Spin-dependent forward Compton scattering

tency of our calculation, it is useful to perform a chiral ex- W™ (@) =W (@) 2"+ W (@) *5 Wi () ®"
pansion of our results for the polarizabilities, yielding WD) 00PS 62)
o e2 1 1 (502 g3y, m, 1 [2A First, we calgulate th3e nucleon Born. contributions to
af=+ imeEZml 16 NN §In — WD(w). They arise aO(€®) from the four diagrams(@a)—
O M . ™ 2(1d) in Fig. 2. One finds
3
Mo 1 2 2
+0| 33/ (59 W (@)BM= — iz p(1F m) + ki(1-73)}, (63)
N

wherex, () corresponds to the anomalous magnetic moment
Yn particular, the counterterm contribution &g has been esti-
mated to besa~2.0x 10~* fm® [20].
150f course, these counterterms can still be determined from other **From W (w) andW®(w) one can obtain the third-order spin
experiments. A breakdown of the “resonance saturation” hypoth-polarizabilitiesys, v, of Ref.[34]. However, we relegate this analy-
esis only means that the numerical value of the counterterms cannsis to future work where we will study the complete set of third-
be understood within a simple resonamedel order spin polarizabilities of the nucleon.
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for a proton(neutron target. As noted before, the contribu-  Summing the three contributiofs contained in
tion from the anomalous proces®— yvy [diagram 21d) in W1)(w), one findsy to O(€3):
Fig. 2] vanishes in the forward direction. However, the sum

of the other three diagrams satisfies the famous low energy o) e? gi 1 e? 4b§ 1
theorem (LET) due to Gell-Mann, Goldberger, and Low Y '~ + 47 24n?F2 m2 4w OMZ A?
[22], with the two-photon sea gull diagram(12) arising
from 1M? corrections(see Table )l playing a pivotal role. e? g2\ | A%+2m? 3m2A
Relati_ngW(Nl)(w)E‘Om of Eq.(63) to the functionf ,(w) of Eq. T 47 547F2 | (AT-mD)2 | (AT m§)5’2|nR
(15) via f(w) = e?/47WD(w), one finds in the limit of zero
photon energy =[4.5 (N loop)—4.0(A pole)—0.4(A loop)]
2,2 —4 ¢4
ek X107 fm®. (72
f =——7, 4
0=~ g2 (64

We note that as in the case @f andaﬂ , there is no isospin
Having satisfied the low energy constraint we conclude thatiependence aD(e®). Also, A= loops are only playing a
1)/ 41 100p— \AA1) /(1) Pole— \a /(1) (13 l00p_ minor role in the spin polarizability at this order. Finally, the
WA'(0) W;'(0) Wi (0) 0. (69 large positive contribution of th&l7 loops is nearly com-
which constitutes a nontrivial check on our calculations. ~ Pletely canceled by tha Born graphs. In the case of the spin
The O(e3)N-loop contribution toW((w) can be ob- Polarizability we cannot yet make a direct experimental com-
tained from just six diagram@)—(f) of Fig. 3. With details Parison, as explained in Sec. Il. However, comparing with

of the calculation given in Appendix B, we fild the sum rule value given in Eql8 we see that the
A(1232) contribution goes in the right direction but is not

large enough irinegativé magnitude in order to bring about
experimental agreement. We also note that at present we do
not have anO(p*) calculation in HBChPT with which to
so that the LET constraintV{}’(0)"°P=0 is satisfied. compare. However, the one-loop relativistic baryon results of
The O(€%) A Born contributions to the spin-flip function Eq. (22) already give an indication that even if one extends
W®(w) are given by diagrams(2a) and 22b) of Fig. 2, the O(p®) HBChPT result of Eq(21) to the next order, one
yielding will not be able to describg without keepingA (1232 as an
explicit degree of freedom in the theory. Studying the chiral

2
W?\Il)( )Ioops_ gA

4
2FZ 1272m2 +O(w?), (66)

2 2
(w)Born_ _ 4b]  w (67) Iimit of the spin polarizability supports this viewpoint. We
9M2 AZ— 2 find
Again, the LET stricture equatio65) holds explicitly. e? 1 1 ,(4mF )?m
Finally, the O(€®) Am-loop contributions toW(®)(w) Y= 21672F2 m2 6b7 ML A?
arise from diagramga)—(f) in Fig. 4. With details of the M
calculation given in Appendix C, we find ae? m2 o mi) -
— _+ —_
gZna@?[  3m2A A%+2m? a2 A

W(Al)(w)loop:

INR—
4 2F2 AZ_ 2\5/2 AZ— 2\2
SAmFaL( m’) ( ') One observes that therd?. singularity because of the pion

+0(w%), (68)  cloud of the nucleon remains leading in the chiral limit and
that A decoupling holds. We also note that tIAen-Ioop
whereR has been defined in E¢G2). Thed dependence of  contributions increase in magnitude 0.6 10~* fm* but
the pertinent amplitudes in Appendix C, induced by the spintemain small. Most importantly, Eq72) shows us that all
3 propagator of Eq(35), leads to a highly complex cancel- A effects only start contributing @(p®) in standard S(2)
lation pattern among the diagrams, ultimately yieldingHBChPT. The spin-dependent polarizability of the nucleon
WEP(0)P=0 as required by Eq65). is, therefore, a prime example of how a theory with explicit
In analogy to the spin-independent discussion in SecA degrees of freedom can dramatically improve the conver-
IV A we introduce the nucleon Born term-subtracted func-gence of the perturbation series. In light of the cancellations
tion in Eq. (71) we are encouraged that@{ e*) one may be able
A 1 to achieve a good understanding of the spin polarizability
WO (@) =W (@) =W ()2 ®9  ith the help of the small scale expansion.

and obtain the spin polarizability of the nucleon

e? & 8our findings agree with thdlr- and A 7-loop results given in
y=o— —W(w)|,_0. (70
87 dw? ©= (8].
1%There certainly have been many attempts in the literature to call
which was defined via Eq17). the A to the rescue in order to get reasonable numbers for the sum

rules of Eq.(18). We emphasize again that our results in E4L)
follow from the systematic small scale expansionHBChPT, as
YEquation(66) below agrees with th@©(p?) result of[8]. laid out in Sec. III.
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C. Critical discussion of O(€®) results DHG sum rule arguments. When extende®i@?), reason-

Before concluding it is useful to discuss some of the ar-able agreement is obtained faeg andBy , but at the cost of
guments of which we are aware why &1(€°) calculation considerable uncertainty associated with effects such as the
can perform poorly on the phenomenological side and, ort(1232), which is included only as a very heavy particle

the other hand, show all the correct field-theoretic constraint§°Ntributing to various counterterms. In this paper we have
of LET’s, heavy mass decoupling, correct chiral limit, etc. removed this obstacle by treating thg1232) as a specific

(i) The heavy baryon propagator for nucleons of &5) degr_ee of freedom within the 3heavy baryon method. Our cal-
g 9 O . . . culation was performed t®(e”) wheree is taken as a soft
receives “propagator corrections” viaNl/ vertices in matrix

~2) L i i momentum, asn,, or as the nucleox mass difference. We
Ay’ of Eq. (32), which in one-loop diagrams only begin t0 ¢ny perhaps not surprisingly, that inclusion Af effects

show up atO(e®). From a relativistic viewpoint theseMl/  makes large changes to all three polarizabilities.

corrections correspond to effects pertaining to the lower The good agreement with experimentCp?) for ag and

components of a Dirac spinor. o Bw is destroyed aD(e%), whereas the spin polarizability
(ii) For the heavy baryon propagator of a sélpartlcle v improves dramatically when compared with currently

there are analogous MiFinduced propagator corrections in ayailable sum rule information. Furthermore, we have dis-

matrix A{?) of Eq. (32). In this case they have the additional cussed consequences of our HBChPT results in the light of

effect of correcting the pure spihprojector of Eq.(35) by  existingO(p*) and relativistic one-loop calculations. Indeed,

bringing in some information about the off-shell sgimom-  we regard our calculation as merely preliminary and look

ponents of a relativistic spig-particle. Phenomenologically, forward to extending this work to higher order.

it is well known that the spif-components of the relativistic

spin< propagator can play an important effect in some ob- ACKNOWLEDGMENTS
servable$35]. Again, at the one-loop level these effects only
start showing up aD(€?). This research was supported in part by the National Sci-

(iii) In O(€®) calculations the incomingand outgoing  ence and Engineering Research Council of Canada, by the
soft momentum of the baryon is usually a higher order effectU.S. National Science Foundation, and by Schweizerischer
Only at the next order does this momentum fully contributeNationalfonds.
and the size of these “recoil corrections” can be quite large

for some observables. . _ APPENDIX A: LOOP FUNCTIONS
(iv) Isospin is usually not broken in calculations at the
O(€%) level which can be a problem in some cases. We express the invariant amplitudes of Feynman dia-

(v) Often one is calculating observables which are domi-grams containing pion loops around a nucleon in terms of
nated by loop effects. Therefore, one is only calculating the) functions, defined via
leading order of these observables, although technically one

might have to work to third or fourth order in HBChPT. As 10 dY  {1/./.,.7 .0 o 8
experience from many calculations in the meson sector of i (2m)¢d (v-/—w—ie)(mf,—/z—ie)
ChPT teaches us, one should always consider the leading and
the first (at leas} nonleading order in an observable before ={Jo(@,m2),9,,J2(w,m2) +v ,v,J3(w, M)
one can try to judge the quality of a ChPT result. 5
This list is certainly not complete. The concerns raised are X(9urGaptpEIM)Jg(w,m7)+ - - -}. (A1)

valid beyond our particular case of tid %) calculation of ) ] »

the polarizabilities of the nucleon. In fact, most of theseEMPloying the identities

points also apply to S(2) HBChPT without explicitA de- .

grees of freedom and “leading log” calculations in &Y 2, _ 2 2 2\

HBChPT. For our particular case of interest, the polarizabil—‘]Z(w’m”)_ m[(m” @) Jo(@,m) ~ @A), (A2)
ities of the nucleon, all of these points strongly suggest mov-
ing onto theO(e*) calculation. 2

1 m_.w
‘J6(w1m727):d+_1 (quf_wz)JZ(wquzf)_ d A‘IT ’
V. CONCLUSIONS (A3)

The Compton scattering process offers the opportunity to
probe nucleon structure in a relatively clean fashion, vigohe concludes that all loop integrals can be expressed via the
measurement of various “polarizabilities” which probe the basis-functionJ,. For theNr-loop integrals we usg7]
nucleon response to quasistatic excitations. In particular, re-
cent years have seen the measurement of electric and mag-
netic polarizabilities for both neutron and proton and spin
polarizability measurements should3be available by the mil- L
lennium. On the theoretical sle(p ) predlc?tlons foraE. i mz—wzarccos—w, (Ad)
and By, within heavy baryon chiral perturbation theory give 4o’ 7 m,
a surprisingly good picture of the experimental situation.
However, corresponding predictions for the spin polarizabil-whereas for theA r-loop integrals we employ the analyti-
ity are not in good agreement with the values given fromcally continued function

87°

1) m,
Jo(w,m;i)z—4|_w+—(1—2|n7
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1 Finally, with J/ and Ji we define the first and second
Jo(@,m?) —4Lw+ (1 2|ﬂ— m\/wz—mi partial derivative with respect tm2
[ ? J/ a 2 A7
,m2 ,m2),

_ (92
In Egs.(A2)—(A5) we have used the same convention§7ds Ji”(w,mi): W\L(w,mi). (A8)

m7T

Ap=2m?[ L+ 6772““ “|+0(d—4), APPENDIX B: N7 LOOPS
IN FORWARD COMPTON SCATTERING
] 1-In4

T 1672 |d—4 2”E nam|,

AG Using the J-function formalism defined in Appendix A
(AB) and the Lagrangians of E34), one can get exact solutions
introduced the Euler-Mascharoni

for the nineNw-loop diagrams of Fig. 3. Witk ,(e,) we

constantdenote the polarization four-vector of the incomif@utgo-
ye=0.557215, and the scaje in the dimensional regular- ing) photon with constant four-momentui, and energy
ization scheme we use for the evaluation of the integrals. . We find

where we

|
AmMPYT,=Cu(r){— e- €'[Jo(@,m2) + Jo(— @,m2)]1+2[ S, ,S,]€'“€"[Io( @,m2) — Jo( — w,m2) T}u(r),  (BY)
Amp} %= Cu(r)

1 1
+4e.e'f dx[Jé(wx,me)JrJé(—wx,mi)]—S[Sﬂ,S,,]e”‘e”f dx[J5(wx,m2) = J5(— wx,m?)]
(o) (o)
—2E.k5'.kf dxx(1—2x)[Jg(wx,m%) +I(— wx,m2)]+2[S, ,S,](€ - kk*€e"+ e ke' k")
0

X fldxx(l— 2x)[J5(wx,m2) — J4(— wx,mz)]} u(r) (B2)
0

Amp)T= Cu(r)[ de-€ (d+1)f dx(1—x)[Jg(wx,m2) + J5( — ox,m2)]+4e- €' f dx(1—x)x?[ J5(wx,m?)

+35(— wx,m2)]—€e-ke ~kj dx(1—x)[8x(2x— 1)+ (2x—1)%(d— 1) ][ J5( wX,m2) + J5( — wX,m2)]
0

+e-ke' ko f dx(1—x)x?(2x— 1)7[ I§(wx,m2) + J4( — wx,m )]]u(r)
0

(B3)
Amp) ™= Cu(r){+2e- €' (d—1)J5(0,m2) }u(r

(B4)
with the common factor

I
D
(o]
>N

Ay

3

In order to evaluate the polarizabilities, we expand the nine amplitudes into a power saviemthonly keep the terms of
interest:

m77

Amp)T,=Cu(r){ +e- €’ E—wz

8mm,,

+0O(w*)

1 ) m,.
+o[S,,S,]e' €" ~52 327°L+1+2In—

)
}U(r),

+w2m+0(w4)

(B5)
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AMRYT= G| +e- /| — T w2t ogu) |+ SS’”V192L+5+2|’T
MPa 5= UM+ e €| =5t o omm, TOl) | relS St gt T3 F2imy
—w? +0(w*) |+e-ke' -k ! +0O(w*) [+ - tu(r) (B6)
6m’m- 24mm,, ’
AmpYTe=Cu(r)| +e- € M 2> +0(w?) |+ e €| —w? 2 +0(w?)
78 8w 967m,, 967m,,
. ,. 2 ...
+e-ke' -k 327Tmﬂ+0(w )|+ u(r), (B7)
Ampy"=Cu(r)| +e- €' _8_7: ]u(r). (B8)

In Sec. IV we construct the auxiliary functiot$(w),V(w), andW(w) from Egs.(B5)—(B8).

APPENDIX C: A# LOOPS IN FORWARD COMPTON SCATTERING
Using the same conventions as in Appendix B with a new overall factor

2
. 492977NA
SF?T ’

we find the invariant amplitudes for the nine diagrams of Fig. 4:

_ 2
AmpffzzDu(r)( —€-€ m[\]o(w—A,mi)—FJo(—w—A,mi)]—[Sﬂ,S,,]E’“e"

-1
X[Jo(@—A,m2)—Jo(—w—A,m?)]

u(r), (Cy

- d—2 (1 e
Amp%..e=Du(r)[4e' € d—_ljo dx[Jé(wx—A,mf,)JrJé(—wX—Avmi)H“[Sﬂ’Sv]emevd—ljo dx

d—2 (1
X[Ip(wx—A,m2)—J5(—wx—A,m2)]—2e-ke'- ka dxx(1—2x)[I5(wx—A,m2) +J)(— ox—A,m2)]
- 0

2 1
—[S,,S,](¢' -kkFe"+ e ke/MkV)mfo dxx(l—2x)[Jg,(wx—A,m§T)—J(;(—wx—A,mi)]} u(r),

(C2
_ d—2)(d+1
Amp$178=Du(r)[—e-e'4%Joldx(l—x)[Jg(wx—A,mf,)+.Jg(—wx—A,me)]
d—2 (1 d—2 (1
+e-e'w24—f dx(1—x)2[Jg(wx—A,m§,)+Jg(—wx—A,mf,)]—e.ke'-k—f dx(1—x)(2x—1)
d—1Jo d—1Jo
d—2 (1
><[8x+(2x—1)(d—1)][Jg(wx—A,m3,)+Jg(—wx—A,m§T)]+e-ke'.szﬂf dx(1—x)x?(2x—1)?
- 0
X[Jg(wx—A,me)+J’é(—wx—A,me)]]u(r), (C3)
Amp3™=Du(r)e- €'2(d—2)J5(—A,m2)u(r). (C4)

In analogy to Appendix B we expand the amplitudes into a power-series in the photon enéigyh the definition

A A?
R=—+1/——1,
m, m_
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we find:
3d-2 w? A m?2 .
Ampl+2 Du(r){ — 3l24- 12J0( Am )+—2 A2 mi_(Az—mi)mlnR +0(w")
+[S,.S,]€'" —Zw 3 somrlariom D) 22 R
[ S,]e'*e a-1 T n ~ Az—min
, Am? R A2+2m?2 ot s
+ - +
© (AZ_mi)SIZ n S(AZ_mi)Z (w ) u(r), ( )
A — 1 9 d-2 2 2__
Ampz e=Du(r){ e- €' 9.2|2 (d= 1F96ALW +6AIn| — | —A+6VA2—mZInR+ o? A= (A2 )yﬂnR
+0(w*) | +[S, S, ]e e’ 2 C 96m2L—12In | —10- i|nR+w2 A
w1 v (d 1)2 )\ /Az—mi. (A2_m )2
3Am2 I . ek 1 I )
_(Az——mi)wnR +O(w") |—€-ke'- 182 \/Az—ﬁmwnR'f'O(w) +---pu(r), (Co)
Am D) — e e oy | 97 2) e ad— 1) AL 72+ 600IN| | 4 60JAZ= mZInR
p? 7= 7272 | d(d—1)? m
A 5m2 1 1
+A+ w? > - INR | +0(0*) | — € € w’s=—| ——=—=INR+0(w?)
A?—m7  (A%-m3)% 36n°| JAZ-mZ
ke'-k —1 INR+ O(w? C
+e-Ke - WAZ——min + ((1)) +--- U(I’), ( 7)
1 [3d-2 m,
mpy"=Du(r)e- €' 52 [Zd 196AL7T +6AIn(T) A+6A%— InR]u(r) (C8)
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