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We develop a perturbative QCD factorization theorem which is compatible with effective field theory. The
factorization involves three scales: an infrared cutoff of orderLQCD, a hard scale of the order of theB meson
mass, and an ultraviolet cutoff of the order of theW boson mass. Our approach is renormalization-group
invariant and moderates the scale-dependent problem in effective field theory. Employing this formalism with
nonfactorizable contributions included, we clarify the controversy over the BSW parametersa2 /a1 for charm
and bottom decays.@S0556-2821~97!01109-0#

PACS number~s!: 13.25.Hw, 11.10.Hi, 12.38.Bx, 13.25.Ft

Nonleptonic heavy meson decays are difficult to analyze
due to the complicated QCD corrections and the multiple
characteristic scales they involve. While semileptonic decays
involve only conserved currents, nonleptonic decays are de-
scribed by four-quark current-current operators. For ex-
ample, the relevant operator for theB→Dp decays is

H5
4GF

A2
VcbVud* ~ c̄LgmbL!~ d̄Lg

muL!. ~1!

The QCD corrections will generate operator mixing, charac-
terized by Wilson coefficients, among these operators. The
resultant effective Hamiltonian related to Eq.~1! is written as

Heff5
4GF

A2
VcbVud* @c1~m!O11c2~m!O2#, ~2!

with

O15~ c̄LgmbL!~ d̄Lg
muL!

and

O25~ d̄LgmbL!~ c̄Lg
muL!.

c1 andc2 are the Wilson coefficients, whose evolution from
theW boson massMW down to a lower scalem is deter-
mined by renormalization-group~RG! running @1#. Though
Wilson coefficients arem dependent, physical quantities
such as decay amplitudes are not. In principle, the matrix
elements of the four-fermion operators contain am depen-
dence, which exactly cancels that of the Wilson coefficients.
In practical applications, however, various schemes are
needed to estimate the hadronic matrix elements, and the
estimates are usuallym independent. Hence, the decay am-
plitudes turn out to be scale dependent. Take exclusive non-
leptonic heavy meson decays as an example, to which the
conventional approach is the Bauer-Stech-Wirbel~BSW!
factorization approximation@2#. It is assumed that nonlep-
tonic matrix elements can be factorized into two matrix ele-

ments of~axial! vector currents. Since the currents are con-
served, the matrix elements have no anomalous scale
dependence. Presumablym should be set to the dominant
scale of the matrix elements. However, the matrix elements
involve both the heavy quark scale and the small hadronic
scale. Naively settingm to the heavy quark mass will lose
large logarithms associated with the hadronic scale. It is then
quite natural that theoretical predictions are sensitive to the
scale we choose@3#.

To circumvent this problem, a phenomenological ap-
proach is adopted to bypass the strong scale dependence. The
Wilson coefficientsc1,2 are regarded as free parameters and
determined by experimental data@2#. In this model two
equivalent parametersa15c11c2 /Nc and a25c21c1 /Nc
describe the external and internalW-emission amplitudes,
respectively. However, the evaluation of the hadronic form
factors usually involve some ansatz@4#, and thus the extrac-
tion of a1,2 is model dependent. It is also found that a nega-
tive a2 /a1 and a positivea2 /a1 are concluded from the data
of charm and bottom decays@2,5#, respectively.

It was shown recently that the perturbative QCD~PQCD!
approach based on the full Hamiltonian in Eq.~1! is appli-
cable to heavy meson decays at large recoil@6,7# in the sense
that more than half of contributions come from the region
with the running coupling constantas,1. The breakthrough
is due to the all-order Sudakov resummation of large radia-
tive corrections, which suppresses contributions from the
long-distance region. This formalism, taking into account the
evolution from the typical scale of hard subprocesses char-
acterized by the heavy meson mass to a lower hadronic scale,
is m independent for semileptonic decays. However, it can-
not be an appropriate tool for nonleptonic decays, because it
does not involve the scaleMW . In this paper we shall de-
velop a PQCD formalism based on the effective Hamiltonian
in Eq. ~2!, which further incorporates the evolution from
MW down to the hard scale. This three-scale factorization
theorem, as demonstrated below, moderates the scale-setting
ambiguity.

We first illustrate the main idea of PQCD factorization
theorems by considering one-loop corrections to a generic
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decay process through a current. These corrections are ultra-
violet finite, since the conserved current is not renormalized.
However, they also give rise to infrared divergences, when
the gluons are soft or collinear to light partons. The factor-
ization is implemented to isolate these infrared divergences.
Radiative corrections are classified into reducible and irre-
ducible types. Irreducible corrections contain only single soft
logarithms and are absorbed into a soft functionU. Reduc-
ible corrections, containing double logarithms from the com-
bination of soft and collinear divergences, are absorbed into
a wave functionf(P,b,m) and explicitly resummed into a
Sudakov factore2s:

f~P,b,m!5exp@2s~P,b!#f~b,m!. ~3!

b is the conjugate variable of the transverse momentum, and
1/b can be regarded as an infrared cutoff of order of the
hadonic scale. The Sudakov factor strongly suppresses the
contributions from the largeb region. With Sudakov sup-
pression, the irreducible soft corrections, appearing in the
form 12ei l•b, l being the loop momentum, cancel asymptoti-
cally (b→0) @7#. Hence, they will be neglected below~i.e.,
U51).

To factorize a one-loop correction, we divide it into two
terms as shown in Fig. 1~a!. The first term, with an eikonal
approximation for fermion propagators, picks up the infrared
structure of the full diagram. Being infrared sensitive, it is
absorbed intoU or f, depending on which type the correc-
tion is. The second term, with a soft subtraction, has the
same ultraviolet structure as the full diagram, and can be
absorbed into a hard scattering amplitudeH(t,m), where t
denotes the typical scale of the hard decay process. We then
get theO(as) factorization formula shown in Fig. 1~b! with
the diagrams in the first parentheses contributing toH. The

presence ofm implies that bothf andH need renormaliza-
tion. Let gf be the anomalous dimension off. Then the
anomalous dimension ofH must be2gf , because the full
diagram is ultraviolet finit. Using the renormalization group
~RG!, the convolution ofH with f is m independent as in-
dicated by

H~ t,m!f~b,m!5H~ t,t !f~b,1/b!

3expF2E
1/b

t dm̄

m̄
gf„as~m̄ !…G . ~4!

The contribution characterized by momenta smaller than
1/b, i.e., the infrared divergence, is absorbed into the initial
conditionf(b,1/b), which is of nonperturbative origin.

Indeed the effective Hamiltonian in Eq.~2! can be con-
structed in a similar way. Consider a typical one-loop QCD
correction to theW-exchange diagram Fig. 1~c!. We express
the full diagram, which is ultraviolet finite, as two terms as
shown in Fig. 1~c!. The first term, obtained by shrinking the
W boson line into a vertex, corresponds to the local four-
fermion operatorsOi . It is absorbed into a hard scattering
amplitudeH(t,m), with a typical scalet!MW , since gluons
involved in this term do not ‘‘see’’ theW boson. The second
term, characterized by momenta of orderMW , is absorbed
into a ‘‘harder’’ functionHr(MW ,m) ~not a scattering am-
plitude!, in which gluons do ‘‘see’’ theW boson.

We obtain theO(as) factorization formula shown in Fig.
1~d!, where the diagrams in the first parentheses contribute to
Hr and those in the second parentheses toH. This formula in
fact represents a matrix relation because of the mixing be-
tweenO1 andO2. Solving their RG equations, we derive

Hr~MW ,m!H~ t,m!5Hr~MW ,MW!H~ t,t !

3expF E
t

MWdm̄

m̄
gHr

„as~m̄ !…G , ~5!

where the anomalous dimensiongHr
of Hr is also a matrix.

We emphasize that the factorization in Eq.~5! is not com-
plete because of the presence of infrared divergences inH.
Without large logarithms,Hr(MW ,MW) can now be safely
approximated by its lowest-order expressionHr

(0)51.
We are now ready to contruct a three-scale factorization

theorem by combining Eqs.~4! and ~5!. Consider the decay
amplitude up toO(as) without integrating out theW boson.
We first factorize out the infrared-sensitive wave functions as
described above. Though devoid of infrared divergences, the
hard part still invloves two scalest andMW . The factoriza-
tion in Fig. 1~d! is then employed to separate these two
scales, andHr can be moved out of the hard part, a step valid
up toO(as). We identify the remaining diagrams, including
the four-fermion amplitude and the associated soft subtrac-
tion, as H. The anomalous dimension ofH is given by
gH52(gf1gHr

). We thus get the three-scale factorization
formula

FIG. 1. ~a! Separation of infrared and hardO(as) contributions
in PQCD. ~b! O(as) factorization into a soft function and a hard
scattering amplitude.~c! Separation of hard and harderO(as) con-
tributions in an effective field theory.~d! O(as) factorization into a
‘‘harder’’ function and a hard scattering amplitude.
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Hr~MW ,m!H~ t,m!f~b,m!5c~ t !H~ t,t !f~b,1/b!

3expF2E
1/b

t dm̄

m̄
gf„as~m̄ !…G ,

~6!

where the exponential factor in Eq.~5! has been identified as
the Wilson coefficientc(t). It implies thatm in c(m) should
be set to the hard scalet. The two-stage evolutions from
1/b to t and from t to MW are both included, and the final
expression ism independent. Note that thism independence
is a direct consequence of the current conservation as stated
before.

The above conclusion is quite natural from the effective
field theory approach@8#. An effective field theory is con-
structed for a scalem,MW by integrating out theW boson
at m5MW . Matching corrections are determined by the
matching condition requiring that the low-energy light-
particle Green functions of the two theories be equal. The
effective theory is then evolved by RG running from
m5MW to a lower scale, ensuring that the amplitudes are
m independent. The scalem in a continuum effective field
theory is actually a scale to separate the long-distance from
the short-distance physics with the physics above the scale
m absorbed into the coefficients in the effective Hamiltonian,
such as the Wilson coefficientsc1,2(m). The effective field
theory constructed this way has exactly the same low-energy
behavior as the full theory, including infrared divergences,
physical cuts, etc. Thus the infrared divergences in the decay
amplitudes calculated using the effective field theory can be
factorized in the same way as the full theory. The factoriza-
tion formula for the m-independent amplitude,
c(MW ,m)H(t,m)f(b,m), is identical to Eq.~6! with the
Wilson coefficientc identified asHr .

We apply the above formalism to the nonleptonic
B(P1)→D(P2)p(P3) decays. The decay rate is given by@7#

G5
1

128p
GF
2 uVcbu2uVudu2MB

3 ~12r 2!3

r
uMu2, ~7!

with r5MD /MB , MB (MD) being theB (D) meson mass.
In the rest frame of theB meson,P1 has the components
P15(MB /A2)(1,1,0T). The nonvanishing components of
P2 andP3 are, respectively,P2

15MB /A2, P2
25rM D /A2,

P3
150, andP3

25(12r 2)MB /A2. Let k1(k2) be the mo-
mentum of the light valence quark in theB (D) meson and
k3 be the momentum of a valence quark in the pion. These
k’s may be off shell by the amount of their transverse com-
ponentskT of orderLQCD. We define the momentum frac-
tions x as x15k1

2/P1
2 , x25k2

1/P2
1 , and x35k3

2/P3
2 . To

leading power in 1/MB , the factorization formula forM in
the transverse configuration space is written as

M5E
0

1

@dx#E
0

`

@d2b#fB~x1 ,b1,1/b1!fD~x2 ,b2,1/b2!

3fp~x3 ,b3,1/b3!c~ t !H~xi ,bi ,t !exp@2S~xi ,bi !#,

~8!

with @dx#5dx1dx2dx3 and @d2b#5d2b1d
2b2d

2b3. The
Sudakov factore2S is the product ofe2s in Eq. ~3! and the
exponential in Eq.~6! from each wave function. Below we
shall neglect theb dependence of the wave functions@6#.

Without large logarithms,H can be reliably treated by
perturbation theory. To leading order inas , the hard part for
the decayB2→D0p2 consists of four sets of diagrams
shown in Fig. 2. The diagrams in Fig. 2~a! correspond to the
externalW emission@2,3#, while those in Fig. 2~b! to the
internalW emission. They have been calculated using the
PQCD formalism in@6,7# without including the Wilson co-
efficients. Denote their contributions to the amplitudeM as
Ma andMb . It is easy to find that the Wilson coefficients
associated withMa andMb are respectivelya1 and a2.
Readers are referred to@7# for the complete formulas of
Ma andMb .

Diagrams in Figs. 2~c! and 2~d! are absent in the factor-
ization approximation and will be called the nonfactorizable
diagrams. Figure 2~c! leads to

Mc532A2NcpCFArM B
2GFE

0

1

@dx#E
0

`

b1db1b2db2fB~x1!

3fD~x2!fp~x3!Fas~ t1!
c1~ t1!

Nc
e2Sc

~1!
~xi ,bi !

3@x12x22x3~12r 2!#hc
~1!~xi ,bi !1as~ t2!

c1~ t2!

Nc

3e2Sc
~2!

~xi ,bi !@12~x11x2!~12r 2!#hc
~2!~xi ,bi !G . ~9!

The functionshc
( j ) , j51 and 2, are given by

hc
~ j !5@u~b12b2!K0~AMBb1!I 0~AMBb2!1u~b22b1!

3K0~AMBb2!I 0~AMBb1!#

3S K0~BjMBb2! for Bj>0

ip

2
H0

~1!~ uBj uMBb2! for Bj<0D , ~10!

FIG. 2. ~a! ExternalW emission.~b! InternalW emission.~c!
and ~d! Nonfactorizable internalW emissions.
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with A25x1x3(12r 2), B1
25(x11x2)r

22(12x12x2)x3(1
2r 2), andB2

25(x12x2)x3(12r 2). The Sudakov exponent
Sc
( j ) is written as

Sc
~ j !5s~x1P1

1 ,b1!1s~x2P2
1 ,b2!1s„~12x2!P2

1 ,b2…

1s~x3P3
2 ,b3!1s„~12x3!P3

2 ,b3…

2
1

b1
(
i51

3

ln
ln~ t j /L!

2 ln~biL!
, ~11!

with b35b2, b15(3322nf)/12, andnf the number of fla-
vors. The scalet j is chosen ast j5max(AMB ,uBj uMB,1/
b1,1/b2). The amplitudeMd is obtained from Fig. 2~d! ac-
cordingly. The amplitudes for the decayB̄0→D1p2 can be
derived in a similar way. However, it is found that only the
externalW-emission contribution, the same asMa , is im-
portant.

The wave functions are chosen as@7#

fp~x!5
5A6
2

f px~12x!~122x!2,

fB,D~x!5
NB,D

16p2

x~12x!2

MB,D
2 1CB,D~12x!

, ~12!

with f p5132 MeV the pion decay constant.NB5650.212
GeV3 and CB5227.1051 GeV2 correspond tof B5200
MeV. ND is determined byf D5220 MeV, andCD is fixed
by data for the decayB̄0→D1p2. All other parameters are
referred to@7#.

The experimental data of the branching ratios are
B05B(B̄0→D1p2)5(3.0860.85)31023 and B25B(B2

→D0p2)5(5.3461.05)31023 @9#. Our predictions using
the full Hamiltonian in Eq.~1!, i.e., c151 andc250, are
B053.0831023 andB255.1031023. If the three-scale fac-
torization formula is employed, we obtainB053.0831023

and B255.0031023, differing from the previous results
only by 2%. We claim that the main theoretical uncertainty
comes from higher corrections to the hard part. They are
estimated to be 15–20 % using the value ofas(t)/p evalu-
ated at the scalet below which half of the contributions have
been accumulated. A careful observation reveals that when

the evolution of the Wilson coefficients is included, the am-
plitudeMb , proportional toa2(t), becomes smaller, while
Mc , proportional toc1(t)/Nc , becomes larger. The two
changes cancel each other, and the total decay rate remains
almost the same.Md is less important because of the pair
cancellation between the two diagrams in Fig. 2~d!. Our cal-
culation indicates that the nonfactorizable contributionMc is
substantial and the limit of the BSW factorization approxi-
mation. That is why the naive choice ofa1,25a1,2(MB) in
the BSW model fails to explain the data.

Applying the three-scale factorization theorem to the
modesD→Kp, we obtain the predictionsB(D̄0→K1p2)
54.05% andB(D2→K0p2)52.67%, consistent with the
data (4.0160.14)% and (2.7460.29)%, respectively. With
the running scalet reaching below thec quark mass,Mb
becomes more negative and overcomes the positive contri-
bution ofMc . This explains the observed destructive inter-
ference of the external and internalW emissions absent in
the B meson decays. Hence, nonfactorizable diagrams play
an important role in the explanation of the heavy meson
decay data. It is clear that a PQCD formalism based on the
original Hamiltonian without Wilson coefficients@7,10# can-
not account for this change of sign in the charm decays.
From the above analysis, we suggest thatc1,2 could be re-
garded as Wilson coefficients as they originally are, instead
of as fitting parameters in the BSW model. That is, the con-
troversy over the extraction ofa2 /a1 from the bottom and
charm decays does not exist in our theory.

The scale dependence of our formalism can be tested by
substituting 2t for t in the factorization formula. It is found
that the prediction decreases by only 5%. In the conventional
effective field theory, the substitution ofMb by 2Mb for the
argument ofc1,2 results in a 10–20 % difference@1#. Hence,
the scale-setting ambiguity is moderated in the three-scale
factorization theorems. Our formalism provides a more so-
phisticated choice of the scale and is expected to give more
definitive predictions when it is applied to inclusive nonlep-
tonic B meson decays. This subject will be discussed else-
where.
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