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Three-scale factorization theorem and effective field theory:
Analysis of nonleptonic heavy meson decays
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We develop a perturbative QCD factorization theorem which is compatible with effective field theory. The
factorization involves three scales: an infrared cutoff of oriigep, a hard scale of the order of tfiiemeson
mass, and an ultraviolet cutoff of the order of té boson mass. Our approach is renormalization-group
invariant and moderates the scale-dependent problem in effective field theory. Employing this formalism with
nonfactorizable contributions included, we clarify the controversy over the BSW pararaglersfor charm
and bottom decay$S0556-282(97)01109-0
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Nonleptonic heavy meson decays are difficult to analyzenents of(axial) vector currents. Since the currents are con-
due to the complicated QCD corrections and the multipleserved, the matrix elements have no anomalous scale
characteristic scales they involve. While semileptonic decaydependence. Presumably should be set to the dominant
involve only conserved currents, nonleptonic decays are descale of the matrix elements. However, the matrix elements
scribed by four-quark current-current operators. For exinvolve both the heavy quark scale and the small hadronic
ample, the relevant operator for tBe—~D 7 decays is scale. Naively setting:. to the heavy quark mass will lose

large logarithms associated with the hadronic scale. It is then
4G¢ . — — quite natural that theoretical predictions are sensitive to the
H= chqud(CL’yﬂbL)(dL'y“uL). D scale we choosEs].
To circumvent this problem, a phenomenological ap-
The QCD corrections will generate operator mixing, characProach is adopted to bypass the strong scale dependence. The
terized by Wilson coefficients, among these operators. Th¥Vilson coefficientsc, , are regarded as free parameters and
resultant effective Hamiltonian related to Ed) is written as ~ determined by experimental daf@]. In this model two
equivalent parametera;=c;+c,/N; and a,=c,+¢1 /N,
. describe the external and internél-emission amplitudes,
Hei=—= VeV C1()O1+Co(1) 051, (2 respectively. However, the evaluation of the hadronic form
\/5 factors usually involve some ansd#, and thus the extrac-
tion of a; , is model dependent. It is also found that a nega-
tive a,/a; and a positivea,/a; are concluded from the data
(e q of charm and bottom decayg,5], respectively.
O1=(CLyubu)(diy™u) It was shown recently th%t the pefturbativye QUPRCD
and approach based on the full Hamiltonian in Ed) is appli-
o cable to heavy meson decays at large rd&i] in the sense
Ozz(dLmbL)(C_LY”“UL)- that more than half of contributions come from the region
with the running coupling constaat,<<1. The breakthrough
¢, andc, are the Wilson coefficients, whose evolution from is due to the all-order Sudakov resummation of large radia-
the W boson masdM, down to a lower scalq. is deter- tive corrections, which suppresses contributions from the
mined by renormalization-groufRG) running[1]. Though long-distance region. This formalism, taking into account the
Wilson coefficients areuw dependent, physical quantities evolution from the typical scale of hard subprocesses char-
such as decay amplitudes are not. In principle, the matriacterized by the heavy meson mass to a lower hadronic scale,
elements of the four-fermion operators contaip.adepen- is u independent for semileptonic decays. However, it can-
dence, which exactly cancels that of the Wilson coefficientsnot be an appropriate tool for nonleptonic decays, because it
In practical applications, however, various schemes aréloes not involve the scalely,. In this paper we shall de-
needed to estimate the hadronic matrix elements, and theelop a PQCD formalism based on the effective Hamiltonian
estimates are usually independent. Hence, the decay am-in Eq. (2), which further incorporates the evolution from
plitudes turn out to be scale dependent. Take exclusive norM,, down to the hard scale. This three-scale factorization
leptonic heavy meson decays as an example, to which thiaeorem, as demonstrated below, moderates the scale-setting
conventional approach is the Bauer-Stech-WirlkBEW)  ambiguity.
factorization approximatiofi2]. It is assumed that nonlep- We first illustrate the main idea of PQCD factorization
tonic matrix elements can be factorized into two matrix ele-theorems by considering one-loop corrections to a generic

with
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presence ofx implies that both¢ andH need renormaliza-
tion. Let y, be the anomalous dimension ¢f. Then the

= + -
;2 —Js [ ch % ;g i anomalous dimension df must be—y,, because the full
(

a) diagram is ultraviolet finit. Using the renormalization group
(RG), the convolution oH with ¢ is w independent as in-

T-F T =

H(t,u) (b, w) =H(t,t) $(b,1/b)

cdg
w | - ><é +[ w | - ><é] XeXF{_‘flm7_7¢(aS(M))
| E | E
(

<)

G

The contribution characterized by momenta smaller than
1/, i.e., the infrared divergence, is absorbed into the initial
IE ) ><g condition ¢(b,1/b), which is of nonperturbative origin.
S 2 >< + ><é Indeed the effective Hamiltonian in E) can be con-
>< structed in a similar way. Consider a typical one-loop QCD
correction to thaV-exchange diagram Fig(d). We express
@ the full diagram, which is ultraviolet finite, as two terms as
. . o shown in Fig. 1c). The first term, obtained by shrinking the
FIG. 1. (a) Separation of infrared and haf(«ag) contributions W boson line into a vertex, corresponds to the local four-
in PQCD. (b) O(as) factorization into a soft function and a hard ¢ mign operator<; . It is absorbed into a hard scattering
S(':att.erlng.amplltude(x_:) Separation of hard and har@'(.%) con- amplitudeH (t, i), with a typical scalé<<M,,, since gluons
tributions in an effective field theoryd) O(«,) factorization intoa . - ! o \
“harder” function and a hard scattering amplitude. involved in this Ferm do not “see” th&V boson._ The second
term, characterized by momenta of orddy,, is absorbed

decay process through a current. These corrections are ultrf0 & “harder” functionH, (M, 1) (not a scattering am-
violet finite, since the conserved current is not renormalizedP!itude), in which gluons do “see” théV boson. o
However, they also give rise to infrared divergences, when e obtain theO(as) factorization formula shown in Fig.
the gluons are soft or collinear to light partons. The factor-1(d), where the diagrams in the first parentheses contribute to
ization is implemented to isolate these infrared divergencedr and those in the second parenthesed g his formula in
Radiative corrections are classified into reducible and irrefact represents a matrix relation because of the mixing be-
ducible types. Irreducible corrections contain only single soffweenO; andO,. Solving their RG equations, we derive
logarithms and are absorbed into a soft functibnReduc-

ible corrections, containing double logarithms from the com-

bination of soft and collinear divergences, are absorbed into Hi(Mw, w)H(t 1) =H (M, Myw)H(t,1)

a wave functiong(P,b,u) and explicitly resummed into a Mud L
Sudakov factoe™: Xex;{f _ﬁyH (as(n)|, (5
t M r
&(P,b,w)=exd —s(P,b)]é(b,u). ()

b is the conjugate variable of the transverse momentum, an\g/
1/b can be regarded as an infrared cutoff of order of the _ L .
hadonic scale. The Sudakov factor strongly suppresses th¥€ emphasize that the factorization in E§) is not com-
contributions from the largé region. With Sudakov sup- ple_,-te because of th_e presence of infrared divergences. in
pression, the irreducible soft corrections, appearing in th&Vithout large logarithmsH, (My,,My) can ”O)W be safely
form 1—e/"®, I being the loop momentum, cancel asymptoti- 2PProximated by its lowest-order expressidff’=1.
cally (b—0) [7]. Hence, they will be neglected belotive., We are now ready to contruct a three-scale factorization
u=1). theorem by combining Eq$4) and(5). Consider the decay

To factorize a one-loop correction, we divide it into two @mplitude up tdO(«s) without integrating out th&V boson.
terms as shown in Fig.(d). The first term, with an eikonal We first factorize out the infrared-sensitive wave functions as
approximation for fermion propagators, picks up the infraregdescribed apqve. Though devoid of infrared d|vergenpes, the
structure of the full diagram. Being infrared sensitive, it ishard part still invioves two scalé@sandM,y. The factoriza-
absorbed intdJ or ¢, depending on which type the correc- tion in Fig. 1(d) is then employed to separate these two
tion is. The second term, with a soft subtraction, has th&cales, ani can be moved out of the hard part, a step valid
same ultraviolet structure as the full diagram, and can béP t0O(as). We identify the remaining diagrams, including
absorbed into a hard scattering amplitudét, 1), wheret the four-fermion amplitude anq the gssomat'ed §oft subtrac-
denotes the typical scale of the hard decay process. We théien. asH. The anomalous dimension ¢ is given by
get theO(a) factorization formula shown in Fig.(h) with ~ Yn=— (74T vn, ). We thus get the three-scale factorization
the diagrams in the first parentheses contributingitorThe  formula

here the anomalous dimensigp of H, is also a matrix.
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He (M. ) H(t ) (b, ) =c()H(t,t) (b, L/b)
td_ o d c a
xexp{— — ylasm)|, , b ii a

b u
(6)

=1l

where the exponential factor in E(R) has been identified as
the Wilson coefficient(t). It implies thatu in c(«) should

be set to the hard scake The two-stage evolutions from
1/b to t and fromt to My are both included, and the final
expression isu independent. Note that thjg independence

is a direct consequence of the current conservation as stated
before.

The above conclusion is quite natural from the effective
field theory approacii8]. An effective field theory is con-
structed for a scalg <M,y by integrating out théV boson o o
at u=M,y. Matching corrections are determined by the FIG. 2. (8 Ext_ernaIV_\l em|SS|on.(l_:)) I_nternaIW emission.(c)
matching condition requiring that the low-energy light- 2d(d) Nonfactorizable interndl emissions.
particle Green functions of the two theories be equal. The . B prr 2 2 12
effective theory is then evolved by RG running from With [dx]_dxlq)éZ_dXS and [d b]_i b,d"b,d"bs. The
u=M,, to a lower scale, ensuring that the amplitudes are>Udakov factoe = is the product ok™* in Eq. (3) and the
w« independent. The scale in a continuum effective field €xPonential in Eq(6) from each wave function. Below we
theory is actually a scale to separate the long-distance fronall neglect thé dependence of the wave functiof.
the short-distance physics with the physics above the scale Without large logarithmsH can be reliably treated by
w absorbed into the coefficients in the effective HamiItonian,pert“rbat'onfheorg- To leading orderdn, the hard part for
such as the Wilson coefficients (u). The effective field the decayB™—D"m~ consists of four sets of diagrams
theory constructed this way has exactly the same low-energ§OWn in Fig. 2. The diagrams in Fig(a correspond to the
behavior as the full theory, including infrared divergences €xternalW emission[2,3], while those in Fig. &) to the
physical cuts, etc. Thus the infrared divergences in the decaffternal W emission. They have been calculated using the
amplitudes calculated using the effective field theory can b&QCD formalism in[6,7] without including the Wilson co-
factorized in the same way as the full theory. The factoriza£fficients. Denote their contributions to the amplitutie as
tion formula for the pu-independent amplitude, MaandM,. Itis easy to find that the Wilson coefficients

c(My, ) H(t, ) (b, 1), is identical to Eq.(6) with the  associated withM, and My, are respectivelya; and a,.

Wilson coefficientc identified asH, . Readers are referred {@] for the complete formulas of
We apply the above formalism to the nonleptonic Ma andMy,. _
B(P;)— D(P,) 7(Ps) decays. The decay rate is given[7y Diagrams in Figs. @) and 2d) are absent in the factor-
ization approximation and will be called the nonfactorizable
(1-r2)3 diagrams. Figure () leads to

r GE|VeplVyd M3 M2 (@)

1287 r 1 -
M=322N mCe\TM QGFJ [dx]f b,db;b,db,dg(X;)
0 0

with r=Mp/Mg, Mg (Mp) being theB (D) meson mass.

In the rest frame of th& meson,P; has the components Ca(ty) —sMx by
P,=(Mg/\2)(1,10;). The nonvanishing components of X P (%) ha(Xs)| ars(t) N, e =

P, and P; are, respectivelyPs =Mg/\2, P, =rMp/2, .
P;ZO, and P§.=(1—r2)MB/\/§. Lgt ki(k,) be the mo- X[Xl—Xz—Xg(l—rz)]hél)(Xi ’bi)+a5(t2)C1[E|—2)
mentum of the light valence quark in (D) meson and c

k; be the momentum of a valence quark in the pion. These

k’s may be off shell by the amount of their transverse com- x e~ St (% PI[1— (x;+x%2)(1-1)ThP (% ,bi) . (9)

ponentsky of order Agcp. We define the momentum frac-
tions x asx;=k; /P, , X,=k3 /P, , andxs=k3/P5 . To
leading power in W, the factorization formula foM in
the transverse configuration space is written as

The functionsh’), j=1 and 2, are given by

h(cj):[e(bl_bz)Ko(AMBbl)lo(AMBb2)+e(bz_bl)
1 o0

M= [ 10 [ Tl g50x1,b1,1/0y) i, b b XKo(AMb2)lo(AMgD1) ]
0 0 Ko(BjMghy)  for B;=0

X  1(X3,b3,1/bg) (Y H(x; by t)exit — S(x; b)), x| i , (10

® 5 Ho'(1Bj|Mgb,) for Bj=<0
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with A?2=x,x3(1—r2), B2=(x;+x,)r?—(1—x;—x,)x3(1  the evolution of the Wilson coefficients is included, the am-
—r?), and B§=(x1—x2)x3(1—r2). The Sudakov exponent Pplitude My,, proportional toa,(t), becomes smaller, while

S(CJ) is written as M., proportional toc(t)/N., becomes larger. The two _
changes cancel each other, and the total decay rate remains
SV =s(x,P5 ,by) +5(X,P5 ,b,)+s((1-X,) P4 ,by) almost the sameMy is less important because of the pair
cancellation between the two diagrams in Figd)20ur cal-
+s(X3P3 ,b3) +s((1—x3)P3 ,b3) culation indicates that the nonfactorizable contributiefy is
3 substantial and the limit of the BSW factorization approxi-
2 In(t; /A) 11 mation. That is why the naive choice af ,=a; Mg) in
< In(b A)’ (11 the BSW model fails to explain the data.

Applying the three-scale factorization theorem to the
with bs=b,, B;=(33—-2n;)/12, andn; the number of fla- modesD— K, we obtain the prediction8(D°—K™* 7 ")
vors. The scalg; is chosen agj=max(AMg,|Bj|Mg,1/  =4.05% andB(D —K°%7~)=2.67%, consistent with the
by,1/by). The amplitudeMy is obtained from Fig. @) ac-  data (4.01-0.14)% and (2.740.29)%, respectively. With
cordingly. The amplitudes for the dec®’—D* 7~ can be the running scalé¢ reaching below the quark massM,
derived in a similar way. However, it is found that only the becomes more negative and overcomes the positive contri-
externalW-emission contribution, the same ad,, is im-  bution of M.. This explains the observed destructive inter-
portant. ference of the external and interndl emissions absent in

The wave functions are chosen [@§ the B meson decays. Hence, nonfactorizable diagrams play
an important role in the explanation of the heavy meson
decay data. It is clear that a PQCD formalism based on the
original Hamiltonian without Wilson coefficien{§,10] can-
not account for this change of sign in the charm decays.
Ng.p x(1—x)2 From the above analysis, we suggest tbgs could be re-
1672 Mé 5+Csp(1—X%)’ (12 garded as Wilson coefficients as they originally are, instead

' ‘ of as fitting parameters in the BSW model. That is, the con-
with f_=132 MeV the pion decay constarly=650.212 troversy over the extraction af,/a, from the bottom and
GeV? and Cz=—27.1051 GeV correspond tofg=200  charm decays does not exist in our theory.

b (X)= \/—f X(1=X)(1-2x)2,

¢B.p(X)=

MeV. Np is determined byf,=220 MeV, andCp, is fixed The scale dependence of our formalism can be tested by
by data for the deca@—@*w*. All other parameters are substituting 2 for t in the factorization formula. It is found
referred to[7]. that the prediction decreases by only 5%. In the conventional

The experimental data of the branchmg ratios areeffective field theory, the substitution &, by 2M,, for the
Bo=B(B°—D* 7 )=(3.08+0.85)x 103 and B_=B(B" argument ofc, , results in a 10—-20 % dlfferem{e] Hence,

—D%7r7)=(5.34+1.05)x 10 2 [9]. Our predictions using ]Ehet S(.:alf. set:Lng amb'glé)'ty |fs mocljerated 'ndthe three-scale
the full Hamiltonian in Eq.(1), i.e., c;=1 andc,=0, are [actorization theorems. Our formalism provides a more so-

Bo=3.08% 10~3 andB_ =5.10x 10_3 If the three-scale fac- phisticated choice of the scale and is expected to give more

torization formula is employed, we obtaifl,=3.08x 10" 3 def!nitive predictions When_it is applied.to inclgsive nonlep-
and B_=5.00<10"3, differing from the previous results tonic B meson decays. This subject will be discussed else-
only by 2%. We claim that the main theoretical uncertaintyWhere'

comes from higher corrections to the hard part. They are This work was supported by the National Science Council
estimated to be 15-20 % using the valueagft)/7 evalu- of ROC under Grants Nos. NSC-85-2112-M194-0@6r
ated at the scalebelow which half of the contributions have H.L.) and NSC-85-2112-M007-029, NSC-85-2112-M007-
been accumulated. A careful observation reveals that whed32 (for C.C).
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