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The existing calculations of the form factors describing the decayB→ren from QCD sum rules have
yielded conflicting results at small values of the invariant mass squared of the lepton pair. We demonstrate that
the disagreement originates from the failure of the short-distance expansion to describe ther meson distribu-
tion amplitude in the region where almost the whole momentum is carried by one of the constituents. This
limits the applicability of QCD sum rules based on the short-distance expansion of a three-point correlation
function to heavy-to-light transitions and calls for an expansion around the light cone, as realized in the
light-cone sum rule approach. We derive and update light-cone sum rules for all the semileptonic form factors,
using recent results on ther meson distribution amplitudes. The results are presented in detail together with a
careful analysis of the uncertainties, including estimates of higher-twist effects, and compared to lattice cal-
culations and recent CLEO measurements. We also derive a set of ‘‘improved’’ three-point sum rules, in which
some of the problems of the short-distance expansion are avoided and whose results agree to good accuracy
with those from light-cone sum rules.@S0556-2821~97!05909-2#

PACS number~s!: 13.20.He, 11.55.Hx, 12.39.Hg

I. INTRODUCTION

The interest in the study of semileptonicB decays is
mainly because of their importance in determining the
Cabibbo-Kobayashi-Maskawa~CKM! matrix elements
uVcbu and uVubu. Whereas the theoretical analysis of both
exclusive and inclusiveb→c transitions is decisively simpli-
fied by an expansion in the inverse heavy quark mass, this
method is of only little use inb→u transitions. This is es-
sentially because of the fact that in inclusive channels experi-
mental observation is possible only in a small region of
phase space beyond the kinematical threshold for charm pro-
duction, in which the hadron multiplicity is small. Thus,
since the theoretical description of inclusive decays is essen-
tially based on a parton-model picture, it is not very predic-
tive in the experimentally accessible range, cf.@1#. It is,
therefore, rather the exclusive decay channels, in particular
B→pl n andB→rl n, that seem to be more suitable for
obtaining reliable information onuVubu. The CLEO Collabo-
ration has recently presented first experimental results of
these branching ratios@2#, which, however, are model depen-
dent.

The decayB→pl n has been tackled by several authors
using a number of different approaches, in particular QCD
sum rules@3–6# and simulations on the lattice@7–10#; the
results are in a reasonable agreement. The situation is, how-
ever, not that favorable in theB→r channel. Although here
the same methods were applied, the resulting predictions for
the decay rates are quite different. To illustrate the origin of
the problem, let us first introduce the relevant observables:

the hadronic matrix element determining theB→r weak
transition is

^r,lu~V2A!muB&52 i ~mB1mr!A1~ t !em*
~l!

1
iA2~ t !

mB1mr
~e* ~l!pB!~pB1pr!m

1
iA3~ t !

mB1mr
~e* ~l!pB!~pB2pr!m

1
2V~ t !

mB1mr
em

abgea*
~l!pBbprg , ~1.1!

where the four form factorsA1,2,3 andV depend on the mo-
mentum transfert5(pB2pr)

2 to the leptons; in the limit of
vanishing lepton massA3 does not contribute to the semilep-
tonic decay rate and will not be considered in this paper.l is
the polarization of ther, t takes values between 0 and 20.3
GeV2. It is precisely this large range of relevantt that ren-
ders the theoretical description of the form factors in Eq.
~1.1! so difficult. Most quark model calculations rely essen-
tially on the pole-dominance picture@11# or on a nonrelativ-
istic description, which yields an exponential increase of the
form factors witht @12#, which was softened in an updated
version of the model, Ref.@13#. Lattice calculations are up to
now limited to small momenta of the final stater @7,8,14#
and/or require extrapolations in the heavy quark mass. For
B→pl n, the possibility to restrict the functionalt depen-
dence of the single relevant form factor from unitarity with
the supplementary input of available lattice data at larget
was investigated in@10#, but this method is presently not
very predictive in ther channel, see@15#.

To date, only lattice simulations and QCD sum rules seem
to be apt topredict the t dependence in nearly the whole
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physical region. QCD sum rules provide a consistent descrip-
tion of semileptonicD decays@16# and of theB→p semi-
leptonic form factor@3–6#. However, there exist conflicting
predictions from different types of QCD sum rules for
B→r decays, which differ by a factor of 2 in the form fac-
tors at maximum recoil@5,17#. The aim of this paper is to
clarify the origin of this difference and to give updated pre-
dictions for the form factors, which include in particular re-
cently gained information on the structure ofr mesons
probed at large momentum transfer@18#.

At large recoil, the light quark originating from the weak
decay carries a large energy of ordermb/2 and has to transfer
it to the soft cloud to recombine to the final state hadron. The
probability of such a recombination depends on the parton
content of both theB meson and the light meson, the valence
configuration with the minimum number of Fock constitu-
ents being dominant. The valence quark configuration is
characterized by the wave functionf(x,k') depending on
the momentum fractionx carried by the quark and on its
transverse momentumk' . There exist two different mecha-
nisms for the valence quark contribution to the transition
form factor. The first one is the hard rescattering mechanism
pictured in Figs. 1~a! and 1~b!, which requires that the recoil-
ing and spectator quarks are at small transverse separations.
In this case the large momentum is transferred by an ex-
change of a hard gluon with virtualityk25O(mb). This con-
tribution is perturbatively calculable in terms of the Bethe-
Salpeter wave functions at small (;1/mb) transverse
separations, ordistribution amplitudes:

f~x!5Ek'
2;mbdk'

2f~x,k'!. ~1.2!

The second mechanism is the soft contribution, shown sche-
matically in Fig. 1~c!. The idea is that hard gluon exchange is
not necessary, provided one picks up an ‘‘end-point’’ con-
figuration with almost all momentum 12x5O(1/mb) car-
ried by one constituent. Since at large scalesf(x)512x
@19#, the overlap integral is of order*12O(1/mb)

1 dxf(x)5

O(1/mb
2). An additional factormb

1/2 comes from the normal-

ization of the heavy initial state, so that the final scaling law
for the soft contribution to the form factor at large recoil is
1/mb

3/2 @20,17,21#. Note that the transverse quark-antiquark
separation is not constrained in this case, which implies that
the soft contribution is sensitive to long-distance dynamics.
To calculate the soft contribution one needs to know the
wave function as a function of the transverse separation; the
simpler distribution amplitude is not enough.

Hard exclusive processes involving light hadrons receive
the same two types of contributions. There is a major differ-
ence, however, in that for light hadrons the soft contribution
is suppressed by a power of the large momentum~i.e., it is of
higher twist!, while for heavy meson decays both soft and
hard contributions turn out to be of the same power in the
heavy quark mass@20,17,21#. As a result, the soft~end-point!
contribution is expected to be large and requires quantitative
evaluation.

It was suggested@21# that Sudakov-type perturbative cor-
rections cut off contributions of large transverse separations
so that the soft contributions might be suppressed. This sup-
pression eventually eliminates the soft contribution for very
largemb . At the realistic valuesmb'5 GeV, however, it is
unlikely that calculations of this type can provide a quanti-
tative description. Indeed, the existing estimates of ‘‘hard’’
contributions typically fall short of realistic values of the
form factors from model calculations.1

Here the QCD sum rules method enters the stage and
suggests a nonperturbative technique to estimate the neces-
sary convolution integral without explicit knowledge of the
wave functions.

There exist two different types of QCD sum rules, which,
being similar in spirit, differ in the treatment of the light
hadron in the final state. This is illustrated in Figs. 1~c! and
1~d!.

The ‘‘traditional’’ sum rules avoid introducing wave
functions altogether by considering a three-point correlation
function with a suitable interpolating current and use disper-
sion relations to extract the contribution of the ground state.
The most important nonperturbative effect is then described
by the diagram in Fig. 1~d!, where the light quark is soft and
it interacts with the nonperturbative QCD vacuum, forming
the so-called quark condensate. Since quarks in a condensate
have zero momentum, it is clear that this diagram yields a
contribution to the distribution amplitude that is naively pro-
portional tod(12x) and remains unsuppressed formb→`.
This obviously violates the power counting discussed above.
The contradiction must be resolved by including the contri-
butions of higher-order condensates to the sum rules and
subtracting the contribution of excited states. The suppres-
sion of the end-point regionx→1, which isstrictly required
by QCD, is thus expected to hold as anumericalcancellation
between different contributions, which becomes the more
delicate ~and requires more fine-tuning! the moremb in-

1Note that a similar suppression is present for hard exclusive pro-
cesses involving light hadrons@22# ~in which case the soft contri-
bution is additionally suppressed by a power of the large momen-
tum!; however, there is increasing evidence that soft contributions
to, say, the pion form factor remain important at least up to
Q2'10 GeV2, see@23#.

FIG. 1. ‘‘Hard’’ ~a,b! and ‘‘soft’’ ~c! contributions to the decay
form factor.~d! modeling of the soft contribution in the QCD sum
rule approach. See explanation in the text.
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creases. Formb'5 GeV, a suppression of the quark conden-
sate contribution by a factor;1 GeV2/mb

2;1/25 is re-
quired. This explains why the traditional three-point sum
rules become unreliable.

The light-cone sum rules avoid this problem by rearrang-
ing the calculation in such a way that nonperturbative effects
such as the interaction with the quark condensate are in-
cluded in thenonperturbativehadron distribution ampli-
tudes, estimated using additional sum rules@24#. These ad-
ditional sum rules are written for integrated characteristics of
the distribution amplitudes such as moments, and the correct
asymptotic behavior at the end points is included by con-
struction.

The contribution of a single leading-twist distribution am-
plitude incorporates an infinite set of contributions of con-
densates of increasing dimension in the standard approach, at
the cost of retaining pieces with the largest Lorentz spin
~lowest twist! only. The remaining pieces of condensate con-
tributions are organized in a similar way in the contributions
of higher-twist distribution amplitudes.2

The premium for this rearrangement is that light-cone
sum rules have the correct asymptotic behavior in the heavy
quark limit, but the snag is that the present knowledge of
higher-twist distribution amplitudes is incomplete, so that
not all known nonperturbative corrections of the standard
approach can be included. One should expect that these two
approaches provide complimentary descriptions ofB decays,
with their own advantages and disadvantages.

Note that the problem with three-point sum rules origi-
nates from the constraint of the distribution amplitude con-
volution integral to the end-point region; this makes the an-
swer very sensitive to the preciseshapeof the distribution
amplitude rather than to its integrated characteristics. For the
decay form factors at small recoil there is no such restriction,
and the classical QCD sum rule concept of taking into ac-
count nonperturbative effects as the contributions of long-
wave vacuum fluctuations~condensates! classified by their
dimension is adequate. Thus, at small recoil, both types of
the sum rules should yield similar results and the spread of
their predictions characterizes the accuracy of the method. At
large recoil one should rely on the light-cone sum rules.

It is worthwhile to add that contributions of hard rescat-
tering can be consistently included as radiative corrections to
the sum rules. Their inclusion is technically challenging, but
does not pose a problem of principle.

Our paper is organized as follows. In Sec. II we introduce
the two different types of QCD sum rules. In Sec. III we then
analyze and explain the discrepancy inB→r transitions,
paying special attention to the rearrangement of quark and
mixed condensate contributions within the light-cone expan-
sion. We also estimate higher-twist contributions toA1. In
Sec. IV we discuss in short the quark mass dependence and
the heavy quark limit. Section V contains our final predic-
tions for form factors, spectra, and decay rates ofB→ren,

Sec. VI a summary and the discussion of the results. More
technical issues are delegated to appendices.

II. THREE-POINT VERSUS LIGHT-CONE SUM RULES

In this section we discuss the two different types of QCD
sum rules that have been used in the literature to calculate
heavy-to-light meson decays.

A. Three-point sum rules

The, comparatively speaking, ‘‘traditional’’ approach to-
wards transition matrix elements is by calculating a three-
point ~3P! correlation function. Specifically, forB→r one
considers3

Gmn5 i 2E d4xd4ye2 ipBx1 ipry

3^0uT jr
n~y!~V2A!m~0! j B

†~x!u0&

5 igmnG02 i ~pB1pr!mpB
n G12ers

mnpB
rpr

sGV1•••.

~2.1!

Here (V2A)m5ūgm(12g5)b is the weak current mediating
the b→u transition, j B5q̄ig5b is the interpolating field for
the pseudoscalarB meson, andj r

n5q̄gnu the interpolating
field for ther meson. In Eq.~2.1! we have given explicitly
only those Lorentz structures that are relevant for the semi-
leptonic decay channel, the others are suppressed.

The method of QCD sum rules consists, in principle, in
performing on the one hand a QCD calculation ofGmn in the
not so deep Euclidean regionpr

2;pB
22mb

2;1 GeV2, writing
it on the other hand as~double! dispersion relation over the
physical cut and equating both expressions. It was the idea of
Shifman, Vainshtein, and Zakharov@25# to complement the
purely perturbative calculation ofGmn by nonperturbative
terms in form of vacuum matrix elements of gauge-invariant
local operators, the condensates. The method proved surpris-
ingly successful in describing various hadronic matrix ele-
ments in terms of a handful of input parameters, as is testi-
fied by the immense number of publications in the field.

The traditional approach by Shifman-Vainshtein-
Zakharov ~SVZ! appeals to Wilson’s operator product ex-
pansion~OPE!, which is the expansion of aT product of
currents at short distances in terms of local operators. In that
way one obtains for the invariantsG in Eq. ~2.1!:

G~pB
2 ,pr

2 ,t !5(
n

G~n!~pB
2 ,pr

2 ,t !^0 uOnu0 &, ~2.2!

with the condensateŝ0 uOnu0 &. In most applications one
takes into account condensates up to dimension six.G can
also be expressed as a dispersion relation over the physical
singularities:

G5E dsBdsr

rphys~sB ,sr ,t !

~sB2pB
2 !~sr2pr

2!
1 subtractions.~2.3!2While the usual sum rules are based on matching the QCD cal-

culation at small distances to the phenomenological description in
terms of hadrons at large distances, the light-cone sum rules match
in transverse distance. Hence the relevant parameter in the expan-
sion is twist, and not dimension. 3For three-point functions we follow the notations of@5#.
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Usually, one is interested only in the properties of the ground
state, which has to be extracted from the sum over all states.
For this, one writes

rphys5rground state1rcont ~2.4!

and approximates the unknown contribution of the con-
tinuum by the perturbative spectral function above some
‘‘continuum thresholds’’s0

B ands0
r , such that

rcont.rpert$12Q~sB
02sB!Q~sr

02sr!%, ~2.5!

where the ‘‘. ’’ indicates that smearing over a sufficiently
large interval is implied. The sum rule is then obtained by
equating Eqs.~2.2! and~2.3! and subtracting from both sides
the continuum contribution, i.e., in the above approximation
the integral over the perturbative double spectral function
above thresholds. In order to reduce the impact of this ap-
proximation on the final results as well as the error induced
by truncating the series~2.2! after the first few terms, one
subjects the sum rule to a Borel transformation. For an arbi-
trary function of Euclidean momentum,f (P2) with
P252p2, the transformation is defined by

f̂ :5B̂P2~M
2! f5 lim

P2→`,N→`
P2/N5M2 fixed

1

N!
~2P2!N11

dN11

~dP2!N11 f ,

~2.6!

whereM2 is the so-called Borel parameter. For a typical
term in the OPE, the transformation yields

B̂P2~M
2!

1

~p22m2!n
5

1

~n21!!
~21!n

1

~M2!n
e2m2/M2

.

~2.7!

As condensates with large dimension get divided by corre-
spondingly high powers of (p22m2), their contributions to
the sum rules get suppressed by factorials. In the dispersion
integrals,rcont gets exponentially suppressed relatively to the
ground state contribution, which is just the desired effect.

Defining the couplings of the mesons to their interpolating
fields by

^0ud̄ig5buB̄0&5 f B
mB
2

mb
, ^0ud̄gnuur1,l&5 f rmren

~l! ,

~2.8!

we find the following sum rules for the form factors deter-
mining the semileptonicB→r transition:

A1
B→r~ t !5

mb

f Bf r~mB1mr!mB
2mr

expH mB
2

MB
2 1

mr
2

M r
2 JMB

2M r
2Ĝ0 ,

~2.9!

A2
B→r~ t !5

mb~mB1mr!

f Bf rmB
2mr

expH mB
2

MB
2 1

mr
2

M r
2 JMB

2M r
2Ĝ1 ,

~2.10!

VB→r~ t !5
mb~mB1mr!

2 f Bf rmB
2mr

expH mB
2

MB
2 1

mr
2

M r
2 JMB

2M r
2ĜV ,

~2.11!

where the Ĝ on the right-hand sides denote the Borel-
transformed invariants after continuum subtraction. The ex-

plicit formulas for Ĝ can be found in@16,5#.

B. Light-cone sum rules

An alternative approach@26,27,20# starts from the two-
point function sandwiched between the vacuum and ther
meson state:

Pm5 i E d4xe2 ipBx^r~pr ,l!uT~V2A!m~0! j B
†~x!u0&

52 iP1~pB
2 ,t !em*

~l!1 iP2~pB
2 ,t !~e* ~l!pB!~pB1pr!m

1PV~pB
2 ,t !em

naben*
~l!pBaprb1•••, ~2.12!

with pB
22mb

2,0 and pr
25mr

2 . Hence we encounter only
single dispersion relations,

P5E dsB
rphys~sB ,t !

sB2pB
2 1 subtractions, ~2.13!

and to isolate the ground state only an approximation for the
continuum contribution in theB meson channel is needed:

rcont.rpert$12Q~s0
B2sB!%. ~2.14!

Thus, this part becomes simpler and potentially more accu-
rate than with 3P sum rules, since less assumptions are made.

The price to pay, however, is that the QCD calculation
becomes more involved. In particular, the expansion of Eq.
~2.13! in local operators becomes useless since an infinite
sequence of such operators contributes to the same order in
1/(pB

22mb
2). Indeed, each operator of the sequence

q̄Dm1
•••Dmn

Gq,

where Dm i
is the covariant derivative andG an arbitrary

Dirac matrix structure, symmetrized over the indices
m1 , . . . ,mn and with subtracted traces, enters with the same
suppression factor 1/(pB

22mb
2) @28#. This is different from

3P sum rules where contributions with highern are sup-
pressed by powers of 1/pr

2 , which here is no longer an ex-
pansion parameter. Still, contributions of operators contain-
ing tracesover Lorentz indices, or transverse components of
the gluon fields are suppressed by extra powers of
1/(pB

22mb
2). This means that the relevant parameter is the

operatortwist rather than dimension. The expansion goes in
terms ofnonlocalstringlike operators on the light cone~LC!,
whose vacuum-to-meson transition amplitudes define the
meson LC distribution amplitudes, which describe the mo-
mentum fraction distribution among the meson constituents.
The leading-twist distributions correspond to the minimum
number of Fock constituents and in the case of a chargedr
meson involve the functions@17,18#
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^r1~p,l!uū~0!smnd~x!u0&

52 i f r
'~m!~em*

~l!pn2en*
~l!pm!E

0

1

dueiupxf'~u,m!,

~2.15!

^r1~p,l!uū~0!gmd~x!u0&

5pm

~e* ~l!x!

~px!
f rmrE

0

1

dueiupxf i~u,m!

1S em*
~l!2pm

~e* ~l!x!

~px! D f rmrE
0

1

dueiupxg'
~v !~u,m!,

~2.16!

^r1~p,l!uū~0!gmg5d~x!u0&

5
1

4
emnrse*

~l!nprxs f rmrE
0

1

dueiupxg'
~a!~u,m!.

~2.17!

For the sum rules for theB→r form factors, we also need
the function

F i~u,m!5
1

2 F ūE
0

u

dv
f i~v,m!

v̄
2uE

u

1

dv
f i~v,m!

v G .
~2.18!

In the above definitions the matrix elements are not gauge
invariant, but refer to the axial gaugexmA

m(x)50. In a gen-
eral gauge, gauge factors

PexpF igE
0

1

daxmAm~ax!G ~2.19!

have to be inserted in between the quark fields. The integra-
tion variableu corresponds to the momentum fraction car-
ried by the quark. The normalization is such that

E
0

1

du f~u!51

for all four distributions f5f' ,f i ,g'
(v) ,g'

(a) . f r
'(m), the

scale-dependent coupling of ther meson to the tensor cur-
rent, is defined by Eq.~2.15! for x50. To leading-twist 2
accuracy the ‘‘g functions’’ are in fact not independent, but
related tof i by Wandzura-Wilczek-@29# type relations:

g'
~v !,twist2~u,m!5

1

2 F E
0

u

dv
f i~v,m!

v̄
1E

u

1

dv
f i~v,m!

v G ,
g'

~a!,twist2~u,m!52F ūE
0

u

dv
f i~v,m!

v̄
1uE

u

1

dv
f i~v,m!

v G .
~2.20!

All these functions are discussed in detail in@18#. The dis-
tribution amplitudes of higher twist can be related to contri-
butions of Fock states with more constituents~say, an extra
gluon! and generally generate contributions to the sum rules

that are suppressed by powers of 1/(pB
22mb

2). We will dis-
cuss higher-twist distribution amplitudes only shortly in Sec.
III.

Note that the matrix element of a single nonlocal operator
contains information about a whole series of matrix elements
of local operators of increasing dimension~but fixed twist!,
which are encoded in moments of the distribution ampli-
tudes. For example,

^r1~p,l!uū~0!smn~D•x!nd~0!u0&

52 i ~em
~l!pn2en

~l!pm! f r
'~ ipx!nE

0

1

duunf'~u,m!.

~2.21!

A renormalization group analysis@19# shows that for large
n, moments of the above defined distribution amplitudes
f',i behave as4

E
0

1

duunf~u,m!;const/n2, ~2.22!

which corresponds to the following end-point behavior of the
amplitude foru→1:

f~u,m!;const3~12u!. ~2.23!

We would like to stress that it is in this place, using the
information about largen behavior of local operator contri-
butions, related to the end-point behavior of the LC distribu-
tions, that the LC sum rules go beyond the traditional SVZ
approach. We will discuss this point in detail in the next
section.

The rest of the LC sum rule procedure follows the stan-
dard rules sketched in the last subsection: to suppress contri-
butions of higher-twistr meson distributions and to enhance
the sensitivity to the groundB meson state, one performs a
Borel transformation inpB

2 , and the final expressions for the
sum rules forB→r decay form factors are similar to the 3P
sum rules in Eq.~2.11! apart from the different expressions
on the right-hand side. One thus obtains~to leading-twist
accuracy!:

A1
B→r~ t !5

mb

f B~mB1mr!mB
2expHmB

22mb
2

MB
2 J E

0

1du

u

3expH ū

uMB
2 ~ t2mb

22umr
2!J Q@c~u,s0

B!#

3H f r
'~m!f'~u,m!

1

2u
~mb

22t1u2mr
2!

1 f rmbmrg'
~v !~u,m!J , ~2.24!

4Note that a purely perturbative analysis is sufficient to obtain the
leading behavior inn, whereas the coefficient of proportionality can
only be obtained by using nonperturbative methods, see@24#.
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A2
B→r~ t !5

mb~mB1mr!

f BmB
2 expHmB

22mb
2

MB
2 J E

0

1du

u

3expH ū

uMB
2 ~ t2mb

22umr
2!J

3H 12 f r
'~m!f'~u,m!Q@c~u,s0

B!#

1 f rmbmrF i~u,m!F 1

uMB
2Q@c~u,s0

B!#

1d@c~u,s0
B!#G J , ~2.25!

VB→r~ t !5
mb~mB1mr!

2 f BmB
2 expHmB

22mb
2

MB
2 J E

0

1du

u
expH ū

uMB
2

3~ t2mb
22umr

2!J H f r
'~m!f'~u,m!Q@c~u,s0

B!#

1
1

2
f rmbmrg'

~a!~u,m!F 1

uMB
2Q@c~u,s0

B!#

1d@c~u,s0
B!#G J . ~2.26!

with c(u,s0
B)5us0

B2mb
21tū2uūmr

2 .
LC sum rules forA1 andV were already obtained in@17#;

they slightly differ from the ones given above by the ‘‘sur-
face’’ terms d@c(u,sB

B)#, which are related to subtleties in
the continuum subtraction as discussed in Appendix B. The
LC sum rule forA2 is new.

C. The conflict

The two approaches described above are rather different
and their comparison should shed light on the actual accu-
racy of the sum rule method. The numerical comparison re-
quires the use of a ‘‘coherent’’ set of parameters, so that
differences are not introduced~or masked! by using different
inputs. We shall specify our set in detail below; for the pur-
pose of illustration the particular values are unimportant. The
results for allB andD meson decay form factors from both
3P and LC sum rules are shown in Fig. 2. We see that the
results are in a reasonable agreement at larget while there is
a disturbing discrepancy up to a factor of 2 at large recoil
@5,17#. The t dependence also turns out to be very different
@5,17#.

Provided no particular advantage or flaw of one method
can be found, this spread of values would necessarily have to
be considered as indicating poor theoretical accuracy of the
predictions in this region. The further discussion will clarify
the reason for this discrepancy and give strong evidence in
favor of the LC sum rule calculation. Reasons for the better
agreement at small recoil~large t) will also become clear.

III. ANATOMY OF THE DISCREPANCY

An inspection shows that the disagreement between LC
and 3P sum rules is mainly because of the contribution of the

quark condensate, which dominates the 3P sum rules at small
t, cf. @5,30#. To clarify the reason, we give in this section a
detailed calculation of this contribution, and also of the con-
tribution of the mixed condensate to the 3P sum rule for the
axial form factorA1. The result is well known@16,5# and the
new point we wish to make here is to rederive it using the
sequence of steps adopted by the LC sum rule approach. This
will reveal how ther meson distribution amplitudes are im-
plicitly described in the 3P approach and also give examples
of higher-twist contributions.

A. Three-point sum rule from the light-cone point of view

We start from the correlation function~2.1! and as a first
step substitute the heavy quark propagator by its leading-
order perturbative expression:

Gmn5 i 2E d4xd4ye2 ipBx1 ipyE d4k

~2p!4i
eikx

1

mb
22k2

3^0uT$ j r
n~y!ū~0!gm~12g5!~mb1k” !ig5d~x!%u0&.

~3.1!

The product ofg matrices in Eq.~3.1! contains several
terms, corresponding to different invariant structures in Eq.
~2.1! and to contributions of dimension-odd~-even! opera-
tors to the OPE. We choose to consider the axial form factor
A1, and contributions of operators of odd dimension only. To
this end we need to calculate the correlation functions

FIG. 2. Semileptonic form factors of the decaysD→r and
B→r from LC sum rules, Eqs.~2.24!–~2.26!, and 3P sum rules,
Eqs. ~2.9!–~2.11!, evaluated with the same input parameters. The
dotted curves illustrate the effect of introducing a different interpo-
lating current for ther meson in the 3P correlation function, see
Sec. III C.
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Tnma5 i E d4yeipy^0uT$ j r
n~y!ū~0!smad~x!%u0&,

~3.2!

Tn5 i E d4yeipy^0uT$ j r
n~y!ū~0!d~x!%u0&, ~3.3!

using the OPE~we recall thatp2 is assumed to be Euclidean
and sufficiently large!.

Throughout the calculation we imply using Fock-
Schwinger gauge. In a general~covariant! gauge the heavy
quark propagator in external gluon fields contains the link
factor ~2.19!, which has to be inserted in the nonlocal opera-
tors in Eqs.~3.2! and~3.3! to make them gauge invariant, see
Sec. II B. In the Fock-Schwinger gauge, further terms in the
expansion of theb quark propagator in background gluon
fields only yield corrections;1/mb to the sum rules and for
simplicity will not be considered here. They can easily be
added.

The OPE of the correlation functions~3.2! and ~3.3! is
straightforward and yields:5

Tnma5 i ^q̄q&~pagmn2pmgan!H ~11eipx!F 1p2 1
1

3

m0
2

p4

1
1

16
m0
2x2

1

p2G2 ipx~12eipx!
1

3

m0
2

p4 J
1 i ^q̄q&

1

px
~xagmn2xmgan!~ ipx!~12eipx!

1

6

m0
2

p2

1 i ^q̄q&
1

px

pn

p2
~paxm2pmxa!~ ipx!~12eipx!

1

6

m0
2

p2
,

~3.4!

Tn5 i ^q̄q&@pn~px!2xnp2#~11eipx!
1

6

m0
2

p4

2^q̄q&
pn

p2
~12eipx!~11 1

16m0
2x2!. ~3.5!

Herem0
25^q̄gsGq&/^q̄q&. Note thatpnT

nma50, while Tn

contains a contact term. Substituting Eqs.~3.4! and~3.5! into
Eq. ~3.1!, taking the remaining integrals and performing
Borel transformations inpB

2 andp2, respectively, we repro-
duce the contributions of quark and mixed condensate to the
3P sum rule forA1 in Ref. @5#, except for the neglected
contribution of the diagram with the gluon emitted from the
b quark line:

A1
B→r~ t !5

mb

f Bf r~mB1mr!mB
2mr

expHmB
22mb

2

MB
2 1

mr
2

M r
2 J

3H 2^q̄q&
1

2
~mb

22t !1^q̄gsGq&

3F2
7

24
1
mb
2~mb

22t !

8MB
4 2

mb
22t

6M r
2

2
3mb

225t

24MB
2 1

~mb
22t !2

6MB
2M r

2 G J . ~3.6!

We emphasize that the derivation sketched above is entirely
within the traditional QCD sum rule approach, although the
sequence of steps may seem unusual. A related discussion
for the pgg* transition form factor can be found in Rady-
ushkin and Ruskov@30#.

We now rewrite this answer in terms of contributions of
r meson distribution amplitudes. To this end, we separate the
r meson contribution toTnma(p),

Tnma~p!5^0u j r
nur1~p,l!&

1

mr
22p2

3^r1~p,l!uū~0!smad~x!u0&1•••, ~3.7!

and, similarly, the one toTn. The first matrix element is
proportional to the decay constantf r , while the second one,
by definition, givesr meson distribution amplitudes in the
fraction of momentum carried by the quark. An inspection of
Eqs. ~3.4! and ~3.5! suggests one to introduce the distribu-
tions

^r1~p,l!uū~0!smad~x!u0&

52 i f r
'~em*

~l!pa2ea*
~l!pm!E

0

1

dueiupx@f'~u!

1x2c~1!~u!#1 f r
'~em*

~l!xa2ea*
~l!xm!

3E
0

1

dueiupxc~2!~u!1 i f r
'~e* ~l!

•x!~xmpa2xapm!

3E
0

1

dueiupxc~3!~u!, ~3.8!

^r1~p,l!uū~0!d~x!u0&52 i f r
'~e* ~l!

•x!E
0

1

dueiupxc~4!~u!.

~3.9!

After a Borel transformation of Eqs.~3.4! and~3.7! in p2, we
get the explicit expressions

f'~u!5
2^q̄q&
mr f r f r

' emr
2/Mr

2H S 12
1

3

m0
2

M r
2D @d~u!1d~12u!#

2
1

3

m0
2

M r
2

d

du
@d~u!2d~12u!#J , ~3.10!

c~1!~u!5
2^q̄q&
mr f r f r

' emr
2/Mr

2 1

16
m0
2@d~u!1d~12u!#,

~3.11!

5The perturbative contribution to Eqs.~3.2! and ~3.3! is of order
mu,d and will be neglected here.
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c~2!~u!5
2^q̄q&
mr f r f r

' emr
2/Mr

2 1

6
m0
2@d~u!2d~12u!#, ~3.12!

c~3!~u!50 , ~3.13!

whereM r
2'(1–2! GeV2 is the Borel parameter. Note that

the expansion goes in derivatives of thed function. A similar
expansion for the twist 2 distribution amplitude was obtained
by Mikhailov and Radyushkin in@30#.

Similarly, from the expansion~3.5!, we deduce

c~4!~u!5
^q̄q&
mr f r f r

' emr
2/Mr

2 1

6
m0
2@d~u!1d~12u!#. ~3.14!

Substituting Eqs.~3.8! and ~3.9! in Eqs. ~3.7! and ~3.1!,
taking the integrals and performing a Borel transformation in
pB
2 , we get a typical LC sum rule:

A1
B→r~ t !5

mbf r
'

f B~mB1mr!mB
2expH mB

22mb
2

MB
2 J E

0

1du

u

3expH ū

uMB
2 ~ t2mb

22umr
2!J H 1

2u
~mb

22t1u2mr
2!

3Ff'~u!2
4

uMB
2 S 11

mb
2

uMB
2 Dc~1!~u!1

2

uMB
2 c~3!~u!G

1
2

u F11
2mb

2

uMB
2 Gc~1!~u!

1F11
2mb

2

uMB
2 Gc~2!~u!2

1

u
c~3!~u!2c~4!~u!J , ~3.15!

where we have changed variablesu→12u to be consistent
with Eq. ~2.24!. To save space we have not shown the con-
tinuum subtraction. Note that the leading-twist contribution
of the distribution amplitudef' coincides with the corre-
sponding contribution in Eq.~2.24!; the extra termsc ( i ) are
higher-twist corrections, not taken into account in Eq.
~2.24!.6

On the other hand, further substituting in Eq.~3.15! the
above expressions for the distribution amplitudes and sup-
pressing terms;mr

2 unless they get divided byM r
2 , we

come back to Eq.~3.6!. The quark condensate contribution in
Eq. ~3.6! appears as a contribution of the leading-twist dis-
tributionf' , while the mixed condensate terms contain con-
tributions from both leading and higher twist. In particular,
for the expression in square brackets in Eq.~3.6! we find the
decomposition

F ~mb
22t !2

6MB
2M r

2 2
mb
22t

6M r
2 1

mr
2

M r
2 S 161

mb
22t

3MB
2 D G

f'

1Fmb
2~mb

22t !

8MB
4

1
mb
22t

8MB
2 2

mb
2

4MB
2 2

1

8G
c~1!

1F161
mb
2

3MB
2 G

c~2!

2F16G
c~4!

,

~3.16!

where @ . . . #f'
indicates that this term originates from the

distributionf' , etc. As it stands, this expression does not
yet agree with Eq.~3.6!, the reason being that the Borel
transformation in ther meson channel was applied in a
slightly different way. It is possible to show that in order to
reproduce the 3P sum rule one has to substitute
mr
2→2M r

2 , after which the expressions indeed coincide
literally.7

B. Short-distance expansion
and light-cone distribution amplitudes

The new input made by the LC sum rules is to argue that
the d-function-type shape of LC distributions, concentrated
at u50 andu51, is qualitativelywrong. In particular, in-
stead of the expression in Eq.~3.10!, it is suggested to use
the distribution amplitude

f'~u,m!56u~12u!@11a2
'~m!C2

3/2~2u21!#. ~3.17!

HereC2
3/2(x)5(15x223)/2 is the second-order Gegenbauer

polynomial; the coefficienta2
' was estimated to be 0.260.1

@18#. Equation ~3.17! is clearly very different from Eq.
~3.10!. Where does it come from and what is wrong with Eq.
~3.10!?

The distributions~3.10!–~3.14! are just the QCD sum
rules for the correlation functions~3.2! and ~3.3!. Their de-
ficiency becomes apparent when they are rewritten in terms
of moments. For the leading-twist distribution we find~cf.
@18#!

E
0

1

du~2u21!nf'~u!

5
2^q̄q&
mr f r f r

' emr
2/Mr

2
@11~21!n#S 12

m0
2

3M r
2 ~2n11! D .

~3.18!

Note that the contribution of the mixed condensate is en-
hanced by a factorn. This enhancement is of generic nature:
contributions of higher dimension to the OPE will be accom-
panied by increasing powers ofn so that the sum rule blows
up for large moments and cannot be used. This signals the
break down of local OPE for higher moments of distribution
amplitudes. Extensive studies@24# have demonstrated that
QCD sum rules of type~3.10!–~3.14! can be applied to esti-
mate the two first moments only,n50 andn52, i.e., the
normalization and width of the distribution amplitudes, but
fail to describe higher moments, i.e., the shape of the distri-
bution close to the end points. Information on the shape can,
however, be obtained from another source, namely, the be-
havior of distribution amplitudes under the renormalization

6The contribution;g' in Eq. ~2.24! would correspond to terms in
Eq. ~3.1! with an odd number ofg matrices, which have not been
considered here.

7There is a subtlety in treating the terms proportional topa /p
4 in

the first line in Eq.~3.4!: pa gets contracted withpB and yields a
factorpB

21p22t. Using the dispersion relation first in ther meson
channel such as in Eq.~3.7! then implies thatp2 is substituted by
mr
2 , while in the standard procedure it gives2M r

2 . Ambiguities of
this type are intrinsic for the sum rule method.

5568 55PATRICIA BALL AND V. M. BRAUN



group @19#. The major result is thatf' approaches
6u(12u) at large virtualities and that the corrections can be
systematically expanded in Gegenbauer polynomials
Cn
3/2(2u21). Combining this expansion with estimates of

the first two moments by QCD sum rules one obtains the
expression~3.17!.

In fact, the particular sum rule in Eq.~3.18! is not accu-
rate enough even forn50,2, and in practice one uses differ-
ent sum rules, see Ref.@18# for a detailed discussion.

To illustrate that the shape of the leading-twist distribu-
tion is indeed of crucial importance, we have plotted in Fig.
3 the form factorA1

B→r(t), calculated in several different
ways. The solid curve, labeled LC, shows the LC sum rule
~2.24! with realistic distribution amplitudes. The dotted line
is obtained using the same sum rule~2.24!, but with the
distribution amplitudef' replaced by the expression~3.10!;
it is very close to the solid line showing the 3P sum rule
result. The ‘‘dominance’’ of the quark condensate@30# in the
3P sum rule thus happens to be an artifact of the short-
distance expansion extrapolated beyond the region of its va-
lidity.

The ideal agreement of the dotted curve in Fig. 3 with the
3P sum rule result att50 is in fact coincidental and is be-
cause of a mutual cancellation of two effects. First, in addi-
tion to contributions of operators of odd dimension, the 3P
sum rule contains a perturbative term, a contribution of four-
quark operators of dimension six, and of the gluon conden-
sate. These contributions correspond to the terms with an
odd number ofg matrices in Eq.~3.1!, which we have not
considered, and have their counterpart in the LC sum rule in
the contribution of the distributiong' ~up to higher-twist
terms!. The difference between the two approaches is small
in this case, the reason being that repeating the above proce-
dure one would deal with the correlation function ofj r

n with
a nonlocal vector current. In contrast with Eqs.~3.2! and
~3.3!, this correlation function has a large perturbative con-
tribution and the OPE goes in condensates of even dimen-
sion. Extracting the distribution amplitude as outlined above
would yield a smooth distribution;u(12u), slightly cor-
rected by d-function-type contributions of the gluon and
four-quark condensates. These latter contributions are small,
so thatg' as implicitly used in the 3P sum rules is not very
different from its ‘‘true’’ behavior. Hence, the numerical re-
sults are close.

Second, the present version of the LC sum rule neglects
contributions of higher twist. To estimate their effect one can
apply the methods of Ref.@31# to determine the shape of the
distributionsc (k)(u) at large scales, i.e., their asymptotic
form, and use the sum rules~3.13! to estimate the normal-
ization. We get

c~1!~u!5k1•30u
2~12u!2,

c~2!~u!5k2•30u~12u!~122u!,

c~4!~u!5k4•6u~12u!, ~3.19!

with

k15m0
2/16, k25m0

2/6, k452m0
2/6. ~3.20!

In Fig. 4 we plotA1
B→r from Eq. ~3.15! using these distribu-

tions and including continuum subtraction. For comparison
we also show the leading-twist LC sum rule~2.24!. The cor-
rection turns out to be negative and lowers the leading-twist
result by about 15% fort,15 GeV2. These results are, how-
ever, only indicative of the size of higher-twist corrections,
the detailed study of which goes beyond the tasks of this
paper.

If the ‘‘naive’’ description of distribution amplitudes by
the usual sum rule method is that deficient, the question
arises if this approach still works for form factors ofD me-
sons, as used, e.g., in@16#. The formal answer is clear from
the structure of LC sum rules: the distribution amplitudes are
integrated with a smooth weight function over a constrained
region of the momentum fractionu. If the mass of the heavy
meson is not very large compared to the typical hadronic
scale 1 GeV, then the integration region is large and only
gross characteristics of the distribution amplitudes matter,
i.e., their normalization and width. These are given correctly
by the sum rules, and the approach works well. If, on the
other hand, the mass of the heavy meson is much larger than
1 GeV, as it is the case withB mesons, and if the momentum
transfer to the leptons is small, then the integration region
shrinks to the narrow interval 12u5O(1/mb), the precise
behavior of the distribution amplitude atu→1 becomes im-
portant, and the standard approach fails.

The physical parameter that matters is, however, not the
heavy meson mass, but ther meson energyEr in the decay-
ing B(D) rest frame:Er5(mB,D

2 1mr
22t)/(2mB,D). Zero re-

coil corresponds toEr5mr ; in the physical regimet.0,
Er runs up to 2.7 GeV and 1.1 GeV inB andD decays,

FIG. 3. A1 from the LC sum rule~2.24! ~solid line LC!, the 3P
sum rule ~2.9! ~solid line 3P!, and a ‘‘hybrid LC’’ sum rule, in
which the leading-twist distribution amplitudef' is replaced by the
naive expansion ind functions~3.10!.

FIG. 4. A1 from the LC sum rules~2.24! and ~3.15!, with the
distribution amplitudes~3.19!, and~3.20!.
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respectively. In Fig. 5 we show the form factorsA1(Er) for
bothB andD mesons. The behavior is very similar, and in
both channels 3P and LC sum rules agree very well for
Er'1.4 GeV. ForD mesons, this is outside the physical
region for the decay.

C. Possible remedy: The tensor-current?

To conclude this section, we would like to demonstrate
that the ‘‘dominance’’ of the quark condensate is no intrinsic
feature of 3P sum rules. To this end we recall that one has
some freedom in the choice of the interpolating field for the
considered particles: although for ther meson the vector
current is the most convenient one, it is by no means the only
one. In particular, one can choose the tensor current
j r
ns5d̄snsu instead and calculate theB→r form factors
from the correlation function

Smns5 i 2E d4xd4ye2 ipBx1 ipry

3^0uT jr
ns~y!~V2A!m~0! j B

†~x!u0&. ~3.21!

In Appendix B we give the corresponding OPE including
terms up to dimension six. Because of the particular
g-matrix structure, the contribution of the quark condensate
to A2 andV vanishes and is small forA1. We have displayed
the corresponding form factors already in Fig. 2. They differ
distinctively from the results of the original 3P sum rules and
are much closer numerically to the LC sum rules. Neverthe-
less it would be inappropriate to conclude that the above
correlation function is ‘‘better’’ than Eq.~2.1!: it suffers
from exactly the same problem as the original correlation
function to describe correctly the shape of ther meson dis-
tribution amplitudes near the end points inu. It is only that
this failure is less ‘‘visible’’ for the given values of theb
quark mass and the considered range int. The problem is
now shifted to the contribution of the mixed condensate,
which starts to dominateA1(0) at largemb and eventually
overgrows all other terms. Numerically, however, the effect
is much less significant atmb; 5 GeV. This improvement
comes at the price that the tensor current couples also to
positive parity 112 states which contaminate the contribu-
tion of ther meson, so that the accuracy of these sum rules
is not very high. Another possibility to achieve a similarly

‘‘favorable’’ rearrangement of power corrections would be
to use the axial-vector instead of the pseudoscalar current for
theB meson.

IV. THE HEAVY QUARK LIMIT

The behavior of form factors in the limitmb→` is of
considerable theoretical and practical interest. Taking the
heavy quark limit in the sum rules is straightforward, by
rescaling the sum rule parameters in the following way~see,
e.g.,@32#!:

M2→2mbt, s0
B→mb

212mbv0 , ~4.1!

wheret andv0 are of order 1 GeV.
One should distinguish between different regions of mo-

mentum transfer. First, considermb
22t5O(mb), i.e., small

recoil, energy of the outgoingr meson of order 1 GeV.
Then, both the 3P and the LC sum rules satisfy the scaling
laws predicted by heavy quark effective theory@33#:

A1~ t'tmax!;1/Amb, A2~ t'tmax!;Amb,

V~ t'tmax!;Amb. ~4.2!

In this regime, the integration over the quark momentum
fraction in LC sum rules comprises the region 12u;1, so
that only width and normalization of the distributions are
important. Hence, 3P and LC sum rules are expected and
indeed give comparable results, see Figs. 2 and 3.

More interesting, however, is the behavior near maximum
recoil, t'0. Here we find that in the 3P sum rules approach
the limitmb→` cannot be taken since higher-order terms in
the OPE are accompanied by increasing powers ofmb . From
the ‘‘light-cone point of view’’ this inconsistency arises be-
cause at large recoil the soft contributions to the form factors
pick up a tiny region of momentum fraction
12u5O(1/mb) and thus the details of the shape of ther
meson distribution amplitudes, wrongly described by 3P sum
rules, enter decisively.

On the contrary, LC sum rules att50 have a well-defined
heavy quark limit@17# and scale as 1/mb

3/2. Explicitly, mak-
ing the change of variablesv5(12u)mb/2, one finds~with
f̂5 f BAmb and L̄5mB2mb)

f̂ A1~0!52
2

mb
3/2e

L̄/tE
0

v0
dve2v/t@ f r

'vf'8 ~1!

2 f rmrg'
~v !~1!#,

f̂ A2~0!52
2

mb
3/2e

L̄/tE
0

v0
dve2v/t@ f r

'vf'8 ~1!

1 f rmrF i8~1!#,

f̂ V~0!52
2

mb
3/2e

L̄/tE
0

v0
dve2v/tF f r

'vf'8 ~1!

1
1

4
f rmrg8'

~a!~1!G . ~4.3!

FIG. 5. A1 as function of ther meson energyEr from LC and
3P sum rules for bothD→r andB→r transitions. ForD→r tran-
sitions, the physical regiont.0 corresponds tor meson energy up
to 1.1 GeV.

5570 55PATRICIA BALL AND V. M. BRAUN



From the relations~2.18! and ~2.20! it follows that to our
accuracy

A1~0![A2~0![V~0! ~4.4!

in the heavy quark limit. This agrees with the findings of
Ref. @34#. It is instructive to check that the above scaling
relations are not spoiled by higher-twist corrections. The
twist-4 part of Eq.~3.15! becomes, in the heavy quark limit,

f̂ A1
twist 4~0!5

1

mb
5/2e

L̄/tE
0

v0
dve2v/tH 2

4v2

t2
c9~1!~1!

2
4v

t
c8~2!~1!2

v

t
c8~3!~1!J , ~4.5!

wherec8(u)5(d/du)c(u) and we used that allc functions
vanish atu51. It is seen that higher-twist corrections are in
fact down by an extra power ofmb , cf. the discussion of the
pion form factor in the third of Refs.@23#.

We recall that the heavy quark mass dependence of form
factors at zero recoil is of vivid interest for lattice calcula-
tions. Because of restrictions on computer power and perfor-
mance, quark masses that can be reliably simulatled are of
order;2 GeV and the results have to be extrapolated to the
physical beauty quark mass. In this respect, we would like to
add a word of caution about using the asymptotic scaling law
1/m3/2 since this limit is only approached very slowly@17#.
To get a ball-park estimate of the next-to-leading order cor-
rections we calculated the form factors using LC sum rules
varying theb quark mass in the limits~1–10! GeV and using
the scaling~4.2! of the sum rule parameters. We then fit by a
quadratic polynomial in the inversemeson mass
mB5mb1L̄, L̄5500 MeV @32#. The results are~we show
the leading 1/mB corrections only!

mB
3/2A1~0!55.6 GeV3/2S 12

2.4 GeV

mB
1••• D ,

mB
3/2A2~0!55.6 GeV3/2S 12

2.1 GeV

mb
1••• D ,

mB
3/2V~0!55.9 GeV3/2S 12

1.5 GeV

mb
1••• D . ~4.6!

The constants in front of the parentheses are almost equal, as
expected from Eq.~4.4!. Note the large terms in 1/mB .

Finally, one can consider the region of very small recoil
mb
22t;1 GeV2. This region is generally difficult for QCD

sum rule treatment since one gets more sensitive to contri-
butions of large distances in the ‘‘t channel.’’ An inspection
of Eq. ~3.16! shows that in this limit the leading-twist con-
tributions of dimension 5 are smaller than those of higher
twist, which may be considered as an indication that 3P sum
rules become more reliable than LC sum rules at very large
t.

V. NUMERICAL ANALYSIS

We now turn to the numerical evaluation of the LC sum
rules ~2.24!–~2.26!. Let us first define the relevant observ-
ables.

A. Kinematics

With the standard decomposition for theB→r transition
matrix element~1.1! the spectrum with respect to the elec-
tron energyE reads

dG~B̄0→r1e2n̄ !

dE
5
GF
2 uVubu2

128p3mB
2E

0

tmax
dtt$~12cosu!2H2

2

1~11cosu!2H1
2 12~12cos2u!H0

2%,

~5.1!

with the helicity amplitudes

H65~mB1mr!A1~ t !7
l1/2

mB1mr
V~ t !, ~5.2!

H05
1

2mrAt
H ~mB

22mr
22t !~mB1mr!A1~ t !

2
l

mB1mr
A2~ t !J , ~5.3!

where the indices denote the polarization of ther. l is de-
fined as

l5~mB
21mr

22t !224mB
2mr

2 . ~5.4!

tmax, the maximum value oft at fixed electron energy, is
given by

tmax52ESmB2
mr
2

mB22ED . ~5.5!

u is the angle between ther and the charged lepton in the
(e2n̄) c.m. system and given by

cosu5
1

l1/2~mB
22mr

21t24mBE!. ~5.6!

The spectrum with respect tot reads:

dG~B̄0→r1e2n̄ !

dt
5
GF
2 uVubu2

192p3mB
3 l1/2t~H0

21H1
2 1H2

2 !.

~5.7!

We also introduce the notationsGT and GL for the partial
decay rates where the final stater is transversely or longitu-
dinally polarized.

From the specific structure of the helicity amplitudes it
follows that at smallt the producedr mesons are predomi-
nantly longitudinally polarized; fort50 only longitudinally
polarizedr are produced. At larget, on the other hand, the
contribution ofA2 and V to the decay rate is suppressed,
sincel has a zero attmax.
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B. Input parameters

The decay constantf r is measured experimentally@35#:

f r5~205610! MeV, ~5.8!

while existing information onf r
' comes from QCD sum

rules. In the following we use@18#

f r
'~1GeV!5~160610! MeV. ~5.9!

The r meson leading-twist distribution amplitudesf i and
f' have been recently reexamined in@18#. We use

f i ,'~u,m!56u~12u!@11a2
i ,'~m!C2

3/2~2u21!#,
~5.10!

with a2
i (1 GeV)50.1860.10 @24,18# and a2

'(1 GeV)
50.260.1 @18#, as already mentioned in Sec. III B.

The value of theb quark ~pole! massmb is somewhat
controversial, with estimates varying from 4.6 to 5.1 GeV.
This large range, however, probably overestimates the actual
uncertainty and rather reflects that the pole mass has to be
nonperturbatively defined and that suitable definitions~and
values! depend on the application. In this paper we use

mb5~4.860.1! GeV, ~5.11!

which, we believe, is a fair estimate.
The decay constantf B was calculated in QCD sum rules

and on the lattice, with a world average of about 180 MeV
~see, e.g.,@36#!. It was found, however, that within the QCD
sum rule approachf B receives large radiative corrections,
which increase its value by 30 to 60 MeV@32#. Since similar
radiative corrections have not been calculated for the sum
rules for form factors, we think that it is more consistent to
use the lower value off B as it is obtained from the sum rules
without radiative corrections, see also@17#. In practice, we
simply substitutef B

2 by the corresponding sum rule with the
same values of all parameters; this has an additional advan-
tage of reducing considerably theb quark mass dependence.
In fact, there are arguments suggesting that radiative correc-
tions tend to cancel betweenf B and the form factors. This
cancellation was indeed observed forB→D* transitions@37#
and for theB meson matrix element of the kinetic energy
operator@38#. An explicit calculation of the radiative correc-
tions to LC sum rules would, however, be very welcome.

For the values of the condensates we use

^q̄q&~1 GeV!52~245610! MeV3,

K as

p
G2L 5~0.01260.006! GeV4,

^q̄gsGq&~1 GeV!50.65 GeV2•^q̄q&~1 GeV!,

^asq̄q&250.56~20.245! GeV6. ~5.12!

They enter the 3P sum rules explicitly, and the LC sum rules
implicitly, via estimates of the parameters of the distribution
amplitudes@18# and of f B .

We assume values of the continuum thresholds forr and
B mesons s0

r51.5 GeV and s0
B535,34,33 GeV2 for

mb54.7,4.8,4.9 GeV, respectively. The working region of

FIG. 6. SemileptonicB decay form factors att5 as function of
the Borel parameter for central values of the LC sum rule param-
eters~solid lines!.

TABLE I. The form factors of theb→u transitions att50 in LC sum rules and quark models.

Ref. f1
B→p A1

B→r A2
B→r VB→r

This work – 0.2760.05 0.2860.05 0.3560.07
BKR @6# 0.30 – – –
FGM @39# 0.2060.02 0.2660.03 0.3160.03 0.2960.03
Jaus@40# 0.27 0.26 0.24 0.35
Melikhov @41# 0.29 0.17–0.18 0.155 0.215
WSB @11# 0.33 0.28 0.28 0.33
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Borel parameters in 3P sum rules is taken to beM r
2'~1–2!

GeV2 for r mesons andMB
2'~5–10! GeV2 for B mesons,

with a fixed ratioMB
2/M r

255. Since for fixed momentum
fractionu the expansion in LC sum rules goes in powers of
1/(uMB

2), we make the formal replacement@17#
MB

2→MB
2/^u&, where^u&'0.6–0.8 is the average momen-

tum fraction calculated by inserting an additional factoru
under the integral~separately for each form factor and for
each value oft), and then taking the intervalMB

2'~4–8!
GeV2, the same as in the 2P sum rule forf B . The scale of
condensates and distribution amplitudes in the sum rules for
the form factors ism25mB

22mb
2 .

C. Results and error estimates

Our final results for form factors and spectra are collected
in Figs. 6–8. First, we display in Fig. 6 the form factors as
functions of the Borel parameter att50. The solid lines are
obtained withmb54.8 GeV (s0

B534 GeV2), the dashed
lines withmb54.7 GeV (s0

B535 GeV2), andmb54.9 GeV
(s0

B533 GeV2), respectively. The curves are remarkably flat
which indicates a good accuracy of the sum rules. The varia-
tion of a2

i ,' within the specified650% range has an effect of

about the same size as the dependence onmb . The depen-
dence on the continuum thresholds0

B is small, provided the
same value is used consistently in the sum rule forf B . In
addition to uncertainties in the sum rule parameters, the ac-
curacy of our results is essentially limited by the neglected
higher-twist corrections and radiative corrections. We have
estimated the higher-twist effects forA1 in Sec. III B and
found them to be approximately215%. This estimate is,
however, preliminary and we have not included the higher-
twist correction in our final results in this section. As for
radiative corrections, we expect them to cancel to some ex-
tent whenf B is expressed as 2P sum rule toO(as

0) accuracy.
Both sources of uncertainty can be systematically reduced by
calculating the corresponding corrections, which is possible,
but beyond the scope of this paper. Taking everything to-
gether, we think that adding an additional615% uncertainty
to the above results yields a fair estimate of the true theoret-
ical error.

We thus obtain the following values for the form factors
at maximum recoil:

A1
B→r~0!50.2760.0160.0260.0260.04,

A2
B→r~0!50.2860.0160.0260.0260.04,

VB→r~0!50.3560.0160.0360.0360.05, ~5.13!

where the first error comes from the variation in the Borel
parameter, the second from the uncertainty60.1 GeV in
mb , the third from the uncertainty60.1 in a2

i ,' , and the
fourth from the estimated uncertainty because of nonin-
cluded higher-twist and radiative corrections. Note that the
first three errors are correlated between the form factors. The
results forA1(0) andV(0) are comparable with those ob-
tained in @17#. In Table I we compare our results to quark
models, adding the errors in quadrature. We have not in-
cluded the 3P sum rule results@4,5#, since they suffer from
the deficiencies discussed in Sec. III. A comparison with
lattice results is difficult, as most of them are obtained at

FIG. 7. SemileptonicB decay form factors as function oft for
central values of the LC sum rule parameters~solid lines!. The
dashed lines give error estimates.

FIG. 8. B→ren decay spectra.~a! spectrum int, ~b! spectrum
in the electron energyEe . Solid and dashed lines as in Fig. 7.
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large t.14 GeV2 and then extrapolated down tot50 using
different assumptions on the functional dependence ont and
theb quark mass. Only forA1 the assumed monopole depen-
denceA1;1/(mB*

2
2t) is compatible with the scaling law

A1(0);mb
23/2. Using that dependence, different lattice col-

laborations have obtained

A1~0!5H 0.2260.05 ELC@7#,

0.2460.12 APE@8#,

0.2720.04
10.07 UKQCD @14#.

~5.14!

These numbers are quite close to our result.
Next, we display in Fig. 7 the behavior of the form factors

in t ~solid lines! together with error estimates~dashed lines!
obtained by taking extreme values of the parameters: the
upper dashed lines refer tomb54.7 GeV,MB

254 GeV2, the
lower dashed lines tomb54.9 GeV,MB

257 GeV2. We also
show lattice results from the UKQCD Collaboration~dia-
monds!, which are in a very good agreement with our results.
The plots indicate clearly that the accuracy of our results at
large t is worse than that at smallt, in particular forA2 and
V. However, the contribution ofA2 andV to the experimen-
tally measurable observables, e.g., the spectrum int, is kine-
matically suppressed at larget, so that large uncertainties in
that region are not relevant phenomenologically~see also the
discussion below!. Figure 7 also shows thatA1 is a slowly
varying function of t, whereasA2 and V increase more
steeply; none of the form factors can be fitted by a monopole
in t as suggested by the pole-dominance hypothesis. In Ref.
@34# it was found that the ratio of form factors takes a simple
form in the heavy quark limit supplemented by some model
assumptions. We find that in the full range of physicalt our
ratio V(t)/A1(t) agrees with the prediction of@34# within
4%, whereasA2(t)/A1(t) is by 10% to 20% smaller than that
predicted.

Finally, in Fig. 8 we show the spectradG/dt and
dG/dEe . Figure 8~a! shows the effect mentioned before: al-
though the uncertainty in the form factors increases witht,
the contribution ofA2 andV is suppressed and the resulting
uncertainty is dominated by the~smaller! error onA1. The
uncertainty is maximal att'15 GeV2 and amounts to

215%
120%, which yields a28%

110% accuracy ofuVubu if determined
from that point. Taking into account the additional uncertain-
ties of unknown higher-twist and radiative corrections, we
estimate that with present knowledgeuVubu may be deter-
mined fromdG/dt with a theoretical accuracy of 20%. It is

conceivable that further calculations may push down this un-
certainty to 615% on the spectrum, i.e., about 8% on
uVubu, especially ifmb was fixed to better accuracy. Figure
8~b! also shows that a determination ofuVubu from the elec-
tron energy spectrum may be more difficult, since it is
strongly peaked and the position of the maximum thus may
be invisible with presently available experimental resolution.

In Ref. @2# the CLEO Collaboration has presented first
results on the branching ratios ofB→pen and B→ren.
Since the given values are to a certain extent model depen-
dent, we refrain from extracting any number foruVubu from
them. This task, we believe, is more appropriate for our ex-
perimental colleagues.

Integrating up the spectra, we find

G~B̄0→r1e2n̄ !5uVubu2~13.561.061.360.663.6! ps21

~5.15!

with the same sequence of errors as for the form factors. In
Table II we also give ratios of partial decay rates which are
independent ofuVubu and may serve as tests of our predic-
tions. To get the ratioG(r)/G(p) we have used the result of
@6# obtained by a similar method.

VI. SUMMARY AND CONCLUSIONS

We have given a detailed analysis of existing controver-
sies in QCD sum rule calculations of semileptonicB→ren
form factors, which, as we believe, settles this problem. Both
the decease of 3P sum rules, which we have exposed, and the
remedies which we have suggested, apply to all heavy-to-
light transitions and are equally relevant, e.g., for rare radia-
tive decays, where a similar discrepancy between LC and 3P
sum rules was found@17#.

We have used the recent reanalysis ofr meson distribu-
tion amplitudes@18# to improve and update LC sum rules for
the semileptonic form factors, including first estimates of
higher-twist corrections. Our final results for the form fac-
tors, decay rates, and the spectra are presented in Tables I
and II and in Figs. 7 and 8 together with lattice data and the
results of quark models. We have given a detailed analysis of
uncertainties of our approach, with the conclusion that its
present accuracy is sufficient for a model-independent deter-
mination of uVubu with an error less than 20%.

The accuracy of our results can be improved, by calculat-
ing radiative corrections to the sum rules and higher-twist
corrections. Both are possible using existing methods and
could ultimately decrease the uncertainty by a factor of 2, of

TABLE II. Decay rates of theb→u transitions in unitsuVubu2ps21. GL denotes the portion of the rate with
a longitudinal polarizedr andGT with a transversely polarizedr.

Ref. G(B̄0→p1e2n̄) G(B̄0→r1e2n̄) G(r)/G(p) GL /GT

This work – 13.564.0 1.56 0.5 0.5260.08
BKR @6# 8.7 – – –
FGM @39# 3.060.6 5.461.2 – 0.560.3
ISGW2 @13# 9.6 14.2 1.48 0.3
Jaus@40# 10.0 19.1 1.91 0.82
Melikhov @41# 7.2 9.64 1.34 1.13
WSB @11# 7.4 26 3.5 1.34
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order;10% in uVubu. Yet higher accuracy is, however, not
feasible within the sum rule method.

Note added.When this paper was in writing, the work

@43# appeared with a LC sum rule forA2
B→K* . In the SU~3!

limit their formula agrees with ours~except for the
d-function terms related to continuum subtraction!.
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APPENDIX A: CONTINUUM SUBTRACTION
IN LC SUM RULES

The ‘‘standard’’ procedure, to which we conform in this
paper, consists in approximating the~unknown! physical
spectral function by the perturbative one above some thresh-
old s0, so that

E
s0

`

ds
rphys~s!

s2p2
→E

s0

`

ds
rpert~s!

s2p2
.

Thus, it is necessary to know the perturbative spectral func-
tion explicitly.

In evaluating the correlation function~2.12!, one encoun-
ters terms of type@q5pB2pr , f (u) arbitrary function#

I n5E
0

1

du f~u!
1

@mb
22~q1upr!2#n

. ~A1!

The dispersive representation ofI 1 is trivial and reads

I 152E
mb
2

`

ds
1

s2~pr1q!2
E
0

1

du f~u!

3d~us2mb
22uūmr

21tū!. ~A2!

Putting the upper limit of integration ins to s0
B simply intro-

duces a factorQ@c(u,s0
B)# in the integration overu. The

functionc is defined after Eq.~2.26!. For higher powers one
has either to integrate overu by parts, or calculate the spec-
tral function by applying consequently two Borel transforma-
tions pB

2→M2 and 1/M2→s, see@42,38# for details. In par-
ticular, for I 2 we find

r I2~s!52
u
*
2

~mb
22t1u

*
2mr

2!2
S f 8~u* !2

2mr
2u* f ~u* !

mb
22t1u

*
2mr

2D ,
~A3!

whereu* is the solution ofc(u* ,s)50 inside the interval
0<u*<1. With this spectral density, performing the con-
tinuum subtraction and the Borel transformation inpB

2 , one
obtains, after a suitable change of variables,

Î 22continuum5
1

M2E
u0

1

du
f ~u!

u2
expF2

1

uM2 ~mb
22ūt

1uūmr
2!G2

f ~u!

mb
22t1umr

2

3expF2
1

uM2 ~mb
22ūt1uūmr

2!GU
u0

1

,

~A4!

where u0 is the solution ofc(u0 ,s0
B)50 with 0<u0<1.

Since in our casef (u) vanishes atu51, one arrives at the
typical structureQ/(uM2)1d that enters Eqs.~2.25! and
~2.26!.

APPENDIX B: 3P SUM RULES WITH TENSOR CURRENT

In this appendix we give the Wilson coefficients entering
the OPE ofSmna, Eq. ~3.21!. We use the invariant decom-
position

Smns5S0~g
mspr

n2gmnpr
s!1S1~pB1pr!m~pB

npr
s2pB

spr
n!

1 iSV~eab
mspB

apr
bpr

n2eab
mnpB

apr
bpr

s!1•••, ~B1!

where $S0 ,S1 ,SV% determines the form factors
$A1 ,A2 ,V%. Taking into account perturbation theory, the
quark and the mixed condensate, as well as the four-quark
condensate~in vacuum saturation approximation!, the OPE
reads

S5Spert1S~3!^q̄q&1S~5!^q̄gsGq&1S~6!~2 16
9 !asp^q̄q&2

1•••. ~B2!

We give explicit formulas for the Borelized expressions

Ŝ (3,5,6) and the double spectral function ofSpert, such that

Spert5E dsbdsu
rpert~sb ,su ,t !

~sb2pB
2 !~su2pr

2!
1 subtractions,

r0
pert5

3b

8p2l1/21
3

8p2l3/2~bT22sbsu!~T22b!,

r1
pert5

3

4p2l3/2~bT22sbsu!2
3

4p2l5/2$b~b12su!T
2

23su~b
212bsb1sbsu!T

12sbsu~b
212bsu13sbsu!%,

rV
pert5

3

2p2l3/2~bT22sbsu!2
3

2p2l5/2$b
2T226bsbsuT

12sbsu~b
213sbsu!%, ~B3!

with l5sb
21su

21t22sbsu22sbt22sut, b5sb2mb
2, and

T5sb1su2t. For the nonperturbative terms we obtain

55 5575USE AND MISUSE OF QCD SUM RULES IN HEAVY- . . .



Ŝ0
~3!52

mb

MB
2M r

2e
2mb

2/MB
2
, Ŝ1

~3!50, ŜV
~3!50, Ŝ0

~5!5
mb

MB
2M r

2e
2mb

2/MB
2S mb

22t

6MB
2M r

2 1
mb
2

4MB
4 1

1

6M r
2 2

2

3Mb
2D ,

Ŝ1
~5!52

mb

6MB
4M r

4e
2mb

2/MB
2
, ŜV

~5!52
mb

3MB
4M r

4e
2mb

2/MB
2
,

Ŝ0
~6!5

1

MB
2M r

2e
2mb

2/MB
2S 1

3Mb
2 2

1

3M r
2 2

mb
2

18MB
4 2

mb
4

36MB
6 2

~mb
22t !2

18MB
2M r

4 1
2~mb

22t !

9M r
4 2

mb
2~mb

22t !

18MB
4M r

2 1
3mb

222t

18MB
2M r

2D ,
Ŝ1

~6!5
1

MB
2M r

2e
2mb

2/MB
2S 1

6M r
4 1

1

3MB
2M r

2 1
mb
2

36Mb
4M r

2 2
mb
22t

18MB
2M r

4D ,
ŜV

~6!5
1

MB
2M r

2e
2mb

2/Mb
2S 1

3M r
4 1

4

9MB
2M r

2 1
mb
2

18MB
4M r

2 2
mb
22t

9MB
2M r

4D . ~B4!
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