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Use and misuse of QCD sum rules in heavy-to-light transitions: The decal — pewr reexamined
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The existing calculations of the form factors describing the deégaypev from QCD sum rules have
yielded conflicting results at small values of the invariant mass squared of the lepton pair. We demonstrate that
the disagreement originates from the failure of the short-distance expansion to descpbméken distribu-
tion amplitude in the region where almost the whole momentum is carried by one of the constituents. This
limits the applicability of QCD sum rules based on the short-distance expansion of a three-point correlation
function to heavy-to-light transitions and calls for an expansion around the light cone, as realized in the
light-cone sum rule approach. We derive and update light-cone sum rules for all the semileptonic form factors,
using recent results on themeson distribution amplitudes. The results are presented in detail together with a
careful analysis of the uncertainties, including estimates of higher-twist effects, and compared to lattice cal-
culations and recent CLEO measurements. We also derive a set of “improved” three-point sum rules, in which
some of the problems of the short-distance expansion are avoided and whose results agree to good accuracy
with those from light-cone sum rulegS0556-282(97)05909-3

PACS numbgs): 13.20.He, 11.55.Hx, 12.39.Hg

I. INTRODUCTION the hadronic matrix element determining tBe—p weak
transition is
The interest in the study of semileptoni® decays is
mainly because of their importance in determining the (p,)\l(V—A)ﬂlB>=—i(mB+mp)A1(t)e:;(”
Cabibbo-Kobayashi-Maskawa(CKM) matrix elements

|Vl and |V,,|. Whereas the theoretical analysis of both T 1Ax(1) (e*Mpg)(pa+p,)
exclusive and inclusive— c transitions is decisively simpli- mg+m, P
fied by an expansion in the inverse heavy quark mass, this iAs(t)
method is of only little use ib—u transitions. This is es- +—2 " (& Mpg)(pg—p,)

. o ; . Ma+m Ps)(Ps pp N
sentially because of the fact that in inclusive channels experi- BYp
mental observation is possible only in a small region of 2V

; ; (t) aBy x(N)

phase space beyond the kinematical threshold for charm pro- + mg+m, €, €y "PrpPpy, (LD

duction, in which the hadron multiplicity is small. Thus,

since the theoretical description (_)f |ncIu§|ye decays is eSSeNut are the four form factors; ,3andV depend on the mo-
tially based on a parton-model picture, it is not very predic- Pl

N ' X . mentum transfet=(p3—pp)2 to the leptons; in the limit of
tive in the experimentally accessible range, [df]. It IS,  \anishing lepton masa, does not contribute to the semilep-

therefore, rather the: exclusive decay channels, in particulagnic decay rate and will not be considered in this papés.
B—m/v andB—p/ v, that seem to be more suitable for e polarization of the, t takes values between 0 and 20.3
obtaining reliable information ofV/,;;|. The CLEO Collabo-  GeVv2. |t is precisely this large range of relevanthat ren-
ration has recently presented first experimental results ofers the theoretical description of the form factors in Eq.
these branching ratid€], which, however, are model depen- (1.1) so difficult. Most quark model calculations rely essen-
dent. tially on the pole-dominance pictuf@1] or on a nonrelativ-
The decayB— /v has been tackled by several authorsistic description, which yields an exponential increase of the
using a number of different approaches, in particular QCDform factors witht [12], which was softened in an updated
sum rules[3—6] and simulations on the lattidg—10]; the  version of the model, Ref13]. Lattice calculations are up to
results are in a reasonable agreement. The situation is, howew limited to small momenta of the final stagte[7,8,14
ever, not that favorable in thB— p channel. Although here and/or require extrapolations in the heavy quark mass. For
the same methods were applied, the resulting predictions f@— 7/ v, the possibility to restrict the functional depen-
the decay rates are quite different. To illustrate the origin ofdence of the single relevant form factor from unitarity with
the problem, let us first introduce the relevant observableshe supplementary input of available lattice data at large
was investigated if10], but this method is presently not
very predictive in thep channel, se¢l5].
*On leave of absence from St. Petersburg Nuclear Physics Insti- To date, only lattice simulations and QCD sum rules seem
tute, 188350 Gatchina, Russia. to be apt topredict the t dependence in nearly the whole
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! ! ization of the heavy initial state, so that the final scaling law
for the soft contribution to the form factor at large recoil is
oo, kr) 1/m3 [20,17,21. Note that the transverse quark-antiquark
separation is not constrained in this case, which implies that
the soft contribution is sensitive to long-distance dynamics.
To calculate the soft contribution one needs to know the
(a) (b) wave function as a function of the transverse separation; the
simpler distribution amplitude is not enough.

Hard exclusive processes involving light hadrons receive
the same two types of contributions. There is a major differ-
ence, however, in that for light hadrons the soft contribution
is suppressed by a power of the large momentien, it is of
higher twis}, while for heavy meson decays both soft and
hard contributions turn out to be of the same power in the
heavy quark mag20,17,2]. As a result, the sofiend-poin}
contribution is expected to be large and requires quantitative
evaluation.

It was suggestefR1] that Sudakov-type perturbative cor-
rections cut off contributions of large transverse separations
so that the soft contributions might be suppressed. This sup-

physical region. QCD sum rules provide a consistent descri pression eventually ?“minates the soft contribution fqr very

tion of semileptonicD decays16] and of theB— 7 semi- o Jc b Atthe realistic valuesn,~5 GeV, however, itis

leptonic form factorf3—6]. However, there exist conflicting un!|kely that_ calculatlons of this type can prowde a ((:!uantl,:
dictions from different types of QCD sum rules for tatlvg de.SCI‘IptIOI’].. Indeed, the existing (.asgmates of “hard

Eri deca hich differ by a factor of 2 in the f fac- contributions typically fall short .of realistic values of the
P ys, which ditter by a tactor of 2 In the Torm fac- ¢, ¢4 0105 from model calculatiorts.

tors at maximum recoil5,17]. The aim of this paper is to

clarify the origin of this difference and to give updated pre- Here the QCD sum rules method enters the stage and
o 9 S give upa; P suggests a nonperturbative technique to estimate the neces-
dictions for the form factors, which include in particular re-

. . . sary convolution integral without explicit knowledge of the
cently gained information on the structure pf mesons wave functions
pro:teld at Iarge_lm;)hmelntﬁtm trarll(s[&!B]_. ting f th K There exist two different types of QCD sum rules, which,
q arge rec0||, €hg quafr Or'%';a":jgh ror? te era being similar in spirit, differ in the treatment of the light
decay carries a large energy o oraiey andnas to ranster ,a4ron in the final state. This is illustrated in Figgc)land
it to the soft cloud to recombine to the final state hadron. Thel(d)
probability of such a recombination_ depends on the parton The “traditional” sum rules avoid introducing wave
content of both th& meson and the light meson, the valencefunctions altogether by considering a three-point correlation

conflgurgtlon W't.h the minimum number of FOCK CoNStitU- ¢ ction with a suitable interpolating current and use disper-
ents beln_g dominant. The valer_lce quark conflg_uratlon 'Sion relations to extract the contribution of the ground state.
characterized by the' wave fgnctlaﬁt(x,kl) depending oM The most important nonperturbative effect is then described
the momentum fractiorx carried b_y the qu_ark and on its by the diagram in Fig. (1)), where the light quark is soft and
transverse momentuin . There exist two different mecha- i %inieracts with the nonperturbative QCD vacuum, forming

nisms for the va!ence ql_Jark contribution to.the transiti_onthe so-called quark condensate. Since quarks in a condensate
form factor. The first one is the hard rescattering mechanlsrﬂa\,e zero momentum, it is clear that this diagram yields a

pictured in Figs. {a) and Xb), which requires that the recoil-_ contribution to the distribution amplitude that is naively pro-
ing and spectator quarks are at small transverse separatio rtional to5(1—x) and remains unsuppressed fog— o

";1 this ce}sehthed Ialrge m.orr1ne'ntun|1_ is_transferre(kj}. by an e This obviously violates the power counting discussed above.
change of a hard gluon with virtuali?=O(mp). This con- e contradiction must be resolved by including the contri-
tribution is perturbatively calculable in terms of the Bethe-p sions of higher-order condensates to the sum rules and
Salpeter wave functions atl_ small~(/my) transverse g hiracting the contribution of excited states. The suppres-
separations, odistribution amplitudes sion of the end-point regior— 1, which isstrictly required
) by QCD, is thus expected to hold asiamericalcancellation
qg(x):f 1 mbdkf¢(x,kﬂ- (1.2 betyveen d|fferent.contr|but|on.s, WhI.Ch becomes thg more
delicate (and requires more fine-tuninghe morem, in-

FIG. 1. “Hard” (a,b and “soft” (c) contributions to the decay
form factor.(d) modeling of the soft contribution in the QCD sum
rule approach. See explanation in the text.

The second mechanism is the soft contribution, shown sche-—

matically in Fig. 1c). _The idea |s_that hard glgon excha,r]ge 'S" INote that a similar suppression is present for hard exclusive pro-
not necessary, provided one picks up an “end-point” con-
figuration with almost all momentum-1x=0O(1/my) car-
ried by one constituent. Since at large scafgx)=1—Xx

[19], the overlap integral is of ordeﬁ,o(l,mb)quﬁ(x):

O(1/m2). An additional factom?/2

cesses involving light hadrorj22] (in which case the soft contri-
bution is additionally suppressed by a power of the large momen-
tum); however, there is increasing evidence that soft contributions
to, say, the pion form factor remain important at least up to
comes from the normal- Q2~10 Ge\?, see[23].
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creases. Fom,~5 GeV, a suppression of the quark conden-Sec. VI a summary and the discussion of the results. More
sate contribution by a factor-1 GeV?/m2~1/25 is re- technical issues are delegated to appendices.
quired. This explains why the traditional three-point sum
rules become unreliable. II. THREE-POINT VERSUS LIGHT-CONE SUM RULES

The light-cone sum rules avoid this problem by rearrang-
ing the calculation in such a way that nonperturbative effects
such as the interaction with the quark condensate are in-
cluded in thenonperturbativehadron distribution ampli-
tudes, estimated using additional sum rul24]. These ad-
ditional sum rules are written for integrated characteristics of A. Three-point sum rules
the distribution amplitudes such as moments, and the correct The, comparatively speaking, “traditional” approach to-

asymptotic behavior at the end points is included by conwards transition matrix elements is by calculating a three-

struction. _ . S point (3P) correlation function. Specifically, foB— p one
The contribution of a single leading-twist distribution am- cgnsiderd

plitude incorporates an infinite set of contributions of con-
densates of increasing dimension in the standard approach, at
the cost of retaining pieces with the largest Lorentz spin
(lowest twis} only. The remaining pieces of condensate con-

In this section we discuss the two different types of QCD
um rules that have been used in the literature to calculate
eavy-to-light meson decays.

#v=j ZJ d4xd4ye—ipr+ippy

tributions are organized in a similargvsvay in the contributions X(O[Tj2(y)(V=A)*(0)jL(x)|0)
of higher-twist distribution amplitudes. v VI VP O

The premium for this rearrangement is that light-cone =ig*"To=i(petP,)*Pel'+ — €5, PEP, Ty + - - -.
sum rules have the correct asymptotic behavior in the heavy (2.1

quark limit, but the snag is that the present knowledge of .

higher-twist distribution amplitudes is incomplete, so thatHere (V—A) ,=uy,(1— ys)b is the weak current mediating
not all known nonperturbative corrections of the standardhe b—u transition,jg=qi ysb is the interpolating field for
approach can be included. One should expect that these twhe pseudoscala® meson, anq,ﬁ:ﬂ”u the interpolating
approaches provide complimentary descriptionB afecays, field for the p meson. In Eq(2.1) we have given explicitly
with their own advantages and disadvantages. only those Lorentz structures that are relevant for the semi-

Note that the problem with three-point sum rules origi- leptonic decay channel, the others are suppressed.
nates from the constraint of the distribution amplitude con- The method of QCD sum rules consists, in principle, in
volution integral to the end-point region; this makes the an-performing on the one hand a QCD calculatiod & in the
swer very sensitive to the preciskapeof the distribution  not so deep Euclidean regicpxﬁ~p§—mﬁ~l GeV?, writing
amplitude rather than to its integrated characteristics. For thg on the other hand a&louble dispersion relation over the
decay form factors at small recoil there is no such restrictionghysical cut and equating both expressions. It was the idea of
and the classical QCD sum rule concept of taking into acShifman, Vainshtein, and Zakhar¢25] to complement the
count nonperturbative effects as the contributions of longpurely perturbative calculation of #* by nonperturbative
wave vacuum fluctuationécondensategsclassified by their  terms in form of vacuum matrix elements of gauge-invariant
dimension is adequate. Thus, at small recoil, both types ofpcal operators, the condensates. The method proved surpris-
the sum rules should yield similar results and the spread ghgly successful in describing various hadronic matrix ele-
their predictions characterizes the accuracy of the method. Atents in terms of a handful of input parameters, as is testi-
large recoil one should rely on the light-cone sum rules.  fied by the immense number of publications in the field.

It is worthwhile to add that contributions of hard rescat- The traditional approach by Shifman-Vainshtein-
tering can be consistently included as radiative corrections tgakharov(SVZ) appeals to Wilson's operator product ex-
the sum rules. Their inclusion is technically challenging, butpansion(OPB), which is the expansion of & product of
does not pose a problem of principle. currents at short distances in terms of local operators. In that

Our paper is organized as follows. In Sec. Il we introduceyay one obtains for the invariantsin Eq. (2.1):
the two different types of QCD sum rules. In Sec. Il we then

analyze and explain the discrepancy Br-p transitions, ) by
paying special attention to the rearrangement of quark and T'(pg.p3.t)=2> TM(p3,p2.0(0|0,[0), (2.2
mixed condensate contributions within the light-cone expan- "

sion. We also estimate higher-twist contributionsAg In . —

Sec. IV we discuss in short the quark mass dependence ant th the condensate¢0|0,/0). In most applications one

the heavy quark limit. Section V contains our final predic- :sgsb:emec:)xafecsosuendt ggn;j%?ssaé?;ounprtecl)a(,?i'(;]‘eg\fgnffaﬂ sical
tions for form factors, spectra, and decay rate8e$ pev, P P phy

singularities:

pphy%SB ,Sp 1t)
(Se—PB)(S,—P2)

2While the usual sum rules are based on matching the QCD cal- ]“:f dSBdSp + subtractions. (2.3

culation at small distances to the phenomenological description in
terms of hadrons at large distances, the light-cone sum rules match
in transverse distanceéHence the relevant parameter in the expan-

sion is twist, and not dimension. SFor three-point functions we follow the notations|[&f.
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Usually, one is interested only in the properties of the groundynhere thel” on the right-hand sides denote the Borel-
state, which has to be extracted from the sum over all stategansformed invariants after continuum subtraction. The ex-

For this, one writes plicit formulas forl" can be found in16,5].

pphys: pground statg_pcont (2_4)
and approximates the unknown contribution of the con- B. Light-cone sum rules
tinuum by the perturbative spectral function above some An alternative approach26,27,2Q starts from the two-
“continuum thresholds”sg andsf, such that point function sandwiched between the vacuum andghe
meson state:

pOM=pP1-O(s3—5p)O(s)—S,)}, (2.5
where the ‘=" indicates that smearing over a sufficiently H,Fif d*xe”"Ps(p(p, . \)|T(V—A),.(0)j£(x)[0)
large interval is implied. The sum rule is then obtained by
equating Eqs(2.2) and(2.3) and subtracting from both sides =—illy(p5.t) ey ™ +ill,(pg 1) (e* Mpg)(Pe+p,),
the continuum contribution, i.e., in the above approximation ) vaB % (\)
the integral over the perturbative double spectral function +Hy(pg.t) e, e, " PraPppt - -, (2.12

above thresholds. In order to reduce the impact of this ap-
prOX|mat|o_n on the flnal results as WeI_I as the error mduceglNith p%—m§<0 and p2=m2. Hence we encounter only
by truncating the serie€.2) after the first few terms, one _; ; - PP

: . single dispersion relations,
subjects the sum rule to a Borel transformation. For an arbi-
trary function of Euclidean momentumf(P?) with
P2=—p?, the transformation is defined by H_f pPMYY(sg 1)

dsg—— + subtractions, (2.13
N+1 S~ Pg

L. 1
fi=Bpa(MAf= lim  (~PANT
P2—>00,N—>oo )

P2/N=M? fixed

(d P2)N+1 f’
and to isolate the ground state only an approximation for the
(2.6)  continuum contribution in th& meson channel is needed:

where M? is the so-called Borel parameter. For a typical

: Pee e —O(<B_
term in the OPE, the transformation yields pe=pP{1— O (s~ Sp)}- (2.14
N 1 1 5 5 . . .
Bp2(M2)————r = (—1)" e " me Thus, this part becomes simpler and potentially more accu-
(p=m9"  (n—1)! (M9) rate than with 3P sum rules, since less assumptions are made.

The price to pay, however, is that the QCD calculation
becomes more involved. In particular, the expansion of Eq.
(2.13 in local operators becomes useless since an infinite
equence of such operators contributes to the same order in
/(p3—m3). Indeed, each operator of the sequence

As condensates with large dimension get divided by corre
spondingly high powers ofp?—m?), their contributions to
the sum rules get suppressed by factorials. In the dispersio
integrals,p®®" gets exponentially suppressed relatively to the
ground state contribution, which is just the desired effect.
Defining the couplings of the mesons to their interpolating qD, ---D, I'q,
fields by S
mg

Mg where D B is the covariant derivative anfl an arbitrary
my ’

Dirac matrix structure, symmetrized over the indices
(2.8 uq,....u, and with subtracted traces, enters with the same
suppression factor 1p§—m?) [28]. This is different from
3P sum rules where contributions with higherare sup-
pressed by powers of [12, which here is no longer an ex-
m2  m? R pansion parameter. Still, contributions of operators contain-
p{ — + —92] MéMiFO, ing tracesover Lorentz indices, or transverse components of
Mg M; the gluon fields are suppressed by extra powers of

(Ofdy,ulp* ) =f,m,e,

<0|a3’5b|@>= fg
we find the following sum rules for the form factors deter-
mining the semileptoni®— p transition:

My
——eX
fgf,(mg+m,)mgm,

ATTP(1)=

(2.9 1/(p§—m§). This means that the relevant parameter is the
my(Mg+m.) m2  m2 A operatortwist rather_ tha_n dimension. The ex.pansion goes in
Agﬂp(t) - #exp{ _‘3 +-—5 MéM r. . terms ofnonlocalstringlike operators on the light corieC),
fgf,mgm, Mg M; ’ whose vacuum-to-meson transition amplitudes define the
(210 meson LC distribution amplitudes, which describe the mo-
5 5 mentum fraction distribution among the meson constituents.
VE=r(1) = My(Mg+m,) xp{ ﬂ;_‘_ ﬂpz M2M2P" The leading-twist distributions correspond to the minimum
2fomeBmp Mg M7 Bt V2 number of Fock constituents and in the case of a chapged

(2.11 meson involve the functionsl7,18|
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{p*(p,M)[u(0)o,,,d(x)]0) that are suppressed by powers ofpf/t m2). We will dis-
cuss higher-twist distribution amplitudes only shortly in Sec.

1
_ gl *(N)m _ ax(N) jupx Il.
AU A T p“)fodUé Pr(Ue). Note that the matrix element of a single nonlocal operator
2.15 contains information about a whole series of matrix elements
) of local operators of increasing dimensi@sut fixed twis},
which are encoded in moments of the distribution ampli-

. _
{p™(PM)[u(0)7,d(x)]0) tudes. For example,

(e*()\)x) 1 upx
“Pu"px) fpmpfodue' by(u, ) (p"(p,M)[u(0)0,,(D-x)"d(0)[0)
1
(exMx) 1 — —ite™Mp —eMp V(i nf dud”
A v i(el¥p,—¢€ ipx uu u,u).
+|exM—p, T3 f mpJOdUéqugi (U, ), (e,'p P, (ipx) . ¢ (u,p)
{p*(p,\)[u(0)y,¥5d(x)|0) A renormalization group analys[d.9] shows that for large
n, moments of the above defined distribution amplitudes
1 1 .
=Zeﬂvpue*()\)vppxa-fpmpfo dUéuPXg(f>(U,,LL). ¢LH behave a"s
1
(2.17) JO duu¢(u,u)~consth?, (2.22
For the sum rules for thB—p form factors, we also need
the function which corresponds to the following end-point behavior of the

amplitude foru—1:

(2.18

In the above definitions the matrix elements are not gaug(\!vfe WOLtJ.Id I'ks t(: Istressbthﬁt '.t IS ;nl th'? place£ usmgt t.he
invariant, but refer to the axial gauggA*(x)=0. In a gen- information about largé benavior of focal operator conti-

butions, related to the end-point behavior of the LC distribu-
eral gauge, gauge factors tions, that the LC sum rules go beyond the traditional SVZ
approach. We will discuss this point in detail in the next

(219  section.

The rest of the LC sum rule procedure follows the stan-
ag_ard rules sketched in the last subsection: to suppress contri-
utions of higher-twisp meson distributions and to enhance
the sensitivity to the groun8 meson state, one performs a
Borel transformation irp3, and the final expressions for the

1 sum rules foB— p decay form factors are similar to the 3P
fo duf(u)=1 sum rules in Eq(2.11) apart from the different expressions
on the right-hand side. One thus obtaifis leading-twist
accuracy.

1 u , 1 ,
Byuu) =5 ffo d”%—m_uﬁ, do ¢>u(z w)

¢(u,u)~constx (1—u). (2.23

1
Pex;{ ig fo dax”A,(ax)

have to be inserted in between the quark fields. The integr
tion variableu corresponds to the momentum fraction car-
ried by the quark. The normalization is such that

for all four distributionsf=¢, ,¢>H,g(l”),g(f). pr‘(,u), the
scale-dependent coupling of tipremeson to the tensor cur- y
rent, is defined by Eq(2.15 for x=0. To leading-twist 2 AB—P(t) = my ox Mg — My 1%
accuracy the § functions” are in fact not independent, but 1 fo(mg+ mp)méc Mé ou
related tog) by Wandzura-Wilczeki29] type relations:

><exp[ - (t— mﬁ—umﬁ)] O[c(u,s0)]

giv),twistz(u”u):E f”dv Av.1) +Jldv ¢)(v,p) | um2
2 0 v u v
1 1 2 212
(0.) ) (0.) X1 T () o (U, p) 70 (M= t+umy)
1 u L 1
R (T LTf G +uf gy A2 Z 2.
0 v u
(2.20 +f,mem gl (u,m) |, (2.24

All these functions are discussed in detail[ik8]. The dis-

tribution amplitudes of higher twist can be related to contri- “Note that a purely perturbative analysis is sufficient to obtain the
butions of Fock states with more constituefgay, an extra leading behavior im, whereas the coefficient of proportionality can
gluon and generally generate contributions to the sum rulesnly be obtained by using nonperturbative methods,[284k
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- mb(mB+mp) mZB_mg 1du 1.4215_ B;p,..,.,,..,, E 1.4 _DI_>IIII
A2 (t): Vi ex 2 — R Aj E 1.2 E A7 4 E
meB MB 0 u 1F ) - 1F -

0.8 E 3pt with tensor-current = =~ = - 3 0.8 i_ E

u 2 o 0.6 k 0.6 F 1C 3

X ex t—mg—u 0.4 F 04 P —— E

UME( b b) 0.2 0.2 F 3t 3

ot fiJ T NN PRI PN RS SR

f[GeV?)

1 8
X 51 (1) (u,)OLc(u,s8)]

1.4 ¢ T T T 1.4 progrrr g
1.2 ¢ 1.2 A?—’P -
1 B 1t 1E 3
+f mym & (u,u)| —=0O[c(u,s 0.8 0.8 F 3
Mo, (U )| Ol c(uss))] S 3
0.4 F 0.4 b 3pt E
5 0.2 0.2 F E
+ . SPEFITITE EVOYN I ATS I AT ATArE AATATArE AR
aLe(uso)l |1, (2.29 ° % 0.20.40.56 0.8 1.2
1Gev?)
2 2 —
VB*’P(t)—mb(mB—’_mp) ex mB_mb l%ex _U ii g 1;1
2meé Mé o u uMé 1 1E
0.8 E 0.8 E
0.6 F 0.6 | 3
2 2 1 B 0.4 F 0.4 F 3
X (t—mp ump)] fo(u) by (u,u)O[c(u,sp)] ok voE E
o E | IPETETTN BRI IR 0:....|....l....l....l....l....
1 1 0 5 t[(}l%z] 15 20 0 0.2 O.4t[g.\6]2]0.8 1 1.2
- () B e 3
Jrzfpmbmpgl (U, ) uM§®[C(u’S°)]
FIG. 2. Semileptonic form factors of the decais—p and
+ 5[C(u,sg)] . (2.26 B—p from LC sum rules, Eq§(2.24)—(2.26),_and 3P sum rules,
Egs. (2.9—(2.11), evaluated with the same input parameters. The

] B B o — — dotted curves illustrate the effect of introducing a different interpo-
with c(u,sp) =usy—mg+tu—uumg. lating current for thep meson in the 3P correlation function, see
LC sum rules forA; andV were already obtained ii7];  sec. Il C.
they slightly differ from the ones given above by the “sur-

face” terms 5[C(U*SS)]’_ which are related to subtleties in 5k condensate, which dominates the 3P sum rules at small
the continuum subt_ractlon as discussed in Appendix B. Th@, cf. [5,30]. To clarify the reason, we give in this section a
LC sum rule forA; is new. detailed calculation of this contribution, and also of the con-
tribution of the mixed condensate to the 3P sum rule for the
axial form factorA;. The result is well knowf16,5] and the

The two approaches described above are rather differemew point we wish to make here is to rederive it using the
and their comparison should shed light on the actual accusequence of steps adopted by the LC sum rule approach. This
racy of the sum rule method. The numerical comparison rewill reveal how thep meson distribution amplitudes are im-
quires the use of a “coherent” set of parameters, so thaplicitly described in the 3P approach and also give examples
differences are not introducédr masked by using different  of higher-twist contributions.
inputs. We shall specify our set in detail below; for the pur-
pose of illustration the particular values are unimportant. The
results for allB andD meson decay form factors from both
3P and LC sum rules are shown in Fig. 2. We see that the We start from the correlation functidf2.1) and as a first
results are in a reasonable agreement at lasgkile there is  step substitute the heavy quark propagator by its leading-
a disturbing discrepancy up to a factor of 2 at large recoilorder perturbative expression:
[5,17]. Thet dependence also turns out to be very different 4
[5,17]. F“V:izf d4Xd4yefipr+ipyf d"k eikx 1

Provided no particular advantage or flaw of one method 2m%i~ mi—k?
can be found, this spread of values would necessarily have to _ _ )
be considered as indicating poor theoretical accuracy of the X(O|T{j (y)u(0) y*(1— ys)(my+ K)i ysd(x)}|0).
predictions in this region. The further discussion will clarify (3.0
the reason for this discrepancy and give strong evidence in
favor of the LC sum rule calculation. Reasons for the better

agreement at small recdilarget) will also become clear. The product ofy matrices in Eq.(3.1) contains several
terms, corresponding to different invariant structures in Eq.

(2.1) and to contributions of dimension-odeeven opera-
tors to the OPE. We choose to consider the axial form factor

An inspection shows that the disagreement between L@, and contributions of operators of odd dimension only. To
and 3P sum rules is mainly because of the contribution of thé¢his end we need to calculate the correlation functions

C. The conflict

A. Three-point sum rule from the light-cone point of view

IIl. ANATOMY OF THE DISCREPANCY
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roua=i [ dtyem(O[TLj(ya0)r 0},
3.2

=i [ atyer(olTiiyiiodooilo). (33

using the OPHEwe recall thatp? is assumed to be Euclidean
and sufficiently largge

Throughout the calculation we imply using Fock-
Schwinger gauge. In a gener@ovarianj gauge the heavy

UM RULES IN HEAVY. ..

My

AB=P(t) = e
1 () fgf,(Mg+m,)mgm,

1 _
X[ —(qq) 5 (M;—t)+(agoGa)

m2—t
- 2
6M2

i

We emphasize that the derivation sketched above is entirely

mg(ma—t)
8Mp

7+
24

X

3mZ—5t (m3—t)?
- +
24M5  6MEM>

(3.6

quark propagator in external gluon fields contains the linkVithin the traditional QCD sum rule approach, although the

factor (2.19, which has to be inserted in the nonlocal opera-
tors in Egs(3.2) and(3.3) to make them gauge invariant, see

Sec. Il B. In the Fock-Schwinger gauge, further terms in the

expansion of thé quark propagator in background gluon
fields only yield corrections-1/m, to the sum rules and for
simplicity will not be considered here. They can easily be
added.

The OPE of the correlation function8.2) and (3.3 is
straightforward and yields:

L.
p2

1m3
3p*

T=i(qq)(p"g""~ p“g“”)[ (1+e™9

2

+—m2xZi —ipx(l—e‘px)iﬁ
16 0 p2 3 p4
+'_ 1 UMY MOV (] 1— ipxlrné
'<QQ>p—X(X grr—xHg*)(ipx)(1—e )gaz‘
+i(qq i'O—V( axt— prx)(i x)(1—eipX)—m—g
aq DX p p p 6 p2’
(3.9
T 2 ipx 1 mg
"=i(qa)[p"(px)—x"p~](1+e€® )EF
_p” )
—<qq>;(1—e'pX)(1+ﬁme2>. (3.5

Here m3=(qgoGq)/(qq). Note thatp,T***=0, while T"
contains a contact term. Substituting EG&4) and(3.5) into
Eq. (3.1, taking the remaining integrals and performing
Borel transformations imé and p?, respectively, we repro-

duce the contributions of quark and mixed condensate to the

3P sum rule forA; in Ref. [5], except for the neglected
contribution of the diagram with the gluon emitted from the
b quark line:

5The perturbative contribution to Eqé3.2) and (3.3) is of order
my,q and will be neglected here.

sequence of steps may seem unusual. A related discussion
for the wyy* transition form factor can be found in Rady-
ushkin and RuskoY30].

We now rewrite this answer in terms of contributions of
p meson distribution amplitudes. To this end, we separate the
p meson contribution t@”#“(p),

T(p)=(0liflp " (PN 22
P

x(p*(p,M)[u(0)e*d(x)|0)+- -+, (3.7)

and, similarly, the one ta'”. The first matrix element is
proportional to the decay constaft, while the second one,
by definition, givesp meson distribution amplitudes in the
fraction of momentum carried by the quark. An inspection of
Egs. (3.4) and (3.5 suggests one to introduce the distribu-
tions

(p*(P,M)[u(0)a,,d(x)[0)

1 )
—lf;<e;<“pa—ez<”pﬂ)fodué“pX[qsL(u)

2.1(1) Lea*x(N)y _ax(N)
XY () ]+ (e X~ ey X,)

1 )
><fodué“px,/,<2>(u)+if;(e*W'X)(pra—xap#)

1 )
xf dud'Py 3 (u), (3.9
0
_ 1 )
<p+(p,A)IU(0)d(x)IO>=—ift(e*<“~x)f due"Py@(u).
0
(3.9

After a Borel transformation of Eq$3.4) and(3.7) in p?, we
get the explicit expressions

— _<®> m2/M2 _ 1 mé _
¢¢(U)—m C P{(l §M—§[5(U)+5(1 u)]
1mid
—§M—‘2)E[5(u)—5(1—u)] , (3.10
_‘(ﬁ) w2 L
lﬂm(u)—me PIMPEmoW(U)Jr@(l—U)],
(3.11)
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) —(qq) 22l distribution ¢, , etc. As it stands, this expression does not
Y )(U):Wemp »g Mol 8(u)— &(1—u)], (312  yet agree with Eq(3.6), the reason being that the Borel
prete transformation in thep meson channel was applied in a
yID(u)=0, (3.13  slightly different way. It is possible to show that in order to

) 5. reproduce the 3P sum rule one has to substitute
where M ~(1-2) GeV* is the Borel parameter. Note that 2 ,_\12 after which the expressions indeed coincide

the expansion goes in derivatives of héunction. A similar Iitgrally.7
expansion for the twist 2 distribution amplitude was obtained
by Mikhailov and Radyushkin ifi30].
Similarly, from the expansiof3.5), we deduce
Y (u)= <q—q>iem§”"'i£m§[ S(u)+8(1—u)]. (3.19 The new input made by the LC sum rules is to argue that
m,f,f5 6 the s-function-type shape of LC distributions, concentrated
Substituting Eqs(3.8) and (3.9) in Egs. (3.7) and(3.1), atu=0 andu=1, is qualitatively wrong. In particular, in-
taking the integrals and performing a Borel transformation instead of the expression in E(.10), it is suggested to use

B. Short-distance expansion
and light-cone distribution amplitudes

p3, we get a typical LC sum rule: the distribution amplitude
L 2_ 2 1
P L ran Sl Y Y é, (U,p)=6u(1—u)[1+as(u)C¥2u—1)]. (3.17)
fg(mg+m,)mg Mg o u

Here C3%(x) = (15x?—3)/2 is the second-order Gegenbauer
polynomial; the coefficiena; was estimated to be Q:20.1
[18]. Equation (3.17) is clearly very different from Eq.

u 1
XEX[{ m(tmﬁumﬁ)” Z(mﬁftJrusz,)

4 mg 2 : . .
x|, (u)— u_Mé( 1+ u_l\/;),%> Py (u)+ U_Nlél/,(s)(U)} g:ig;?Where does it come from and what is wrong with Eq.
2 m2 The distributions(3.10—(3.14 are just the QCD sum
+—| 1+ 2}¢(1)(u) rules for the correlation function@.2) and (3.3). Their de-
u uMg ficiency becomes apparent when they are rewritten in terms
m? 1 of moments. For the leading-twist distribution we fitef.
+ 1+ uM2 P2 (u)— G¢(3>(u)— lﬁ(“)(u)], (3.19 [18)

where we have changed variables>1—u to be consistent 1
with Eqg. (2.24). To save space we have not shown the con-J du(2u—1)"¢, (u)
tinuum subtraction. Note that the leading-twist contribution©

of the distribution amplitudep, coincides with the corre-

sponding contribution in Eq2.24); the extra terms)") are —(QQ) 2,2 m2
higher-twist corrections, not taken into account in Eq. =——re"M[1+(-1D)"]| 1- =—5(2n+1) |.
(22496 mpfpfp SMp

On the other hand, further substituting in E8.15 the (3.18

above expressions for the distribution amplitudes and sup- o _ _
pressing terms~ m§ unless they get divided bW'iy we Note that the contribution of the mixed condensate is en-
come back to Eq3.6). The quark condensate contribution in hanced by a factan. This enhancement is of generic nature:
tribution ¢, , while the mixed condensate terms contain con-Panied by increasing powers pfso that the sum rule blows
tributions from both leading and higher twist. In particular, UP for large moments and cannot be used. This signals the
for the expression in square brackets in B6) we find the ~ break down of local OPE for higher moments of distribution

decomposition amplitudes. Extensive studi¢24] have demonstrated that
, , ) , - QCD sum rules of typé3.10—(3.14 can be applied to esti-
(mp—t)> mg—t N m, [ 1 N mp—t my(mg—t) mate the two first moments onlp=0 andn=2, i.e., the

6MZM2  6M2 ' M2(6  3M3 sm4 normalization and width of the distribution amplitudes, but

fail to describe higher moments, i.e., the shape of the distri-
bution close to the end points. Information on the shape can,

m—t m 1 1 m 1 ;
o= | |zt -1z, however, be obtained from another source, namely, the be-
8Mg 4Mg 8| ., [6 3Mg| , [6] 4 havior of distribution amplitudes under the renormalization
(3.19

where[ .. .], indicates that this term originates from the "There is a subtlety in treating the terms proportiongb@p* in
the first line in Eq.(3.4): p, gets contracted witlpg and yields a
factorp23+ p2—t. Using the dispersion relation first in themeson
5The contribution~g, in Eq.(2.24 would correspond to terms in  channel such as in Eq3.7) then implies thap? is substituted by
Eq. (3.1 with an odd number ofy matrices, which have not been m;‘;, while in the standard procedure it givesl\/li. Ambiguities of
considered here. this type are intrinsic for the sum rule method.
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1 T A 1 [T 1T T T
i hybrid LC - ] ; Lc — ]
0.8 | 3 0.8 F LCincl. HT oo ]
= 0.6 = 0.6 »
: £
E < 0.4
0.2 0.2
P T P U EPRE 0 : L !
0 5 10 15 20
0 5 . e . 15 20 O]
FIG. 3. A; from the LC sum rulg2.24 (solid line LCO), the 3P FIG. 4. A, from the LC sum ruleg2.24 and (3.19, with the

sum rule(2.9) (solid line 3P, and a “hybrid LC” sum rule, in ~ distribution amplitude¢3.19, and (3.20.
which the leading-twist distribution amplitud, is replaced by the

naive expansion i functions(3.10. Second, the present version of the LC sum rule neglects

contributions of higher twist. To estimate their effect one can
) ) apply the methods of Ref31] to determine the shape of the
group [19]. The major result is that¢, approaches istributions (u) at large scales, i.e., their asymptotic

6u(1—u) at large virtualities and that the corrections can be.m and use the sum rulé8.13 to estimate the normal-
systematically expanded in Gegenbauer polynomialﬁatién_ We get

C342u—1). Combining this expansion with estimates of

the first two moments by QCD sum rules one obtains the YV (u)=ky-30u2(1—u)?,
expression3.17).
In fact, the particular sum rule in E¢3.18) is not accu- P2 (U)=k,-30u(1—u)(1—2u),
rate enough even far=0,2, and in practice one uses differ-
ent sum rules, see RdfL8] for a detailed discussion. P (U)=ry-6U(1-u), (3.19

To illustrate that the shape of the leading-twist distribu-_ .
tion is indeed of crucial importance, we have plotted in Fig.Wlth
3 the form fagtorA?*”(t), calculated in several different Ki=M3/16, Kk,=Ml6, K,=—mi6. (3.20
ways. The solid curve, labeled LC, shows the LC sum rule
(2.24) with realistic distribution amplitudes. The dotted line In Fig. 4 we pIotA?ﬂ” from Eg. (3.15 using these distribu-
is obtained using the same sum ruy&24, but with the tions and including continuum subtraction. For comparison
distribution amplitudes, replaced by the expressid8.10); we also show the leading-twist LC sum r§24). The cor-
it is very close to the solid line showing the 3P sum rulerection turns out to be negative and lowers the leading-twist
result. The “dominance” of the quark condens§®6] in the  result by about 15% for<15 Ge\?. These results are, how-
3P sum rule thus happens to be an artifact of the shortever, only indicative of the size of higher-twist corrections,
distance expansion extrapolated beyond the region of its vahe detailed study of which goes beyond the tasks of this
lidity. paper.

The ideal agreement of the dotted curve in Fig. 3 with the If the “naive” description of distribution amplitudes by
3P sum rule result &t=0 is in fact coincidental and is be- the usual sum rule method is that deficient, the question
cause of a mutual cancellation of two effects. First, in addi-arises if this approach still works for form factors Bf me-
tion to contributions of operators of odd dimension, the 3Psons, as used, e.g., ii6]. The formal answer is clear from
sum rule contains a perturbative term, a contribution of fourthe structure of LC sum rules: the distribution amplitudes are
quark operators of dimension six, and of the gluon condenintegrated with a smooth weight function over a constrained
sate. These contributions correspond to the terms with aregion of the momentum fractiam. If the mass of the heavy
odd number ofy matrices in Eq(3.1), which we have not meson is not very large compared to the typical hadronic
considered, and have their counterpart in the LC sum rule iscale 1 GeV, then the integration region is large and only
the contribution of the distributioy, (up to higher-twist gross characteristics of the distribution amplitudes matter,
terms. The difference between the two approaches is smalle., their normalization and width. These are given correctly
in this case, the reason being that repeating the above procky the sum rules, and the approach works well. If, on the
dure one would deal with the correlation functionjdgfwith  other hand, the mass of the heavy meson is much larger than
a nonlocal vector current. In contrast with Eq8.2) and 1 GeV, as itis the case with mesons, and if the momentum
(3.3, this correlation function has a large perturbative con-transfer to the leptons is small, then the integration region
tribution and the OPE goes in condensates of even dimershrinks to the narrow interval 2u=0(1/my), the precise
sion. Extracting the distribution amplitude as outlined abovedehavior of the distribution amplitude at-1 becomes im-
would yield a smooth distribution-u(1—u), slightly cor-  portant, and the standard approach fails.
rected by s-function-type contributions of the gluon and  The physical parameter that matters is, however, not the
four-quark condensates. These latter contributions are smafigavy meson mass, but themeson energ¥, in the decay-
so thatg, as implicitly used in the 3P sum rules is not very ing B(D) rest frameEp:(sz’D+mﬁ—t)/(ZmB'D). Zero re-
different from its “true” behavior. Hence, the numerical re- coil corresponds td&,=m,; in the physical regim¢>0,
sults are close. E, runs up to 2.7 GeV and 1.1 GeV i@ andD decays,
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T — “favorable” rearrangement of power corrections would be
' LC —— ] to use the axial-vector instead of the pseudoscalar current for
[ Bpp e 1
0.8 T Dposp pt . the B meson.
~ 0.6
S) IV. THE HEAVY QUARK LIMIT
< 0.4 . . . .
r ] The behavior of form factors in the limin,—« is of
0.2 F . considerable theoretical and practical interest. Taking the
L . . L] heavy quark limit in the sum rules is straightforward, by
0 N s o 55 rescaling the sum rule parameters in the following Wsse,
Ep[GeV] e.g.,[32)):
FIG. 5. A; as function of thep meson energ¥, from LC and M2—2myT, Sg—> mt2,+ 2Mywg, 4.0

3P sum rules for botb — p andB— p transitions. FolD— p tran-

sitions, the physical regiot™>0 corresponds tp meson energy up wherer and w, are of order 1 GeV.

to 1.1 GeV. One should distinguish between different regions of mo-
mentum transfer. First, consider—t=0(my), i.e., small

respectively. In Fig. 5 we show the form factohg(E,) for  recoil, energy of the outgoing meson of order 1 GeV.

both B andD mesons. The behavior is very similar, and in Then, both the 3P and the LC sum rules satisfy the scaling

both channels 3P and LC sum rules agree very well folaws predicted by heavy quark effective the§d]:

E,~1.4 GeV. ForD mesons, this is outside the physical

region for the decay. As(t~tmad ~ 1My, As(t=tme) ~ VM,

C. Possible remedy: The tensor-current? V(t=~t a0 ~ VM. 4.2

To conclude this section, we would like to demonstrate i ) ) i
that the “dominance” of the quark condensate is no intrinsic!" this regime, the integration over the quark momentum
feature of 3P sum rules. To this end we recall that one haffaction in LC sum rules comprises the regior i~1, so
some freedom in the choice of the interpolating field for theth@t only width and normalization of the distributions are
considered particles: although for the meson the vector important. Hence, 3P and LC sum rules are expected and

current is the most convenient one, it is by no means the onl{fdeed give comparable results, see Figs. 2 and 3.
one. In particular, one can choose the tensor current More interesting, however, is the behavior near maximum

recoil,t~0. Here we find that in the 3P sum rules approach
the limit my— oo cannot be taken since higher-order terms in
the OPE are accompanied by increasing powersaf From
_ _ the “light-cone point of view” this inconsistency arises be-
EMV‘T:izf d*xd?ye”PextIP,Y cause at large recoil the soft contributions to the form factors
pick up a tiny region of momentum fraction
><(0|Tj;"(y)(V—A)f‘(0)jg(x)|0>. (3.2) 1-u=0(1/m,) and thus the details of the shape of {he
meson distribution amplitudes, wrongly described by 3P sum
In Appendix B we give the corresponding OPE includingrules, enter decisively.
terms up to dimension six. Because of the particular On the contrary, LC sum rules &0 have a well-defined
y-matrix structure, the contribution of the quark condensatéeavy quark limif17] and scale as ﬂdﬁ’z. Explicitly, mak-
to A, andV vanishes and is small fagk;. We have displayed ing the change of variables=(1—u)my/2, one finds(with
the corresponding form factors already in Fig. 2. They differ = f_/m, and A= Mg — M)
distinctively from the results of the original 3P sum rules and

j,”=do"’u instead and calculate thB—p form factors
from the correlation function

are much closer numerically to the LC sum rules. Neverthe- . 2 — [wg
less it would be inappropriate to conclude that the above fA1(0)=——3meA/Tf dwe “'Tf we] (1)
correlation function is “better” than Eq(2.1): it suffers My 0
from exactly the same problem as the original correlation —f ma(1
p pgi ( )]1

function to describe correctly the shape of heneson dis-
tribution amplitudes near the end pointsunlt is only that 2 — [ap
this failure is less “visible” for the given values of thie fA,(0)=— —3/29A/Tf dwe*“”f[fﬁwd{(l)
guark mass and the considered rangé.iThe problem is my 0

now shifted to the contribution of the mixed condensate,
which starts to dominaté;(0) at largem, and eventually
overgrows all other terms. Numerically, however, the effect
is much less significant ah,~ 5 GeV. This improvement V(0)= — —iQeNwaodwe‘“’”
comes at the price that the tensor current couples also to mg

positive parity 1"~ states which contaminate the contribu-
tion of thep meson, so that the accuracy of these sum rules
is not very high. Another possibility to achieve a similarly

+£,m,®[(1)],

fLogl(1)

1
+ prmpg'(f)(l)}. 4.3
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From the relationg2.18 and (2.20 it follows that to our V. NUMERICAL ANALYSIS
accuracy We now turn to the numerical evaluation of the LC sum
rules (2.24—(2.26). Let us first define the relevant observ-
A1(0)=A3(0)=V(0) (4.4  ables.
in the heavy quark limit. This agrees with the findings of A. Kinematics

Ref. [34]. It is instructive to check that the above scaling  \wjith the standard decomposition for tBe—p transition

relations are not spoiled by higher-twist corrections. Thematrix element(1.1) the spectrum with respect to the elec-
twist-4 part of Eq.(3.15 becomes, in the heavy quark limit, {qn energyE reads

RO oy 2 2
o 1 — (oo 4?2 dI'(B°—p*e v)  Gg[Vupl® (tmax B 2012
fA&WISt4(O):ngeA/Tf0 dwe wlr[ _ 7(//”(1)(1) aE = 128773sz . dtt{(l Cosf)“HZ
4o © +(1+cof)?H? +2(1—cogh)H3},
Il 2 O ol (1)], (4.5 5.
) with the helicity amplitudes
wherey' (u) = (d/du) (u) and we used that all functions
vanish atu=1. It is seen that higher-twist corrections are in a2
fact down by an extra power ofi,, cf. the discussion of the H.=(mg+my)A, () = ————V(1), (5.2
pion form factor in the third of Refq23]. BT
We recall that the heavy quark mass dependence of form
f_actors at zero recoill i_s (_)f vivid interest for lattice calcula- 0= ((mé—mz—t)(vame)Al(t)
tions. Because of restrictions on computer power and perfor- 2mp\/f d
mance, quark masses that can be reliably simulatled are of
order~2 GeV and the results have to be extrapolated to the _ Ay(t) (5.3
physical beauty quark mass. In this respect, we would like to mg+m, 2 ’ '

add a word of caution about using the asymptotic scaling law
1/m¥2 since this limit is only approached very slowg7].  Where the indices denote the polarization of thex is de-
To get a ball-park estimate of the next-to-leading order corfined as

rections we calculated the form factors using LC sum rules 2. 2 o -

varying theb quark mass in the limitsl—10 GeV and using A=(mg+m;—t)°—4mgm; . (5.4
the scaling4.2) of the sum rule parameters. We then fit by a . . .
quadratic _polynomial in the inversemeson mass tmax the maximum value of at fixed electron energy, is
mg=m,+ A, A=500 MeV [32]. The results aréwe show 9iVen by
the leading Ihg corrections only

2
m,
tmaXZZE(mB_ m —2E) (55)
320,(0)=5.6 GeVH'Z 1 24 ooV ) )
Mg A1(0)=5.6 Ge mg ) ¢ is the angle between the and the charged lepton in the
(e”v) c.m. system and given by
2.1 GeV
32 _ 12 1
mg“A;(0)=5.6 GeV'?| 1- My + ) co9= F,i(mé—m§+t—4mBE). (5.6)
" ; 1.5 GeV The spectrum with respect toreads:
maV(0)=5.9 Ge\P'2| 1— +.- ). (4.6 Bpre T GEV?
dI'(B°—p e v) Gg|Vyp
An =192W§mgx1’2t(H§+Hi+H%).
The constants in front of the parentheses are almost equal, as (5.7)

expected from Eq(4.4). Note the large terms in th .

Finally, one can consider the region of very small recoilWe also introduce the notatiods; andI'| for the partial
mz—t~1 Ge\A. This region is generally difficult for QCD decay rates where the final statés transversely or longitu-
sum rule treatment since one gets more sensitive to contridinally polarized.
butions of large distances in the ‘thannel.” An inspection From the specific structure of the helicity amplitudes it
of Eq. (3.16 shows that in this limit the leading-twist con- follows that at smalt the produceg mesons are predomi-
tributions of dimension 5 are smaller than those of highemantly longitudinally polarized; fot=0 only longitudinally
twist, which may be considered as an indication that 3P surpolarizedp are produced. At large, on the other hand, the
rules become more reliable than LC sum rules at very largeontribution of A, and V to the decay rate is suppressed,
t. since\ has a zero at,y.
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. by (U,p)=6u(1—u)[1+ab* (u)C3%2u-1)],
o (5.10

with ag(l GeV)=0.18+0.10 [24,1§ and aj(1 GeV)
=0.2+0.1[18], as already mentioned in Sec. Il B.

The value of theb quark (pole) massm,, is somewhat
controversial, with estimates varying from 4.6 to 5.1 GeV.
This large range, however, probably overestimates the actual
uncertainty and rather reflects that the pole mass has to be
-544.555.566.577.5 nonperturbatively defined and that suitable definiti¢asd
M5lGeV] values depend on the application. In this paper we use

AFP(0)
(e} (o) (] (] (=) (=]

W B NWw s U o

UL RS RMARE LRRAN RARRE LR |RARAN RREES

®) E my=(4.8=0.1) GeV, (5.1

A RARARRARR:

T

which, we believe, is a fair estimate.
_______________________________________ The decay constarft; was calculated in QCD sum rules
g and on the lattice, with a world average of about 180 MeV
(see, e.g.[36]). It was found, however, that within the QCD
sum rule approactiz receives large radiative corrections,
SRTEY PN PETRL VI TPRN FVY TR I which increase its value by 30 to 60 M¢®82]. Since similar
3.544.555.566.577.5 radiative corrections have not been calculated for the sum
M5lGeV] rules for form factors, we think that it is more consistent to

e = use the lower value dfg as it is obtained from the sum rules
E without radiative corrections, see algb7]. In practice, we
simply substitute‘é by the corresponding sum rule with the
E same values of all parameters; this has an additional advan-
E tage of reducing considerably thequark mass dependence.
In fact, there are arguments suggesting that radiative correc-
tions tend to cancel betwedr and the form factors. This
e cancellation was indeed ot_)served B+ D* tran_sitio_ns[37]
03 5 445555665775 and for theB meson matrix element of the kinetic energy

) T OMAGeVY ’ operator 38]. An explicit calculation of the radiative correc-
tions to LC sum rules would, however, be very welcome.

For the values of the condensates we use

AF7P(0)
o o o o o (=)

TN

o BN W R U O

..

VE=P(0)
o O O O O O
[ [N w > lJ‘I o‘\
|J

FIG. 6. Semileptoni® decay form factors at= as function of
the Borel parameter for central values of the LC sum rule param- —
eters(solid lines. (qg)(1 GeV)= —(245=10) MeV?,

B. Input parameters <$G2> —(0.012+0.006 GeV*
The decay constarft, is measured experimentall35]. 7
f,=(205-10) MeV, (5.9 (agoGa)(1 GeV)=0.65 GeV- (qg)(1 GeV),
—— B

while existing information onft comes from QCD sum (s0q)?=0.56~0.245 Ge\". (5.12
rules. In the following we usgl8] They enter the 3P sum rules explicitly, and the LC sum rules

B implicitly, via estimates of the parameters of the distribution

f,(1GeV)=(160=10) MeV. (5.9  amplitudeg18] and offy.

We assume values of the continuum thresholdsfand

The p meson leading-twist distribution amplitudes and B mesons s§=1.5 GeV and s§=35,34,33 GeV for
¢, have been recently reexamined[i8]. We use m,=4.7,4.8,4.9 GeV, respectively. The working region of

TABLE I. The form factors of theb—u transitions at=0 in LC sum rules and quark models.

Ref. f8m AP AR VB
This work - 0.27:0.05 0.28-0.05 0.35:0.07
BKR [6] 0.30 - - -
FGM [39] 0.20+0.02 0.26-0.03 0.31-0.03 0.29-0.03
Jaus[40] 0.27 0.26 0.24 0.35
Melikhov [41] 0.29 0.17-0.18 0.155 0.215

WSB [11] 0.33 0.28 0.28 0.33
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FIG. 7. Semileptoni® decay form factors as function offor
central values of the LC sum rule parametésslid lines. The
dashed lines give error estimates.

Borel parameters in 3P sum rules is taken td\,b%s (1-2
GeV? for p mesons and3~(5-10 GeV? for B mesons,
with a fixed ratioM§/M2=5. Since for fixed momentum

dl/dt [IV,I21072Ge V!
(=)
-~

dIVdE, [ V121072

R LA AR L AR LA ARA

0.5 1 1.5 2 2.5
E[GeV]

o

FIG. 8. B—pev decay spectraa) spectrum int, (b) spectrum
in the electron energf.. Solid and dashed lines as in Fig. 7.

about the same size as the dependencengnThe depen-
dence on the continuum threshalf is small, provided the
same value is used consistently in the sum ruleffor In
addition to uncertainties in the sum rule parameters, the ac-
curacy of our results is essentially limited by the neglected
higher-twist corrections and radiative corrections. We have
estimated the higher-twist effects féy; in Sec. Il B and
found them to be approximately 15%. This estimate is,
however, preliminary and we have not included the higher-
twist correction in our final results in this section. As for
radiative corrections, we expect them to cancel to some ex-
tent whenf g is expressed as 2P sum ruIeCD()ag) accuracy.
Both sources of uncertainty can be systematically reduced by
calculating the corresponding corrections, which is possible,
but beyond the scope of this paper. Taking everything to-
gether, we think that adding an additionall5% uncertainty
to the above results yields a fair estimate of the true theoret-
ical error.

We thus obtain the following values for the form factors

fractionu the expansion in LC sum rules goes in powers ofy; maximum recoil:

1/(uM3), we make the formal replacemen{17]

M2—M3/(u), where(u)~0.6-0.8 is the average momen-

tum fraction calculated by inserting an additional factor

under the integralseparately for each form factor and for

each value oft), and then taking the intervaN/Iéw(4—8)
GeV?, the same as in the 2P sum rule fgy. The scale of

AB~(0)=0.27+0.01+0.02+ 0.02+0.04,
AB~(0)=0.28+0.01+0.02+ 0.02+0.04,

VB=r(0)=0.35+0.01= 0.03+0.03+0.05, (5.13

condensates and distribution amplitudes in the sum rules for

the form factors isu?=m3—m2.

C. Results and error estimates

where the first error comes from the variation in the Borel
parameter, the second from the uncertaint$.1 GeV in
m,, the third from the uncertainty=0.1 in a‘z*, and the
fourth from the estimated uncertainty because of nonin-

~ Ourfinal results for form factors and spectra are collecteqt|ged higher-twist and radiative corrections. Note that the
in Figs. 6-8. First, we display in Fig. 6 the form factors asg;st three errors are correlated between the form factors. The

functions of the Borel parameter &t 0. The solid lines are
obtained withm,=4.8 GeV 5=34 Ge\?), the dashed
lines withm,=4.7 GeV =35 GeV?), andm,=4.9 GeV

results forA;(0) andV(0) are comparable with those ob-
tained in[17]. In Table | we compare our results to quark
models, adding the errors in quadrature. We have not in-

(s8=33 GeV?), respectively. The curves are remarkably flatcluded the 3P sum rule result,5], since they suffer from
which indicates a good accuracy of the sum rules. The variathe deficiencies discussed in Sec. Ill. A comparison with
tion of ag'i within the specified- 50% range has an effect of lattice results is difficult, as most of them are obtained at
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TABLE Il. Decay rates of thé— u transitions in unit$V,,|?ps *. I', denotes the portion of the rate with
a longitudinal polarizegh andI'; with a transversely polarizegl.

Ref. [(B°—mte ) r'(B°—p*e v) ['(p)/T () I' /Ty
This work - 13.5:4.0 1.5+ 0.5 0.52-0.08
BKR [6] 8.7 - - -
FGM [39] 3.0+0.6 5.4+1.2 - 0.5-0.3
ISGW2[13] 9.6 14.2 1.48 0.3
Jaus[40] 10.0 19.1 1.91 0.82
Melikhov [41] 7.2 9.64 1.34 1.13
WSB [11] 7.4 26 35 1.34

larget>14 GeV? and then extrapolated down te-0 using  conceivable that further calculations may push down this un-
different assumptions on the functional dependenceamd  certainty to +=15% on the spectrum, i.e., about 8% on
theb quark mass. Only foA; the assumed monopole depen- |V,,|, especially ifm, was fixed to better accuracy. Figure
denceA;~1/(m3, —t) is compatible with the scaling law 8(b) also shows that a determination [af,;| from the elec-
Al(o)NmEB/ZI Using that dependence, different lattice col-tron energy spectrum may be more difficult, since it is

laborations have obtained strongly peaked and the position of the maximum thus may
be invisible with presently available experimental resolution.
0.22+0.05 ELC[7], In Ref. [2] the CLEO Collaboration has presented first

results on the branching ratios &— wev and B— pev.

A1(0)=4 0.24+0.12 APE[8], (5.1 Since the given values are to a certain extent model depen-
0.27°397  UKQCD[14]. dent, we refrain from extracting any number fof,,| from
them. This task, we believe, is more appropriate for our ex-
These numbers are quite close to our result. perimental colleagues.

Next, we display in Fig. 7 the behavior of the form factors ~ Integrating up the spectra, we find
in t (solid line9 together with error estimatddashed lines — _
obtained by taking extreme values of the parameters: thel (B°—p e”»)=|V;p/*(13.56£1.0+1.3+0.6+3.6) ps '
upper dashed lines refer tn,=4.7 GeV,M§=4 GeV?, the (5.15
lower dashed lines tm,=4.9 GeV,M3=7 GeV?. We also
show lattice results from the UKQCD Collaboratigdia-
monds, which are in a very good agreement with our results
The plots indicate clearly that the accuracy of our results
larget is worse than that at smal] in particular forA, and
V. However, the contribution oA, andV to the experimen-
tally measurable observables, e.g., the spectrumigkine-
matically suppressed at largeso that large uncertainties in

that region are not relevant phenomenologicédige also the e have given a detailed analysis of existing controver-
discussion beloyv Figure 7 also shows tha; is a slowly  sjes in QCD sum rule calculations of semileptoBies pev
varying function oft, whereasA, and V increase more form factors, which, as we believe, settles this problem. Both
steeply; none of the form factors can be fitted by a monopolgnhe decease of 3P sum rules, which we have exposed, and the
in t as suggested by the pole-dominance hypothesis. In Refemedies which we have suggested, apply to all heavy-to-
[34] it was found that the ratio of form factors takes a simplejight transitions and are equally relevant, e.g., for rare radia-

form in the heavy quark limit supplemented by some modetive decays, where a similar discrepancy between LC and 3P
assumptions. We find that in the full range of physicaur  sum rules was founftL7].

with the same sequence of errors as for the form factors. In
Table Il we also give ratios of partial decay rates which are

independent ofV,,] and may serve as tests of our predic-

ions. To get the ratid’(p)/T" () we have used the result of
[6] obtained by a similar method.

VI. SUMMARY AND CONCLUSIONS

ratio V(t)/A4(t) agrees with the prediction d34] within We have used the recent reanalysispafeson distribu-
4%, whereas\,(t)/A,(t) is by 10% to 20% smaller than that tion amplitudeg18] to improve and update LC sum rules for
predicted. the semileptonic form factors, including first estimates of

Finally, in Fig. 8 we show the spectrdl'/dt and  higher-twist corrections. Our final results for the form fac-
dI'/dE,. Figure 8a) shows the effect mentioned before: al- tors, decay rates, and the spectra are presented in Tables |
though the uncertainty in the form factors increases wjth and Il and in Figs. 7 and 8 together with lattice data and the
the contribution ofA, andV is suppressed and the resulting results of quark models. We have given a detailed analysis of
uncertainty is dominated by the@malley error onA;. The  uncertainties of our approach, with the conclusion that its
uncertainty is maximal at~15 GeV? and amounts to present accuracy is sufficient for a model-independent deter-
*20%  which yields a* 3% accuracy of V| if determined  mination of|V,,| with an error less than 20%.
from that point. Taking into account the additional uncertain- The accuracy of our results can be improved, by calculat-
ties of unknown higher-twist and radiative corrections, weing radiative corrections to the sum rules and higher-twist
estimate that with present knowleddjé,,| may be deter- corrections. Both are possible using existing methods and
mined fromdI'/dt with a theoretical accuracy of 20%. It is could ultimately decrease the uncertainty by a factor of 2, of
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order ~10% in|V|. Yet higher accuracy is, however, not
feasible within the sum rule method.

Note addedWhen this paper was in writing, the work
[43] appeared with a LC sum rule fé " ". In the SU3)
limit their formula agrees with ours(except for the
S-function terms related to continuum subtracjion
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APPENDIX A: CONTINUUM SUBTRACTION
IN LC SUM RULES

The “standard” procedure, to which we conform in this
paper, consists in approximating thenknown physical

spectral function by the perturbative one above some thresh-

old s;, so that

©

K
So

o0

ds
So

pP(s)
s—p° "’

pPMY(s)

N
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f(u)

2
—expg — ——(mg—ut
u uM( b

4

f(u)
mp—t+un,

N 1
I ,—continuum= _ZJ du
M=y,

A—4
+uump)

1

X ex ——1 (m2—ut+uum?)
umM2 b P "
0

(A4)

where Uy is the solution ofc(uo,sg):O with 0<up=<1.
Since in our casé(u) vanishes au=1, one arrives at the
typical structure®/(uM?)+ § that enters Egs(2.25 and

(2.20.

APPENDIX B: 3P SUM RULES WITH TENSOR CURRENT

In this appendix we give the Wilson coefficients entering
the OPE of2#"*, Eq. (3.21). We use the invariant decom-
position

THT=30(9"7p,—9""Py) + X 1 (Pt Py)“(PEP; — PEP,)

+iXy(€ehgPapap, — elppEpipy) + - - -, (B1)

Thus, it is necessary to know the perturbative spectral func-

tion explicitly.
In evaluating the correlation functioi2.12), one encoun-
ters terms of typg¢q=pg—p,, f(u) arbitrary functiorj

1
[mi—(g+up,)?]™

1
In=f0duf(u) (A1)

The dispersive representation Igfis trivial and reads

oo 1
I1=—f2ds jduf(u)
my 0

X S(us—mg—uumi+tu).

1

s—(p,+0)?

(A2)

Putting the upper limit of integration is to sg simply intro-
duces a facton@[c(u,sg)] in the integration oveu. The
functionc is defined after Eq(2.26). For higher powers one
has either to integrate overby parts, or calculate the spec-
tral function by applying consequently two Borel transforma-
tions p2—M? and 1M?—s, see[42,3§ for details. In par-
ticular, forl, we find

uy

~ . 2m2u,, f(u,)
(mp—t+uzm?)?

mi—t+usm?

p
(A3)

"(uy) ,

p1(S)=

whereu, is the solution ofc(u, ,s)=0 inside the interval
O=<u, <1. With this spectral density, performing the con-
tinuum subtraction and the Borel transformationpg, one
obtains, after a suitable change of variables,

where {%,,%,,%y} determines the form factors
{A1,A,,V}. Taking into account perturbation theory, the
qguark and the mixed condensate, as well as the four-quark
condensatéin vacuum saturation approximatiprthe OPE
reads

S zzpert+2(3)<®> +2(5)<®0Gq>+2(6)( — 19—6)a577<a1)2

+oe (B2)

We give explicit formulas for the Borelized expressions
3,(358) and the double spectral function Bf°", such that

pperisb Su 1t)
Sp—P)(Sy— P

>—+ subtractions,

p

EperEf dsbdsJ( )

t
pb™= 872NT2 + 8

3
71_2)\3/2(b-|-_ 2spS,)(T—2b),

pert_

3
P =g ae(DT—=288)) = 7 spib(b+ 2s,)T?

—3s,(b%+2bs,+spS,)T
+2sps,(b%+ 2bs,+ 3spsy)},

pert_

3 3
Py W(bT— 25pSy) —W{szz— 6bsys, T

+2sp5,(b%+3s,5,)}, (B3)

with A=s2+s2+t—2s,5,— 25,t—2s,t, b=s,—m?2, and
T=s,+s,—t. For the nonperturbative terms we obtain
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