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Quarks, squarks, and textures
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By studying symmetric mass textures for the up and down quark sectors, and expanding in a small parameter
N~sinfc, bounds are set on entries commonly assumed to vanish. Consequences bffanfily structure
which can result from horizontal symmetry are examined. Generalizing to squarks, we study suppression of
flavor-changing neutral currents by mass degeneracy and/or small mixing di%§1656-282(97)00309-3

PACS numbeis): 12.60.Jv, 11.30.Hv, 12.10.Dm, 12.15.Ff

I. INTRODUCTION ily structure has the favorable feature that squark degeneracy
among the two families is guaranteed before the breaking of
In the standard model, the Yukawa sector contains théhe horizontal symmetry. In addition, if this symmetry is
majority of the free parameters. Though we have now a reagauged, as is desirable, but its breaking goes through a dis-
sonably good knowledge of the experimental values of theserete subgroup, possibly dangerolsterm contributions
parameters, the flavor theory that may explain the familywhich may lift the squark degeneracy can be avoided and it
structure of the fermions and values of the parameters is stils possible that a model can be built with all the relevant
a major puzzle. In particular, the strong hierarchy among=CNC constraints satisfied.
quark masses and the very nontrivial structure of the Motivated by our supersymmetriSUSY) GUT compat-
Cabibbo-Kobayashi-Maskaw@KM) matrix remains a co- jple horizontal symmetry model buildinfL5,16], we will
nundrum. At a pure phenomenological level, various masgqdress here some features of the quark and squark mass
matrix Ansdze have been proposed. The most popularnairices. In the first part, we derive some more general quark
FritzschAnsatz[1] had to be abandoned as we realized thatyass textures, using a simple algebraic analysis. New texture
the top-quark mass IS above 9(.) GE. Hoyvever, a modi- patterns obtained contain less texture zeros and are therefore
fied verS|or[3’_,4] still holds promise. The FritzcAnsataises less predictive. This is necessary, however, because the RRR
a mass matrix of three symmetric texture zeros for both th . : . . ; e
up- and down-mass matrices, while the modified-Fritach e_xtures are in general incompatible with vertical unification
h\éllth a 2+ 1 Ansatz In the second part, we look at the squark

satzuses one with two. In the latter case, the zeros are at t i d the FCNC traints f iral
11 and 13(31) entries. Having small entries at the locations mass matrices and the contraints from neutral meson

has been shown to yield favorable relations among the mad@iXing, under the perspective of a+2l family structure.
and mixing parametef&]. Recently, the authors of ReB] Qur analysis here is not. constra}lned to GUT scale. RG run-
analyzed all possible symmetric quark mass matrices witfings of quark mass ratios are in general small and not im-
the maximal number of texture zeros. They started by assigrRortant in texture pattern analysis. For the squark masses
ing to the up(or down quark mass matrix any of the six analysis, we actually consider low-energy FCNC constraints.
possible forms of symmetric matrix with an hierarchy of Some discussions and references on the issue is given in our
three nonzero eigenvalues and three texture zeros; they théerizontal symmetry model presentation in Ref6].
examined admissible solutions with maximal number of tex- In the quark mass matrix texture analysis below, our ob-
ture zeros in the corresponding dowor up) quark mass jective is to use a simple algebraic analysis to illustrate how
matrix by fitting the experimental quarks masses and CKMhe textures are constrained by the mass and CKM param-
mixing parameters renormalization groURG) evolved to  eters, and to derive some more general texture patterns. The
the grand unified theoryGUT) scale. Five solutions are analysis allows us to arrive at a wide variety of acceptable
listed[we will refer to them as Ramond-Roberts-RBRR)  texture solutions which are phenomenologically viable. Our
textureﬁ, with five texture zeros and a hierarchical form with solutions are Compatib|e and include as Specia| cases all the
matrix entries expressed as leading-order powers ofive-zero RRR-texture solutions and serve as natural gener-
A =sinfc~0.22[7]. alizations of them. This leads us to believe that we do not
On the other hand, interest in the use of horizontal symmjss any interesting texture pattern. However, no attempt has
metry to derive a phenomenologically viable quark mass texheen made to prove that the textures derived here are the

ture has been resurrected recenBy-16], partly motivated  only possible ones under the assumptions, nor do we make
by the possibility of obtaining simultaneously appropriately sych a claim.

constrained squarksoft) masg$-squaregl matrices, in the

place of an assumed universality condition, for satisfying the

relevant flavor-changing neutral curreififRCNC) constraints Il. OUARK MASS MATRIX TEXTURES

[17,18. An SU(2) [or U(2)] horizontal symmetry with the -Q

lighter two families forming a doublet has then been advo- We consider a symmetric hierarchical mass matrix given
cated by some authof$1,13,15-17,19-91This 2+1 fam-  as
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Note that for the mass eigenvalue expressions, (Ex.we
have chosen to display the principal terms from each entry to
' D the matrix, not just the possible overall leading order terms.
For instancex?/a cannot be an overall leading order term
for the middle eigenvalue as the same term contributes to the
wherea, ¢, x, andy<\ (of order\", n=1). We have thus smallest eigenvalue.
assumed only one zero in each mass matrix. The dhiryis The result can then be applied to both the up- and down-
the one that is most commonly believed to be small. Assumguark mass matrices. We také&"(diag) andVZ as given by
ing it is zero here simplifies our analysis. We will later showthe above equations ard(diag) and V(Tj as given by ana-
limits on the entry that can be admitted without upsetting oulogue equations witha, x, c, and y replaced by
texture pattern solutions. Starting with the only order oney’, x', c’, andy’; with the masses normalized =1 and
entry Ma3, we put in the small entries and obtain the threem, =1 respectively. In addition to the expressions for the
eigenvalues together with the diagonalizing matik  mass eigenvalues, we have also the elements of the CKM
throqgh a perturbati(_)nal approach. For all the numbess, matrix NCKM:VuVD? all these parameters can be derived
are interested only in their approximate values as repre-from experimental measurements and expressed in powers of
sented by orders im, hence we keep only potentially ) [ 10]. Assuming no delicate cancellation of numbers in
leading-order terms. the expressions of the mass eigenvalues and mixings, at least
We put ina andx first, and therc andy, the latter as @ gone term in each must be of the right ordeminHence we
perturbation to the diagonalized matrix from the former. Wegrive at the following list of constraints(1) x(x/a),
have then (y—cxia)®’<\8 (20 ac’=\% (3 x'(x'/a),
(y'—c'x'[a’)?<\* (4) a',c'’<\?% (5 xla,x'la'<\;
0 x vy (6) c,c’s<\? (7) y',.c'x'/a’,c'xla,cx'/a’<N3(~\%),
VMVI=V,v,| x a c|viv} where at least one term in each case must satisfy the equality,
y ¢ 1

0 x vy
M=| X a ¢
y ¢ 1

rather than inequality. In the last three constraints, which are

from the CKM mixings, we have left out terms whose mag-
—x2/a 0 y—cx/a nitudes have an upper bound already more strongly con-
strained by the mass matrices. Combining the condifia@k

~Vz 0 a+x’/a ¢ V3 then leads to
y—cx/a c 1
~M(diag), @ a’'~\?%, x'~\3 a~\*
1 w/a 0 Wit?::;z flqllowing solutions.
Vi~| -xa 1 0}, (3) '
0 0 1 (=\8) A& =<)\®
Mu~| N® AN or
and <\5 N2 1
1 0 y—cx/a .
Vi~ 0 1 dl-a)|. @ (SA% =A%

MU~ <AB A% A2
A4 A1

—(y—cx/a) —cl(1—a) 1

Here we note that in the first step, wherds treated as a
perturbationx must be taken smaller than(i.e., x is at least (=AY A3 =8
one order higher in\). We take this assumption here and

e SYE o Mi~| A3 A2 =A%
leave the alternative situation to be handled later. Specifi- 5 ) '
cally, we assuma=\2 andx/a<N\. The final result is s\ =A 1

1 x/a (y—cx/a) Case 2
fo vyl — _
Vi=VviVv, x/a 1 c—yx/a |, (<28 A8 =pd
—(y—cx/a) —(c—yx/a) 1

. X c c
M (diag) ~ —Z Yy ¢y ,a+——1_a,1+ —a (=28 =A6 A
x| 2 Mu~[ <A® A% =A%,
+tly—c3 ] (6) N <)\2
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(=AY A% =<\® 0 X—Cy XCty
Mia~| A% A2 N | VMV'=V,V MVIVI~V,| x-cy —-c*+a 0 |V}
<A A% 1 xc+y 0 1
Note that theM; entries are limits, put i posteriori ~M(diag), ()
that can be allowed without upsetting the solutions. Allowing
any M (, entry to take its maximum value to begin with will, 1 0 0
however, modify the constraints. t 0 1
Alternatively, one can put ik anda first, and therx and Vi~ cl ®)
y. We have then 0 —-c 1
|
1 —(x—cy)/(c®—a) (xct+y)/(1+c?)
Vi~| (x—cy)/(c®~a) 1 0 , (9)
—(xc+y)/(1+c?) 0
|
and placing a zero with an entry higher order inthan all the

other entries in the matrix will not upset the solution. We see
that without the prior assumption of the existence of many
texture zeros, some of the small entries in the mass matrices
can actually be much larger than one would expect them to

(x—cy)® (xct+y)?  , (x—cy)?

_ _ _ 2
(F=a)  (1+cd) ¢ qzg it

M(diag)~{

(xcty)? be, from naively applying the RRR textures. This would be
. (10 . o :
(1+c¢c9) of interest from the model building perspective.

For a detail comparison, first we note that our result gives
Here we aim at alternative texture patterns that need nai down-quark mass matrix always in the form
satisfy x/a<\. Hence, we consider only the case with
a<c? (at least one higher order in). Note that we need LD S
alsox/c?,y/lc<\ for the perturbational approximation to be Ma~[ A3 A2 = (12)
valid. Taking these expressions ft¥(diag) andV| and the
previous result for the down sector to repeat the analysis, we
obtain an alternative texture pattern as

* * 1

while the common structure for all the RRR textures has the

Case 3: form
(=A%) A° =\ N
6 5 2
Mu~ A SO A de )\4 )\3 * ] (12)
<\* \? 1 * %1
(=A) A% =3 A power of X analysis of the latter form gives
Md’\" )\3 )\2 = 2
Md4(diag ~{r% 3,1} (13

_ _ _ instead of the more popular
Compared with the previous result, one can see easily that

taking this alternative approach #d¢ (i.e., a’<c’?) does M9(diag) ~{\* N2, 1} (14)
not lead to any consistent solution. Starting from simple as-
sumptions, therefore, we have succeeded in deriving théhat we used. It can be checked easily that if we started by
above hierarchical mass texture patte@3,24. putting the formemv d(diag) into constraints 3 and 4 in our
Here we compare our result with the RRR textures. Undist, all of our analysis would go through with the only modi-
like the latter, we do not have to go through a detailed nufication in our solutions given by changimg® to the form of
merical analysis. However, we start with a much more genEq. (11). Recall that\ ~0.22, and order one coefficients are
eral form for the mass matrices and show that the simpl@llowed in all the terms. Large coefficients would easily
algebraic analysis is powerful enough for us to obtain thechange the order of the result. This kind of ambiguity is
various texture patterns, with undetermined coefficients ofinfortunately unavoidable in the type of orderNranalysis.
order unity. The texture patterns are in a sense generalizdhe approach is a useful one for obtaining mass marix
tions of the RRR textures. Note that in the latter analysis theaze or textures[25] but not exact results. To further our
zeros in general do not have to be exact. For instance, re&somparison, we will assume this alternativi' solution for
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all three cases. Then, the only apparent conflict of Mr We first take a rotation to diagonalize the upper two by
results with the RRR textures is that the 23/32 entry in caséwo block and add in the rest by a perturbational analysis:
2 is fixed atA?, while the correspondent entry in RRR tex- —

tures, if not zero, is given bx®. However, there is a large a-x 0
coefficient of 4 from their numerical analysis. Hence a coef-  ypm2yt=y v M2vivi~V,[ 0 a+X
ficient a bit smaller than one for our case would reconcile the ~ -
difference. A conflict appears in the limiting form of case 3, y ¢
which indicates that a six-zero texture pattern is admitted by ~M2(diag) (17)
the naive algebraic analysis, while six-zero cases are ruled

out in the RRR analysis. This particular six-zero pattern acyjth

tually remains a very popular candiddt6]. Putting in a

A3 term for the 23/32 entry oM® while keeping the other 12 142 0

zeros, however, does give one of the RRR textures. Other-

wise, the other RRR textures all fit in with our patterns. V$= —1N2 182 0], (18)
Detailed numerical analysis is of course useful to further 0 0 1

establishing the viablity of the texture patterns obtained here.

Nevertheless, so far as a texture pattern with less zeros fgen

concerned, the extra coefficients definitely give more flex- —
ibility for fitting the experimental parameters. Hence we do 1 0 yl(b—a+Xx)
expect these texture patterns to be valid, except possibly théyf 0 1 T(b-3-X)
six-zero texture.

Vi

ol ol <l

~V/(b-3+%) -T/(b-3-X) 1
IIl. SQUARK MASS MATRICES (19

AND FCNC CONSTRAINTS and

Now we turn to the scalar quark sector and look into how
a 2+1 family structure fits into the squark mediated FCNC
contraints from neutral meson mixings. First note that the
squark mass matricell'? and M9 are each divided into
four 3X 3 submatrices as T2
MUz u2 Md2 a2 b+5—a—x+’5—5+3€' (20)
. LL LR . LL LR
w_| ~ ~ —~
M (MR Mgg/’ M (M{RT Mg/ Note that the difference~¢b—3) between the third and the
(15) first or second eigenvalues, is of order dgirem?), while the
degeneracy between the first and second eigenvalues is lifted
The leading contributions to the off-diagonal blocks ariseby
from the trilinearA terms, while the leading contributions to _ e
the diagonal blocks arise from the soft mass terms. The latter AfE,~2X-T 24y 2. (21)
dominate over the former, and can generally lead to unac- ) )
ceptably large FCNC effect in neutral meson mixing when The other quantity that affects the FCNC is the squark
universality of soft masses is not imposed. Hence they arB1ass mixing matrix which, in the diagonal quark mass basis,
our subject of concern hef@7]. We start by considering the IS generally expressed as
following (diagonal block mass matrix for general squarks:

> 2
M2(diag ~ 2] F—X— ~—e—
b—a

’62
+X -a-

A+ X—=———2,
b X

K=VV". (22)
a X T+HY)/ V2
- _ _ (~ Z) \/— To be specific, this includes
M2=72 X a C-V2 |, N N
C+PI2 EP2 b KI=VIVE', KR=VRVR',

(16) ~ ~

- KE=VIVIT, Ka=Vave', (23
wherea,b are order 1 and,X,y<N\. Note that order 1 quan- _
tities are expected for the diagonal entries as the correspoand theV's andV'’s are diagonalizing matices for quarks,
dent mass terms are naturally invariant under any horizontal
symmetry. Equality of the first two diagonal entries is dic- viIMava=M(diag, VIMUVYE=MY(diag, (24)
tated by the 2-1 structure which we are interested in here.
The symmetry structure also suggests that any higher dime@nd for squarks,
sional, horizontal symmetry breaking, mass term naturally - - ~ —_~ o~ ~
gives the same contributions to the two entries, and hence ViIM{{V{T=M{?(diag, VEMRRVE'=ME(diag),
lifting in degeneracy of the two mass eigenvalues can be _ _ _ B o B
Eattr]ibuted to only the contributions of the nondiagonal terms ~ VI'M2V{T=M2(diag), VEME&RVE =Mtx(diag). 5
28|. 5
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We will, however, suppress subscripts and superscriptghere we have replaceﬁ—'é by 1 and keep only the

wherever unambiguous. would-be leading order terms. However, if we start with
Taking the hierarchical form of1, as for example given
by one of our texture pattern solutions, we have al2+x a/2 (c+y)/\2
M = al2 al2—x  (c—y)\2
K=(VaV)VEV § (C+y)N2 (c-y)i2 1
112 1N2  T2-y+cxa 0 x vy
~| —w2 2 TV2-c |, =Vg| X a ¢V, (27)
—c/\2-Y cl\2-T 1 y ¢ 1

(26) then we have

1 —x/a+cy+cCy Yy-—y+cx/a—cx/a
K=(V,V)VoViVi~| xla—cy+cy 1 T—ctyxatyxia |, (29
y—y—cx/a c—c—yxa 1

Compare the two expressions. One can see that the latterork, the symmetric nature df1" and the need to have a
case gives, in general, smaller mixings. relatively largeV,s make our partial alignment appear as the
From the perspective of horizontal symmetry, while a hi-best option for suppression &;,. The necessary suppres-
erarchical quark mass matrix rank one in first order, can be&ion ofK,; or K3; can be easily obtained even without align-
easily enforced, squark mass matridE%L and MéR natu- ment. Quark mass matricgs in this form Fogether with the
rally have all their diagonal entries of order one. Unless they€duired squark mass matrices can be derived naturally from
are part of the same multiplet, equality of the diagonal® Qan Symmetry[16]. , _
squark mass entries does not come naturally. Our choice of -6t Us complete the analysis by taking a look at the FCNC

diagonal entries is dictated by+21 family structure. The constraints _frqm the_ n_eutral meson mixkRy) an_d how they
degeneracy is of course lifted by the off-diagonal entries® an. be fsatlsKﬂeKin;PgnB_our' f'ramewl\—(z)(rjl; Forbmstance, an-
The first observation here is that when a degeneracy will b traints ironK-K andB-B mixing onM| can be expresse

y an upper bound on

lifted by perturbation, the resultant eigenstates are naturall

given by a maximal mixing, and hence by the firsk2

block in Egs.(18) and (26). 1
In the quark-squark alignmerQSA) approach[10,18, (81)10= =5 (MK 1 K], + MaK 1 KT+ 3K 1 KL) (29)

one gives up the squark mass degeneracy requirement for m

FCNC suppression. If the quark and squark mass matrices

could be almost diagonalized simultaneously, the mixingand

matrix K would have small off-diagonal elements and hence

give the necessary FCNC suppression. However, there is 1

alsono easy way to obtain such a result from a horizontal =2 t =2 t o2 T

symmetry. As shown above, the degeneracy approach goes (00137 =5 (MIK1iK g+ MK 1K oot g 12K 3g),

to the other extreme, in favor of maximum mixing, for the (30

lighter two generations in our case. After all, in first order

form the quark and squark mass matri_ces are gxpected to ti’gspectively, wheref?ﬁi2 are the three eigenvalues aKdis

very different. Is there a way to reconcile this with the QSA? A ATt e T . .

Within the 2+ 1 family structure, quark mass matrices of the 2¢tually KLZ\(%VL with V| being the unitary matrix that

form given by Eq.(27) seem to give the answer. The first diagonalizeM i . All the numerical bounds of the type are

order mixing inK,, is removed, as shown in Eq8). shown in Table I. WitI‘KE=VEVET given by the form in Eq.
The form of the quark mass matrix can be described a$28), the above analysisx(/a’~\) leads to

democratic in the first two families and hierarchical between

them and the third. It takes only a simultaneous rotation of d\ _Am dy N (oY= 2,.T2

MY and MY given by any of the abovgphenomenologically (O )22~ AMAK )12~ M2X =€ T4y 5 S

viable) hierarchical texture patterns By, to give a pair of

matrices in this desired form. We consider it an interestingvhich gives the boundk,c 2y ?<\3. The case for the

alternative ofpartial quark-squark alignment. In particular, (5ﬂ|_) 13 constraint looks more complicated. However, if we

in the SU5) unification or a 2+1 family structure frame- takec<\?2 andy=<\3, we would have
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TABLE I. FCNC constraints from neutral meson mixings. The

numerical bounds are given as an illustrative set of valfiesn
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TABLE II. Details of the constraints on our squark mass matrix
parameters. A special point to note is that we impose only the

Ref. [18]), details of which depend on gaugino and squark masseq.8,,) and (Sgg) constraints from Table I, but not t&) ones. For

Necessary suppressions in powers\adire also given.

the case of 6%,), it actually leads to a stronger constraint. QSA
stands for quark-squark alignment; partial QSA as described in the

K-K mixing (6% )12 (6%R) 12 (8% text has quark mass matrices of the form given by @@).
Upper bound 0.05 0.05 0.006 With partial QSA Without partial QSA
o A3 A3 A MﬁvagZR Y<)\3 T<\? V<X2 T<\* T=\2 'g;g)\z
B-B mixing (8013 (0%R)13 (5% - - _ _ _ ~ - ~
MU2 MU X<\ T2sN yZsh X=<N\? Ts=)\ Y=\
Upper bound 0.1 0.1 0.04
A2 A2 A2
D-D mixin s P P Thls |IIus_tra}tes how sufficient FCNC suppression can be
ing (0 )2z (9re12 (012 obtained within this scheme. Details of the various con-
Upper bound 0.1 0.1 0.04 straints on the parameters in the squark mass matrix of the
A2 A2 \? form given by Eq.(16) are listed in Table Il. For an explicit
application of the kind of algebraignsatzpresented here,
readers are referred to o@,®U(1) horizontal symmetry
1 A3 model built along the patterfi6].
2
K~ A N (32)

giving easily (6‘EL)13$}\3, for example.
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