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By studying symmetric mass textures for the up and down quark sectors, and expanding in a small parameter
l;sinuC , bounds are set on entries commonly assumed to vanish. Consequences of a 211 family structure
which can result from horizontal symmetry are examined. Generalizing to squarks, we study suppression of
flavor-changing neutral currents by mass degeneracy and/or small mixing angles.@S0556-2821~97!00309-3#
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I. INTRODUCTION

In the standard model, the Yukawa sector contains the
majority of the free parameters. Though we have now a rea-
sonably good knowledge of the experimental values of these
parameters, the flavor theory that may explain the family
structure of the fermions and values of the parameters is still
a major puzzle. In particular, the strong hierarchy among
quark masses and the very nontrivial structure of the
Cabibbo-Kobayashi-Maskawa~CKM! matrix remains a co-
nundrum. At a pure phenomenological level, various mass
matrix Ansätze have been proposed. The most popular
FritzschAnsatz@1# had to be abandoned as we realized that
the top-quark mass is above 90 GeV@2#. However, a modi-
fied version@3,4# still holds promise. The FritzchAnsatzuses
a mass matrix of three symmetric texture zeros for both the
up- and down-mass matrices, while the modified-FritzchAn-
satzuses one with two. In the latter case, the zeros are at the
11 and 13~31! entries. Having small entries at the locations
has been shown to yield favorable relations among the mass
and mixing parameters@5#. Recently, the authors of Ref.@6#
analyzed all possible symmetric quark mass matrices with
the maximal number of texture zeros. They started by assign-
ing to the up~or down! quark mass matrix any of the six
possible forms of symmetric matrix with an hierarchy of
three nonzero eigenvalues and three texture zeros; they then
examined admissible solutions with maximal number of tex-
ture zeros in the corresponding down~or up! quark mass
matrix by fitting the experimental quarks masses and CKM
mixing parameters renormalization group~RG! evolved to
the grand unified theory~GUT! scale. Five solutions are
listed@we will refer to them as Ramond-Roberts-Ross~RRR!
textures#, with five texture zeros and a hierarchical form with
matrix entries expressed as leading-order powers of
l5sinuC;0.22 @7#.

On the other hand, interest in the use of horizontal sym-
metry to derive a phenomenologically viable quark mass tex-
ture has been resurrected recently@8–16#, partly motivated
by the possibility of obtaining simultaneously appropriately
constrained squark~soft! mass~-squared! matrices, in the
place of an assumed universality condition, for satisfying the
relevant flavor-changing neutral current~FCNC! constraints
@17,18#. An SU~2! @or U~2!# horizontal symmetry with the
lighter two families forming a doublet has then been advo-
cated by some authors@11,13,15–17,19–21#. This 211 fam-

ily structure has the favorable feature that squark degeneracy
among the two families is guaranteed before the breaking of
the horizontal symmetry. In addition, if this symmetry is
gauged, as is desirable, but its breaking goes through a dis-
crete subgroup, possibly dangerousD-term contributions
which may lift the squark degeneracy can be avoided and it
is possible that a model can be built with all the relevant
FCNC constraints satisfied.

Motivated by our supersymmetric~SUSY! GUT compat-
ible horizontal symmetry model building@15,16#, we will
address here some features of the quark and squark mass
matrices. In the first part, we derive some more general quark
mass textures, using a simple algebraic analysis. New texture
patterns obtained contain less texture zeros and are therefore
less predictive. This is necessary, however, because the RRR
textures are in general incompatible with vertical unification
with a 211 Ansatz. In the second part, we look at the squark
mass matrices and the FCNC contraints from neutral meson
mixing, under the perspective of a 211 family structure.
Our analysis here is not constrained to GUT scale. RG run-
nings of quark mass ratios are in general small and not im-
portant in texture pattern analysis. For the squark masses
analysis, we actually consider low-energy FCNC constraints.
Some discussions and references on the issue is given in our
horizontal symmetry model presentation in Ref.@16#.

In the quark mass matrix texture analysis below, our ob-
jective is to use a simple algebraic analysis to illustrate how
the textures are constrained by the mass and CKM param-
eters, and to derive some more general texture patterns. The
analysis allows us to arrive at a wide variety of acceptable
texture solutions which are phenomenologically viable. Our
solutions are compatible and include as special cases all the
five-zero RRR-texture solutions and serve as natural gener-
alizations of them. This leads us to believe that we do not
miss any interesting texture pattern. However, no attempt has
been made to prove that the textures derived here are the
only possible ones under the assumptions, nor do we make
such a claim.

II. QUARK MASS MATRIX TEXTURES

We consider a symmetric hierarchical mass matrix given
as
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M5S 0 x y

x a c

y c 1
D , ~1!

wherea, c, x, andy<l ~of orderln, n>1). We have thus
assumed only one zero in each mass matrix. The entryM11 is
the one that is most commonly believed to be small. Assum-
ing it is zero here simplifies our analysis. We will later show
limits on the entry that can be admitted without upsetting our
texture pattern solutions. Starting with the only order one
entryM33, we put in the small entries and obtain the three
eigenvalues together with the diagonalizing matrixV
through a perturbational approach. For all the numbers,we
are interested only in their approximate values as repre-
sented by orders inl, hence we keep only potentially
leading-order terms.

We put ina andx first, and thenc andy, the latter as a
perturbation to the diagonalized matrix from the former. We
have then

VMV†5V2V1S 0 x y

x a c

y c 1
D V1

†V2
†

;V2S 2x2/a 0 y2cx/a

0 a1x2/a c

y2cx/a c 1
D V2

†

;M ~diag!, ~2!

V1
†;S 1 x/a 0

2x/a 1 0

0 0 1
D , ~3!

and

V2
†;S 1 0 y2cx/a

0 1 c/~12a!

2~y2cx/a! 2c/~12a! 1
D . ~4!

Here we note that in the first step, wherex is treated as a
perturbation,x must be taken smaller thana ~i.e.,x is at least
one order higher inl). We take this assumption here and
leave the alternative situation to be handled later. Specifi-
cally, we assumex<l2 andx/a<l. The final result is

V†5V1
†V2

†;S 1 x/a ~y2cx/a!

2x/a 1 c2yx/a

2~y2cx/a! 2~c2yx/a! 1
D ,
~5!

M ~diag!;H 2
x2

a
2S y2c

x

aD
2

,a1
x2

a
2

c2

12a
,11

c2

12a

1S y2c
x

aD
2J . ~6!

Note that for the mass eigenvalue expressions, Eq.~6!, we
have chosen to display the principal terms from each entry to
the matrix, not just the possible overall leading order terms.
For instance,x2/a cannot be an overall leading order term
for the middle eigenvalue as the same term contributes to the
smallest eigenvalue.

The result can then be applied to both the up- and down-
quark mass matrices. We takeMu~diag! andVu

† as given by
the above equations andMd~diag! andVd

† as given by ana-
logue equations with a, x, c, and y replaced by
a8, x8, c8, andy8; with the masses normalized tomt51 and
mb51 respectively. In addition to the expressions for the
mass eigenvalues, we have also the elements of the CKM
matrix (VCKM5VuVd

†); all these parameters can be derived
from experimental measurements and expressed in powers of
l @6,10#. Assuming no delicate cancellation of numbers in
the expressions of the mass eigenvalues and mixings, at least
one term in each must be of the right order inl. Hence we
arrive at the following list of constraints:~1! x(x/a),
(y2cx/a)2<l8; ~2! a,c2<l4; ~3! x8(x8/a8),
(y82c8x8/a8)2<l4; ~4! a8,c82<l2; ~5! x/a,x8/a8<l;
~6! c,c8<l2; ~7! y8,c8x8/a8,c8x/a,cx8/a8<l3(;l4),
where at least one term in each case must satisfy the equality,
rather than inequality. In the last three constraints, which are
from the CKM mixings, we have left out terms whose mag-
nitudes have an upper bound already more strongly con-
strained by the mass matrices. Combining the conditions@22#
then leads to

a8;l2, x8;l3, a;l4,

with the following solutions.
Case 1:

Mu;S ~<l8! l6 <l5

l6 l4 l2

<l5 l2 1
D or

Mu;S ~<l8! <l6 l4

<l6 l4 l2

l4 l2 1
D ,

Md;S ~<l4! l3 <l3

l3 l2 <l2

<l3 <l2 1
D ;

Case 2

Mu;S ~<l8! l6 <l4

l6 l4 <l2

<l4 <l2 1
D or

Mu;S ~<l8! <l6 l4

<l6 l4 <l2

l4 <l2 1
D ,
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Md;S ~<l4! l3 <l3

l3 l2 l2

<l3 l2 1
D .

Note that theM11 entries are limits, put ina posteriori,
that can be allowed without upsetting the solutions. Allowing
anyM11 entry to take its maximum value to begin with will,
however, modify the constraints.

Alternatively, one can put inc anda first, and thenx and
y. We have then

VMV†5V2V1MV1
†V2

†;V2S 0 x2cy xc1y

x2cy 2c21a 0

xc1y 0 1
D V2

†

;M ~diag!, ~7!

V1
†;S 1 0 0

0 1 c

0 2c 1
D , ~8!

V2
†;S 1 2~x2cy!/~c22a! ~xc1y!/~11c2!

~x2cy!/~c22a! 1 0

2~xc1y!/~11c2! 0 1
D , ~9!

and

M ~diag!;H ~x2cy!2

~c22a!
2

~xc1y!2

~11c2!
,a2c22

~x2cy!2

~c22a!
,11c2

1
~xc1y!2

~11c2! J . ~10!

Here we aim at alternative texture patterns that need not
satisfy x/a<l. Hence, we consider only the case with
a!c2 ~at least one higher order inl). Note that we need
alsox/c2,y/c<l for the perturbational approximation to be
valid. Taking these expressions forMu~diag! andVu

† and the
previous result for the down sector to repeat the analysis, we
obtain an alternative texture pattern as

Case 3:

Mu;S ~<l8! l6 <l4

l6 <l5 l2

<l4 l2 1
D

Md;S ~<l4! l3 <l3

l3 l2 <l2

<l3 <l2 1
D .

Compared with the previous result, one can see easily that
taking this alternative approach toMd ~i.e., a8!c82) does
not lead to any consistent solution. Starting from simple as-
sumptions, therefore, we have succeeded in deriving the
above hierarchical mass texture patterns@23,24#.

Here we compare our result with the RRR textures. Un-
like the latter, we do not have to go through a detailed nu-
merical analysis. However, we start with a much more gen-
eral form for the mass matrices and show that the simple
algebraic analysis is powerful enough for us to obtain the
various texture patterns, with undetermined coefficients of
order unity. The texture patterns are in a sense generaliza-
tions of the RRR textures. Note that in the latter analysis the
zeros in general do not have to be exact. For instance, re-

placing a zero with an entry higher order inl than all the
other entries in the matrix will not upset the solution. We see
that without the prior assumption of the existence of many
texture zeros, some of the small entries in the mass matrices
can actually be much larger than one would expect them to
be, from naively applying the RRR textures. This would be
of interest from the model building perspective.

For a detail comparison, first we note that our result gives
a down-quark mass matrix always in the form

Md;S * l3 *

l3 l2 *

* * 1
D , ~11!

while the common structure for all the RRR textures has the
form

Md;S * l4 *

l4 l3 *

* * 1
D . ~12!

A power ofl analysis of the latter form gives

Md~diag!;$l5,l3,1% ~13!

instead of the more popular

Md~diag!;$l4,l2,1% ~14!

that we used. It can be checked easily that if we started by
putting the formerMd~diag! into constraints 3 and 4 in our
list, all of our analysis would go through with the only modi-
fication in our solutions given by changingMd to the form of
Eq. ~11!. Recall thatl;0.22, and order one coefficients are
allowed in all the terms. Large coefficients would easily
change the order of thel result. This kind of ambiguity is
unfortunately unavoidable in the type of order inl analysis.
The approach is a useful one for obtaining mass matrixAn-
sätze or textures@25# but not exact results. To further our
comparison, we will assume this alternativeMd solution for
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all three cases. Then, the only apparent conflict of ourMd

results with the RRR textures is that the 23/32 entry in case
2 is fixed atl2, while the correspondent entry in RRR tex-
tures, if not zero, is given byl3. However, there is a large
coefficient of 4 from their numerical analysis. Hence a coef-
ficient a bit smaller than one for our case would reconcile the
difference. A conflict appears in the limiting form of case 3,
which indicates that a six-zero texture pattern is admitted by
the naive algebraic analysis, while six-zero cases are ruled
out in the RRR analysis. This particular six-zero pattern ac-
tually remains a very popular candidate@26#. Putting in a
l3 term for the 23/32 entry ofMd while keeping the other
zeros, however, does give one of the RRR textures. Other-
wise, the other RRR textures all fit in with our patterns.
Detailed numerical analysis is of course useful to further
establishing the viablity of the texture patterns obtained here.
Nevertheless, so far as a texture pattern with less zeros is
concerned, the extra coefficients definitely give more flex-
ibility for fitting the experimental parameters. Hence we do
expect these texture patterns to be valid, except possibly the
six-zero texture.

III. SQUARK MASS MATRICES
AND FCNC CONSTRAINTS

Now we turn to the scalar quark sector and look into how
a 211 family structure fits into the squark mediated FCNC
contraints from neutral meson mixings. First note that the
squark mass matricesM̃u2 and M̃d2 are each divided into
four 333 submatrices as

M̃u25S M̃LL
u2 M̃LR

u2

~M̃LR
u2 !† M̃RR

u2 D , M̃d25S M̃LL
d2 M̃LR

d2

~M̃LR
d2 !† M̃RR

d2 D .
~15!

The leading contributions to the off-diagonal blocks arise
from the trilinearA terms, while the leading contributions to
the diagonal blocks arise from the soft mass terms. The latter
dominate over the former, and can generally lead to unac-
ceptably large FCNC effect in neutral meson mixing when
universality of soft masses is not imposed. Hence they are
our subject of concern here@27#. We start by considering the
following ~diagonal block! mass matrix for general squarks:

M̃25m̃2S ã x̃ ~ c̃1 ỹ!/A2
x̃ ã ~ c̃2 ỹ!/A2

~ c̃1 ỹ!/A2 ~ c̃2 ỹ!/A2 b̃
D ,

~16!

whereã,b̃ are order 1 andc̃,x̃,ỹ<l. Note that order 1 quan-
tities are expected for the diagonal entries as the correspon-
dent mass terms are naturally invariant under any horizontal
symmetry. Equality of the first two diagonal entries is dic-
tated by the 211 structure which we are interested in here.
The symmetry structure also suggests that any higher dimen-
sional, horizontal symmetry breaking, mass term naturally
gives the same contributions to the two entries, and hence
lifting in degeneracy of the two mass eigenvalues can be
attributed to only the contributions of the nondiagonal terms
@28#.

We first take a rotation to diagonalize the upper two by
two block and add in the rest by a perturbational analysis:

ṼM̃2Ṽ†5Ṽ0V0M̃
2V0

†Ṽ0
†;Ṽ0S ã2 x̃ 0 ỹ

0 ã1 x̃ c̃

ỹ c̃ b̃
D Ṽ0

†

;M̃2~diag! ~17!

with

V0
†5S 1/A2 1/A2 0

21/A2 1/A2 0

0 0 1
D , ~18!

then

Ṽ0
†;S 1 0 ỹ/~ b̃2ã1 x̃!

0 1 c̃/~ b̃2ã2 x̃!

2 ỹ/~ b̃2ã1 x̃! 2 c̃/~ b̃2ã2 x̃! 1
D
~19!

and

M̃2~diag!;m̃2H ã2 x̃2
ỹ 2

b̃2ã1 x̃
,ã1 x̃2

c̃2

b̃2ã2 x̃
,

b̃1
c̃ 2

b̃2ã2 x̃
1

ỹ 2

b̃2ã1 x̃
. ~20!

Note that the difference (;b̃2ã) between the third and the
first or second eigenvalues, is of order one~in m̃2), while the
degeneracy between the first and second eigenvalues is lifted
by

Dm̃12
2 ;2x̃2 c̃ 21 ỹ 2. ~21!

The other quantity that affects the FCNC is the squark
mass mixing matrix which, in the diagonal quark mass basis,
is generally expressed as

K5VṼ†. ~22!

To be specific, this includes

KL
d5VL

dṼL
d† , KR

d5VR
dṼR

d† ,

KL
u5VL

uṼL
u† , KR

u5VR
uṼR

u† , ~23!

and theV’s and Ṽ’s are diagonalizing matices for quarks,

VL
dMdVR

d†5Md~diag!, VL
uMuVR

u†5Mu~diag!, ~24!

and for squarks,

ṼL
dM̃LL

d2ṼL
d†5M̃LL

d2~diag!, ṼR
dM̃RR

d2 ṼR
d†5M̃RR

d2 ~diag!,

ṼL
uM̃LL

u2ṼL
u†5M̃LL

u2~diag!, ṼR
uM̃RR

u2 ṼR
u†5M̃RR

u2 ~diag!.
~25!
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We will, however, suppress subscripts and superscripts
wherever unambiguous.

Taking the hierarchical form ofM , as for example given
by one of our texture pattern solutions, we have

K5~V2V1!V0
†Ṽ 0

†

;S 1/A2 1/A2 c̃/A22y1cx/a

21/A2 1/A2 c̃/A22c

2c/A22 ỹ c/A22 c̃ 1
D ,

~26!

where we have replacedb̃2ã by 1 and keep only the
would-be leading order terms. However, if we start with

M5S a/21x a/2 ~c1y!/A2
a/2 a/22x ~c2y!/A2

~c1y!/A2 ~c2y!/A2 1
D

5V0
†S 0 x y

x a c

y c 1
D V0 , ~27!

then we have

K5~V2V1!V0V0
†Ṽ0

†;S 1 2x/a1cy1 c̃y ỹ2y1cx/a2 c̃x/a

x/a2cy1cỹ 1 c̃2c1yx/a1 ỹx/a

y2 ỹ2cx/a c2 c̃2yx/a 1
D . ~28!

Compare the two expressions. One can see that the latter
case gives, in general, smaller mixings.

From the perspective of horizontal symmetry, while a hi-
erarchical quark mass matrix rank one in first order, can be
easily enforced, squark mass matricesM̃LL

2 and M̃RR
2 natu-

rally have all their diagonal entries of order one. Unless they
are part of the same multiplet, equality of the diagonal
squark mass entries does not come naturally. Our choice of
diagonal entries is dictated by 211 family structure. The
degeneracy is of course lifted by the off-diagonal entries.
The first observation here is that when a degeneracy will be
lifted by perturbation, the resultant eigenstates are naturally
given by a maximal mixing, and hence by the first 232
block in Eqs.~18! and ~26!.

In the quark-squark alignment~QSA! approach@10,18#,
one gives up the squark mass degeneracy requirement for
FCNC suppression. If the quark and squark mass matrices
could be almost diagonalized simultaneously, the mixing
matrixK would have small off-diagonal elements and hence
give the necessary FCNC suppression. However, there is
also no easy way to obtain such a result from a horizontal
symmetry. As shown above, the degeneracy approach goes
to the other extreme, in favor of maximum mixing, for the
lighter two generations in our case. After all, in first order
form the quark and squark mass matrices are expected to be
very different. Is there a way to reconcile this with the QSA?
Within the 211 family structure, quark mass matrices of the
form given by Eq.~27! seem to give the answer. The first
order mixing inK12 is removed, as shown in Eq.~28!.

The form of the quark mass matrix can be described as
democratic in the first two families and hierarchical between
them and the third. It takes only a simultaneous rotation of
Mu andMd given by any of the above~phenomenologically
viable! hierarchical texture patterns byV0 to give a pair of
matrices in this desired form. We consider it an interesting
alternative ofpartial quark-squark alignment. In particular,
in the SU~5! unification or a 211 family structure frame-

work, the symmetric nature ofMu and the need to have a
relatively largeVusmake our partial alignment appear as the
best option for suppression ofK12. The necessary suppres-
sion ofK23 or K31 can be easily obtained even without align-
ment. Quark mass matrices in this form together with the
required squark mass matrices can be derived naturally from
aQ2N symmetry@16#.

Let us complete the analysis by taking a look at the FCNC
constraints from the neutral meson mixing@29# and how they
can be satisfied within our framework. For instance, con-
straints fromK-K̄ andB-B̄ mixing onM̃LL

d2 can be expressed
by an upper bound on

~dLL
d !125

1

m̃2
~m̃1

2K11K12
† 1m̃2

2K12K22
† 1m̃3

2K13K32
† ! ~29!

and

~dLL
d !135

1

m̃2
~m̃1

2K11K13
† 1m̃2

2K12K23
† 1m̃3

2K13K33
† !,

~30!

respectively, wherem̃i
2 are the three eigenvalues andK is

actuallyKL
d5VL

dṼL
d† with ṼL

d being the unitary matrix that
diagonalizeM̃LL

d2 . All the numerical bounds of the type are
shown in Table I. WithKL

d5VL
dṼL

d† given by the form in Eq.
~28!, the above analysis (x8/a8;l) leads to

~dLL
d !12;Dm̃12

2 ~KL
d!12;l~2x̃2 c̃ 21 ỹ 2! ~31!

which gives the boundx̃,c̃ 2,ỹ 2<l3. The case for the
(dLL

d )13 constraint looks more complicated. However, if we
take c̃<l2 and ỹ<l3, we would have
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KL
d;S 1 l <l3

l 1 <l2

<l3 <l2 1
D ~32!

giving easily (dLL
d )13<l3, for example.

This illustrates how sufficient FCNC suppression can be
obtained within this scheme. Details of the various con-
straints on the parameters in the squark mass matrix of the
form given by Eq.~16! are listed in Table II. For an explicit
application of the kind of algebraicAnsatzpresented here,
readers are referred to ourQ12^U~1! horizontal symmetry
model built along the pattern@16#.
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which has zero determinant. This ‘‘solution’’ of course has to
be discarded.

@23# During the preparation of the manuscript, the authors came
across Ref.@24# which analyzes general texture patterns at low
energy, and their RG evolution to GUT scale. Their ‘‘natural
mass matrix’’ philosophy is similar to that of our approach.
The actual analysis and solutions are not the same. Among
other things, our texture patterns, with some entries given as
inequalities, give more general ‘‘natural’’ patterns.

TABLE I. FCNC constraints from neutral meson mixings. The
numerical bounds are given as an illustrative set of values~from
Ref. @18#!, details of which depend on gaugino and squark masses.
Necessary suppressions in powers ofl are also given.

K-K̄ mixing (dLL
d )12 (dRR

d )12 ^d12
d &

Upper bound 0.05 0.05 0.006

l3 l3 l4

B-B̄ mixing (dLL
d )13 (dRR

d )13 ^d13
d &

Upper bound 0.1 0.1 0.04

l2 l2 l2

D-D̄ mixing (dLL
u )12 (dRR

u )12 ^d12
u &

Upper bound 0.1 0.1 0.04
l2 l2 l2

TABLE II. Details of the constraints on our squark mass matrix
parameters. A special point to note is that we impose only the
(dLL) and (dRR) constraints from Table I, but not the^d& ones. For
the case of̂ d12

d &, it actually leads to a stronger constraint. QSA
stands for quark-squark alignment; partial QSA as described in the
text has quark mass matrices of the form given by Eq.~27!.

With partial QSA Without partial QSA

M̃LL
d2 ,M̃RR

d2 x̃<l3 c̃<l2 ỹ<l2 x̃<l4 c̃<l2 ỹ<l2

M̃LL
u2 ,M̃RR

u2 x̃<l c̃ 2<l ỹ 2<l x̃<l2 c̃<l ỹ<l
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2 ; as-

suming proportionality to the Yukawa couplings, such con-
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@28# Assuming a 211 structure, the squarks of the first two fami-
lies can be represented by a horizontal doubletF. A F†F
term is invariant, allowing the leading ordera terms. Further

contributions to the terms can come from operators of the form

F†F^S1&^S2&•••

suppressed by powers of some mass scale. The product of the
Si scalars must be an invariant. In order to contribute to the
diagonal terms in the mass matrix, the nonzero horizontal
symmetry-breaking vacuum expectation values therefore must
come from states that also form an invariant product. This
naturally gives identical contributions toM̃11 and M̃22; other
possibilities have to base on a more contrived mechanism. We
hence stick to the case in our analysis.
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