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Quantum structure of the non-Abelian Weizsaker-Williams field for a very large nucleus
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We consider the McLerran-Venugopalan model for calculation of the sayadirt of the gluon distribution
function for a very large ultrarelativistic nucleus at weak coupling. We construct the Feynman diagrams which
correspond to the classical Weigkar-Williams field found previousljYu. V. Kovchegov, Phys. Rev. B4,

5463 (1996] as a solution of the classical equations of motion for the gluon field in the light-cone gauge.
Analyzing these diagrams we obtain a limit for the McLerran-Venugopalan model. We show that as long as
this limit is not violated a classical field can be used for the calculation of scattering amplitudes.
[S0556-282(97)03009-9

PACS numbdis): 12.38.Bx, 12.38.Aw, 24.85.p

[. INTRODUCTION This approximation happened to be not quite accurate, and
leads to infrared probleni%]. Later, a solution for the gluon
An interesting problem in nuclear and particle physics isfield has been constructed which incorporates the effects of a
computing gluon distribution functions for a nucleus at smallfinite size of the nucleus in the longitudinal directiph4].
values of Bjorkenx. Some time ago the problem was at- Our solution[1] and the one found if4] by Jalilian-Marian
tacked by McLerran and Venugopal&B]. In their model et al. are equivalent, they give the same expression for the
they consider a very large nucleus, larger than a physicagluon distribution function A3(x) A?(y)).
nucleus, which is moving ultrarelativistically and effectively  In our approach[1l] we formulate the McLerran-
looks like a pancake in the transverse plane. In that plane théenugopalan model in terms of point charges: each
nucleus is described by a classical color charge densitynucleon” was taken, for simplicity of color algebra, to be a
p(X) . The strong coupling constant is small, which gives quark-antiquark pair. These valence quarks and antiquarks
a lower limit on the typical scale of the transverse momeniwere free to move inside the nucleofspheres of equal ra-
tum in the problemk; > A qcp. Actually, to apply success- dius in the rest frame but unable to get out. Finding the
fully the perturbation theory one also has to satisfy anothesolution for the gluon field in covariant gauge, we then per-
condition:k, > asu [2]. It was shown that the relevant trans- formed a gauge transformation to the light-cone gauge and
verse coordinate scale in a scattering process is small, butdbtained the non-Abelian Weizseer-Williams field for the
should not be too smalR,3]: k, < u, whereu is the typical ultrarelativistic nucleugsee Eq.(10) in [1]]:
scale of the color charge density fluctuations[ 2 it was
assumed that one has to find the classical gluon field in the g
light-cone gauge, treating the nucleus as a classical source, A(X,X_)=5—

8
> 2 | S )TAHTHS H(x,x )

and that this field will dominate in the distribution function. 2m a1 =1
Quantum effects will come in as virtual corrections. For this X—Xi
approximation to be valid one needs tkis<w condition. X |x1 ;lz O(X_—X_i) = S(x,x_ ) TA(TY)

Since the nucleus is ultrarelativistic and Lorentz con-

tracted to almost a plane, a smallgluon in the nucleus X=X/
“sees” not just one nucleon in the longitudinal direction, but XS*l(K,Xii)m o(x_—x") |,
in the order ofAY® of them, withA the atomic number. That = =
is an essential feature of the model at hand—Ilongitudinal
A.=0, A_=0. (1)

coherence of the nucleus. In order to find an average value of
any observable with longitudinal coherence length long com-
pared to the nucleus, one has to calculate this observable fbferex; andx’; are the transverse coordinates of the quark
a given color charge densip(x) and then average it over all and antiquark in théth nucleonx_; andx’; are the light-

p with the Gaussian measufg]. cone coordinated\ is the total number of nucleons in the
The correct classical gluon field, as a solution of the clashucleus,T? are SU3) generators,T{) are similar generators
sical non-Abelian equations of motion, has recently beerin the color space of each nucleon. The classical current in a

found[1,4]. An important issue is the way one has to treatnon-Abelian gauge theory is given byj=T?3j?

the nucleus. The ultrarelativistic nucleus is a source of colok Tag@«y#(Ta)aﬁqB, so the matrix T?),, can be under-

charge in the classical Yang-Mills equations of motion. Untilstood as a part of the coupling. It is a matrix in the color

recently it was treated just as an infinitely thin sheet lying inspace of a nucleon, which is different from the color space of

the transverse plane—@&function along the light cong2]. T2 These two matrices act in the different color spaces and,
therefore, commute. The non-Abelian Weidsar-Williams
field (1) is used in calculation of such quantities as the gluon

*Electronic address: yuri@phys.columbia.edu distribution function. Therefore, the condition that the initial
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and final states of the nucleons should be color singlets is We conclude in Sec. IV by constructing the lowest order
imposed on a product of two fields, but not on the field itself.diagrams contributing to the scattering cross section of the

S(x,x_) is a matrix which effects the gauge transforma- ultrarelativistic nucleus on a heavy quarkonium. In this ex-
tion from covariant to the light-cone gauge, and is given byample we show that if one limits exchanged gluons to two

[Eq. (18) in [1]] per nucleon, all the diagrams are essentially “classical,” that
is, this scattering is described by a classical field. That shows
X_ that the classical approximation is valid at this order and
S(x,x)=Pexp( —igf dx’A;(x,x’)) allows one to use it in the calculation of many other pro-
o cesses such as charm production, etc.
N ig? < @ —any | XXl
=il;[1 exp 5 gl T3(THIn = ;i'l Il. LOWEST ORDER DIAGRAMS

Our goal now is to find the Feynman diagrams in the
_ ®) light-cone gauge giving the non-Abelian Weizkar-
Williams field for a nucleus. To understand the general struc-
ture of these diagrams we consider a simple case of two
HeI'EALr(X,XL) is the g|uon field in the covariant gauge and nucleons in the nucleus. The generalization to a Iarge num-
the nucleons are labeled according to their positions alonﬁer of nucleons will be simple, once we understand what
the x_ axis, i.e., the greater the_ coordinate of a nucleon, ind of diagrams are needed to construct the classical gluon
the greater is its labél In Eqg. (2) we neglect the contribu- field. ] .
tion of the “last” nucleon, i.e., the nucleofor several nucle- We start with two nucleons, which are ordered and sepa-
ons whose quarks or antiquarks may overlap the peineat ~ fated in the longitudinal directionx(,>x_;). Then, ex-
which we calculateS(x,x_). This is justified, because if the Panding Eq(1) for N=2, we obtain the classical field of this
nucleons are ordered in longitudinal direction there is onlysystem at lowest order:
one such nucleon. The exponential in E2). corresponding
to this “last” nucleon gets cancelled by color algebra onceAa(x X_)= i(Ta) X=Xz (X —x_1)— X=Xx'y
we try to calculate the field in Eq1). If there are several = ‘2'"=/7 o 41 |X—X1|2 - -1 |x—x’1|2
“last” nucleons, then we can just throw them away, since o o

X O(X_—X_;)

the nucleus is considered to be large and the contribution of X 0(x_—x"1) | + i(Ta)

a few of its nucleons is not substantial. -0t 27 2
The choice ofS(x,x_) in Eq. (2) to be a path-ordered

integral from— o to x_ is not unique. One could also take a % X—X2 (X —X_)

path-ordered integral fronx_ to +o or construct some |§—§2|2 - n2

other expression which would enable us to perform the de- e x!
sired gauge transformatlon. T2 2 O(x_—x_5)

In this paper we will try to understand the quantum struc- [x=x"5|
ture of the classical field given by E@l). We shall show
that this field corresponds to a particular set of Feynman Before discussing the diagrams giving this fi¢whe of
diagrams in the light-cone gauge. Expanding the right-handavhich is shown in Fig. 2 we make a few comments about
side of Eq.(1) in powers ofg, we start by giving the Feyn- the way we treat the gluon propagator in the light-cone
man diagrams corresponding to the non-Abeliangauge, since it will be very important in the calculations to
Weizszker-Williams field at lowest orders in the coupling follow. The gluon propagator in the light-cone gauge is
constant. In Sec. Il we will present and calculate the diagiven by
grams corresponding to the classical field at ordgrand
g? for two nucleons in the nucleus. An easy and elegant way i K, 7K,
to sum the diagrams at ordgf and higher orders is by PW(k)=—F Opuv™ k. k. |’
applying the Ward identity6,7]. We will briefly review this i i
technique for the light-cone gauge.

In Sec. Il we will write down and evaluate those dia-
grams giving the ordeg® contribution to the classical gluon
field of two nucleons in the nucleus. At this level we shall h
see that taking the color average in the color space of eacﬁlﬂ
nucleon, similar to what one has to do to calculate the cor-
relation function of two fields, is crucial for the equivalence
of the diagrams and the classical field, as well as for calcu-
lating the field itself. At higher ordersg( and abovg the
classical solution ceases to be a good approximation to the
physical gluon field of two nucleons, since quantum correcdf the momentunmk in a term in the propagator flows from
tions become important. That is, we find a limit to the clas-# to k we use—ie. (If the momentum flows fromu to v, as
sical approach, which happens to be just two gluons pemn Fig. 1, then for a term likep k, /k, we say that it flows
nucleon. from 7 to k.) If it flows the other way we take-ie, where

+0(g°). ()

where color indices have been suppressed and wheise
such that for any four-vectos: n-v=v, . In calculating
Feynman diagrams one has to deal with the singularity of
is propagator gt =0. We regularize it in such a way that

e propagator becomes

_ ok ik,
Pul0==12| 9™ 1 e T ik Fie)

4
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this and the following sections to find the classical field we
/\/\W are not computing an amplitude of a physical process. There-

u \Y fore, we do not require the initial and final states of the
k nucleons to be color singlets unless specified separately.

Also we do not impose any limit on the magnitude of the
FIG. 1. Gluon propagator in the light-cone gaugee text gluon’s transverse momentum. In a physical process, such as

scattering, the total transverse momentum of the gluons in-

€ is some infinitesimal number. This unusual choice of theteracting with a nucleon is cut off by the inverse size of the
i e is necessary to reproduce the classical solurnfrom  nucleus. However, this does not limit the transverse momen-
Feynman diagrams. tum of each individual gluon. The only possible cutoff on

The Fourier transform of 1k(, —ie) gives a theta func- that momentum is the inverse size of a nucleon, but it is very
tion A(x_). In principle we could regularize the propagator large. That allows us to integrate the transverse momentum
in other ways, for example by taking the with an opposite  up to infinity.
sign or by taking the principal value of the_ integral. The Using the formula for the gluon propagator in the light-
Fourier transform then would givé(—x_) or e(x_). In that ~ cone gauge, we can write down the contribution of the graph
sense our choice of regularization is arbitrary. It is done inn Fig. 2 as
the spirit of our choice of the matrix responsible for the

gauge transformation ifiL]. We want to reproduce the field i NaKp ke |1
which was obtained using one particular choice of that ma- T2\ 9T K Tie kotiel'd 2p
trix [see Eq(2)], so we have to regularize the propagator in - - -
a corresponding way. XU(p—k) y,u(p) (T (27) 8(k-)
Now consider the diagram shown in Fig. 2. The fermion N
lines correspond to the quark and antiquark in the first and _ ks a K
second nucleons, respectively. The cross at the end of gluon 92 k+—|e(T1)(27T) a(k-). ®)

line denotes the point where we measure the gluon field. The
incoming and outgoing quark lines are on-shell, their MO~The nak, /(K. +i€) part of the propagator gives
menta are almost identical and in light-cone coordinates arﬁ(p—k)ﬁy~aku(g)=0 and, therefore, vanishes. Whgr= +

given byp,~(p.,0.0). the propagator is proportional t@,.—7,=0. When
Each nucleon in our model is a bound state of a quark-, :_p pthge ampli?udg is ag(;gzﬁ; nzaero' because

antiquark pair. The state has a unit normalization. The quar ﬁ(p— K)y~u(p)=0, since the transverse momentum of the

in the nucleons are not very far off-shell, which allows us toquark i p;~o (for example see Appendix A dB]). The

treat thgm as on-shell incoming and outgoing particles n OuE)nly nonvanishing contribution comes frofv+ L . But even
calculation. The total transverse momentum of gluons inter:

acting with a nucleon is small compared to the typical mo-" that case the covariant part of the propagag)ﬁ[@q goes
away. This way we are left with the expression given on the

mentum in the nucleon’s wave function. This results from.
the fact that the total transverse momentum of the gluons igght of Eq. (5). The factor of (27)(k_) comes from the

cut off by the inverse size of the nucleus, which is rnuchcondition that the outgoing quark line is almost on-shell.

larger than the size of the nucleons. So, the wave function Olformula(S) is similar to the Iight-c_ong potential of a point
j %harge[9]. It has the same normalization except for a factor

the final state of a nucleon is approximately the same as th 5 . ) .

initial state wave function and does not depend much on th f(2m) _resultlng f_rom a prefactor in the_ Fourier transform.

total transverse momentum of the gluons coming into th erformmg a Fourler t_ransform of E6) In the transverse
pnd longitudinal directions we end up with

nucleon, since it is small. That means that the product o
these wave functions is just a square of the initial state wave )

function, which gives us just a factor of 1 after momentum (Ta)f dkdk, dk- oK+ (=X 1)K (5~ 1)~ ik (x—x)
integration due to the normalization of the bound state. FoP' "1 (2m)*

that reason we are not going to explicitly include the wave

function in our calculations. In the calculations we make in k1

X = —(27) (k)

ke k,—ie

"NUCLEON"Nol "NUCLEON"No.2 g —
_ 9 ra_ = = _
> ok ZﬂT(Tl)W O(X——X_1), (6)
1 2 - -
o
which looks exactly like the lowest order classical field emit-
1 5 ted due to one parton. Summing over the diagrams with the

gluon line hooking to each one of the four fermion lines
gives the expression in E¢3). A minus sign appears when
the gluon is connected to an antiquark line. This establishes
Boa the correspondence between the classical field and the Feyn-
man diagrams at lowest order @n
FIG. 2. Diagram giving the classical field in the light-cone  Let us try to go further and find the diagrams giving the
gauge at lowest order. field at orderg®. First one has to write down the classical
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k+l k+l
a a
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FIG. 3. Diagrams giving the classical field in the light-cone gauge at artleFhe intersection of two gluon lines i@ is not a vertex.

fields at this order of the coupling, which is easily done by 8 X LL 1
; 2. — _in3 abe ¢ oo
expanding Eq(1) to the next order irg%: By+C3=—ig b;l f (Tz)(Tl)[Z(EH)Z KT —ie
- ! 2m)28(k_) (1) (8h)
a — _ abc/TC b X - _ ).
A (xX)=0(0)~ 52, X FATE(TY) e dmyatk)
In the calculation of the grapi8; and C; we take only
<In | X=X X~ X2 B(X_—X_) the part of the gluon propagator for the line which
Ix=x" 4|/ | [x=xo]2 77 772 is longitudinally polarized at theB end of the line.
The 7gl,/(1.+i€) part of the propagator gives
x—x" U(p—1)y-lu(p)=0. The covariant part of the propagator,
—W O(x_—x",) | +0(g®). (7) i.e., the part proportional tg,z, is small. The reason for
A

that is quite straightforward. Suppose we have a gluon line
connecting two fermions which are separated by some dis-
tancex_>0 in the longitudinal direction. The typical_ is
The claim is that in the light-cone gauge the sum of themuch larger than the longitudinal size of the nucleons. If a

diagrams in Fig. 3, together with all permutatiofgiuons ~ 9luon had a mass the interaction described by the covariant
connecting to different pairs of quarks, each of them being ifPart of the propagator would be a short-range interaction and
a different nucleon, not just to 1 and 2 like in the Fig. 3, putWould be suppressed. But in our case the role of the mass is
alsoto 1 and 2, 1’ and 2, I and 2) gives us the contri- played by the transverse momfantum of the gluon. We take
bution to the classical field presented in E). the covariant part of the gluon’s propagator and perform a

A brute force calculation yields, for the= | component, F(_)uner transform along thle. direction. To Iocallze_th_e _fer-
mions we take them to have some mass. In the infinite mo-

mentum frame, for a fermion with nonzero massits mo-
mentum is given byp,~(p; ,m?/2p. ,0). Using the

8 condition that the fermion, after emitting a gluon, remains
- -shell[(p—1)?=m?] in the Fourier t f tai
A3:_Igsbc2:1 fabC(Tcz:)(T?) on-shell[ (p—1)“=m"] in the Fourier transform we obtain
Ko+1% 1 1 fﬂodl+ gl +x-
% _ _ -t -
KK+ )2k, —iek, +1, i€ w27 21,1 —1?
N Ketld 1 1 :_rwdl_+ pi(pi—1ly) €l
K% T, —iek +1,—ie e 2m m* 12 +(pi/m?)l?
kl_|_ll 1 1 Mefxf(erlu/m), (9)

2kt D)Z K+l —iel —ie
N which is very small. This is due to the fact that in any frame
Iy 1 1' (2m)28(k_)8(1_), (83 the longitudinal separation of the nucleons_} is much
ie - -

K%k, —iel, - greater than the longitudinal size of the nucleons. The non-
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zero mass of the quark is not crucial, we can get the same , —— —— — —

. L. A, i
result using some nonvanishing quark transverse momentum =" —— — — —_—
p instead of the mass. *\ '
Summing up the contributions Ny \
| B \
8 B \\\

Az+Bs+Cy=— ig3b§1 £20S(TD)(TY)

G D | 1 - -
X - - : _
Kkt D2k, —iek, +1, —ie pap— —
Ko+l 1 1
T T ik, +1, e
L N 2m)25(k_) &1
Pk, —iel.—ie (2m)=o(k-)o(1-).
(10 _—
C,: J—
If we perform a Fourier transform of this expression and
imposex_,>x_; condition we obtain
¢ <
AatBat Coa=— —— fabch TS
3t Bat Coa= = m 2, &, (TD(T3)
| N2, g
XIn(|x—x4| )m (X=—X_2), N
13
where \ is some infrared cutoff, coming from the Fourier
transform of 1k?:
(277)2e K f?— pye n(|x|x). FIG. 4. Application of the Ward identity at ordeF.

conclude that thé line is longitudinally polarized at its right

Now our claim becomes manifest. Summing the expressionsnd in all of the three graphs in Fig. 3 and, consequently, we
like Eq. (11) for different pairs of quark lines we see that the can apply the Ward identity.
cutoff N gets cancelled, and we end up with an expression The way to apply it at ordeg® is illustrated in Fig. 4. We
exactly equal to the one given in E(). follow the notation introduced by 't Hooft ifi6], which is

The principle behind this summation of diagrams is thealso described ifi7]. The dashed line in Fig. 4 corresponds
Ward identity. The covariant part of the propagator of khe to a longitudinally polarized gluon. The propagator for this
line in the graphA; in Fig. 3 in coordinate space gives a line is —(i/[z)(na|3/|+—ie), where the arrow corresponds
contribution proportional t&(x_; —X_5,), which is excluded to the 8 end of the line. The beginning of the linex end is
by our ordering of the nucleons._,>x_;. One can track just a usual QCD vertex, in our case the gluon-fermion ver-
this explicitly through the calculations, or use the following tex. On the left-hand side of Fig. 4 the vertex at the other end
“heuristic” argument. If we have only the covariant part of of the line, where the arrow is, is also a QCD vertex. How-
thel-line propagator, then the three-gluon vertex in the graptever, on the right-hand side of Fig. 4 it implies only the
A; (Fig. 3 should be close to the firgteft) nucleon in the four-momentum conservation and gives no other factors. The
longitudinal direction, since the covariant part of the gluoncolor factors of the graphs on the right-hand side of Fig. 4
propagator cannot propagate over large distances along tlae the same as the color factors on the left-hand side. After
x_ axis[see Eq.9)]. Then thek line should propagate the we apply the Ward identity we get the contributions on the
distance between the two nucleons, so that its propagator caight-hand side. The graphs where the dashed line hooks to
not have a covariant part. But, because of the current consethe end of a quark line are zero, since the quarks are on-shell.
vation this propagator contains onlykg n,/(k, —ie€) term  That is why we do not have such contributions &y and
and, therefore, cannot go backwards in ¥hedirection. So, Cj. The diagrams on the right-hand sideByf andC5 cancel
once we impose the ordering of the nucleons alongxthe the second diagram on the right-hand side of the expression
axis this contribution becomes zero. It was shown above th&br A;. We are left with the first diagram, which gives the
the contribution of the covariant part of thdine propagator answer(see Fig. 4.
is also zero for the graphB; and C; in Fig. 3. We can So far we have calculated only the=1 component of
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the diagrams on Fig. 3. To get a full correspondence to the;,q,/(q, —ie) parts of the propagators, which give us
classical field one needs to show tlat + ando=— con-  some nonvanishing contribution.
tributions are zero. From the light-cone gluon propagator At orderg® the o=+ ando=— components of the dia-
we obviously see thatr=+ component is zero. To get grams are zero, for the same reasons as at the gfdévhen
the o=-— component one has to take the we apply Ward identity to get the cancelationsof — com-
7.(1+K), /(1 +k, +ie) term in the propagator, which is ponent, similarly too(g®) case, we have to include several
longitudinally polarized at the end. Summing over all pos- diagrams which are not present in Fig. 5, but go away after
sible connections of this line to the gauge invariant objecitolor averaging in the first nucleon or because they have a
above(two nucleons connected by a gluon linge get zero  wrong x_ ordering in coordinate space. Some of these dia-
due to the Ward identity. Note that these connections includgrams are divergent, i.e., purely quantum, but those vanish
some diagrams which are not shown in Fig. 3, since thewfter color averaging. Therefore we concentrate our efforts
give obviously wrongx_ ordering in coordinate space. on theo=_1 part. Since both thé andq lines are longitu-
dinally polarized we can apply the Ward identity to sum
these diagrams. That is, we can draw a bunch of pictures like
Il HIGHER ORDERS those in Fig. 4, get some cancellations, and end up with the

Here we are going to work with those diagrams giving the@nswer. In the spirit of this approach we regroup the terms in
classical field at ordeg®. We first note that we are looking the contributions of each diagrafbefore doing the color
for a correspondence between the diagrams and the classi@eraging in the following way, and where a summation
gluon field taken in the form in which it appears in the gluon©Vver the repeating indices is assumed.
distribution function, i.e., in the correlation function of two
classical fields. But when we calculate a correlation function,
we have to impose the condition that each nucleon is a color 1 1 1
single'g _and average over all possible C(_)I(Bfee[_l—4]). In Ag=g5farPfred(T9)(TST) : _
the spirit of the calculation of the gluon distribution function, 179° 1, —ieq,—ie
we will treat the first nucleon as a color singlet, which means
that we will take a trace in this nucleon’s color space. We KL K+q)t

at we w . . ;1 (kg 1 1
will do this for the diagrams, as well as for the classical Xk Tie kFalk 0 i 2
solution itself. Then the color averaged, in the color space of k" ki—ie (k+@)" ki +g.—le P
the first nucleon, classical solution at or@gris

XU(P=K) y-u(P)A,P 7y (KT ) P o (K+ 0 +1)

5 X—X
(ATOOX ) og)2= 4(2977)3”3)'”2( ||x— x'11||> xm(2m)*8(k-)8(1-)8(q-), (133
x( XX O(X_—X_5)
2 0 =X 1 1 1
|X—=Xp] BS=95far°frbd(Tg)(T§T?)rzazmq+_i6
X=X’
—ﬁﬁ(x_—x’_z)). (12

(k+1)5 1
C(k+D)Zk,+l —ie

Let us calculate the contributions of the graphs shown in
Fig. 5, doing the color averaging mentioned above. The lines
connected to the first nucleon will always have momdnta (k+1+q)% 1
and g, the line connected to the second nucleon will carry > —
momentunk, just as in grapt\s in Fig. 5. We will keep the (kH1+ )" k1 +q, —ie
parts of thel andq lines’ propagators which are longitudi-
nally polarized at the right end, i.e., thg|l /(1 —ie€) and L
7,4,/(q; —i€) parts. The contributions where at least one ~
ofMthese lines is longitudinally polarized at the opposite end + 2p, u(p=K)y-u(P)A,Prs(K)Ly,5
will vanish after applying the Ward identity and color aver-
aging in the color space of the firdeft) nucleon. So, we
throw away those parts of the propagators. The contributions
where we take one or both dfandq lines to be covariant XP, (k+q+1) | 7m(2m)26(k_)8(1_)8(q.),
give us the terms proportional té(x_,—X_5), which is g
zero. This can be shown by a brute force calculation or by a
“heuristic” argument, similar to the one given at ordgf.
Finally we are left with the 7,lz/(1.—ie) and (13b
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As B,

Cs

H5 IS
WP R AT
b
1
k+q+l
a
K, L,

R

FIG. 5. The diagrams at ordep.

1 1
+—ieq,—ie2p,

1
Cs=g*(TD(TiT 7z |

XTU(P—K) y,u(p)a,l gP (K T25S
XP, (k+q+1)m(2m)?5(k-)8(1-)8(q-), (130

1 1 1
Ds+Es= g5farbfrcd(Tg)(TiT?)_

(k+a), 1
(E"‘Q)z ki+0q,—ie

(k+14+q)% 1
(K+1+q)* ki +1,.+q,—ie

X r(2m)?8(k_)8(1_)8(q-), (130

1 1
— y5farcgrbd,d cTb
Pt Gs =" 1T (TS iz g e
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(k+1)L 1
(kD2 Kk, +1,—

(k+1+0q)% 1
(k+1+@)? k. +l,+q —ie

X m(2m)?8(k-)8(1-)é(q-),

(130

Hg+ 15+ J5+Kg+Lg+ Mg

(k+l+a); 1 1
—n9(TC
~C (T i1+ q)? 1. ie g, Te
X ! — BT T 4 Ti(p—k)
Ki+l,+q,—ie 2 2py

1 a, C
X(%m?’ q(T3[TS,T5])

1 c byra
+7'QW7+([T ,Tz]Tz))U(D)

X m(2m)?8(k-)8(1-)8(q-), (13f)

wherel’,, is the three gluon vertex omitting color depen-
bcd
dence Fa is a four-gluon vertex including the color fac-
tors, andPaB(k) is the gluon’s propagator.
By writing the § functions of the minus components of

the momenta we are already anticipating the color averaging.
After taking the trace in the color space of the first nucleon

everything becomes symmetric under the-q inter-

YURI V. KOVCHEGOV

@ (b)

FIG. 6. (a) A typical “classical” diagram at the ordey’, (b) a
diagram which is not included in the classical field at orgérbut
does not vanish.

X w?(2m)o(k-)8(1-)8(q-), (14
which, after a Fourier transform, gives
g°
(Ast+ - +Ms)y=— W(TSNHZ(B_&P\)
X—Xp 15
X me(x, —2). (15

change. The quark line in the first nucleon for any graph

in Fig. 5 gives

( 1 ) e (p—D)-y
2p U(p q)7+ (p_|)2+i6
Xyu(p)(2m)6(1l-+q-)

1
(l_ )(277)50 +q.).

Using thel < q symmetry we can symmetrize this result by
just switchingl andq lines. We obtain

2l

1 1 1
=§{ —(I__iéﬂ(Zﬂ')é(l_-i—q_)

I_+ie
—mio(l-)(2m)(q-),

(2m)6(1-+q-)

which we included in the contributions of the diagrams.

When thel andq gluons hook to different quark lines in the

Now it becomes obvious that after summing over all possible
connections to the quark lines of theand g gluons in the
first nucleon and of th& gluon in the second we will repro-
duce formula(12). The color averaging is crucial, it elimi-
nates many extra terms in the sum of the contributions of
different diagrams. It also eliminates some graphs at order
g® which have “quantum” parts—vertex and propagator
corrections. If we had not imposed the color singlet condi-
tion, the correspondence between the classical field and the
diagrams would not work.

One can question whether it is possible to go to the higher
orders ing, that is, to orderg)’, g°, etc. The answer is no,
because at higher orders the classical field does not domi-
nate, and the contribution of quantum corrections becomes
important. We illustrate this statement at orgérin Fig. 6.

The diagram in Fig. @) is a typical graph which one would
expect to contribute to the classical gluon field at this order.
Figure Gb) is one of the many divergent diagrams for the
gluon field at the ordeg’. Here one cannot eliminate the
“quantum” graph given in Fig. @) by color averaging as
was done at lower orders. There is no other reason for this
graph to be suppressed. Therefore, both of the graphs in Fig.

nucleon, we get the similar factors even without color aver-6 contribute at this order.

aging.

The diagram in Fig. @) cannot be a part of the classical

After summing all the contributions and taking the color field, because it is divergent and has to be renormalized,
average, and after some algebra which we are going to skipvhich is an essentially quantum procedure. So, the gluon

we end up with
(Ast---+Ms)y

1

(T k,, 1 1 1
=9°(T 2)k2I ‘g k. —iel,—ieq,—ie

field at this order has both classical and quantum contribu-
tions in it, and, although the correspondence of the classical
field to some diagrams may still hold, it does not make much
physical sense to try to isolate it. Therefore once we have
more than two gluons connected to the first nucleon we can
not take the gluon field to be classical. This way we obtained
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FIG. 7. Diagrams contributing to the scattering amplitude at ogdeior two nucleons(see text

a limit to McLerran-Venugopalan model. The classical ap-averaging everywhere.Analogously we can prove that
proach is valid as long as we have no more than two gluongraphs likeB are the only possibilities for three-field contri-
per nucleon. butions at this order of the coupling. The fourth gluon line
cannot remain in just one nucleon since that contribution will
V. CONCLUSIONS be cancelled by color averagipg. It has to connect to_another
nucleon and that way we obtain graphs |IB&e"Symmetric”

To illustrate this limit, still at the level of two interacting graphs, i.e., the graphs where the first and the second
nucleons, we will construct diagrams contributing to thenucleon are interchanged in the diagram, but not inxhe
cross section of the nucleus on a quarkoniyquark-  direction, are either equivalent to the diagrams in cBisas
antiquark bound stateat orderg®, which means two gluons happens to that particular graph shown in Fig. 7, or give zero
per nucleon. An important parameter in McLerran-after imposing longitudinal ordering and applying Ward
Venugopalan model idNag?, where N is the number of identities. The arguments leading to this conclusion are much
nucleons in the nucleus. It plays the role of an effectivethe same as those we now give for graphs in class
coupling. The kinematic region we are considering is For the graphs with two gluon fields the situation is a little
Na~1, as<1. In the process we are going to considermore complicated. Here we have many more diagrams which
there will be only two participating nucleonélhere areN disappear leaving only diagrams as@nin Fig. 7. Most of
nucleons in the nucleus but, for simplicity, we allow only the graphs with two gluon fields at ordg?, which are not
two of them to interact. Then, in terms of that “effective equivalent to diagrams in cla€s can be represented as hav-
coupling” of the theory, the process will be of the order ing one gluon line, which gives the field, connected to some
(Nag?)?, which exactly corresponds to the ordg? dia-  fermion line in nucleon number 1, with the other three lines
grams. The diagrams that survive are shown in Fig. 7. Theonnected in all possible ways to provide one more gluon
quark lines of the oniuninot shown in Fig. Yconnect to the field, but not hooking to that first gluon line. Now, in each of
crosses at the ends of the gluon lines. Each cross representthase diagrams there must be one or two paths to get from
gluon field. The generalization to more than two interactingone nucleon to the other along gluon lines. Each of these
nucleons is straightforward. paths corresponds to some product of the propagator de-

By diagramB in Fig. 7 we mean a class of diagrams nominators. Because of the longitudinal separation between
where the gluon line coming from the firdeft) nucleon to  the nucleons, at least one of these denominators should in-
the second nucleon connects in all possible ways to the seclude 1/(, —ie€). That is, it should correspond to a part of
ond nucleon and the gluons emitted off it. Similarly, graphthe propagator which is longitudinally polarized at the right
C in Fig. 7 includes all diagrams where the two gluon linesend ,l ;/(I . —i€), otherwise we would get either an expo-
connecting the nucleons hook in all possible ways to thenential suppression as in E@) or a wrong ordering. Such a
second nucleon. Also it is understood that in all graphs gludenominator should be present on each path from one
ons hook to all possible quark lines in the nucleons. Colonucleon to the other. This is illustrated in Fig. 8. The dashed
averaging is assumed in the color space of each of the nucléine corresponds to the longitudinally polarized propagator
ons. and is the same as in Fig. 4. The blobs represent some com-

We have to prove that the graphs we drew are the onlyinations of the gluon lines. Each graph is of ordér Case
possible diagrams giving significant contribution to the scat{ corresponds to diagrams where there is only one path from
tering. We do not consider the diagrams where all gluonsne nucleon to the other along the gluon lines in the diagram.
hook to one of the nucleons and the other nucleon remains ia also includes the case where there are two paths, but a
noninteracting spectator or just interacts with itself. Thosdongitudinally polarized line belongs to both of them. The
graphs would be at most of ordétag?, i.e., down by a situation where we have two paths between the nucleons and
factor of N compared to the diagrams in Fig. 7. One canthe longitudinally polarized lines are different for each of the
easily see that for a graph corresponding to four gluon fieldpaths is represented in case Il. There we pick the longitudi-
coming off two nucleons, the diagrams of typere the only  nally polarized line along one of the paths, without worrying
possibilities at ordeig®. (Note that now we do the color much about the location of the similar line on the other path.
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the class of diagrams in Fig.(® is straightforward. This
obviously corresponds to case Il in Fig. 8. At least one of the
gluon lines connecting the nucleons should be longitudinally
polarized. Summation over all of its possible connections on
the right and application of the Ward identity leaves us with
only one line connecting the nucleons. This line in its turn
should be longitudinally polarized. Applying the Ward iden-
tity once again we get zero.

The diagrams represented in FigbPare a little harder to
deal with. The contribution in which line 1 is longitudinally
polarized on the right belongs to case | in Fig. 8. Therefore,
summing over all possible connections of line 1 on the right
we get zero. When line 1 is covariant or longitudinally po-
larized at the left end we need either line 2 or line 3 to be
longitudinally polarized at the right end. Let it be line 3.
Now the situation corresponds to case Il in Fig. 8. Applying
the Ward identity we end up with the right end of line 3

FIG. 8. The way to eliminate many of the diagrams, which hooking back to the three-gluon vertex or to the cross at the
could appear in the nucleus-onium scattering. end of the gluon connected to the second nucleon. We took

the contribution of line 1 which cannot insure the longitudi-

nal separation. Therefore, now line 2 has to be longitudinally
polarized on the right. The situation again becomes similar to
case | in Fig. 8. Summation over all possible connections of

For case | in Fig. 8 we can just apply the Ward identity toline 2 on the right gives us zero.
get the diagram on the right, which is zero after color aver- The diagrams which are not included in the representation
aging in the right nucleon. By application of the Ward iden-shown in Fig. 8 can be eliminated by a similar technique. In
tity we mean summation over the contributions of the dia-the end we are left with the class of diagra@sn Fig. 7.
grams which have the same structure to the left and to th&he classical field at ordey® is included in contributions of
right of the dashed line, but different connections of thesome of these diagrams. The initial and final states of the
dashed line on the right-hand side. The sum of these givesucleons are color singlets. Therefore, color averaging in the
the graph on the right of I, similarly to Fig. 4. Analogously, first nucleon when calculating the graphs for the classical
in case Il in Fig. 8 we can apply the Ward identity to the field at orderg® in Sec. lll is justified. There are no graphs
dashed line. The result is shown in the second line of case With just one gluon field contributing to the scattering pro-
in Fig. 8. The first graph there corresponds to the arrow otess, since we cannot emit one gluon off a color singlet
the dashed line connected either to the vertex where the twabject.
paths split, if such a vertex exists, or to the quark line in the So, the scattering process in the light-cone gauge is de-
first nucleon, if the paths do not overlap in the left blob. Nowscribed by the diagrams of the types shown in Fig. 7, i.e., by
in both graphs there is only one path from one nucleon tdghe classical field. If one thinks about this process in the
another, and that brings us back to case | and cancels for tlvariant gauge it is easy to see that the only diagrams that
same reason. That way we include all the contributions frontontribute are of typd in Fig. 7. It obviously is a combina-
these diagrams and prove that they are zero. tion of the classical fields. That way the correspondence can

We illustrate our technique in Fig. 9. In general, at orderbe easily seen in the covariant gauge. The two gluons per
g8 the graphs that we consider in Fig. 8 can be subdivided imucleon limit is also manifest in that gauge.
two classes, representatives of which are shown in Fig. 9. To conclude we summarize the results of this paper. The
We may have two gluons leaving nucleon number 1 to conFeynman diagrams corresponding to the classical non-
nect to nucleon number[Eig. Aa)]. There may also be just Abelian Weizsaker-Williams field in the light-cone gauge
one such gluofFig. 9b)]. The application of our method to were constructedsee Figs. 2, 3, and)5We derived a limit

for the classical approach, which is two gluons per nucleon.
1 2 o 42 It was shown that for a large nucleus the diagrams, satisfying
L L N 1 this limit, which dominate a scattering process are described
7 T ol I T by a classical fieldsee Fig. J. Therefore it is possible that
W W the classical field may be used for calculation of such pro-
1 3 cesses as charm production, dijet cross sections, and many

others in nuclear collisions.
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