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We consider the McLerran-Venugopalan model for calculation of the small-x part of the gluon distribution
function for a very large ultrarelativistic nucleus at weak coupling. We construct the Feynman diagrams which
correspond to the classical Weizsa¨cker-Williams field found previously@Yu. V. Kovchegov, Phys. Rev. D54,
5463 ~1996!# as a solution of the classical equations of motion for the gluon field in the light-cone gauge.
Analyzing these diagrams we obtain a limit for the McLerran-Venugopalan model. We show that as long as
this limit is not violated a classical field can be used for the calculation of scattering amplitudes.
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I. INTRODUCTION

An interesting problem in nuclear and particle physics is
computing gluon distribution functions for a nucleus at small
values of Bjorkenx. Some time ago the problem was at-
tacked by McLerran and Venugopalan@2#. In their model
they consider a very large nucleus, larger than a physical
nucleus, which is moving ultrarelativistically and effectively
looks like a pancake in the transverse plane. In that plane the
nucleus is described by a classical color charge density
r(x) . The strong coupling constantas is small, which gives
a lower limit on the typical scale of the transverse momen-
tum in the problem:k'@LQCD. Actually, to apply success-
fully the perturbation theory one also has to satisfy another
condition:k'.asm @2#. It was shown that the relevant trans-
verse coordinate scale in a scattering process is small, but it
should not be too small@2,3#: k'!m, wherem is the typical
scale of the color charge density fluctuations. In@2# it was
assumed that one has to find the classical gluon field in the
light-cone gauge, treating the nucleus as a classical source,
and that this field will dominate in the distribution function.
Quantum effects will come in as virtual corrections. For this
approximation to be valid one needs thisk'!m condition.

Since the nucleus is ultrarelativistic and Lorentz con-
tracted to almost a plane, a small-x gluon in the nucleus
‘‘sees’’ not just one nucleon in the longitudinal direction, but
in the order ofA1/3 of them, withA the atomic number. That
is an essential feature of the model at hand—longitudinal
coherence of the nucleus. In order to find an average value of
any observable with longitudinal coherence length long com-
pared to the nucleus, one has to calculate this observable for
a given color charge densityr(x) and then average it over all
r with the Gaussian measure@1#.

The correct classical gluon field, as a solution of the clas-
sical non-Abelian equations of motion, has recently been
found @1,4#. An important issue is the way one has to treat
the nucleus. The ultrarelativistic nucleus is a source of color
charge in the classical Yang-Mills equations of motion. Until
recently it was treated just as an infinitely thin sheet lying in
the transverse plane—ad function along the light cone@2#.

This approximation happened to be not quite accurate, and
leads to infrared problems@5#. Later, a solution for the gluon
field has been constructed which incorporates the effects of a
finite size of the nucleus in the longitudinal direction@1,4#.
Our solution@1# and the one found in@4# by Jalilian-Marian
et al. are equivalent, they give the same expression for the
gluon distribution function̂Ai

a(x)Ai
a(y)&.

In our approach @1# we formulate the McLerran-
Venugopalan model in terms of point charges: each
‘‘nucleon’’ was taken, for simplicity of color algebra, to be a
quark-antiquark pair. These valence quarks and antiquarks
were free to move inside the nucleons~spheres of equal ra-
dius in the rest frame!, but unable to get out. Finding the
solution for the gluon field in covariant gauge, we then per-
formed a gauge transformation to the light-cone gauge and
obtained the non-Abelian Weizsa¨cker-Williams field for the
ultrarelativistic nucleus@see Eq.~10! in @1##:

A~x,x2!5
g

2p (
a51

8

(
i51

N SS~x,x2 i !T
a~Ti

a!S21~x,x2 i !

3
x2xi

ux2xi u2
u~x22x2 i !2S~x,x2 i8 !Ta~Ti

a!

3S21~x,x2 i8 !
x2x8 i

ux2x8 i u2
u~x22x2 i8 ! D ,

A150, A250. ~1!

Here xi and x8 i are the transverse coordinates of the quark
and antiquark in thei th nucleon,x2 i andx2 i8 are the light-
cone coordinates,N is the total number of nucleons in the
nucleus,Ta are SU~3! generators, (Ti

a) are similar generators
in the color space of each nucleon. The classical current in a
non-Abelian gauge theory is given by j5Taj a

5Tagq̄agm(T
a)abqb , so the matrix (Ta)ab can be under-

stood as a part of the coupling. It is a matrix in the color
space of a nucleon, which is different from the color space of
Ta. These two matrices act in the different color spaces and,
therefore, commute. The non-Abelian Weizsa¨cker-Williams
field ~1! is used in calculation of such quantities as the gluon
distribution function. Therefore, the condition that the initial*Electronic address: yuri@phys.columbia.edu
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and final states of the nucleons should be color singlets is
imposed on a product of two fields, but not on the field itself.

S(x,x2) is a matrix which effects the gauge transforma-
tion from covariant to the light-cone gauge, and is given by
@Eq. ~18! in @1##

S~x,x2!5PexpS 2 igE
2`

x2

dx28 A18 ~x,x28 !D
5)

i51

N

expF ig22p (
a51

8

Ta~Ti
a!lnS ux2xi u

ux2xi8u
D

3u~x22x2 i !G . ~2!

HereA18 (x,x28 ) is the gluon field in the covariant gauge and
the nucleons are labeled according to their positions along
the x2 axis, i.e., the greater thex2 coordinate of a nucleon,
the greater is its labeli . In Eq. ~2! we neglect the contribu-
tion of the ‘‘last’’ nucleon, i.e., the nucleon~or several nucle-
ons! whose quarks or antiquarks may overlap the pointx2 at
which we calculateS(x,x2). This is justified, because if the
nucleons are ordered in longitudinal direction there is only
one such nucleon. The exponential in Eq.~2! corresponding
to this ‘‘last’’ nucleon gets cancelled by color algebra once
we try to calculate the field in Eq.~1!. If there are several
‘‘last’’ nucleons, then we can just throw them away, since
the nucleus is considered to be large and the contribution of
a few of its nucleons is not substantial.

The choice ofS(x,x2) in Eq. ~2! to be a path-ordered
integral from2` to x2 is not unique. One could also take a
path-ordered integral fromx2 to 1` or construct some
other expression which would enable us to perform the de-
sired gauge transformation.

In this paper we will try to understand the quantum struc-
ture of the classical field given by Eq.~1!. We shall show
that this field corresponds to a particular set of Feynman
diagrams in the light-cone gauge. Expanding the right-hand
side of Eq.~1! in powers ofg, we start by giving the Feyn-
man diagrams corresponding to the non-Abelian
Weizsäcker-Williams field at lowest orders in the coupling
constant. In Sec. II we will present and calculate the dia-
grams corresponding to the classical field at ordersg and
g3 for two nucleons in the nucleus. An easy and elegant way
to sum the diagrams at orderg3 and higher orders is by
applying the Ward identity@6,7#. We will briefly review this
technique for the light-cone gauge.

In Sec. III we will write down and evaluate those dia-
grams giving the orderg5 contribution to the classical gluon
field of two nucleons in the nucleus. At this level we shall
see that taking the color average in the color space of each
nucleon, similar to what one has to do to calculate the cor-
relation function of two fields, is crucial for the equivalence
of the diagrams and the classical field, as well as for calcu-
lating the field itself. At higher orders (g7 and above! the
classical solution ceases to be a good approximation to the
physical gluon field of two nucleons, since quantum correc-
tions become important. That is, we find a limit to the clas-
sical approach, which happens to be just two gluons per
nucleon.

We conclude in Sec. IV by constructing the lowest order
diagrams contributing to the scattering cross section of the
ultrarelativistic nucleus on a heavy quarkonium. In this ex-
ample we show that if one limits exchanged gluons to two
per nucleon, all the diagrams are essentially ‘‘classical,’’ that
is, this scattering is described by a classical field. That shows
that the classical approximation is valid at this order and
allows one to use it in the calculation of many other pro-
cesses such as charm production, etc.

II. LOWEST ORDER DIAGRAMS

Our goal now is to find the Feynman diagrams in the
light-cone gauge giving the non-Abelian Weizsa¨cker-
Williams field for a nucleus. To understand the general struc-
ture of these diagrams we consider a simple case of two
nucleons in the nucleus. The generalization to a large num-
ber of nucleons will be simple, once we understand what
kind of diagrams are needed to construct the classical gluon
field.

We start with two nucleons, which are ordered and sepa-
rated in the longitudinal direction (x22.x21). Then, ex-
panding Eq.~1! for N52, we obtain the classical field of this
system at lowest order:

Aa~x,x2!5
g

2p
~T1

a!S x2x1
ux2x1u2

u~x22x21!2
x2x81

ux2x81u2

3u~x22x218 ! D1
g

2p
~T2

a!

3S x2x2
ux2x2u2

u~x22x22!

2
x2x82

ux2x82u2
u~x22x228 ! D1o~g3!. ~3!

Before discussing the diagrams giving this field~one of
which is shown in Fig. 2!, we make a few comments about
the way we treat the gluon propagator in the light-cone
gauge, since it will be very important in the calculations to
follow. The gluon propagator in the light-cone gauge is
given by

Pmn~k!52
i

k2 S gmn2
hmkn

k1
2

hnkm

k1
D ,

where color indices have been suppressed and whereh is
such that for any four-vectorv: h•v5v1 . In calculating
Feynman diagrams one has to deal with the singularity of
this propagator atk150. We regularize it in such a way that
the propagator becomes

Pmn~k!52
i

k2 S gmn2
hmkn

k12 i e
2

hnkm

k11 i e D . ~4!

If the momentumk in a term in the propagator flows from
h to k we use2 i e. ~If the momentum flows fromm to n, as
in Fig. 1, then for a term likehmkn /k1 we say that it flows
from h to k.! If it flows the other way we take1 i e, where
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e is some infinitesimal number. This unusual choice of the
i e is necessary to reproduce the classical solution~1! from
Feynman diagrams.

The Fourier transform of 1/(k12 i e) gives a theta func-
tion u(x2). In principle we could regularize the propagator
in other ways, for example by taking thei e with an opposite
sign or by taking the principal value of thek1 integral. The
Fourier transform then would giveu(2x2) or e(x2). In that
sense our choice of regularization is arbitrary. It is done in
the spirit of our choice of the matrix responsible for the
gauge transformation in@1#. We want to reproduce the field
which was obtained using one particular choice of that ma-
trix @see Eq.~2!#, so we have to regularize the propagator in
a corresponding way.

Now consider the diagram shown in Fig. 2. The fermion
lines correspond to the quark and antiquark in the first and
second nucleons, respectively. The cross at the end of gluon
line denotes the point where we measure the gluon field. The
incoming and outgoing quark lines are on-shell, their mo-
menta are almost identical and in light-cone coordinates are
given bypm'(p1 ,0,0).

Each nucleon in our model is a bound state of a quark-
antiquark pair. The state has a unit normalization. The quarks
in the nucleons are not very far off-shell, which allows us to
treat them as on-shell incoming and outgoing particles in our
calculation. The total transverse momentum of gluons inter-
acting with a nucleon is small compared to the typical mo-
mentum in the nucleon’s wave function. This results from
the fact that the total transverse momentum of the gluons is
cut off by the inverse size of the nucleus, which is much
larger than the size of the nucleons. So, the wave function of
the final state of a nucleon is approximately the same as the
initial state wave function and does not depend much on the
total transverse momentum of the gluons coming into the
nucleon, since it is small. That means that the product of
these wave functions is just a square of the initial state wave
function, which gives us just a factor of 1 after momentum
integration due to the normalization of the bound state. For
that reason we are not going to explicitly include the wave
function in our calculations. In the calculations we make in

this and the following sections to find the classical field we
are not computing an amplitude of a physical process. There-
fore, we do not require the initial and final states of the
nucleons to be color singlets unless specified separately.
Also we do not impose any limit on the magnitude of the
gluon’s transverse momentum. In a physical process, such as
scattering, the total transverse momentum of the gluons in-
teracting with a nucleon is cut off by the inverse size of the
nucleus. However, this does not limit the transverse momen-
tum of each individual gluon. The only possible cutoff on
that momentum is the inverse size of a nucleon, but it is very
large. That allows us to integrate the transverse momentum
up to infinity.

Using the formula for the gluon propagator in the light-
cone gauge, we can write down the contribution of the graph
in Fig. 2 as

2
i

k2 S gab2
hakb

k12 i e
2

hbka

k11 i e D ig 1

2p1

3ũ~p2k!gau~p!~T1
a!~2p!d~k2!

5g
kb

'

k2
1

k12 i e
~T1

a!~2p!d~k2!. ~5!

The hbka /(k11 i e) part of the propagator gives
ũ(p2k)g•ku(p)50 and, therefore, vanishes. Whenb51
the propagator is proportional toga12ha50. When
b52 the amplitude is again zero because
ũ(p2k)g2u(p)50, since the transverse momentum of the
quark ispm

''0 ~for example see Appendix A of@8#!. The
only nonvanishing contribution comes fromb5'. But even
in that case the covariant part of the propagator (gab) goes
away. This way we are left with the expression given on the
right of Eq. ~5!. The factor of (2p)d(k2) comes from the
condition that the outgoing quark line is almost on-shell.
Formula~5! is similar to the light-cone potential of a point
charge@9#. It has the same normalization except for a factor
of (2p)2 resulting from a prefactor in the Fourier transform.
Performing a Fourier transform of Eq.~5! in the transverse
and longitudinal directions we end up with

g~T1
a!E d2kdk1dk2

~2p!4
eik1~x22x21!1 ik2~x12x11!2 i k•~x2x1!

3
k

k2
1

k12 i e
~2p!d~k2!

5
g

2p
~T1

a!
x2x1

ux2x1u2
u~x22x21!, ~6!

which looks exactly like the lowest order classical field emit-
ted due to one parton. Summing over the diagrams with the
gluon line hooking to each one of the four fermion lines
gives the expression in Eq.~3!. A minus sign appears when
the gluon is connected to an antiquark line. This establishes
the correspondence between the classical field and the Feyn-
man diagrams at lowest order ing.

Let us try to go further and find the diagrams giving the
field at orderg3. First one has to write down the classical

FIG. 1. Gluon propagator in the light-cone gauge~see text!.

FIG. 2. Diagram giving the classical field in the light-cone
gauge at lowest order.
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fields at this order of the coupling, which is easily done by
expanding Eq.~1! to the next order ing2:

Aa~x,x2!5o~g!2
g3

~2p!2 (
b,c51

8

f abc~T2
c!~T1

b!

3 lnS ux2x1u
ux2x81u

D S x2x2
ux2x2u2

u~x22x22!

2
x2x82

ux2x8 i u2
u~x22x228 ! D1o~g5!. ~7!

The claim is that in the light-cone gauge the sum of the
diagrams in Fig. 3, together with all permutations~gluons
connecting to different pairs of quarks, each of them being in
a different nucleon, not just to 1 and 2 like in the Fig. 3, but
also to 1 and 28, 18 and 2, 18 and 28) gives us the contri-
bution to the classical field presented in Eq.~7!.

A brute force calculation yields, for thes5' component,

A352 ig3 (
b,c51

8

f abc~T2
c!~T1

b!

3S ks
'1 l s

'

k2~k1 l !2
1

k12 i e

1

k11 l12 i e

1
ks

'1 l s
'

k2l 2
1

l12 i e

1

k11 l12 i e

2
ks

'1 l s
'

l 2~k1 l !2
1

k11 l12 i e

1

l12 i e

2
l s
'

k2l 2
1

k12 i e

1

l12 i e D ~2p!2d~k2!d~ l2!, ~8a!

B31C352 ig3 (
b,c51

8

f abc~T2
c!~T1

b!
ks

'1 l s
'

l 2~k1 l !2
1

k11 l12 i e

3
1

l12 i e
~2p!2d~k2!d~ l2!. ~8b!

In the calculation of the graphsB3 andC3 we take only
the part of the gluon propagator for thel line which
is longitudinally polarized at theb end of the line.
The hbl a /( l11 i e) part of the propagator gives
ũ(p2 l )g• lu(p)50. The covariant part of the propagator,
i.e., the part proportional togab , is small. The reason for
that is quite straightforward. Suppose we have a gluon line
connecting two fermions which are separated by some dis-
tancex2.0 in the longitudinal direction. The typicalx2 is
much larger than the longitudinal size of the nucleons. If a
gluon had a mass the interaction described by the covariant
part of the propagator would be a short-range interaction and
would be suppressed. But in our case the role of the mass is
played by the transverse momentum of the gluon. We take
the covariant part of the gluon’s propagator and perform a
Fourier transform along thel1 direction. To localize the fer-
mions we take them to have some mass. In the infinite mo-
mentum frame, for a fermion with nonzero massm, its mo-
mentum is given bypm'(p1 ,m2/2p1 ,0). Using the
condition that the fermion, after emitting a gluon, remains
on-shell@(p2 l )25m2# in the Fourier transform we obtain

E
2`

1`dl1
2p

eil1x2

2l1l22 l 2

52E
2`

1`dl1
2p

p1~p12 l1!

m2

eil1x2

l1
2 1~p1

2 /m2!l 2

}e2x2~p1u l u/m!, ~9!

which is very small. This is due to the fact that in any frame
the longitudinal separation of the nucleons (x2) is much
greater than the longitudinal size of the nucleons. The non-

FIG. 3. Diagrams giving the classical field in the light-cone gauge at orderg3. The intersection of two gluon lines inC is not a vertex.
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zero mass of the quark is not crucial, we can get the same
result using some nonvanishing quark transverse momentum
p instead of the mass.

Summing up the contributions

A31B31C352 ig3 (
b,c51

8

f abc~T1
b!~T2

c!

3S ks
'1 l s

'

k2~k1 l !2
1

k12 i e

1

k11 l12 i e

1
ks

'1 l s
'

k2l 2
1

l12 i e

1

k11 l12 i e

2
l s
'

k2l 2
1

k12 i e

1

l12 i e D ~2p!2d~k2!d~ l2!.

~10!

If we perform a Fourier transform of this expression and
imposex22.x21 condition we obtain

A31B31C352
g3

~2p!2 (
b,c51

8

f abc~T1
b!~T2

c!

3 ln~ ux2x1ul!
x2x2

ux2x2u2
u~x22x22!,

~11!

wherel is some infrared cutoff, coming from the Fourier
transform of 1/k2:

E d2k

~2p!2
e2 i k•x

1

k2
52

1

2p
ln~ uxul!.

Now our claim becomes manifest. Summing the expressions
like Eq. ~11! for different pairs of quark lines we see that the
cutoff l gets cancelled, and we end up with an expression
exactly equal to the one given in Eq.~7!.

The principle behind this summation of diagrams is the
Ward identity. The covariant part of the propagator of thel
line in the graphA3 in Fig. 3 in coordinate space gives a
contribution proportional tou(x212x22), which is excluded
by our ordering of the nucleons:x22.x21. One can track
this explicitly through the calculations, or use the following
‘‘heuristic’’ argument. If we have only the covariant part of
the l -line propagator, then the three-gluon vertex in the graph
A3 ~Fig. 3! should be close to the first~left! nucleon in the
longitudinal direction, since the covariant part of the gluon
propagator cannot propagate over large distances along the
x2 axis @see Eq.~9!#. Then thek line should propagate the
distance between the two nucleons, so that its propagator can
not have a covariant part. But, because of the current conser-
vation this propagator contains only akmhn /(k12 i e) term
and, therefore, cannot go backwards in thex2 direction. So,
once we impose the ordering of the nucleons along thex2

axis this contribution becomes zero. It was shown above that
the contribution of the covariant part of thel -line propagator
is also zero for the graphsB3 and C3 in Fig. 3. We can

conclude that thel line is longitudinally polarized at its right
end in all of the three graphs in Fig. 3 and, consequently, we
can apply the Ward identity.

The way to apply it at orderg3 is illustrated in Fig. 4. We
follow the notation introduced by ’t Hooft in@6#, which is
also described in@7#. The dashed line in Fig. 4 corresponds
to a longitudinally polarized gluon. The propagator for this
line is 2( i / l 2)(hal b / l12 i e), where the arrow corresponds
to theb end of the line. The beginning of the line (a end! is
just a usual QCD vertex, in our case the gluon-fermion ver-
tex. On the left-hand side of Fig. 4 the vertex at the other end
of the line, where the arrow is, is also a QCD vertex. How-
ever, on the right-hand side of Fig. 4 it implies only the
four-momentum conservation and gives no other factors. The
color factors of the graphs on the right-hand side of Fig. 4
are the same as the color factors on the left-hand side. After
we apply the Ward identity we get the contributions on the
right-hand side. The graphs where the dashed line hooks to
the end of a quark line are zero, since the quarks are on-shell.
That is why we do not have such contributions forB3 and
C3. The diagrams on the right-hand side ofB3 andC3 cancel
the second diagram on the right-hand side of the expression
for A3. We are left with the first diagram, which gives the
answer~see Fig. 4!.

So far we have calculated only thes5' component of

FIG. 4. Application of the Ward identity at orderg3.
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the diagrams on Fig. 3. To get a full correspondence to the
classical field one needs to show thats51 ands52 con-
tributions are zero. From the light-cone gluon propagator
we obviously see thats51 component is zero. To get
the s52 component one has to take the
hs( l1k)r /( l11k11 i e) term in the propagator, which is
longitudinally polarized at ther end. Summing over all pos-
sible connections of this line to the gauge invariant object
above~two nucleons connected by a gluon line! we get zero
due to the Ward identity. Note that these connections include
some diagrams which are not shown in Fig. 3, since they
give obviously wrongx2 ordering in coordinate space.

III. HIGHER ORDERS

Here we are going to work with those diagrams giving the
classical field at orderg5. We first note that we are looking
for a correspondence between the diagrams and the classical
gluon field taken in the form in which it appears in the gluon
distribution function, i.e., in the correlation function of two
classical fields. But when we calculate a correlation function,
we have to impose the condition that each nucleon is a color
singlet and average over all possible colors~see@1–4#!. In
the spirit of the calculation of the gluon distribution function,
we will treat the first nucleon as a color singlet, which means
that we will take a trace in this nucleon’s color space. We
will do this for the diagrams, as well as for the classical
solution itself. Then the color averaged, in the color space of
the first nucleon, classical solution at orderg5 is

^Aa~x,x2!uo~g5!&152
g5

4~2p!3
~T2

a!ln2S ux2x1u
ux2x81u

D
3S x2x2

ux2x2u2
u~x22x22!

2
x2x82

ux2x82u2
u~x22x228 ! D . ~12!

Let us calculate the contributions of the graphs shown in
Fig. 5, doing the color averaging mentioned above. The lines
connected to the first nucleon will always have momental
and q, the line connected to the second nucleon will carry
momentumk, just as in graphA5 in Fig. 5. We will keep the
parts of thel andq lines’ propagators which are longitudi-
nally polarized at the right end, i.e., thehal b /( l12 i e) and
hmqn /(q12 i e) parts. The contributions where at least one
of these lines is longitudinally polarized at the opposite end
will vanish after applying the Ward identity and color aver-
aging in the color space of the first~left! nucleon. So, we
throw away those parts of the propagators. The contributions
where we take one or both ofl andq lines to be covariant
give us the terms proportional tou(x212x22), which is
zero. This can be shown by a brute force calculation or by a
‘‘heuristic’’ argument, similar to the one given at orderg3.
Finally we are left with the hal b /( l12 i e) and

hmqn /(q12 i e) parts of the propagators, which give us
some nonvanishing contribution.

At orderg5 thes51 ands52 components of the dia-
grams are zero, for the same reasons as at the orderg3. When
we apply Ward identity to get the cancelation ofs52 com-
ponent, similarly too(g3) case, we have to include several
diagrams which are not present in Fig. 5, but go away after
color averaging in the first nucleon or because they have a
wrong x2 ordering in coordinate space. Some of these dia-
grams are divergent, i.e., purely quantum, but those vanish
after color averaging. Therefore we concentrate our efforts
on thes5' part. Since both thel andq lines are longitu-
dinally polarized we can apply the Ward identity to sum
these diagrams. That is, we can draw a bunch of pictures like
those in Fig. 4, get some cancellations, and end up with the
answer. In the spirit of this approach we regroup the terms in
the contributions of each diagram~before doing the color
averaging! in the following way, and where a summation
over the repeating indices is assumed.

A55g5f arbf rcd~T2
d!~T1

cT1
b!

1

l 2q2
1

l12 i e

1

q12 i e

3S ks
'

k2
1

k12 i e
2

~k1q!s
'

~k1q!2
1

k11q12 i e
2

1

2p1

3ũ~p2k!gpu~p!qnPpg~k!GnegPes~k1q1 l ! D
3p~2p!2d~k2!d~ l2!d~q2!, ~13a!

B55g5f arcf rbd~T2
d!~T1

cT1
b!

1

l 2q2
1

l12 i e

1

q12 i e

3S 2
~k1 l !s

'

~k1 l !2
1

k11 l12 i e

1
~k1 l1q!s

'

~k1 l1q!2
1

k11 l11q12 i e

1
1

2p1
ũ~p2k!gpu~p!qnPpd~k!Grnd

3Prs~k1q1 l ! Dp~2p!2d~k2!d~ l2!d~q2!,

~13b!
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C55g5~T2
d!~T1

cT1
b!

1

l 2q2
1

l12 i e

1

q12 i e

1

2p1

3ũ~p2k!gpu~p!qnl bPpg~k!Grbng
abcd

3Prs~k1q1 l !p~2p!2d~k2!d~ l2!d~q2!, ~13c!

D51E55g5f arbf rcd~T2
d!~T1

cT1
b!

1

l 2q2
1

l12 i e

1

q12 i e

3S ~k1q!s
'

~k1q!2
1

k11q12 i e

2
~k1 l1q!s

'

~k1 l1q!2
1

k11 l11q12 i e D
3p~2p!2d~k2!d~ l2!d~q2!, ~13d!

F51G55g5f arcf rbd~T2
d!~T1

cT1
b!

1

l 2q2
1

l12 i e

1

q12 i e

FIG. 5. The diagrams at orderg5.
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3S ~k1 l !s
'

~k1 l !2
1

k11 l12 i e

2
~k1 l1q!s

'

~k1 l1q!2
1

k11 l11q12 i e D
3p~2p!2d~k2!d~ l2!d~q2!, ~13e!

H51I 51J51K51L51M5

5g5~T1
cT1

b!
~k1 l1q!s

'

l 2q2~k1 l1q!2
1

l12 i e

1

q12 i e

3
1

k11 l11q12 i e F2 f abrf rcd~T2
d!1

1

2p1
ũ~p2k!

3S g1

1

g•~p1 l1q!
g•q~T2

a@T2
c ,T2

b# !

1g•q
1

g•~p2k2 l2q!
g1~@T2

c ,T2
b#T2

a! Du~p!G
3p~2p!2d~k2!d~ l2!d~q2!, ~13f!

whereGneg is the three gluon vertex omitting color depen-
dence,Grbng

abcd is a four-gluon vertex including the color fac-
tors, andPab(k) is the gluon’s propagator.

By writing the d functions of the minus components of
the momenta we are already anticipating the color averaging.
After taking the trace in the color space of the first nucleon
everything becomes symmetric under thel↔q inter-
change. The quark line in the first nucleon for any graph
in Fig. 5 gives

S 1

2p1
D ũ~p2 l2q!g1F ~p2 l !•g

~p2 l !21 i eG
3g1u~p!~2p!d~ l21q2!

'2S 1

l22 i e D ~2p!d~ l21q2!.

Using thel↔q symmetry we can symmetrize this result by
just switchingl andq lines. We obtain

1

2F2S 1

l22 i e D2S 1

q22 i e D G~2p!d~ l21q2!

5
1

2F S 1

l21 i e D2S 1

l22 i e D G (2p)d~ l21q2!

52p id~ l2!~2p!d~q2!,

which we included in the contributions of the diagrams.
When thel andq gluons hook to different quark lines in the
nucleon, we get the similar factors even without color aver-
aging.

After summing all the contributions and taking the color
average, and after some algebra which we are going to skip,
we end up with

^A51•••1M5&1

5g5~T2
a!

ks
'

k2l 2q2
1

k12 i e

1

l12 i e

1

q12 i e

3p2~2p!d~k2!d~ l2!d~q2!, ~14!

which, after a Fourier transform, gives

^A51•••1M5&152
g5

4~2p!3
~T2

a!ln2~ ux2x1ul!

3
x2x2

ux2x2u2
u~x22x22!. ~15!

Now it becomes obvious that after summing over all possible
connections to the quark lines of thel andq gluons in the
first nucleon and of thek gluon in the second we will repro-
duce formula~12!. The color averaging is crucial, it elimi-
nates many extra terms in the sum of the contributions of
different diagrams. It also eliminates some graphs at order
g5 which have ‘‘quantum’’ parts—vertex and propagator
corrections. If we had not imposed the color singlet condi-
tion, the correspondence between the classical field and the
diagrams would not work.

One can question whether it is possible to go to the higher
orders ing, that is, to ordersg7, g9, etc. The answer is no,
because at higher orders the classical field does not domi-
nate, and the contribution of quantum corrections becomes
important. We illustrate this statement at orderg7 in Fig. 6.
The diagram in Fig. 6~a! is a typical graph which one would
expect to contribute to the classical gluon field at this order.
Figure 6~b! is one of the many divergent diagrams for the
gluon field at the orderg7. Here one cannot eliminate the
‘‘quantum’’ graph given in Fig. 6~b! by color averaging as
was done at lower orders. There is no other reason for this
graph to be suppressed. Therefore, both of the graphs in Fig.
6 contribute at this order.

The diagram in Fig. 6~b! cannot be a part of the classical
field, because it is divergent and has to be renormalized,
which is an essentially quantum procedure. So, the gluon
field at this order has both classical and quantum contribu-
tions in it, and, although the correspondence of the classical
field to some diagrams may still hold, it does not make much
physical sense to try to isolate it. Therefore once we have
more than two gluons connected to the first nucleon we can
not take the gluon field to be classical. This way we obtained

FIG. 6. ~a! A typical ‘‘classical’’ diagram at the orderg7, ~b! a
diagram which is not included in the classical field at orderg7, but
does not vanish.
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a limit to McLerran-Venugopalan model. The classical ap-
proach is valid as long as we have no more than two gluons
per nucleon.

IV. CONCLUSIONS

To illustrate this limit, still at the level of two interacting
nucleons, we will construct diagrams contributing to the
cross section of the nucleus on a quarkonium~quark-
antiquark bound state! at orderg8, which means two gluons
per nucleon. An important parameter in McLerran-
Venugopalan model isNas

2, whereN is the number of
nucleons in the nucleus. It plays the role of an effective
coupling. The kinematic region we are considering is
Nas

2;1, as!1. In the process we are going to consider
there will be only two participating nucleons.~There areN
nucleons in the nucleus but, for simplicity, we allow only
two of them to interact.! Then, in terms of that ‘‘effective
coupling’’ of the theory, the process will be of the order
(Nas

2)2, which exactly corresponds to the orderg8 dia-
grams. The diagrams that survive are shown in Fig. 7. The
quark lines of the onium~not shown in Fig. 7! connect to the
crosses at the ends of the gluon lines. Each cross represents a
gluon field. The generalization to more than two interacting
nucleons is straightforward.

By diagramB in Fig. 7 we mean a class of diagrams
where the gluon line coming from the first~left! nucleon to
the second nucleon connects in all possible ways to the sec-
ond nucleon and the gluons emitted off it. Similarly, graph
C in Fig. 7 includes all diagrams where the two gluon lines
connecting the nucleons hook in all possible ways to the
second nucleon. Also it is understood that in all graphs glu-
ons hook to all possible quark lines in the nucleons. Color
averaging is assumed in the color space of each of the nucle-
ons.

We have to prove that the graphs we drew are the only
possible diagrams giving significant contribution to the scat-
tering. We do not consider the diagrams where all gluons
hook to one of the nucleons and the other nucleon remains a
noninteracting spectator or just interacts with itself. Those
graphs would be at most of orderNas

4, i.e., down by a
factor of N compared to the diagrams in Fig. 7. One can
easily see that for a graph corresponding to four gluon fields
coming off two nucleons, the diagrams of typeA are the only
possibilities at orderg8. ~Note that now we do the color

averaging everywhere.! Analogously we can prove that
graphs likeB are the only possibilities for three-field contri-
butions at this order of the coupling. The fourth gluon line
cannot remain in just one nucleon since that contribution will
be cancelled by color averaging. It has to connect to another
nucleon and that way we obtain graphs likeB. ‘‘Symmetric’’
graphs, i.e., the graphs where the first and the second
nucleon are interchanged in the diagram, but not in thex2

direction, are either equivalent to the diagrams in classB, as
happens to that particular graph shown in Fig. 7, or give zero
after imposing longitudinal ordering and applying Ward
identities. The arguments leading to this conclusion are much
the same as those we now give for graphs in classC.

For the graphs with two gluon fields the situation is a little
more complicated. Here we have many more diagrams which
disappear leaving only diagrams as inC in Fig. 7. Most of
the graphs with two gluon fields at orderg8, which are not
equivalent to diagrams in classC, can be represented as hav-
ing one gluon line, which gives the field, connected to some
fermion line in nucleon number 1, with the other three lines
connected in all possible ways to provide one more gluon
field, but not hooking to that first gluon line. Now, in each of
these diagrams there must be one or two paths to get from
one nucleon to the other along gluon lines. Each of these
paths corresponds to some product of the propagator de-
nominators. Because of the longitudinal separation between
the nucleons, at least one of these denominators should in-
clude 1/(l12 i e). That is, it should correspond to a part of
the propagator which is longitudinally polarized at the right
endhal b /( l12 i e), otherwise we would get either an expo-
nential suppression as in Eq.~9! or a wrong ordering. Such a
denominator should be present on each path from one
nucleon to the other. This is illustrated in Fig. 8. The dashed
line corresponds to the longitudinally polarized propagator
and is the same as in Fig. 4. The blobs represent some com-
binations of the gluon lines. Each graph is of orderg8. Case
I corresponds to diagrams where there is only one path from
one nucleon to the other along the gluon lines in the diagram.
It also includes the case where there are two paths, but a
longitudinally polarized line belongs to both of them. The
situation where we have two paths between the nucleons and
the longitudinally polarized lines are different for each of the
paths is represented in case II. There we pick the longitudi-
nally polarized line along one of the paths, without worrying
much about the location of the similar line on the other path.

FIG. 7. Diagrams contributing to the scattering amplitude at orderg8 for two nucleons~see text!.
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For case I in Fig. 8 we can just apply the Ward identity to
get the diagram on the right, which is zero after color aver-
aging in the right nucleon. By application of the Ward iden-
tity we mean summation over the contributions of the dia-
grams which have the same structure to the left and to the
right of the dashed line, but different connections of the
dashed line on the right-hand side. The sum of these gives
the graph on the right of I, similarly to Fig. 4. Analogously,
in case II in Fig. 8 we can apply the Ward identity to the
dashed line. The result is shown in the second line of case II
in Fig. 8. The first graph there corresponds to the arrow of
the dashed line connected either to the vertex where the two
paths split, if such a vertex exists, or to the quark line in the
first nucleon, if the paths do not overlap in the left blob. Now
in both graphs there is only one path from one nucleon to
another, and that brings us back to case I and cancels for the
same reason. That way we include all the contributions from
these diagrams and prove that they are zero.

We illustrate our technique in Fig. 9. In general, at order
g8 the graphs that we consider in Fig. 8 can be subdivided in
two classes, representatives of which are shown in Fig. 9.
We may have two gluons leaving nucleon number 1 to con-
nect to nucleon number 2@Fig. 9~a!#. There may also be just
one such gluon@Fig. 9~b!#. The application of our method to

the class of diagrams in Fig. 9~a! is straightforward. This
obviously corresponds to case II in Fig. 8. At least one of the
gluon lines connecting the nucleons should be longitudinally
polarized. Summation over all of its possible connections on
the right and application of the Ward identity leaves us with
only one line connecting the nucleons. This line in its turn
should be longitudinally polarized. Applying the Ward iden-
tity once again we get zero.

The diagrams represented in Fig. 9~b! are a little harder to
deal with. The contribution in which line 1 is longitudinally
polarized on the right belongs to case I in Fig. 8. Therefore,
summing over all possible connections of line 1 on the right
we get zero. When line 1 is covariant or longitudinally po-
larized at the left end we need either line 2 or line 3 to be
longitudinally polarized at the right end. Let it be line 3.
Now the situation corresponds to case II in Fig. 8. Applying
the Ward identity we end up with the right end of line 3
hooking back to the three-gluon vertex or to the cross at the
end of the gluon connected to the second nucleon. We took
the contribution of line 1 which cannot insure the longitudi-
nal separation. Therefore, now line 2 has to be longitudinally
polarized on the right. The situation again becomes similar to
case I in Fig. 8. Summation over all possible connections of
line 2 on the right gives us zero.

The diagrams which are not included in the representation
shown in Fig. 8 can be eliminated by a similar technique. In
the end we are left with the class of diagramsC in Fig. 7.
The classical field at orderg5 is included in contributions of
some of these diagrams. The initial and final states of the
nucleons are color singlets. Therefore, color averaging in the
first nucleon when calculating the graphs for the classical
field at orderg5 in Sec. III is justified. There are no graphs
with just one gluon field contributing to the scattering pro-
cess, since we cannot emit one gluon off a color singlet
object.

So, the scattering process in the light-cone gauge is de-
scribed by the diagrams of the types shown in Fig. 7, i.e., by
the classical field. If one thinks about this process in the
covariant gauge it is easy to see that the only diagrams that
contribute are of typeA in Fig. 7. It obviously is a combina-
tion of the classical fields. That way the correspondence can
be easily seen in the covariant gauge. The two gluons per
nucleon limit is also manifest in that gauge.

To conclude we summarize the results of this paper. The
Feynman diagrams corresponding to the classical non-
Abelian Weizsa¨cker-Williams field in the light-cone gauge
were constructed~see Figs. 2, 3, and 5!. We derived a limit
for the classical approach, which is two gluons per nucleon.
It was shown that for a large nucleus the diagrams, satisfying
this limit, which dominate a scattering process are described
by a classical field~see Fig. 7!. Therefore it is possible that
the classical field may be used for calculation of such pro-
cesses as charm production, dijet cross sections, and many
others in nuclear collisions.
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