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Intrinsic glue distribution at very small x

Jamal Jalilian-Marian, Alex Kovner, Larry McLerran, and Heribert Weigert
Physics Department, University of Minnesota, 116 Church Street S.E., Minneapolis, Minnesota 55455
(Received 6 August 1996

We compute the distribution functions for gluons at very smadind not too large values of transverse
momenta. We extend the McLerran-Venugopalan model by using renormalization group methods to integrate
out effects due to those gluons which generate an effective classical charge density foickéeiygiliams
fields. We argue that this model can be extended from the description of nuclei aksimétle description of
hadrons at yet smaller values xf This generates a Lipatov-like enhancement for the intrinsic gluon distribu-
tion function and a nontrivial transverse momentum dependence as well. We estimate the transverse momen-
tum dependence for the distribution functions, and show how the issue of unitarity is resolved in lepton-
nucleus interactiong S0556-282(197)05407-9

PACS numbes): 12.38.Bx, 12.38.Mh, 24.85.p, 25.75.Dw

I. INTRODUCTION In the infinite momentum frame, the valence partons are
strongly Lorentz contracted. If we then look for spread-out
The problem of computing the distribution functions for gluon fields atx<A 18 interactions between valence par-
gluons at very smalk is an old one[1]. The gluon(and  tons and soft gluon fields eikonalize, which indeed allows us
quark distribution functions are computable in perturbationig take the particle limit for the fast-moving partons. Hére
theory at Ia_rge values of, but at smallx one encounters a g pe baryon number of a nucleus. For a hadsosl. The
so-called Lipatov enhancement. The precise computation cﬁadron will indeed appear as an infinitesimally thin sheet on

this enhancement is subject to much uncertainty, primaril e scale of wavelenaths associated with the momentum
because at some point in the evolution the density of gluon . . 9 . :
becomes so large that there are mutual interactions of thgactionx. (We will later see that we will have to regularize

gluons which are ignored in the Balitskii-Fadin-Kuraev- this source by giving it a large but finite momentum and a
Lipatov (BFKL) equation. In addition, the behavior at small longitudinal extent of ordeR/y whereR is its size in the rest
X also involves knowing the distribution function at small frame andy is its Lorentz gamma factor. We will find that
Q2 and again nonperturbative information seems to benothing in leading order of our computations depends upon
needed. the details of this regularization. In addition, for a thick
Recently, a different framework was advocated for thenucleus, since the number of sources of charge per unit area
computation of the gluon distribution functiori®]. The  scales a#'3, we may view the valence partofguarks as
starting point of this approach is to view a hadron not as alassical color charges. Therefore, somewhat paradoxically,
collection of a small number of partons, but rather as a systhe simplest problem to start with is computing the gluon
tem with finite parton density. In the h|gh density Situation,distributions for a very |arge nucleus.
the natural way to describe the soft gluons is not as quasifree \ye will find later that at very smak the glue as well as
partic_les, but as classical fields with allarge amplitude. The_s'@alence quarks contributes to the charge density seen by a
classical fields are generated by classical cc_)lor charges whicklon. The gluons which contribute to the charge density are
represent the valence partons. Once the high density effec | gluons with anx larger than thex of the gluon whose

2;% rﬁrslummrgfﬁogéotéhgaﬂﬁ;gal ijlz:’gﬁm oggrgii/ioizpl)llnvﬁis ructure function is being measured. Therefore the consid-

piing me ate qual ' -eration discussed above for nuclei will apply to hadrons
approach, high gluon densities which prove so problematlc\:Nhen at sufficiently smatk so that the number of gluons at
in the BFKL context are a prerequisite for the description ofI | & o | The advant f ? is that
the parton content of a nucleus wave function via classicallarger values oK 1s large. The advantage of nuclel Is tha
gluon fields. arge densities of charge are generated at larger values of

A consistent separation in field and particlelike degrees oft"d therefore lower energy per nucleon, than is the case for a
freedom can be performed most easily in the infinite momenSingle hadron.

tum frame. The object of computation is the intringi@and A solution of this problem would be useful in a variety of
p, contributions to the infinite momentum hadronic wave contexts. The approach we advocate involves knowledge of

function in the light cone gauge. Distribution functions areth® nuclear wave function and is somewhat related to the
given as _appr_oa(_:h of Mueller for heav_y quarkorﬁa]. Our approach _
in principle allows the resolution of various phenomenologi-
) Q , cal problems which arise in the parton cascade model of
Qlx,Q%]= fo d°p, m 1) particle production in heavy ion collisiod]. These models
provide the initial condition for hydrodynamic calculations
in terms of the intrinsic parton distributions as computed by{5]. A model which builds in the space-time structure we
taking the expectation value of the number operator in thedvocate and uses the information we have generated for the
state of interest. infinite momentum frame wave functions is given in Héf.
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The theory which results at the classical level is basicallylations. As was shown in R€ff7], the quantum corrections to

a Yang-Mills theory in the presence of a source: the distribution functions calculated in terms of the classical
N B fields become large at smal] the enhancement factor being
Ja = 0(X7)pa(Xy). @ the infamous InL/x.

The measure which generates the expectation values of The main gﬁal .Of Itlh's plapedr IS tc(i) show It.hat the tlwc_) cor
gluon fields, corresponding to distribution functions, is rections are physica y re ated and to outline a solution to
both problems. We will show that the smallenhancement

1 i arises from quantum fluctuations with large longitudinal mo-
J’ [dA][dP]eXF{ _J d’x, 2 Trp%(x,) |exnliS), (3 mentum. We show that such configurations may be succes-
sively integrated out by using renormalization group tech-
whereS is the ordinary gluon action in the presence of theniques reminiscent of the Wilson block spin method. This
external current). The parameter? is the valence color approach can also be interpreted in terms of the adiabatic or
charge per unit arescaled by a factor IN2—1)]. In lead-  Born-Oppenheimer approximation extensively used in
ing order, the expectation value is given by a classical fieldcatomic physics. Integrating out hard quantum fluctuations is

which is a solution of the Yang-Mills equatibn equivalent to including the harder gluons into what we call
w2y the charge density in Eq. (3), while calculating the distri-
D, F*"=g"J%, (4) bution of the softer glue. It therefore leads to “renormaliza-

which is then averaaed over different valuesoof tion” of the charge density and endows it with nontrivial and
9 50 calculable longitudinal structure.

In the limit where the gluon field generated by these va- This modified momentum-dependent distribution  of

lence quarks is treated classically, the gluon field is a non- . . :
Abelian Weizsaker-Williams field and has the form source strengths leads to infrared nonsingular correlation

functions. We argue that the result is sensitive only to the
AT=A"=0 (5) average charge squared per unit rapidity per unit transverse
area of the source.
and The outline of this paper is as follows.
_ _ In Sec. Il, we study the classical problem of computing
Al=0(x")a'(x)). (6) the fields associated with a source of charge which is ex-
. o ) ) tended inx”. We find the general solution to this problem in
The field oS is a two-dimensional “pure gauge:” the light cone gauge. We compute the resulting distribution
1 functions assuming that the source is randomx irandx ™,
ad=—-uviut 7) but with a We_ight of _C_harge squared per unit rapidity per unit
I area, which is specified.
) o i In Sec. Ill, we show by using the renormalization group
The physical justification for the non-Abelian echniques how to generate classical fields at some rapidity

Weizsaker-Williams field is that because the source ofgcajey This involves perturbatively integrating out modes at
charge is confined to a thin sheet, the solution must solve thl%trger values of rapiditysmaller values ok ). This integra-

free equations of motion everywhere but on the sheet. Thg, generates an effective Lagrangian which has a self-

solution is therefore a gauge transform of zero field on eithegm;jar form, namely, that at each step of the procedure it is
side of the sheet. The discontinuity of the fields across thgjmijar to the McLerran-Venugopalan model, but with a

sheet gives the charge density. _charge per unit area which is rapidity dependent. We show
_Itwas suggested by McLerran and Venugopalan that thig, o this effective theory is equivalent to that discussed in
simple model should give a decent approximation for the sofgec | we derive the renormalization group equations for

glue distribution function. It turns out, however, that the Cor-,o charge squared per unit area per unit rapidity as measured
rections to the distribution function calculated in this way areg;  some transverse momentum scal¥ and rapidity

large at smalk. Technically, there are two sources for thesey=y0+ln(x5/x*), where y, is the nucleus rapidity and

corrections, although both have the same physical origin. 5 ~" g/, "The calculations in this section rely on several
First, as we will show, the behavior of the correlation simplifying approximations, which we discuss.

function calculated in this simpleminded approach is singular | Sec |V we study the renormalization group equations
at smallp, . The flaw in the treatment of Ref2] was that ¢, the charge squared per unit rapidity per unit area as a
the source of charge was not treated as an extended distribyi ~tion of Q2 andy. This equation is closely related to the
tion which tends to & function only in the infinite momen- a1 eyolution equations for the distribution function which

tum limit [8,9]. Physically, it is clear that the charge density 5y near in standard perturbative treatments. It can be viewed
is indeed spread out on the scale of the characteristic longlss" 5 nonlinear version of the Dokshitzer-Gribov-Lipatov-

tudingl momentum of the hard particles which generate thi\ i elli-Parisi (DGLAP) equation. We show that fop,
density. o , much larger than the momentum scale associated with the
The second source of large corrections is basically thenarge squared per unit rapidity integrated over all rapidities
same smalk enhancement as in standard perturbative calcUpger than that at which we measure the structure functions
[which we will refer to asy(y,Q?)], the nonlinearities in the
renormalization grougRG) equation become unimportant.
For conventions on the use of the coupling constant, see the neka this regime the equation basically describes the double-
section. logarithmic DGLAP evolution. At lower momenta our equa-
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tion can be thought of as a nonlinear variant of the BFKLstructure, we must understand the evolution of the field
equation, although to make the relation precise one wouldcross thes function singularity. This can only be done if we
have to consider some virtual corrections in addition to thos&now the structure of the source 1. In fact, as shown in
accounted for in our derivation. At low transverse momen48], ignoring this problem leads to infrared singular distribu-
tum, we show that the evolution equation saturates. We digions.
cuss the consistency issues which are necessary for a solu- Let us introduce the space-time rapidity variable
tion of this equation within the set of approximations for
which our derivation is valid. y=Yot+In(xq/x"), (13
In the final sections we summarize our results. We show
how our results are consistent with unitarity in deep inelastiovhich will be useful forx™>0. We will assume that the
scattering. We estimate the total cross section at figéaés  source strength is nonvanishing only for positg and we
X approaches zero. We argue that a computation of thwill work in a gauge where the field&' vanish forx™<0.
charge squared per unit rapidity per unit area would allow alhe rapidity y, is the momentum space rapidity of the
computation of the total multiplicity in hadronic interactions. nucleus, and the parameter; is the typical Lorentz-
We discuss the possible universality of our results and theigontracted size of the nucleus, ~R/y.
possible generalization to the description of nucleons at In the next section, we will use renormalization group
small x. We discuss some of the many problems which aredrguments to show that there is a nontrivial induced source
not yet solved within the approach advocated in this paperstrength extending beyond the volume occupied by valence
partons which is driven by gluon modes at longitudinal mo-
Il. MODIEICATION OF THE SOURCE STRENGTH DUE mentum larger than that at which we measure the gluon dis-
TO EXTENDED STRUCTURE IN X~ tribution. This is parametrized by some strength of charge
squared per unit area per unit space-time rapigfgy, Q?)
In this paper we will use gauge potentials scaled such thaind by the charge per unit area at rapidities greater yhan
the covariant derivative read,[A] =d,—iA . The classi-
cal gluonic action is of the form- 1/4g®)F? and hence a 5 F o o
g2J* term in the classical equations of motion. In this setup x(y,Q%) = L dy’w(y",Q%). (14)
gauge transformationd are most economically parameter-

ized via U(x)=exp[iA(x)] transforming A as  The paramete? appears because we must specify at what
A—U[A—(1/)d]U"*. We will be also using matrix nota- value ofQ?we are measuring the distribution function. It has

tion, e.g.,p=p*T? whereT* are the normalized Hermitian precisely the same meaning as in perturbative QCD calcula-
generators of the SW(;) group in the fundamental represen- tions, namely, the transverse scale at which a parton is re-

; b_ cab . e
tation, 2 TT*T°= 5", solved [10]. It should not be confused with the intrinsic
In the Ol’lglnal MCLerran-Venugopa|an approe{d], the transverse momenta of the fields.
source strength was assumed to have the form Accounting for the space-time rapidity dependence of the
_ _ source strength, we therefore are led to consider the distribu-
33 (X7 X)) = 8(X ) pa(X,) ®  don

and to be distributed with the Gaussian weight o 2
j [dp]ex —J’ dyj d?x Ty x) (15)
P 0 LAy, QY |
In this equationp is the charge density per unit transverse
where,ug2 is the charge per unit area. area per unit space-time rapid?tyn the previous work we

The solutions to the Yang-Mills equation in the" =0 took great pain to argue that the charge could be treated
gauge have vanishing . Their transverse componertd  classically on transverse scales which are large compared to

: 9

1
f [dp]exF{_;ZJdZXLTrPZ(XL)

are determined through the density of partons per unit area. This was because on this
, , scale there is a large number of partons contributing to the
VioTA+[A ,0TA]=g2", (100 source, and therefore the charges were in a large dimensional
representation of the color group. This allowed a classical
together W|th treatment_

The longitudinal structure is a new ingredient. Why can
we still approximate the partorigluong that couple to soft
glue by a classical source? The physical reason is easy to
understand: For these high momentum gluons, the coupling

Fil=0. (11
It was argued that the solution was of the form
Al(X)=0(x")a'(x,). (12

In this solution, the commutator term in H40) was ignored  27he parametep?(y) controls the magnitude of the fluctuations
since it involves the commutator of the field at the sameyf the charge density at fixed rapidif Since there is no charge
pointinx . density at rapidities greater than the rapidity of the nuclgyshe

Ignoring the commutator term is, however, not justified. Itfunction x*(y) should vanish fory=y,. The rapidity integrals in
is clear that this term in Eq.10) is very singular and in- Egs. (14) and (15) are therefore effectively cutoff at this upper
volves a product oB(x ") and 8(x ). To make sense of this limit.
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is weak, so that to change the fidlthe soft glue by a cor-  tion. For that, we have to perform the integration over the
rection of order 1, one must have mathard gluons con- source strengthp(y,X, ). Let us change the variables in the
tributing. In the next section, we will see that the inducedpath integral, Eq(15), from p(y,X,) to A(y,x,). The Jacobi

source of gluons is in fact slowly varying in rapidity of this transformation does not depend @nThis is easily
5 verified noting that the Jacobian matrix is triangulayiand,
d_PN d_P 16 as a result of thg orderings involved in the relation between
dy? “« dy’ (16) p andA, has no interactions on the diagonal. We find, there-

fore, that, for any functior©(p),
Again, we will see this justified in more detail in the next

section d “av [ o2 p(y.x,)? o
Therefore these sources of charge come from an extende [dp]exp — 0 y X w?(y,Q?) (p)

region of space-time rapidity with a typical contribution at a

rapidity far greater than that of the field we are computing. Tr[VzA(y x,)]?
The source will therefore appear to be infinitesimally thin in _f [dA]ex;{ f dyJ 2(y, QZ) Q(A).
the variablex™.

We must solve Eq(10) in the presence of source with a (22

prescribed rapidity dependence. This is best done in terms
the rapidity variabley introduced in Eq(13). Equation(10)
becomes

cgince the classical fields; are given as explicit functions of
A and our aim is to compute the distribution function

d Gij(y. x5y XD =(Aiy, X )A;(Y" X)), (23
D;i o= A'=g%p(y.X,). (17)

'dy this form of the path integral is very convenient.

. . . ., We first note that
In this equation, because of the extended structure in rapid-

ity, the term which involves the group cross product of two _ % _

Al fields cannot be ignored. Al(y1XL):j dy"Ue yr (X ) (VIA(Y" X)) Uyr (X))
The formal solution to this equation can be found by in- y (24)

troducing the line-ordered phase

Now we perform the integrations oveéx by expanding the
(18  Path-ordered phases. It is most conveniently done by expand-

ing the exponentials to first order on the rapidity grid with

grid spacmga This is a valid procedure as long as the

representlng a parallel transport operator along a straight lingnction 42 is not divergent, |II‘Q vayu2(y)=0. We then
at fixedx™ andx, connectingy to = (x~=0). Recall that due Y

to the vanishing of the transverse magnetic i@t =0), the
vector potential should be a “two-dimensional pure gauge.
We let, therefore,

U(y,x,)=U.,(x,)=P eX;{ifdy’A(y’,xi) :

perform all possible contractlons with the propagator corre-
»sponding to the Gaussian weight in the path integral dver
Let us group together terms of the same order in the coupling
constant. In zeroth order we have
[ _ivil) -1
Al(y,x, )=iUvV'U™-. (19 G0 0 (yx, Yy X))
This leads to the equation fa:

°° 1
VZA: _92U—1pU. (20) :g46abj dy Mz(y,Qz)ViV]—, W (XL ,Xi). (25)

maxy,y’
The above equation may be solved directly numerically.gome comments are in order concerning the inversion of the
Imagine we have a grid in rapidity and transverse coordi- gperatorV4, since there is an infrared singularity in the in-
nates. We define the lattice spacing in rapidityags The  yersion. Recall that the sources of interest ultimately arise

above equation can be written as from individual nucleons. Therefore all effects of sources die
" 1 off at transverse size scales larger thagdp. The charge
V2A(Y, X, )=— 92< p ex;{i f dy’A(y’,x,) ) itself averaged over such transverse size scales also vanishes.
y+ay This means that the Green’s function should be defined with

1/Agcp- In other words, whenever an infrared cutoff is

needed for a proper definition of an inverse of a differential
21) operator, it should be taken of the order oAgty,. We will

see that the quantities of physical interest are only very
The solution aty depends only upon the functioh at larger weakly dependent on this nonperturbative length scale, but
values of rapidity. This equation may therefore be solvednevertheless such a dependence does not disappear entirely.

) boundary conditions that ensure its vanishing at distance

><p<y,xi>(f> eerw+ dy' Ay’ x,)

y+ay

iteratively starting at some maximuyn,., beyond which the Here and in all that follows, we will define
source vanishes. 1 1
It turns out, however, that we do not need to know an . 2 272
- ' A X):= o=z (X)= c— x° In(x“A + 26
explicit solution in order to calculate the distribution func- () v ( ) OCAGeD) T 7(0), (26)
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where (0) denotes ar(infrared-divergent constant which
ensures the vanishing of this Green’'s function>asap-

proaches the infrared cutoff Ahcp. Fortunately, the corre-
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x(y,Q%)= f:dY'Mz(y',Qz)- (30

lation function we will calculate below does not depend on
the value ofy(0) and the only infrared sensitivity that re- e quantity x(y,Q?) is the total charge squared per unit

mains is through the logarithmic term in EQ6).
In first order, a quick computation gives

1
Gy, X, 3y X))== 5 San(—No)

o 2

x| g* f dy’u?(y",Q?)
max, v

XLViV{y(x =x ) ][ v(x, —X])

—v(0)].

(27)

In this equationN. is the number of colors.
Similarly, in nth order, we find

Ginj;ab(yvxL 1yrvxi)

(_Nc)n . . ) 5 (n+1)
=(—-1)"5.,,, —— f dv” n’
( ) ab (n+ 1)| |:g ma)yy’ y Iu’ (y Q )

XViViy(x =x){v(x, =x[) = y(0)}". (28

The tadpole terms which take care of subtractionsy@)

area at rapidity greater than the rapidjty
Finally, for the distribution function we get

2
aa_ 4(Ng—1)

242 N¢/8 2
N [1—(x AQCD)(q oBmX(YIXT]
c

(31)

This correlation function has an amusing structure. At
small transverse distances wherapproaches zero, the cor-
relation function tends to the perturbative correlation func-
tion, that is, its value in lowest order in an expansiorgfn
At short distances, the theory is perturbative. At large trans-
verse distanceqdbut of course still much smaller than
1/Aqcp), the correlation function dies off like 27. Its Fou-
rier transform at small momenta therefore behaves as

G(y,y' =y,k,)~In[kZ/g*Nex(y)]. (32

This is in contrast to the behavior at larger transverse mo-
mentum where this correlation functions rises likk?14sk,
decreases, in agreement with the perturbative result. The cor-

appear through the normal ordering of the path-ordered exelation function is therefore much softened at srkall This

ponential. This calculation can be found in Appendix A.

behavior is shown in Fig. 1. The characteristic momentum

We can now sum the series and find a representation fagscale which differentiates between the nonperturbative and

the correlation function ag@ssumingy>y')
GE°(y.x, 1y X]) == 8(V;V| y(x, —x]))
1
>< !
N[ ¥(X, —x1) = ¥(0)]
X (1-exp{g*Nex(y,Q%)
X[y(x =x)=v(0)]}),

(29

where we have defined

&N
dk’

FIG. 1. Distribution at fixedk as a function of intrinsic trans-
verse momenturk? . We obtain considerable softening at snigll
compared to the perturbativekf/ behavior.

perturbative regions i&?~g*N.x(y), that is,g* times the
charge per unit area at rapidities greater than the rapidity at
which the correlation function is measuréd@his nonpertur-
bative regime is nevertheless a weak coupling regime. Only
whenk?~A2¢p does the coupling become strong and weak
coupling methods can no longer be used.

It is worth noting that the dependence upbgp is very
weak. At large transverse momenta the Fourier transform of
the distribution functionG does not depend oAgcp. At
large separations there is saturation, and there is again no
dependence upahgcp. The dependence is really only in the
region of very small momentak(<agx), where our ap-
proximation is in any case not valid.

This result is almost consistent with the structure which
was argued to be true by McLerran and Venugopa@n
They had argued that at small transverse momentum the
above correlation function should approach a constant. It
does up to logarithmic correction& he line of reasoning in
Ref. [2] was, however, incorrect since it was based on an
analysis of an equation that did not properly handle the in-
duced charge associated with the gluon field, that is, the
[A;,07A'] term in the equation which determines the gluon
field in terms of the external charge density.

3As we will see in the next section, the contribution of the gluons
to x is proportional toN, at largeN.. In the largeN, limit, the
coupling constant scales géN.=const. The crossover scale there-
fore has the correct largé; scaling behavior.
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A gion of momenta is changed relative to the one at the previ-
l ous step of the RG procedure. This is because it solves clas-
sical equations in the presence of the additional charge
w2(y,Q%)dy. This allows us to generate an effective La-
grangian at some scale 1. This is in a region where the
naive McLerran-Venugopalan model would have broken
down.

Analogously, we can also allow the transverse momentum
cutoff Q2 to be changed independently by a renormalization
group transformation. This corresponds to perturbatively in-
tegrating out quantum modes in a phase space region with

- = transverse momenta betwe€), and Q,. This latter RG
A A transformation is the counterpart in our approach of the stan-
dard perturbative renormalization group scaling.
FIG. 2. Leading pert.urbative co.rrect.ion to the gl.uon.distribution In the process of doing these transformations, we develop
beyond the classical field approximation. The thick lines denote; get of renormalization group equations fp?(y,QZ).

gluons with large longitudinal momentupi’. The momentum of These equations determine the rapidity f@nﬂdependence
the_thin Enef ik™. The large logarithms come from the kinematical of this parameter.
regionk/p* <1. We also determine the equation for the gluon field. It will
turn out that this equation is a little more complicated than
1. RENORMALIZATION-GROUP-IMPROVED CHARGE that in the previous section, since the induced charge de-
DISTRIBUTION AND GLUON FIELD pends upon the gluon field strength squared at the previous
step of the renormalization group analysis. We argue that it
should be a reasonable approximation to replace this field
strength squared by its average value, in which case the
equations described in the previous section can be derived.
There are corrections to this approximation which are in
principle computable. It is precisely this approximation
which makes the fluctuations in the charge density uncorre-
lated in space-time rapidity. Inclusion of these corrections
will induce correlations. These correlations will, however, on

In this section, we will set up a renormalization groupthe average not contribute to building up the charge density.

procedure that sums up these corrections. The method of It .Sh|OUId. bg_nolte?] that there a_{_i other ;oufrces Or: colrrela_-
analysis is the following. We first consider the bare!lOn In longitudinal phase space. These arise from the classi-

McLerran-Venugopalan model with a fixed valence chargecalI field _itse]f which is recomputed at egc_h stage of the
density and a fixed ultraviolet cutoff in the longitudinal mo- renormalization group analy5|s. Although it is true that. the
mentumP ™. Physically,P* is of the order of the longitudi- source of the color field is largely uncorrelated, for a given

nal momentum of the nucleus. It sets the scale of size for th&®4 e there_ are still 'OT‘Q range_cprrelatipn_s_built into the
longitudinal extent of the nucleus color field which would yield nontrivial multiplicity correla-

The renormalization group is implemented by consideringtlons in rapidity.

the effective Lagrangian at a scale of momentfmuch Since the process closes under iteration, it is sufficient for
less tharP*, but whereagIn(1/x)<1. To generate this effec- us to show how we integrate the degrees of freedom as the

tive Lagrangian, we integrate out quantum fluctuations with-agrangian c_han_ges scale_s In mﬁ_q to the(N+1_)st step of
momentumk*<q*<P*. This procedure, as will be seen, the renormalization grouping. This is what will be demon-

generates a new effective Lagrangian of the same form as tk?érated belpw. L
original one, but with an additional charge squared per unit We begin our analysis with the McLerran-Venugopalan
area. The typical scale of fluctuation of this additional chargé”lCtlon
squared per unit area jg(y,Q?)dy wheredy=—In(x) and
Qzlis a typical tr_ansver;e momentum resolution scale at S=iJ d?x, ETrpZ(xL)—iz f d4x1 E Erv
which the gluon distribution is ultimately measured. X g 4 wmv
Since the form of the Lagrangian is unchanged under in-
tegration of these high momentum modes, except for the +f dix A~J, (33)
overall scale factop?, the procedure can then be repeated
and yet lower momentum modes can be integrated out. Im-
portantly, as long as the coupling constant is small and als¥here
agIn(x4/x5) is small, the quantum fluctuations can be inte-
grated out perturbatively, so that the computation is con- JT()=8(x")p(x,). (34)
trolled. This perturbative treatment considers fluctuations
around the classical solution, in the region of the phase spad&/e are of course working in th&*=0 gauge.
which is being integrated out, as small. It is important to Now suppose we have a solution to the classical equations
realize, however, that the classical solution itself in this re-of the form

o
o
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In previous work, it was shown that radiative corrections
to the distribution functions computed in the McLerran-
Venugopalan model are larg&]. The first order correction
comes from the diagram of Fig. 2.

The modification of the distribution function is of order
aIn(1/X)In(k, /a ) at largek, and smallx. Fork, ~agu,
the naturalk, scale in the problem, the corrections are of
order aIn(1/x). In any case, for small values of, these
corrections become large and cannot be ignored.
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At=A"=0, To compute the effective action, we must integrate out the
_ _ fluctuations around the classical solution. As long as we only
Al=0(x")a'(x,). (35) generate an effective action at a scak€, so that

agn(P ., 1/k")<1, then these fluctuations are small. We

It is understood in the above expressions that the longitutherefore have three types of fields to consider. There is the
dinal & function (as well asf function) is regularized on the classical background field, the small fluctuation field at the
scale 1P . HereP | is the typical longitudinal momentum scale of interest, and the fields at lower momentum scale. We
of the fluctuations which have been integrated out in theneed only keep terms in the action which are at most qua-
previous step of the RG. At the very first step, of cou®,  dratic in the small fluctuation field. We will denote these
is the typical momentum associated with the nucleus or hadields in the following manner.
ron. Clearly, knowledge of the precise structure of the charge The field AY will be the classical background field. The
density on the scales of ordeiPl is necessary to determine |ape| N refers to theNth step in the renormalization group
the behavior of the classical solution at these scales. procedure. This classical background field will be modified

However, in the following we will only need to know the a5 the renormalization group procedure iterates. We will also
structure of the solution at longitudinal momenta muchyyrite

smaller thanP ;. This is so even though we will integrate
ver the fluctuations in the entire moment -
over the fluctuations e entire momentum range A('jz On(x ") aN(x, ). (37)

Prii<k™ <Py, (36)

In this equation, as mentioned before, the step function is a
where Py, <Py, but is still large enough so that step function on a distance scale larger than that which we
an(P /P y+1)<1 (hereag is evaluated at the scajgand  have previously integrated out.

X is assumed to bg>Aqcp. The reason is that the depen-  There are the small fluctuations fields at the stewhich
dence on the upper cutoff is only logarithmic and the bulk ofare within the momentum range that we integrate out. We
the contribution comes from much smaller momenta. Towill refer to these fields asAN.

leading order, therefore, the results do not depend on the Finally, there are the fields which are fluctuations around
precise behavior of the classical field at the upper cutofthe classical solution at momentum scales much less than
scale. Such is the magic of the logarithm, which enamored sthat where we perform the integration. These fields are not
many field theory practitioners. At momenta far below thesmall. They are denoted #¢'.

cutoff, the classical field does not indeed have the structure The contribution to the effective action associated with

Al(k)x<1/k™* a'(k,), which is equivalent to Eq35). the small fluctuation field is
|
1 dk*dp”*
6S=;fd2xldx+{f o [F6AMKT)D (k) 6AN ()]
dk* (pr dk*' . -
+2fabCJ EL& 5 @a (XA MK XX ) SAR (KT X x,) ¢ (38)
N

In this equation, the momentd™ andp* are in the range x) Altarelli-Parisi evolution, where the momenta are
between the cutoffsP \<|k™|, |[p"|<Py_;. The momen- bounded by the momentum of the external probe. By impos-
tum k™’ is typically much softer than the lower cutoff and, ing such a cutoff, we restrict ourselves to transverse mo-
therefore, also much softer thai. The quantityD y* isthe  menta which are not parametrically large. This point can be
inverse propagator in the background field. It depends omppreciated by examining the Feynman diagrams. Consider,
both the fieldsA and AN. for example, the diagram that gives the leading correction to

We have approximated the linear term in the small fluc-the distribution function beyond the classical field approxi-
tuation by keeping only the eikonal part of the interactionmation. It is depicted in Fig. 2. The corrections of this type
vertex, that is, the coupling between the transverse compaowith arbitrary number of insertions of the background field
nents of the hard field and the minus component of the soflave been calculated in R¢¥]. For our present purposes, it
field. This will generate an effective action with ondycom-  is enough to consider the classical field expanded to first
ponents of currents affected by integrating out the high moorder in the charge densigy The diagram then is precisely
mentum modes. The terms we neglected are suppressed e same as that of the standard perturbation theory. After the
factorsk™'/k™ and are subleading in the smallegion. integration over the frequendy is performed, the correc-

It is also understood that the transverse momenta of all théon to the distribution function is proportional to
fields in Eq.(38) are bounded from above by some trans- 2
verse cutoffQ. This is consistent with both the BFKL ap- L f di J'kﬁ—l + P
proach, where all transverse momenta are roughly the samek "k? p Jir P [pT+k*(p?—2p .k, )/k?]?

and the leading logarithmigor double logarithmic at small " (39

+
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The transverse momentum integration in this expression is In the eikonal limit, the propagator is
cutoff not at the scald? (which is of the orderQ?), but

ratherk?/x, which at smallx is a very large scale. Physi- D”ab(K+,Z_;X+,XL YY)

cally, the part of the integration region abdvg corresponds

to emission of jets which are much harder than the probe. sgrk ™ R

Precisely the same problem is encountered in the standard =8ij0(X.—Y1) K+ TO(KT (X" —y"))P

perturbative treatmerjfl1]. These processes have to be con- ab

sidered separately, and at this point we will disregard them. wexd —i fx+dz*A’ (z5.27.%,) (44)
Equation(38) looks very suggestive. Introducing the no- v e R

tation

In this equationA 4 and, hence, the path-ordered phase are
Op3(X) =2 f b (X) BAN(X), (400  in the adjoint representation. In the phase, the dependence
uponx~ can be ignored since the function is slowly varying
we see that the linear coupling term between the soft fiel®n scales of the typical size corresponding to"1/Here we

and the hard fluctuation is of the form have takerK ™ as the momentum conjugate to the difference
of coordinatesx —y~, andz" =(x" +y )/2~x"~X" is
2 Trép(X)A™(X) 8(X 7). (41)  the average position associated with the field.

The expression above accounts only for soft fields with

We would therefore like to integrate in the path integral longitudinal momenta smallerthan _that of the fluctuatdén
over those components of the fluctuation fiél, which are !N terms of Feynman diagrams, this corresponds to summa-
“orthogonal” to dp. In other words, we would like to change tion of the diagrams of the type depicted on Fig. 3. In fact,
variables fromsA;, to &® and somex?, and integrate over thg propagatoD™ also depends on the background field
X. In fact, to get the result to the leading logarithmic accu-@i(X.) and this dependence is important in parts of the
racy it is not necessary to do it explicitly. Sindp is linear ~ Phase space. These contributions are of the type Fig. 4. We
in the fluctuation field and the integral over the fluctuation isWill come back to this point and discuss the importance of

Gaussian, it is clear that the result of the procedure describel€se terms later. Temporarily, however, we will disregard
above will be of the form them in order to make the discussion conceptually simpler.

As for the soft insertions, the following remark is in order.
The propagator depends only on the minus component of the
J’ [dSATexpi 5S} vector potential. On the classical solution discussed in the
previous section, this component vanishes. It is therefore
only the fluctuations oA~ around the new classical solution
_ _ 1¢ a b that contribute td. Since these effects are higher order in
M(a)f [d5p]exp[ fx,y25p (x)2p7(y) the coupling constant, we will ignore them to this order.
Again, these corrections too are important at low transverse
-1 Do a -N momentum. This point will be addressed in Sec. V.
X[ 6x1ap (X,Y) +i6p3(X)A, (X)]' “2) With these apprr)oximations the fluctuation propagator be-
comes very simple. The fluctuation of the charge densisy
HereM is the contribution of the determinant which arises inis time (x*) independent and local in the transverse direc-
the Gaussian integration ovr. To the leading logarithmic  tions:
accuracy, this contribution can be ignored. This amounts to
neglecting the loop corrections with all particles in the loop
having the longitudinal momentum in the same range
Py<p*"=<P_,. Corrections of this type do not give large
contributions at smalk [11]. It was also shown in the pre-
vious analysig7] that such contribution could be ignored at
smallx for modifications to the Weizs&er-Williams back-
ground field.
The matrixdx,p(X,Y) is given by

L 2 acdgbed
5xab(xL,yi)=gz—WdyN5 (X =y ) fee
X aic(XJ_)aie(XJ_)- (45)
Note that since our fields have a built in cutoff on the

transverse momentum, the(x, )a(x,) actually should be
understood as averaged on a transverse scale size

d?x, ~1/Q>.
dp* We now make the approximation
xap(Xy) =4i fp+< et 2 (X)) af(y.) 1
NEIP T N a?(XL)a})(XL)%<aia(XL)an(XL)>= PYINCETY 5ab5ij<0‘2>-
Ndf, ~+ + + Z(Nc 1)
><DIJ (p !XL 7X ayL ay ) (43) (46)

To proceed further, we need to know the structure of the The averaging in Eq46) is over the distribution op. We
propagator of the hard fluctuatiofis'. Since the longitudi- believe this approximation should be adequate to describe
nal momentum scale in the propagator is large, we can usethe RG flow ofy, especially at larg®. The fluctuations op
no recoil or eikonal approximation to incorporate the effectare very short range in the transverse direction. On the other
of interaction with the softer fieldAN~. The calculation is hand, the fieldsy are slowly varying, its transverse correla-
given in Appendix B. tion length being of order @fy. There is therefore very little
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FIG. 3. Same as in Fig. 2, but with additional insertions of the  FIG. 4. Same as in Fig. 2, but with additional insertions of the
soft external field. These diagrams give corrections to the distribuhard background field. These diagrams are important in the region
tion function upon contracting the soft legs. They therefore corre-of momentaQ of orderagy. See the discussion in the next section.
spond to the virtual corrections and are higher order in fluctuation
fields. space-time rapidity. The rapidity, is the beam rapidity. We

see that the equation for the evolutionyofenerated by our

correlation betweemp(x,) and the fielda(x,) at the same  renormalization group procedure can be writterf £%13
point. Also, because of slow variation afx,) in space, an

approximation of &?(x,) by an x,-independent constant 1

should be good with accuragy x/Q. Although this approxi- dx(y,Q%/dy sz 1 272 % (01 y.Q)?).
mation is true on the average, it ignores some of the corre- (51)
lations which are built into the longitudinal structure. It

would be very important to study corrections to this approxi-This equation can be either formulated as a BFKL-type equa-
mation or better yet to fully incorporate the structure of Eq.tion, when one does the integral @ffirst, or as a DGLAP-
(45 in the solution to the problem. This is left for further type equation, if one does the integral oyefirst [14] No-

study. _ _ tice that it is a nonlinear generalization of both equations,
We get, therefore, that the change in the charge density isince the right-hand side of the equation is a functiony.of
governed by the parameter This equation has a simple physical interpretation. The
1 N factor of NJ/(N2—1) is the charge squared per gluon. The
Sxn(Q?)= —— 2_0 dyN<a[2\j>Q2- (47) number of gluons contained in our classical field is
g (Nc_l)
1 1
The variation ofy due to the change of the transverse dN/dy dQZ:WTTr a(y,Q)?. (52
cutoff is also easily calculated: 9
N N What our analysis has shown is that the change in charge
Sxn(Q?)=dQ? ——— E yp(ap(Q)32). (48)  squared is entirely due to the change in the number of gluons
( —-1) 9 P= due to new phase space opening up. Of course, this is a

nonlinear problem in general since the source of charge

The change in the effective action is, therefore, changes the classical background field in a nontrivial way.

expli 5S} Let us also define
1 , p(y, X, )= dpn(x,)/dy (53
- _ 2
f [d5PN]eX% f dox, W TI’é‘pN(y,XJ_)) and
><exp( fdzxif dx* Spn(X VAN (X, ,X )). (49) AN(X XT)=AT (X xTLY). (54)

_ _ _ _ - Now we must compute the change in the classical field.
Now we identify some typical space-time rapidity for our Since the change in the classical field is small, we see that if
source with the momentum space rapidity. We expect thajye write

Yspace-timé~Ymom- Let us define
Afl+1= SAR+AR, (55)

N
_;dyi’ 50 we can linearize the equations fafA{. We find that
6AN+10=0 and that
where the the right-hand side is the momentum space rapid-
ity shifts induced by integrating out the different scales. We D‘(Aﬂ)a+ SAY +[5A°' LT AL N=g28\(x")dpy/dy.
will see that the left-hand side has an interpretation of the (56)
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In this equationgy(X~) means a delta function on the scale  Note that this is a nonlinear equation. The dependence of
of our new classical field; that is, as a regularized distributionts right-hand side ony is determined by the solution of
it has its support on the scalePlj. Now we definesAS to  classical equations.
vanish on the scale of the old classical field. Therefore only At this point we want to return to a discussion of the
the first term survives. terms that we have neglected in deriving Ef1), namely,
Upon identifying the indexN with the space-time rapid- the contributions of the diagrams of Fig. 4, with insertions of
ity, we see that our classical equation solves the equation we hard background field. From the perturbative point of view,
posited in the last section that those correspond to modifications of the gluon distribution
due to mixing between the two-particle and multiparticle
aw d o, (higher twis) operators. These diagrams can in principle be
Di(A%) dy A=9"p(y,X,). (57)  taken into account by using instead of the free propagator in
Eq. (43) the full propagator in the external field as calculated
(The easiest way to see this is to break up space-time rapidiif [7].
into discrete intervals. Identify an index with each interval. Although this calculation has yet to be performed, it is
Precisely the renormalization group equation for the fieldeasy to understand qualitatively the main modifications it
results) will bring about. First, even with the inclusion of the back-
We also see that the path integral measure for the fluctuground field the additional charge densifip will remain
ating field is what we postulated in the previous section, withstatic. This is due to the fact that all the internal lines in the
one caveat: We have omitted some contributions which oliagram Fig. 4 have the frequen¢y™) of the order of the
the average vanish in their contribution to the induged on-shell frequency corresponding to the longitudinal mo-
These terms generate a nontrivial correlation in rapidity bementumP {<p*<Py_,. It is much smaller than the on-
yond which we compute. We will not further discuss their shell frequency of the external line with momentum.
inclusion here except to note that they in principle are comfFrom the point of view of the emitted particle, therefore, the

putable and should be included at some point. coupling is always to the static source. The main effect of
these extra insertions will be to modify the right-hand side of
IV. RG EQUATIONS FOR x(y,Q? Eq. (51) by adding to it terms nonlinear ifw)?. This effect,

however, will be significant only fof) of orderg?y. Physi-

We now discuss the renormalization group equatki). cally, the diagrams of Fig. 4 describe an emission of the soft
This equation determines how the color charge per unit areparticle with transverse momentuky by a classical field
scales with rapidity and a transverse resolution scaleGfze a;(X). Clearly, as long as the transverse momentum of the

The consistency of our analysis requires that the solutioemitted particle is larger than the inverse correlation length
to the renormalization group equation only involve informa-of the field, the particle is emitted locally. In this case the
tion in the region where our approximate methods of com-emission probability depends only arf(x) at the point of
putation are valid. It could easily happen that the region ofemission. In the local limit, therefore, the effect of these
interest in transverse space after several steps in the renaerrections will be of order?(x)/k?2. At large Q the main
malization group procedure might drift to some value wherecontribution to the distribution function comes from large
our approximations are no longer valid. This might happen if? , and the correction due to nonlinearities is therefore neg-
at some rapidityy the relevant typical values @? became ligible. At Q of orderg?y and smaller, the contribution of the
of orderAéCD or became much greater thai(y,Q? where  diagrams in question is important. However, in the saturation
our classical source size approximation breaks down. It isegime Q<g?y they do not change the behavior qualita-
plausible that the region of integration for the solution of thetively. In this region there is practically no running pfwith
equations involves primarily the region of interest, since thisy. The reason is that since the correlation length of the clas-
is physically where the field originates, but we have nosical field is of orderg?y) %, the phase space for emission
proof. In addition, the region of larg®? where our classical shrinks to zero at these values of momenta.
methods no longer apply is probably correctly treated even The qualitative features of the solution of our RG equa-
though the derivation above breaks down. In this region, theion are these. In the region of larg@? the equation ap-
fields are weakly coupled, and our expression derived byroximately linearizes to become
classical means appears to be correct even in this region, to
leading order in coupling.

The renormalizatio_n group eqL_Jation may be formulated in d2y/dy dInQ2= Neas (60)
the DGLAP form by first integrating ovey as
Nc 1 1 (w L . T L
dy/dQP=—— ——— —— f dy’(a(y’,Q?)?3). This is precisely the double-logarithmic approximation to the
(Ne—1) (2m)* g°m Jy DGLAP equatior{14]. It would be solvable if it were not for

(58)  the dependence af on y. If we hold this fixed, we get

. . . approximately(assuming thaj is a slowly varying function
It may be written in the BFKL-like form as of y at someQ?) that

N, 1

1 Q2
dyldy= —— —— —— | ~ dQ'¥a(y,Q"??).
(N:—1) (2m)* g wfo 59 Xzexp+2 N;asyanZ/Qé]- (61)
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The dependence ofs upon y will of course modify the expands approximately isentropically, so that the total num-
solution. ber of gluons produced should be roughly the same as the
In the region of transverse momenta in the vicinity of thenumber of pions.

crossover scalegy, the nonlinearities in the renormalization At this point, we do not have a full solution of the renor-

group equation become important. It is likely that one of themalization group equation in hand. Suffice it to say that one

effects of this will be that the transverse phase space in thisxpects a rapid growth of the paramejeasx decreases at

region will be a very slowly varying function @?2. Itisthen  large p, . This should be much faster than a power of a

more convenient to turn to the forf®9). Assuming this to  logarithm of beam energy. The reason that this growth does

be the main effect of the nonlinearities and approximatingnot violate unitarity is because it is arising from an enhanced

the transverse phase space by a con$amte can write the contribution at larger transverse momenta.

solution as The typical transverse momentum in this picture will go
as the square of the multiplicity per unit area. The total de-

p{ Neas ] posited energy density at a typical formation timel/y will
X = Xo€X P

(62)  be of ordery®. All of these functions are expected to be
asymptotically somewhat rapidly rising functions of energy.

This has the BFKL-type behavior, growing as a power at T(_) summarize, the results of this work are extremely sug-
smallx. To calculate the value of the constdhtwe would gestive, We havg presented a picture of _Ix_>vg4uon struc-
ture functions which has many of the intuitive features nor-

have to include virtual corrections which have been ne- . . )
mally associated with the Pomeron. The calculation
glected so far.

Finally, in the saturation region whe@?< a2x(y,Q?), presented here should be improved, however, in many as-

the right-hand side is constant up to logarithms. Here thé)eCtS' : L . .
S - We have made several drastic approximations in deriving
solution is, to a good approximation,

the renormalization group equation. Let us once again point
those out.
— _ 2
X=Xot k(Yo y)Q%, 63 First, we have neglected the virtual corrections. Those are
) ) ] o generated by the diagrams in Fig. 3 when one contracts the
where « is some slowly varying function. There is litle external legs. Formally, as we mentioned in Sec. I, those

H 2
change until o—Yy)Q“/xo becomes of order 1. are higher order in fluctuation and for that reason would
seem to be subleading. However, some of these diagrams are
V. UNITARITY, TOTAL MULTIPLICITY, AND SUMMARY known to contribute to the BFKL equation and, therefore,

) o ] ) o must be important at least in some kinematic regime. This
The issue of unitarity in deep inelastic scattering is relatedsuggestS that the generic form of the effective action which

to thex dependence of we have relied on, Eq49), is not quite complete. To see
what is missing, let us consider for a moment fields in three
Q? dN ranges of the longitudinal momentum: the fietd (k™)
2\ 2
G(x.Q )_L 4P Gx@p, 64 with k*=Py_,, the fieldB (17 with P_;=1"=P;, and

the fieldC,(m") with m" <P . The integration oveA and

B generates the effective action f@r. Taking into account
the soft insertions of Fig. 3 means we should use for the
fluctuations propagator the full eikonal expressidb) with-

out setting the Wilson line factor equal to unity. The integra-
tion over the fluctuations of the field, will generate the
effective Lagrangian

at fixed Q2 as x decreases. We have seen that at fiped
there are two separate regions v/dx d®p, . The first is at
large p?>a3x(x). In this region, the integral above is
XG(x,Q?)~In(Q?) x(x) up to factors of logarithms of.. As

x decreases, this is a rapidly rising function ok.1/

At some point, for any fixedQ?, the parameter will
become<Q?2 At this point, we are in the smaf; region for
the computation of dN/dxd®p,. In this region, f
dN/dx dzpifvln(pi) up to factors of Iy). (It would be use- !
ful to determine these factors more accurately and actually .
compute the cross section in this region, but again this is 2 + - +
beyond the scope of this paper.Here the structure function " f ™ fﬁxdx Opn-2(X)L(B 00 x7)
XxG has at most a logarithmic dependence ugofhere is

d2x, Trépyn_1(X;) ———=——— Spn_1(X
L Trépn-1(X,) (B 1C) pn-1(X)

therefore no obvious contradiction with unitarity. The depen- +CT(x . xT)], (65
dence ofxG on Q? is also amusing, rising like some power
of Q% up to logarithms, until saturating at where
The total multiplicity produced in hadron-hadron colli-
sions atx may also be estimated. Here we return to rapidity Yn_1(BT+C7)=8yN_1W(B™+C) (66)

variables. On scaling grounds alone, the multiplicity of

produced gluons per unit area should beand

ng/dyTrR2~X(y, n~1). These gluons after production in-

teract at high relative energy and, therefore, largely elasti- .

cally. The number of gluons should be approximately conW(A—):ﬁ, exp{ _if dz"Ag(z" x, x =0)|. (67)
served. Later, as a quark-gluon plasma is formed, the system — adhm e
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In the next step the integration over the fluctuationsBof A
leads to the effective Lagrangian for.

| x| axt oo a0+ snx1c (60 x) - - - -

1
+if &%, Trpy-a(x,) (xn-1(B"+C7))g B

1
X 5PN71(XL)+iJ d?x, Trépn(x,) wCH OpN(X,). gz ;Z

(68)

In the second term the angular brackets denotes averagirtl'ge
over the fluctuation of the fiel@:

FIG. 5. Virtual corrections of Eq68). The thickest line denotes
propagator of the field componehtwith the largest longitudi-
nal momentum. The thick line that completes the loop is the propa-

o gator of the fieldB. Finally, the thin external lines denote the ex-
(xn-1(B"+C7))g= 5XN—1J [doB]W(B+C) ternal field C, for which the effective Lagrangian is being
computed.
=(1-y)oxn-1W(C). (69)

We see, therefore, that the integration over the fluctuations i
the range of momenta betweé;_, andP y not only gen-
erates the additional charge densdiy,, but also modifies
the fluctuation amplitude of the charge denstywhich is
generated by the higher momentum mokés=P ;_,. This
modification is only important for the coupling of the density
p to the fields with momentan™ <P, since only in this
case is the longitudinal phase space large and the correcticm
factor y proportional to Ii1/x). In terms of Feynman dia-
grams, this calculation corresponds to the virtual correction

of Fig. 5 and the factow is directly related to the so-called tion of the momentum cutof® is highly questionable. The

non-Sudakov form factof11]. It is important to note that . ; : T . .
even though the form of effective Lagrangid88) is not Icienslty density correlation which is given by the diagram in

precisely the same as considered in Sec. Il, on the classicg‘;g' 2, in momentum space, is a very slowly varying function
) _ . o o the transverse momentum lat> . It depends on the
solutions whereA™ =0 the two indeed coincide. This is so, lat> ax P

) the Wil | tor d d | momentum logarithmically. In this range of momenta, one
smcte ft?] fison %QFI)AO,pe_Ir_ﬁ or fepe? Z?E% Ot'; Onﬁ COMPO:an therefore approximate it by a constant. In our calculation
nent of the gauge hela . Theretore, oA =0, the charge precisely this is achieved by introducing the cut@ffand
density fluctuationy, depends only on the charge density

: . using the eikonal approximation for the propagaiy,
PN-1 and Eq.(68_) reduces to E_q(43). The solution con5|q_- which results in a local correlator of density in the transverse
ered in Sec. Il is therefore still applicable to the modified

; . . .~ coordinates. At momenta of ordety, however, the correla-
Lagrangian. The net effect of the virtual corrections is to

modify the running of the effective charge densitfy) tor changes rapidly. Approximating it by a constant with

; ) ome transverse cutoff should therefore result in an error of
through the change on the right-hand side of the renormal?)rder 1. A more careful treatment will bring about nontrivial

Ization group equatior(s1). This effec_t is calculable and transverse correlations of the charge density. One should
Sh.OL”d indeed be _calculated, but th's_ is beyond the scope %erefore expect that an improved treatment of the low trans-
this paper. We will only note t_hat since these.thual dla'verse momenta region will modify the distribution for den-
grams d(.) not play any role in the perturbative qou.ble'sity fluctuations such that nontrivial transverse as well as
logarithmic DGLAP treatment and our renormalization longitudinal correlations will appear. The effective Lagrang-

group equation reduces_ to itin thg limit of lar@k W€ €X° " jan which would generate the classical solutions will be of
pect these extra corrections to be important only in the noNg o form

linear regimeQ~ agy.
The second approximation that we made was to neglect

for large transverse momenta, where the emission of a soft
field is local in transverse coordinates and therefore the ad-
ditional densitydp is practically uncorrelated with the den-
sity coming from higher rapidities. At transverse momenta of
order of the inverse correlation function of the classical field,
this approximation should break down.

Clearly, the treatment of the nonlinear regiQe= a.x in

e present paper is very rudimentary. It is in great need of
improvement, and we intend to address this problem in fu-
Yure work. In fact, at small transverse momenta the very no-

the insertions of the hard background field. This was dis-

cussed in the previous section, where we have argued that J dy dy d?x, d?x| Trp(y,x,)

these corrections are also unimportant at laggeAgain, in

principle, these corrections are calculable by using the full X[p2(y,y' x,x) ] tp(y’ x)). (70
fluctuation propagator in the background field, as calculated

in [7]. In fact, in a general case there is no reason to expect that the

The third approximation in arriving at Eq51) was to  weight will be Gaussian, so that the weight functjgrcould
replace the square of the classical field by its average. Thikself depend orp.
led to the absence of correlations in rapidity for the density It remains to be seen how large in fact will be the effect of
fluctuations. This approximation is also expected to be goothese improvements. We believe that although quantitatively
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APPENDIX A: NORMAL ORDERING THE DISTRIBUTION FUNCTION

We have to calculate

1 . , ,
Gij(y.x, ;y’,XL)=f [dp]em(—f dy"d*x] mpz(y",XI )IZU(y,xL)ViUT(y,XL)U(y’,xi)V,-UT(y’,xi)-
(A1)
This can be cast in the form
sy o= [y 10 198 0,0 [ VAT 6D ) e
A
with the correlation function
(ACY XA X)D)a=g*u2(y,Q%) 8y —y') ¥(X, —X]). (A3)

The functiony is given in Eq.(26) and, as discussed in Sec. I, is infrared singular. The leading dependence on the infrared
cutoff resides in the constant tery§0). Fortunately, all terms containing(0) cancel in the expression for the correlation
function. To understand how these cancellations work in(Eg), let us first consider the normal ordering of individual link
operators first. To do so, let us break up any link operator fyoto « into “infinitesimal factors’:

k
U..y(x)=lim JT Uy (x)Uy, (X)X XUy (X)), (A4)

k—oo N=

In the largek limit, eachUym'ym_l covers an infinitesimal piece of the total path with a fixed lenythy,,—y,,— ;. Because

of the locality of Eq.(A3) in y, it is clear that there will be no contractions between different factors in this product. For an
individual factor, however, we may expand and perform the normal ordering

Ym i Ym Ym
Uy 060 =241 [ ay Aty 412" ay [y Aty x) +0(a9

Ym-1 Ym-1
Ym 4N 0 Ym
=:1+if dy A(y,x,):+1]i? QCTJ’())J dy x?(y,Q%) +0(A?), (A5)
Ym-1 Ym-1

where we have kept all terms up to orderThis is the only nonsuppressed tadpole contribution if the fungifg) is finite.
As a consequence, we have

Ym 4Nc 0 Ym
Uym,ymJXDUyml,ymz(xm::lﬂfy | ayAGx): —QTY”) fy | dy uy.@3)+0(?
ANgy(0)\ [Ym
ZZUym,ymz(Xi):exp[( - %) fy dy uz(y,Qz)}, (A6)

which immediately carries over td.. ,(x,) upon insertion into Eq(A4). The dangerous tadpole contributions therefore can
be factored out from a link operator by writing it in the normal-ordered form. Using this result, we find
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Gty ' X)= [ "y’ [ YU TG )1 D00:U- TG 1) 000
4N 0 o) o)
Xex{(_g o )) J +J
2 Yy’ y'
* ’ * T ’ N v 94N 7(0)
=f dy Ldy Gij(y' x Yy x)exg | - ——5—
y y 2

dY’Mz(y’,Qz)}

f;+ f;jdyw(y'.@z)}. (A7)

The expectation_value of the product of normal-ordered APPENDIX B: THE EIKONALIZED PROPAGATOR
fields we dubbed> does not contain any contractions within
the individual U’s. This is now easily evaluated order by
order and then resummed. Expanding th's to zeroth or-
der, we have

In this appendix, we will derive an expression for the
vector field propagator in the eikonal approximation. We will
solve the equation of motion for the hard fluctuation field in
the presence of an external soft vector potential. Throughout
this analysis we neglect the effects of the classical back-
ground field.

. = , p— — We start with the transverse component of the Yang-Mills
=55y’ —yNg Ay QAVIV Y X)) (A8)  goiarone P g

Gy’ x, ;Y X,)

In first order, a quick computation gives i
- N D,F*=0, (B1)
Gy X3y X)) =GPy X3y X0 (= %) (= No) and write the total fieldh, as
v yO U "
XY(XL_XL)f, dleuZ(y er)' A/.L:5AIU,+S,M’
y
(A9) where 5A , is the hard field describing the fluctuations with
_ _ _ high longitudinal momentum ane, is the soft field with
In this equationN, is the number of colors. small longitudinal momenta only.
Similarly, in nth order, we find We assume that the only large momentum in the problem
4ynpgn — is the longitudinal momentum of the hard fiedd\; . There-
Sabn o oro—y (9 Ney(X —X,) fore, in the equation of motion for the hard field, we keep
Gii (Y Xy X )=
1 b n! only those terms which involve derivatives of the hard field
n with respect to<, the coordinate conjugate to large momen-
o + . B .
« f dyuluz(y”'Qz)} tum p”. The equation of motion for the hard field then be-
y' comes
XGEP(y' .1y X)), (A10) 9= _6A—i[s",d_S6A]=D"(s)d_6A=0. (B2)

Summing up, muItipIying the tadpole factors, and then per- T calculate the propagator we need to find eigenfunc-

forming the remaining’ andy” integrations now allows us - tions of the operatob ~(s)d_ . In order to do this, we write
to write an explicit expression in which the leading infrared

divergence cancel. Assuming>y, the result is 5Ai*(x)=eipX6Ai"(x),

b —~
GOy, X, 3y X)) where the eigenvalua=p? and A, is a slowly varying
function ofx™. Then eigenvalue equation becomes

— _ saby v/ _ v/ ~
ST O N LD o)) D~ ()9, =0,

X (1—exp{g*Nex(y,QH)[ (X, =X ) — ¥(O)}), which has the solution
(A11)
Pexp(—lf dz's (zt,x~ xt))

xeM(p)ouf

SATN(x,p) =

where we have defined ac

F v ' , B3
X(y.Q%)= fy dy' u?(y", Q). (A12) @ (B3)
wherea is the color label) is the eigenvalue index, and")

The quantity x(y,Q?) is the total charge squared per unit and Uy are the polarization vector and color basis vector,

area at rapidity greater than the rapidyty respectively. The eigenfunctions, therefore, are
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A «*+ Here we have used
SATR(x,p)=|P exr( —iJ dz"s™(z",x7,x)
- ac p’=—2p*p +p{=-2pTp"
x eM(p)@uf, e’ (B4  and
The propagator is constructed as
> ef”(p)e}’”(p)@}a) US Ul = — 8 6%C.
SAPN(x) SATP N (y)
G2(x,y)= | d\x — !
ij 0 N—ie : The integration ovemp™ is straightforward and gives a

factor proportional t9(x* —y™) for positivep™. To get the
Since the soft fields is a slowly varying function ok™, we  propagator in momentum space, we Fourier transform with
can neglect its variation witk~ and write it as a function of respect to relative and center-of-mass coordinates y~
z~ wherez” ~(x~ +y~) is the averagé—) coordinate as- andz ~(x +y ) to get
sociated with the soft field. The expression for the propaga-

tor can be written as GIP(K™ K™ X,y ™ X, yo)
dp*dp” [ 1
Gﬁb(X,y):tsijf?Z(Xt—Yt)f “2m? =3 8 % (X —yp O(xt =y ™) K
—ipT(x" =y )g-ip (x -y ") - *
2 e x| P ex;{—ifx dzfs (z . k" x) || ., (BB
—2pTp —ie y" ab
- x* whereK™* andk™ are the momenta conjugate te (—y ™)
i te— (7t v—
X|P exp( Ify* dz's™(z".x ’Xt)) and (x~+y~), respectively. For negativk™ we get the
ab

same expression above with the argument of @enction
(B5) switched around and a relative minus sign.
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