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We compute the distribution functions for gluons at very smallx and not too large values of transverse
momenta. We extend the McLerran-Venugopalan model by using renormalization group methods to integrate
out effects due to those gluons which generate an effective classical charge density for Weizsa¨cker-Williams
fields. We argue that this model can be extended from the description of nuclei at smallx to the description of
hadrons at yet smaller values ofx. This generates a Lipatov-like enhancement for the intrinsic gluon distribu-
tion function and a nontrivial transverse momentum dependence as well. We estimate the transverse momen-
tum dependence for the distribution functions, and show how the issue of unitarity is resolved in lepton-
nucleus interactions.@S0556-2821~97!05407-6#

PACS number~s!: 12.38.Bx, 12.38.Mh, 24.85.1p, 25.75.Dw

I. INTRODUCTION

The problem of computing the distribution functions for
gluons at very smallx is an old one@1#. The gluon~and
quark! distribution functions are computable in perturbation
theory at large values ofx, but at smallx one encounters a
so-called Lipatov enhancement. The precise computation of
this enhancement is subject to much uncertainty, primarily
because at some point in the evolution the density of gluons
becomes so large that there are mutual interactions of the
gluons which are ignored in the Balitskii-Fadin-Kuraev-
Lipatov ~BFKL! equation. In addition, the behavior at small
x also involves knowing the distribution function at small
Q2, and again nonperturbative information seems to be
needed.

Recently, a different framework was advocated for the
computation of the gluon distribution functions@2#. The
starting point of this approach is to view a hadron not as a
collection of a small number of partons, but rather as a sys-
tem with finite parton density. In the high density situation,
the natural way to describe the soft gluons is not as quasifree
particles, but as classical fields with a large amplitude. These
classical fields are generated by classical color charges which
represent the valence partons. Once the high density effects
are resummed into the classical fields, one may apply weak
coupling methods to calculate quantum corrections. In this
approach, high gluon densities which prove so problematic
in the BFKL context are a prerequisite for the description of
the parton content of a nucleus wave function via classical
gluon fields.

A consistent separation in field and particlelike degrees of
freedom can be performed most easily in the infinite momen-
tum frame. The object of computation is the intrinsicx and
p' contributions to the infinite momentum hadronic wave
function in the light cone gauge. Distribution functions are
given as

Q@x,Q2#5E
0

Q2

d2p'

dN

dxd2p'

~1!

in terms of the intrinsic parton distributions as computed by
taking the expectation value of the number operator in the
state of interest.

In the infinite momentum frame, the valence partons are
strongly Lorentz contracted. If we then look for spread-out
gluon fields atx!A21/3, interactions between valence par-
tons and soft gluon fields eikonalize, which indeed allows us
to take the particle limit for the fast-moving partons. HereA
is the baryon number of a nucleus. For a hadron,x!1. The
hadron will indeed appear as an infinitesimally thin sheet on
the scale of wavelengths associated with the momentum
fractionx. ~We will later see that we will have to regularize
this source by giving it a large but finite momentum and a
longitudinal extent of orderR/g whereR is its size in the rest
frame andg is its Lorentz gamma factor. We will find that
nothing in leading order of our computations depends upon
the details of this regularization.! In addition, for a thick
nucleus, since the number of sources of charge per unit area
scales asA1/3, we may view the valence partons~quarks! as
classical color charges. Therefore, somewhat paradoxically,
the simplest problem to start with is computing the gluon
distributions for a very large nucleus.

We will find later that at very smallx the glue as well as
valence quarks contributes to the charge density seen by a
gluon. The gluons which contribute to the charge density are
all gluons with anx larger than thex of the gluon whose
structure function is being measured. Therefore the consid-
eration discussed above for nuclei will apply to hadrons
when at sufficiently smallx so that the number of gluons at
larger values ofx is large. The advantage of nuclei is that
large densities of charge are generated at larger values ofx,
and therefore lower energy per nucleon, than is the case for a
single hadron.

A solution of this problem would be useful in a variety of
contexts. The approach we advocate involves knowledge of
the nuclear wave function and is somewhat related to the
approach of Mueller for heavy quarkonia@3#. Our approach
in principle allows the resolution of various phenomenologi-
cal problems which arise in the parton cascade model of
particle production in heavy ion collisions@4#. These models
provide the initial condition for hydrodynamic calculations
@5#. A model which builds in the space-time structure we
advocate and uses the information we have generated for the
infinite momentum frame wave functions is given in Ref.@6#.
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The theory which results at the classical level is basically
a Yang-Mills theory in the presence of a source:

Ja
15d~x2!ra~x'!. ~2!

The measure which generates the expectation values of
gluon fields, corresponding to distribution functions, is

E @dA#@dr#expS 2E d2x'

1

m2 Trr
2~x'! Dexp~ iS!, ~3!

whereS is the ordinary gluon action in the presence of the
external currentJ. The parameterm2 is the valence color
charge per unit area@scaled by a factor 1/~Nc

221!#. In lead-
ing order, the expectation value is given by a classical field
which is a solution of the Yang-Mills equation1

DmF
mn5g2Jn, ~4!

which is then averaged over different values ofr.
In the limit where the gluon field generated by these va-

lence quarks is treated classically, the gluon field is a non-
Abelian Weizsa¨cker-Williams field and has the form

A15A250 ~5!

and

Ai5u~x2!a i~x'!. ~6!

The fieldaiS is a two-dimensional ‘‘pure gauge:’’

a i52
1

i
U¹ iU†. ~7!

The physical justification for the non-Abelian
Weizsäcker-Williams field is that because the source of
charge is confined to a thin sheet, the solution must solve the
free equations of motion everywhere but on the sheet. The
solution is therefore a gauge transform of zero field on either
side of the sheet. The discontinuity of the fields across the
sheet gives the charge density.

It was suggested by McLerran and Venugopalan that this
simple model should give a decent approximation for the soft
glue distribution function. It turns out, however, that the cor-
rections to the distribution function calculated in this way are
large at smallx. Technically, there are two sources for these
corrections, although both have the same physical origin.

First, as we will show, the behavior of the correlation
function calculated in this simpleminded approach is singular
at smallp' . The flaw in the treatment of Ref.@2# was that
the source of charge was not treated as an extended distribu-
tion which tends to ad function only in the infinite momen-
tum limit @8,9#. Physically, it is clear that the charge density
is indeed spread out on the scale of the characteristic longi-
tudinal momentum of the hard particles which generate this
density.

The second source of large corrections is basically the
same small-x enhancement as in standard perturbative calcu-

lations. As was shown in Ref.@7#, the quantum corrections to
the distribution functions calculated in terms of the classical
fields become large at smallx, the enhancement factor being
the infamousa ln1/x.

The main goal of this paper is to show that the two cor-
rections are physically related and to outline a solution to
both problems. We will show that the small-x enhancement
arises from quantum fluctuations with large longitudinal mo-
mentum. We show that such configurations may be succes-
sively integrated out by using renormalization group tech-
niques reminiscent of the Wilson block spin method. This
approach can also be interpreted in terms of the adiabatic or
Born-Oppenheimer approximation extensively used in
atomic physics. Integrating out hard quantum fluctuations is
equivalent to including the harder gluons into what we call
the charge densityr in Eq. ~3!, while calculating the distri-
bution of the softer glue. It therefore leads to ‘‘renormaliza-
tion’’ of the charge density and endows it with nontrivial and
calculable longitudinal structure.

This modified momentum-dependent distribution of
source strengths leads to infrared nonsingular correlation
functions. We argue that the result is sensitive only to the
average charge squared per unit rapidity per unit transverse
area of the source.

The outline of this paper is as follows.
In Sec. II, we study the classical problem of computing

the fields associated with a source of charge which is ex-
tended inx2. We find the general solution to this problem in
the light cone gauge. We compute the resulting distribution
functions assuming that the source is random inx' andx2,
but with a weight of charge squared per unit rapidity per unit
area, which is specified.

In Sec. III, we show by using the renormalization group
techniques how to generate classical fields at some rapidity
scaley. This involves perturbatively integrating out modes at
larger values of rapidity~smaller values ofx2!. This integra-
tion generates an effective Lagrangian which has a self-
similar form, namely, that at each step of the procedure it is
similar to the McLerran-Venugopalan model, but with a
charge per unit area which is rapidity dependent. We show
that this effective theory is equivalent to that discussed in
Sec. II. We derive the renormalization group equations for
the charge squared per unit area per unit rapidity as measured
at some transverse momentum scaleQ2 and rapidity
y5y01ln(x 0

2/x2), where y0 is the nucleus rapidity and
x 0

2;R/g. The calculations in this section rely on several
simplifying approximations, which we discuss.

In Sec. IV, we study the renormalization group equations
for the charge squared per unit rapidity per unit area as a
function ofQ2 andy. This equation is closely related to the
usual evolution equations for the distribution function which
appear in standard perturbative treatments. It can be viewed
as a nonlinear version of the Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi ~DGLAP! equation. We show that forp'

much larger than the momentum scale associated with the
charge squared per unit rapidity integrated over all rapidities
larger than that at which we measure the structure functions
@which we will refer to asx(y,Q2)#, the nonlinearities in the
renormalization group~RG! equation become unimportant.
In this regime the equation basically describes the double-
logarithmic DGLAP evolution. At lower momenta our equa-

1For conventions on the use of the coupling constant, see the next
section.
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tion can be thought of as a nonlinear variant of the BFKL
equation, although to make the relation precise one would
have to consider some virtual corrections in addition to those
accounted for in our derivation. At low transverse momen-
tum, we show that the evolution equation saturates. We dis-
cuss the consistency issues which are necessary for a solu-
tion of this equation within the set of approximations for
which our derivation is valid.

In the final sections we summarize our results. We show
how our results are consistent with unitarity in deep inelastic
scattering. We estimate the total cross section at fixedQ2 as
x approaches zero. We argue that a computation of the
charge squared per unit rapidity per unit area would allow a
computation of the total multiplicity in hadronic interactions.
We discuss the possible universality of our results and their
possible generalization to the description of nucleons at
small x. We discuss some of the many problems which are
not yet solved within the approach advocated in this paper.

II. MODIFICATION OF THE SOURCE STRENGTH DUE
TO EXTENDED STRUCTURE IN x2

In this paper we will use gauge potentials scaled such that
the covariant derivative readsDm[A]5]m2 iAm . The classi-
cal gluonic action is of the form (21/4g2)F2 and hence a
g2Jm term in the classical equations of motion. In this setup
gauge transformationsU are most economically parameter-
ized via U(x)5exp[iL(x)] transforming A as
A→U[A2(1/i )]]U21. We will be also using matrix nota-
tion, e.g.,r5raTa, whereTa are the normalized Hermitian
generators of the SU(Nc) group in the fundamental represen-
tation, 2 TrTaTb5dab.

In the original McLerran-Venugopalan approach@2#, the
source strength was assumed to have the form

Ja
1~x2,x'!5d~x2!ra~x'! ~8!

and to be distributed with the Gaussian weight

E @dr#expF2
1

m2 E d2x'Trr
2~x'!G , ~9!

wherem2 is the charge per unit area.
The solutions to the Yang-Mills equation in theA150

gauge have vanishingA2. Their transverse componentsAi

are determined through

¹ i]
1Ai1@Ai ,]

1Ai #5g2J1, ~10!

together with

Fi j50. ~11!

It was argued that the solution was of the form

Ai~x!5u~x2!a i~x'!. ~12!

In this solution, the commutator term in Eq.~10! was ignored
since it involves the commutator of the field at the same
point in x2.

Ignoring the commutator term is, however, not justified. It
is clear that this term in Eq.~10! is very singular and in-
volves a product ofd~x2! andu~x2!. To make sense of this

structure, we must understand the evolution of the field
across thed function singularity. This can only be done if we
know the structure of the source inx2. In fact, as shown in
@8#, ignoring this problem leads to infrared singular distribu-
tions.

Let us introduce the space-time rapidity variable

y5y01 ln~x0
2/x2!, ~13!

which will be useful forx2.0. We will assume that the
source strength is nonvanishing only for positivex2, and we
will work in a gauge where the fieldsAi vanish forx2,0.
The rapidity y0 is the momentum space rapidity of the
nucleus, and the parameterx0

2 is the typical Lorentz-
contracted size of the nucleus,x 0

2;R/g.
In the next section, we will use renormalization group

arguments to show that there is a nontrivial induced source
strength extending beyond the volume occupied by valence
partons which is driven by gluon modes at longitudinal mo-
mentum larger than that at which we measure the gluon dis-
tribution. This is parametrized by some strength of charge
squared per unit area per unit space-time rapiditym2(y,Q2)
and by the charge per unit area at rapidities greater thany:

x~y,Q2!5E
y

`

dy8m2~y8,Q2!. ~14!

The parameterQ2 appears because we must specify at what
value ofQ2 we are measuring the distribution function. It has
precisely the same meaning as in perturbative QCD calcula-
tions, namely, the transverse scale at which a parton is re-
solved @10#. It should not be confused with the intrinsic
transverse momenta of the fields.

Accounting for the space-time rapidity dependence of the
source strength, we therefore are led to consider the distribu-
tion

E @dr#expF2E
0

`

dyE d2x'

Trr2~y,x'!

m2~y,Q2! G . ~15!

In this equation,r is the charge density per unit transverse
area per unit space-time rapidity.2 In the previous work we
took great pain to argue that the charge could be treated
classically on transverse scales which are large compared to
the density of partons per unit area. This was because on this
scale there is a large number of partons contributing to the
source, and therefore the charges were in a large dimensional
representation of the color group. This allowed a classical
treatment.

The longitudinal structure is a new ingredient. Why can
we still approximate the partons~gluons! that couple to soft
glue by a classical source? The physical reason is easy to
understand: For these high momentum gluons, the coupling

2The parameterm2(y) controls the magnitude of the fluctuations
of the charge density at fixed rapidityy. Since there is no charge
density at rapidities greater than the rapidity of the nucleusy0, the
function m2(y) should vanish fory>y0. The rapidity integrals in
Eqs. ~14! and ~15! are therefore effectively cutoff at this upper
limit.
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is weak, so that to change the field~the soft glue! by a cor-
rection of order 1, one must have many~hard! gluons con-
tributing. In the next section, we will see that the induced
source of gluons is in fact slowly varying in rapidity

d2r

dy2
;a

dr

dy
. ~16!

Again, we will see this justified in more detail in the next
section.

Therefore these sources of charge come from an extended
region of space-time rapidity with a typical contribution at a
rapidity far greater than that of the field we are computing.
The source will therefore appear to be infinitesimally thin in
the variablex2.

We must solve Eq.~10! in the presence of source with a
prescribed rapidity dependence. This is best done in terms of
the rapidity variabley introduced in Eq.~13!. Equation~10!
becomes

Di

d

dy
Ai5g2r~y,x'!. ~17!

In this equation, because of the extended structure in rapid-
ity, the term which involves the group cross product of two
Ai fields cannot be ignored.

The formal solution to this equation can be found by in-
troducing the line-ordered phase

U~y,x'!5U`,y~x'!5P̂ expF i E
y

`

dy8L~y8,x'!G , ~18!

representing a parallel transport operator along a straight line
at fixedx1 andx' connectingy to ` ~x250!. Recall that due
to the vanishing of the transverse magnetic field~Fi j50!, the
vector potential should be a ‘‘two-dimensional pure gauge.’’
We let, therefore,

Ai~y,x'!5 iU¹ iU21. ~19!

This leads to the equation forL:

¹2L52g2U21rU. ~20!

The above equation may be solved directly numerically.
Imagine we have a grid in rapidityy and transverse coordi-
nates. We define the lattice spacing in rapidity asay . The
above equation can be written as

¹2L~y,x'!52g2S P̂ expF i E
y1ay

`

dy8L~y8,x'!G D 21

3r~y,x'!S P̂ expF i E
y1ay

`

dy8L~y8,x'!G D .
~21!

The solution aty depends only upon the functionL at larger
values of rapidity. This equation may therefore be solved
iteratively starting at some maximumymax beyond which the
source vanishes.

It turns out, however, that we do not need to know an
explicit solution in order to calculate the distribution func-

tion. For that, we have to perform the integration over the
source strengthr~y,x'!. Let us change the variables in the
path integral, Eq.~15!, from r~y,x'! to L~y,x'!. The Jacobi
of this transformation does not depend onr. This is easily
verified noting that the Jacobian matrix is triangular iny and,
as a result of they orderings involved in the relation between
r andL, has no interactions on the diagonal. We find, there-
fore, that, for any functionO~r!,

E @dr#expF2E
0

`

dyE d2x'

Trr~y,x'!2

m2~y,Q2! GO~r!

5E @dL#expF2E
0

`

dyE d2x'

Tr@¹2L~y,x'!#2

g4m2~y,Q2! GQ~L!.

~22!

Since the classical fieldsAi are given as explicit functions of
L and our aim is to compute the distribution function

Gi j ~y,x' ;y8,x'8 !5^Ai~y,x'!Aj~y8,x'8 !&, ~23!

this form of the path integral is very convenient.
We first note that

Ai~y,x'!5E
y

`

dy8U`,y8~x'!~¹ iL~y8,x'!!Uy8,`~x'!.

~24!

Now we perform the integrations overL by expanding the
path-ordered phases. It is most conveniently done by expand-
ing the exponentials to first order on the rapidity grid with
grid spacingay . This is a valid procedure as long as the
function m2 is not divergent, limay→0aym

2(y)50. We then
perform all possible contractions with the propagator corre-
sponding to the Gaussian weight in the path integral overL.
Let us group together terms of the same order in the coupling
constant. In zeroth order we have

Gi j ;ab
0 ~y,x' ;y8,x'8 !

5g4dabE
maxy,y8

`

dy m2~y,Q2!¹ i¹ j8
1

¹4 ~x' ,x'8 !. ~25!

Some comments are in order concerning the inversion of the
operator¹4, since there is an infrared singularity in the in-
version. Recall that the sources of interest ultimately arise
from individual nucleons. Therefore all effects of sources die
off at transverse size scales larger than 1/LQCD. The charge
itself averaged over such transverse size scales also vanishes.
This means that the Green’s function should be defined with
boundary conditions that ensure its vanishing at distance
1/LQCD. In other words, whenever an infrared cutoff is
needed for a proper definition of an inverse of a differential
operator, it should be taken of the order of 1/LQCD. We will
see that the quantities of physical interest are only very
weakly dependent on this nonperturbative length scale, but
nevertheless such a dependence does not disappear entirely.

Here and in all that follows, we will define

g~x!:5
1

¹4 ~x!5
1

8p
x2 ln~x2LQCD

2 !1g~0!, ~26!
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where g~0! denotes an~infrared-divergent! constant which
ensures the vanishing of this Green’s function asx' ap-
proaches the infrared cutoff 1/LQCD. Fortunately, the corre-
lation function we will calculate below does not depend on
the value ofg~0! and the only infrared sensitivity that re-
mains is through the logarithmic term in Eq.~26!.

In first order, a quick computation gives

Gi j
1 ~y,x' ;y8,x'8 !52

1

2
dab~2Nc!

3Fg4E
maxy,y8

`

dy9m2~y9,Q2!G2
3@¹ i¹ j8g~x'2x'8 !#@g~x'2x'8 !

2g~0!#. ~27!

In this equation,Nc is the number of colors.
Similarly, in nth order, we find

Gi j ;ab
n ~y,x' ;y8,x'8 !

5~21!ndab
~2Nc!

n

~n11!! Fg4E
maxy,y8

`

dy9m2~y9,Q2!G ~n11!

3¹ i¹ j8g~x'2x'8 !$g~x'2x'8 !2g~0!%n. ~28!

The tadpole terms which take care of subtractions ofg~0!
appear through the normal ordering of the path-ordered ex-
ponential. This calculation can be found in Appendix A.

We can now sum the series and find a representation for
the correlation function as~assumingy.y8!

Gi j
ab~y,x' ;y8,x'8 !52dab„¹ i¹ j8g~x'2x'8 !…

3
1

Nc@g~x'2x'8 !2g~0!#

3 „12exp$g4Ncx~y,Q2!

3@g~x'2x'8 !2g~0!#%…, ~29!

where we have defined

x~y,Q2!5E
y

`

dy8m2~y8,Q2!. ~30!

The quantityx(y,Q2) is the total charge squared per unit
area at rapidity greater than the rapidityy.

Finally, for the distribution function we get

Gii
aa5

4~Nc
221!

Ncx
2 @12~x2LQCD

2 !~q4Nc/8p!x~y!x2#. ~31!

This correlation function has an amusing structure. At
small transverse distances whereg approaches zero, the cor-
relation function tends to the perturbative correlation func-
tion, that is, its value in lowest order in an expansion ing2.
At short distances, the theory is perturbative. At large trans-
verse distances~but of course still much smaller than
1/LQCD!, the correlation function dies off like 1/x2. Its Fou-
rier transform at small momenta therefore behaves as

G~y,y85y,k'!; ln@k'
2 /g4Ncx~y!#. ~32!

This is in contrast to the behavior at larger transverse mo-
mentum where this correlation functions rises like 1/k'

2 ask'

decreases, in agreement with the perturbative result. The cor-
relation function is therefore much softened at smallk' . This
behavior is shown in Fig. 1. The characteristic momentum
scale which differentiates between the nonperturbative and
perturbative regions isk'

2;g4Ncx(y), that is,g
4 times the

charge per unit area at rapidities greater than the rapidity at
which the correlation function is measured.3 This nonpertur-
bative regime is nevertheless a weak coupling regime. Only
whenk'

2;LQCD
2 does the coupling become strong and weak

coupling methods can no longer be used.
It is worth noting that the dependence uponLQCD is very

weak. At large transverse momenta the Fourier transform of
the distribution functionG does not depend onLQCD. At
large separations there is saturation, and there is again no
dependence uponLQCD. The dependence is really only in the
region of very small momenta (k'!asx), where our ap-
proximation is in any case not valid.

This result is almost consistent with the structure which
was argued to be true by McLerran and Venugopalan@2#.
They had argued that at small transverse momentum the
above correlation function should approach a constant. It
does up to logarithmic corrections.~The line of reasoning in
Ref. @2# was, however, incorrect since it was based on an
analysis of an equation that did not properly handle the in-
duced charge associated with the gluon field, that is, the
[Ai ,]

1Ai ] term in the equation which determines the gluon
field in terms of the external charge density.!

3As we will see in the next section, the contribution of the gluons
to x is proportional toNc at largeNc . In the large-Nc limit, the
coupling constant scales asg2Nc5const. The crossover scale there-
fore has the correct large-Nc scaling behavior.

FIG. 1. Distribution at fixedx as a function of intrinsic trans-
verse momentumk'

2 . We obtain considerable softening at smallk'
2

compared to the perturbative 1/k'
2 behavior.
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III. RENORMALIZATION-GROUP-IMPROVED CHARGE
DISTRIBUTION AND GLUON FIELD

In previous work, it was shown that radiative corrections
to the distribution functions computed in the McLerran-
Venugopalan model are large@7#. The first order correction
comes from the diagram of Fig. 2.

The modification of the distribution function is of order
asln~1/x!ln(k'/asm) at largek' and smallx. For k';asm,
the naturalk' scale in the problem, the corrections are of
order asln~1/x!. In any case, for small values ofx, these
corrections become large and cannot be ignored.

In this section, we will set up a renormalization group
procedure that sums up these corrections. The method of
analysis is the following. We first consider the bare
McLerran-Venugopalan model with a fixed valence charge
density and a fixed ultraviolet cutoff in the longitudinal mo-
mentumP1. Physically,P1 is of the order of the longitudi-
nal momentum of the nucleus. It sets the scale of size for the
longitudinal extent of the nucleus.

The renormalization group is implemented by considering
the effective Lagrangian at a scale of momentumk1 much
less thanP1, but whereasln~1/x!!1. To generate this effec-
tive Lagrangian, we integrate out quantum fluctuations with
momentumk1<q1<P1. This procedure, as will be seen,
generates a new effective Lagrangian of the same form as the
original one, but with an additional charge squared per unit
area. The typical scale of fluctuation of this additional charge
squared per unit area ism2(y,Q2)dy wheredy52ln(x) and
Q2 is a typical transverse momentum resolution scale at
which the gluon distribution is ultimately measured.

Since the form of the Lagrangian is unchanged under in-
tegration of these high momentum modes, except for the
overall scale factorm2, the procedure can then be repeated
and yet lower momentum modes can be integrated out. Im-
portantly, as long as the coupling constant is small and also
asln(x1/x2) is small, the quantum fluctuations can be inte-
grated out perturbatively, so that the computation is con-
trolled. This perturbative treatment considers fluctuations
around the classical solution, in the region of the phase space
which is being integrated out, as small. It is important to
realize, however, that the classical solution itself in this re-

gion of momenta is changed relative to the one at the previ-
ous step of the RG procedure. This is because it solves clas-
sical equations in the presence of the additional charge
m2(y,Q2)dy. This allows us to generate an effective La-
grangian at some scale ofx!1. This is in a region where the
naive McLerran-Venugopalan model would have broken
down.

Analogously, we can also allow the transverse momentum
cutoff Q2 to be changed independently by a renormalization
group transformation. This corresponds to perturbatively in-
tegrating out quantum modes in a phase space region with
transverse momenta betweenQ1 and Q2. This latter RG
transformation is the counterpart in our approach of the stan-
dard perturbative renormalization group scaling.

In the process of doing these transformations, we develop
a set of renormalization group equations form2(y,Q2).
These equations determine the rapidity andQ2 dependence
of this parameter.

We also determine the equation for the gluon field. It will
turn out that this equation is a little more complicated than
that in the previous section, since the induced charge de-
pends upon the gluon field strength squared at the previous
step of the renormalization group analysis. We argue that it
should be a reasonable approximation to replace this field
strength squared by its average value, in which case the
equations described in the previous section can be derived.
There are corrections to this approximation which are in
principle computable. It is precisely this approximation
which makes the fluctuations in the charge density uncorre-
lated in space-time rapidity. Inclusion of these corrections
will induce correlations. These correlations will, however, on
the average not contribute to building up the charge density.

It should be noted that there are other sources of correla-
tion in longitudinal phase space. These arise from the classi-
cal field itself which is recomputed at each stage of the
renormalization group analysis. Although it is true that the
source of the color field is largely uncorrelated, for a given
source, there are still long range correlations built into the
color field which would yield nontrivial multiplicity correla-
tions in rapidity.

Since the process closes under iteration, it is sufficient for
us to show how we integrate the degrees of freedom as the
Lagrangian changes scales in theNth to the~N11!st step of
the renormalization grouping. This is what will be demon-
strated below.

We begin our analysis with the McLerran-Venugopalan
action

S5 i E d2x'

1

x
Trr2~x'!2

1

g2 E d4x
1

4
FmnF

mn

1E d4x A2J1, ~33!

where

J1~x!5d~x2!r~x'!. ~34!

We are of course working in theA150 gauge.
Now suppose we have a solution to the classical equations

of the form

FIG. 2. Leading perturbative correction to the gluon distribution
beyond the classical field approximation. The thick lines denote
gluons with large longitudinal momentump1. The momentum of
the thin lines isk1. The large logarithms come from the kinematical
regionk1/p1!1.
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A15A250,

Ai5u~x2!a i~x'!. ~35!

It is understood in the above expressions that the longitu-
dinal d function ~as well asu function! is regularized on the
scale 1/PN

1. HerePN
1 is the typical longitudinal momentum

of the fluctuations which have been integrated out in the
previous step of the RG. At the very first step, of course,P1

is the typical momentum associated with the nucleus or had-
ron. Clearly, knowledge of the precise structure of the charge
density on the scales of order 1/PN

1 is necessary to determine
the behavior of the classical solution at these scales.

However, in the following we will only need to know the
structure of the solution at longitudinal momenta much
smaller thanPN

1. This is so even though we will integrate
over the fluctuations in the entire momentum range

PN11
1 ,k1,PN

1 , ~36!

where PN11
1 !PN

1, but is still large enough so that
asln(PN

1/PN11
1 )!1 ~hereas is evaluated at the scalex and

x is assumed to bex@LQCD. The reason is that the depen-
dence on the upper cutoff is only logarithmic and the bulk of
the contribution comes from much smaller momenta. To
leading order, therefore, the results do not depend on the
precise behavior of the classical field at the upper cutoff
scale. Such is the magic of the logarithm, which enamored so
many field theory practitioners. At momenta far below the
cutoff, the classical field does not indeed have the structure
Ai(k)}1/k1a i(k'), which is equivalent to Eq.~35!.

To compute the effective action, we must integrate out the
fluctuations around the classical solution. As long as we only
generate an effective action at a scalek1, so that
asln(PN11

1 /k1)!1, then these fluctuations are small. We
therefore have three types of fields to consider. There is the
classical background field, the small fluctuation field at the
scale of interest, and the fields at lower momentum scale. We
need only keep terms in the action which are at most qua-
dratic in the small fluctuation field. We will denote these
fields in the following manner.

The fieldAcl
N will be the classical background field. The

labelN refers to theNth step in the renormalization group
procedure. This classical background field will be modified
as the renormalization group procedure iterates. We will also
write

Acl
N5uN~x2!aN~x'!. ~37!

In this equation, as mentioned before, the step function is a
step function on a distance scale larger than that which we
have previously integrated out.

There are the small fluctuations fields at the stepN which
are within the momentum range that we integrate out. We
will refer to these fields asdAN.

Finally, there are the fields which are fluctuations around
the classical solution at momentum scales much less than
that where we perform the integration. These fields are not
small. They are denoted asAN.

The contribution to the effective action associated with
the small fluctuation field is

dS5
1

g2 E d2x'dx
1H E dk1dp1

4p2 @ 1
2dAN~k1!DN

21~k1,p1!dAN~p1!#

12 f abcE dk1

2p E
2PN

1

PN
1 dk18

2p
aa
iN~x'!Ac

2N~k18,x1,x'!dAib
N ~k1,x1,x'!J . ~38!

In this equation, the momentak1 and p1 are in the range
between the cutoffs,PN

1<uk1u, up1u<PN21
1 . The momen-

tum k18 is typically much softer than the lower cutoff and,
therefore, also much softer thank1. The quantityD N

21 is the
inverse propagator in the background field. It depends on
both the fieldsAcl

N andAN.
We have approximated the linear term in the small fluc-

tuation by keeping only the eikonal part of the interaction
vertex, that is, the coupling between the transverse compo-
nents of the hard field and the minus component of the soft
field. This will generate an effective action with only1 com-
ponents of currents affected by integrating out the high mo-
mentum modes. The terms we neglected are suppressed by
factorsk18/k1 and are subleading in the small-x region.

It is also understood that the transverse momenta of all the
fields in Eq. ~38! are bounded from above by some trans-
verse cutoffQ. This is consistent with both the BFKL ap-
proach, where all transverse momenta are roughly the same,
and the leading logarithmic~or double logarithmic at small

x! Altarelli-Parisi evolution, where the momenta are
bounded by the momentum of the external probe. By impos-
ing such a cutoff, we restrict ourselves to transverse mo-
menta which are not parametrically large. This point can be
appreciated by examining the Feynman diagrams. Consider,
for example, the diagram that gives the leading correction to
the distribution function beyond the classical field approxi-
mation. It is depicted in Fig. 2. The corrections of this type
with arbitrary number of insertions of the background field
have been calculated in Ref.@7#. For our present purposes, it
is enough to consider the classical field expanded to first
order in the charge densityr. The diagram then is precisely
the same as that of the standard perturbation theory. After the
integration over the frequencyk2 is performed, the correc-
tion to the distribution function is proportional to

1

k1k'
2 E d2p'

p'
2 E

kN
1

kN21
1

dp1
p1

@p11k1~p'
222p'k'!/k'

2 #2
.

~39!
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The transverse momentum integration in this expression is
cutoff not at the scalek'

2 ~which is of the orderQ2!, but
ratherk'

2 /x, which at smallx is a very large scale. Physi-
cally, the part of the integration region abovek'

2 corresponds
to emission of jets which are much harder than the probe.
Precisely the same problem is encountered in the standard
perturbative treatment@11#. These processes have to be con-
sidered separately, and at this point we will disregard them.

Equation~38! looks very suggestive. Introducing the no-
tation

dra~x!52 f abcab
iN~x!dAic

N ~x!, ~40!

we see that the linear coupling term between the soft field
and the hard fluctuation is of the form

2 Trdr~x!A2~x!d~x2!. ~41!

We would therefore like to integrate in the path integral
over those components of the fluctuation fielddA, which are
‘‘orthogonal’’ to dr. In other words, we would like to change
variables fromdAib to dra and someXa, and integrate over
X. In fact, to get the result to the leading logarithmic accu-
racy it is not necessary to do it explicitly. Sincedr is linear
in the fluctuation field and the integral over the fluctuation is
Gaussian, it is clear that the result of the procedure described
above will be of the form

E @ddA#exp$ idS%

5M ~a!E @ddr#expH 2E
x,y

1
2dra~x!drb~y!

3@dx#ab
21~x,y!1 idra~x!Aa

2N~x!J . ~42!

HereM is the contribution of the determinant which arises in
the Gaussian integration overX. To the leading logarithmic
accuracy, this contribution can be ignored. This amounts to
neglecting the loop corrections with all particles in the loop
having the longitudinal momentum in the same range
PN

1<p1<PN21
1 . Corrections of this type do not give large

contributions at smallx @11#. It was also shown in the pre-
vious analysis@7# that such contribution could be ignored at
small x for modifications to the Weizsa¨cker-Williams back-
ground field.

The matrixdxab(x,y) is given by

dxab~x,y!54i E
PN

1<up1u<PN21
1

dp1

2p
f acdf be fa i

c~x'!a j
e~y'!

3Di j
Nd f~p1,x' ,x1,y' ,y1!. ~43!

To proceed further, we need to know the structure of the
propagator of the hard fluctuationsDN. Since the longitudi-
nal momentum scale in the propagator is large, we can use a
no recoil or eikonal approximation to incorporate the effect
of interaction with the softer fieldsAN2. The calculation is
given in Appendix B.

In the eikonal limit, the propagator is

Di j
Nab~K1,z2;x1,x' ,y1,y'!

5d i jd~x'2y'!
sgnK1

K1 iu„ K1~x12y1!…P̂

3expF2 i E
y1

x1

dz1Aadj
2 ~z1,z2,x'!Gab. ~44!

In this equation,Aadj
2 and, hence, the path-ordered phase are

in the adjoint representation. In the phase, the dependence
uponx2 can be ignored since the function is slowly varying
on scales of the typical size corresponding to 1/k1. Here we
have takenK1 as the momentum conjugate to the difference
of coordinatesx22y2, and z25(x21y2)/2;x2;x2 is
the average position associated with the field.

The expression above accounts only for soft fields with
longitudinal momenta smaller than that of the fluctuationdA.
In terms of Feynman diagrams, this corresponds to summa-
tion of the diagrams of the type depicted on Fig. 3. In fact,
the propagatorDN also depends on the background field
a i

a(x') and this dependence is important in parts of the
phase space. These contributions are of the type Fig. 4. We
will come back to this point and discuss the importance of
these terms later. Temporarily, however, we will disregard
them in order to make the discussion conceptually simpler.

As for the soft insertions, the following remark is in order.
The propagator depends only on the minus component of the
vector potential. On the classical solution discussed in the
previous section, this component vanishes. It is therefore
only the fluctuations ofA2 around the new classical solution
that contribute toD. Since these effects are higher order in
the coupling constant, we will ignore them to this order.
Again, these corrections too are important at low transverse
momentum. This point will be addressed in Sec. V.

With these approximations the fluctuation propagator be-
comes very simple. The fluctuation of the charge densitydm2

is time ~x1! independent and local in the transverse direc-
tions:

dxab~x' ,y'!5
1

g2p
dyNd2~x'2y'! f acdf bed

3a i
c~x'!a i

e~x'!. ~45!

Note that since our fields have a built in cutoff on the
transverse momentum, thea(x')a(x') actually should be
understood as averaged on a transverse scale size
d2x';1/Q2.

We now make the approximation

a i
a~x'!a j

b~x'!'^a i
a~x'!a j

b~x'!&5
1

2~Nc
221!

dabd i j ^a
2&.

~46!

The averaging in Eq.~46! is over the distribution ofr. We
believe this approximation should be adequate to describe
the RG flow ofx, especially at largeQ. The fluctuations ofr
are very short range in the transverse direction. On the other
hand, the fieldsa are slowly varying, its transverse correla-
tion length being of order 1/g2x. There is therefore very little
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correlation betweenr~x'! and the fielda~x'! at the same
point. Also, because of slow variation ofa~x'! in space, an
approximation of a2~x'! by an x'-independent constant
should be good with accuracyg2x/Q. Although this approxi-
mation is true on the average, it ignores some of the corre-
lations which are built into the longitudinal structure. It
would be very important to study corrections to this approxi-
mation or better yet to fully incorporate the structure of Eq.
~45! in the solution to the problem. This is left for further
study.

We get, therefore, that the change in the charge density is
governed by the parameter

dxN~Q2!5
1

g2p

Nc

~Nc
221!

dyN^aN
2 &Q2. ~47!

The variation ofx due to the change of the transverse
cutoff is also easily calculated:

dxN~Q2!5dQ2
Nc

~Nc
221!

1

g2p (
P51

N

dyP^aP~Q!2&. ~48!

The change in the effective action is, therefore,

exp$ idS%

5E @ddrN#expS 2E d2x'

1

dxN~Q2!
TrdrN

2 ~y,x'! D
3expS i E d2x'E

2`

`

dx1drN~x'!AN
2~x' ,x1! D . ~49!

Now we identify some typical space-time rapidity for our
source with the momentum space rapidity. We expect that
yspace-time;ymom. Let us define

y5y02(
i51

N

dyi , ~50!

where the the right-hand side is the momentum space rapid-
ity shifts induced by integrating out the different scales. We
will see that the left-hand side has an interpretation of the

space-time rapidity. The rapidityy0 is the beam rapidity. We
see that the equation for the evolution ofx generated by our
renormalization group procedure can be written as@12,13#

dx~y,Q2!/dy dQ25
Nc

Nc
221

1

~2p!2
1

g2p
^a~y,Q!2&.

~51!

This equation can be either formulated as a BFKL-type equa-
tion, when one does the integral ofQ first, or as a DGLAP-
type equation, if one does the integral overy first @14#. No-
tice that it is a nonlinear generalization of both equations,
since the right-hand side of the equation is a function ofx.

This equation has a simple physical interpretation. The
factor ofNc/(Nc

221) is the charge squared per gluon. The
number of gluons contained in our classical field is

dN/dy dQ25
1

~2p!2
1

g2p
a~y,Q!2. ~52!

What our analysis has shown is that the change in charge
squared is entirely due to the change in the number of gluons
due to new phase space opening up. Of course, this is a
nonlinear problem in general since the source of charge
changes the classical background field in a nontrivial way.

Let us also define

r~y,x'!5drN~x'!/dy ~53!

and

AN
2~x' ,x1!5A2~x' ,x1,y!. ~54!

Now we must compute the change in the classical field.
Since the change in the classical field is small, we see that if
we write

AN11
cl 5dAN

cl1AN
cl , ~55!

we can linearize the equations fordAN
cl . We find that

dAN11,cl
2 50 and that

Di~AN
cl!]1dANi

cl 1@dAN
cl ,]1AN

cl#5g2dN~x2!drN /dy.
~56!

FIG. 3. Same as in Fig. 2, but with additional insertions of the
soft external field. These diagrams give corrections to the distribu-
tion function upon contracting the soft legs. They therefore corre-
spond to the virtual corrections and are higher order in fluctuation
fields.

FIG. 4. Same as in Fig. 2, but with additional insertions of the
hard background field. These diagrams are important in the region
of momentaQ of orderasx. See the discussion in the next section.
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In this equation,dN(x
2) means a delta function on the scale

of our new classical field; that is, as a regularized distribution
it has its support on the scale 1/PN

1. Now we definedAN
cl to

vanish on the scale of the old classical field. Therefore only
the first term survives.

Upon identifying the indexN with the space-time rapid-
ity, we see that our classical equation solves the equation we
posited in the last section that

Di~A
cl!

d

dy
Ai5g2r~y,x'!. ~57!

~The easiest way to see this is to break up space-time rapidity
into discrete intervals. Identify an index with each interval.
Precisely the renormalization group equation for the field
results.!

We also see that the path integral measure for the fluctu-
ating field is what we postulated in the previous section, with
one caveat: We have omitted some contributions which on
the average vanish in their contribution to the inducedx.
These terms generate a nontrivial correlation in rapidity be-
yond which we compute. We will not further discuss their
inclusion here except to note that they in principle are com-
putable and should be included at some point.

IV. RG EQUATIONS FOR x„y,Q2
…

We now discuss the renormalization group equation~51!.
This equation determines how the color charge per unit area
scales with rapidity and a transverse resolution scale sizeQ2.

The consistency of our analysis requires that the solution
to the renormalization group equation only involve informa-
tion in the region where our approximate methods of com-
putation are valid. It could easily happen that the region of
interest in transverse space after several steps in the renor-
malization group procedure might drift to some value where
our approximations are no longer valid. This might happen if
at some rapidityy the relevant typical values ofQ2 became
of orderLQCD

2 or became much greater thanm2~y,Q2! where
our classical source size approximation breaks down. It is
plausible that the region of integration for the solution of the
equations involves primarily the region of interest, since this
is physically where the field originates, but we have no
proof. In addition, the region of largeQ2 where our classical
methods no longer apply is probably correctly treated even
though the derivation above breaks down. In this region, the
fields are weakly coupled, and our expression derived by
classical means appears to be correct even in this region, to
leading order in coupling.

The renormalization group equation may be formulated in
the DGLAP form by first integrating overy as

dx/dQ25
Nc

~Nc
221!

1

~2p!2
1

g2p E
y

yb
dy8^a~y8,Q2!2&.

~58!

It may be written in the BFKL-like form as

dx/dy5
Nc

~Nc
221!

1

~2p!2
1

g2p E
0

Q2

dQ82^a~y,Q82!2&.

~59!

Note that this is a nonlinear equation. The dependence of
its right-hand side onx is determined by the solution of
classical equations.

At this point we want to return to a discussion of the
terms that we have neglected in deriving Eq.~51!, namely,
the contributions of the diagrams of Fig. 4, with insertions of
a hard background field. From the perturbative point of view,
those correspond to modifications of the gluon distribution
due to mixing between the two-particle and multiparticle
~higher twist! operators. These diagrams can in principle be
taken into account by using instead of the free propagator in
Eq. ~43! the full propagator in the external field as calculated
in @7#.

Although this calculation has yet to be performed, it is
easy to understand qualitatively the main modifications it
will bring about. First, even with the inclusion of the back-
ground field the additional charge densitydr will remain
static. This is due to the fact that all the internal lines in the
diagram Fig. 4 have the frequency~p2! of the order of the
on-shell frequency corresponding to the longitudinal mo-
mentumPN

1<p1<PN21
1 . It is much smaller than the on-

shell frequency of the external line with momentumk1.
From the point of view of the emitted particle, therefore, the
coupling is always to the static source. The main effect of
these extra insertions will be to modify the right-hand side of
Eq. ~51! by adding to it terms nonlinear in~a!2. This effect,
however, will be significant only forQ of orderg2x. Physi-
cally, the diagrams of Fig. 4 describe an emission of the soft
particle with transverse momentumk' by a classical field
a i(x). Clearly, as long as the transverse momentum of the
emitted particle is larger than the inverse correlation length
of the field, the particle is emitted locally. In this case the
emission probability depends only ona2(x) at the point of
emission. In the local limit, therefore, the effect of these
corrections will be of ordera2(x)/k'

2 . At largeQ the main
contribution to the distribution function comes from large
k'
2 , and the correction due to nonlinearities is therefore neg-
ligible. At Q of orderg2x and smaller, the contribution of the
diagrams in question is important. However, in the saturation
regimeQ!g2x they do not change the behavior qualita-
tively. In this region there is practically no running ofx with
y. The reason is that since the correlation length of the clas-
sical field is of order~g2x!21, the phase space for emission
shrinks to zero at these values of momenta.

The qualitative features of the solution of our RG equa-
tion are these. In the region of largeQ2, the equation ap-
proximately linearizes to become

d2x/dy dlnQ25
Ncas

p
x. ~60!

This is precisely the double-logarithmic approximation to the
DGLAP equation@14#. It would be solvable if it were not for
the dependence ofa on x. If we hold this fixed, we get
approximately~assuming thatx is a slowly varying function
of y at someQ0

2! that

x5expH 2ANcas

p
y lnQ2/Q0

2J . ~61!
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The dependence ofas upon x will of course modify the
solution.

In the region of transverse momenta in the vicinity of the
crossover scaleasx, the nonlinearities in the renormalization
group equation become important. It is likely that one of the
effects of this will be that the transverse phase space in this
region will be a very slowly varying function ofQ2. It is then
more convenient to turn to the form~59!. Assuming this to
be the main effect of the nonlinearities and approximating
the transverse phase space by a constantP, we can write the
solution as

x5x0expH Ncas

p
PyJ . ~62!

This has the BFKL-type behavior, growing as a power at
small x. To calculate the value of the constantP, we would
have to include virtual corrections which have been ne-
glected so far.

Finally, in the saturation region whereQ2!a S
2x(y,Q2),

the right-hand side is constant up to logarithms. Here the
solution is, to a good approximation,

x5x01k~y02y!Q2, ~63!

where k is some slowly varying function. There is little
change until (y02y)Q2/x0 becomes of order 1.

V. UNITARITY, TOTAL MULTIPLICITY, AND SUMMARY

The issue of unitarity in deep inelastic scattering is related
to thex dependence of

G~x,Q2!5E
0

Q2

d2p'

dN

dx d2p'

, ~64!

at fixedQ2 as x decreases. We have seen that at fixedp'

there are two separate regions fordN/dx d2p' . The first is at
large p'

2@a S
2x(x). In this region, the integral above is

xG(x,Q 2);ln(Q2)x(x) up to factors of logarithms ofm. As
x decreases, this is a rapidly rising function of 1/x.

At some point, for any fixedQ2, the parameterx will
become<Q2. At this point, we are in the small-p' region for
the computation of dN/dx d2p' . In this region,
dN/dx d2p';ln~p'! up to factors of ln~x!. ~It would be use-
ful to determine these factors more accurately and actually
compute the cross section in this region, but again this is
beyond the scope of this paper.! Here the structure function
xG has at most a logarithmic dependence uponx. There is
therefore no obvious contradiction with unitarity. The depen-
dence ofxG onQ2 is also amusing, rising like some power
of Q2 up to logarithms, until saturating atx.

The total multiplicity produced in hadron-hadron colli-
sions atx may also be estimated. Here we return to rapidity
variables. On scaling grounds alone, the multiplicity of
produced gluons per unit area should be
dNg/dypR2;x(y,h;1). These gluons after production in-
teract at high relative energy and, therefore, largely elasti-
cally. The number of gluons should be approximately con-
served. Later, as a quark-gluon plasma is formed, the system

expands approximately isentropically, so that the total num-
ber of gluons produced should be roughly the same as the
number of pions.

At this point, we do not have a full solution of the renor-
malization group equation in hand. Suffice it to say that one
expects a rapid growth of the parameterx asx decreases at
large p' . This should be much faster than a power of a
logarithm of beam energy. The reason that this growth does
not violate unitarity is because it is arising from an enhanced
contribution at larger transverse momenta.

The typical transverse momentum in this picture will go
as the square of the multiplicity per unit area. The total de-
posited energy density at a typical formation timet;1/x will
be of orderx4. All of these functions are expected to be
asymptotically somewhat rapidly rising functions of energy.

To summarize, the results of this work are extremely sug-
gestive. We have presented a picture of low-x gluon struc-
ture functions which has many of the intuitive features nor-
mally associated with the Pomeron. The calculation
presented here should be improved, however, in many as-
pects.

We have made several drastic approximations in deriving
the renormalization group equation. Let us once again point
those out.

First, we have neglected the virtual corrections. Those are
generated by the diagrams in Fig. 3 when one contracts the
external legs. Formally, as we mentioned in Sec. III, those
are higher order in fluctuation and for that reason would
seem to be subleading. However, some of these diagrams are
known to contribute to the BFKL equation and, therefore,
must be important at least in some kinematic regime. This
suggests that the generic form of the effective action which
we have relied on, Eq.~49!, is not quite complete. To see
what is missing, let us consider for a moment fields in three
ranges of the longitudinal momentum: the fieldAm(k

1)
with k1>PN21

1 , the fieldBm( l
1) with PN21

1 > l1>PN
1, and

the fieldCm(m
1) with m1<PN

1. The integration overA and
B generates the effective action forC. Taking into account
the soft insertions of Fig. 3 means we should use for the
fluctuations propagator the full eikonal expression~45! with-
out setting the Wilson line factor equal to unity. The integra-
tion over the fluctuations of the fieldAm will generate the
effective Lagrangian

i E d2x'TrdrN21~x'!
1

x̄N21~B
21C2!

drN21~x'!

1E d2x'E
2`

`

dx1drN21~x'!@~B2~x' ,x1!

1C2~x' ,x1!#, ~65!

where

x̄N21~B
21C2!5dxN21W~B21C2! ~66!

and

W~A2!5P̂ expF2 i E
2`

`

dz1Aadj
2 ~z1,x' ,x250!G . ~67!
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In the next step the integration over the fluctuations ofB
leads to the effective Lagrangian forC:

E d2x'E
2`

`

dx1@drN21~x'!1drN~x'!#C2~x' ,x1!

1 i E d2x'TrdrN21~x'!
1

^x̄N21~B
21C2!&B

3drN21~x'!1 i E d2x'TrdrN~x'!
1

x̄N~C2!
drN~x'!.

~68!

In the second term the angular brackets denotes averaging
over the fluctuation of the fieldB:

^x̄N21~B
21C2!&B5dxN21E @ddB#W~B1C!

5~12g!dxN21W~C!. ~69!

We see, therefore, that the integration over the fluctuations in
the range of momenta betweenPN21

1 andPN
1 not only gen-

erates the additional charge densitydrN , but also modifies
the fluctuation amplitude of the charge densityr which is
generated by the higher momentum modesk1>PN21

1 . This
modification is only important for the coupling of the density
r to the fields with momentam1<PN

1, since only in this
case is the longitudinal phase space large and the correction
factor g proportional to ln~1/x!. In terms of Feynman dia-
grams, this calculation corresponds to the virtual corrections
of Fig. 5 and the factorg is directly related to the so-called
non-Sudakov form factor@11#. It is important to note that
even though the form of effective Lagrangian~68! is not
precisely the same as considered in Sec. II, on the classical
solutions whereA250 the two indeed coincide. This is so,
since the Wilson loop operator depends only on one compo-
nent of the gauge fieldA2. Therefore, forA250, the charge
density fluctuationx̄N depends only on the charge density
rN21 and Eq.~68! reduces to Eq.~43!. The solution consid-
ered in Sec. II is therefore still applicable to the modified
Lagrangian. The net effect of the virtual corrections is to
modify the running of the effective charge densityx(y)
through the change on the right-hand side of the renormal-
ization group equation~51!. This effect is calculable and
should indeed be calculated, but this is beyond the scope of
this paper. We will only note that since these virtual dia-
grams do not play any role in the perturbative double-
logarithmic DGLAP treatment and our renormalization
group equation reduces to it in the limit of largeQ, we ex-
pect these extra corrections to be important only in the non-
linear regimeQ;asx.

The second approximation that we made was to neglect
the insertions of the hard background field. This was dis-
cussed in the previous section, where we have argued that
these corrections are also unimportant at largeQ. Again, in
principle, these corrections are calculable by using the full
fluctuation propagator in the background field, as calculated
in @7#.

The third approximation in arriving at Eq.~51! was to
replace the square of the classical field by its average. This
led to the absence of correlations in rapidity for the density
fluctuations. This approximation is also expected to be good

for large transverse momenta, where the emission of a soft
field is local in transverse coordinates and therefore the ad-
ditional densitydr is practically uncorrelated with the den-
sity coming from higher rapidities. At transverse momenta of
order of the inverse correlation function of the classical field,
this approximation should break down.

Clearly, the treatment of the nonlinear regionQ<asx in
the present paper is very rudimentary. It is in great need of
improvement, and we intend to address this problem in fu-
ture work. In fact, at small transverse momenta the very no-
tion of the momentum cutoffQ is highly questionable. The
density-density correlation which is given by the diagram in
Fig. 2, in momentum space, is a very slowly varying function
of the transverse momentum atk'@asx. It depends on the
momentum logarithmically. In this range of momenta, one
can therefore approximate it by a constant. In our calculation
precisely this is achieved by introducing the cutoffQ and
using the eikonal approximation for the propagatorDN ,
which results in a local correlator of density in the transverse
coordinates. At momenta of orderasx, however, the correla-
tor changes rapidly. Approximating it by a constant with
some transverse cutoff should therefore result in an error of
order 1. A more careful treatment will bring about nontrivial
transverse correlations of the charge density. One should
therefore expect that an improved treatment of the low trans-
verse momenta region will modify the distribution for den-
sity fluctuations such that nontrivial transverse as well as
longitudinal correlations will appear. The effective Lagrang-
ian which would generate the classical solutions will be of
the form

E dy dy8d2x'd
2x'8Trr~y,x'!

3@m2~y,y8,x' ,x'8 !#21r~y8,x'8 !. ~70!

In fact, in a general case there is no reason to expect that the
weight will be Gaussian, so that the weight functionm could
itself depend onr.

It remains to be seen how large in fact will be the effect of
these improvements. We believe that although quantitatively

FIG. 5. Virtual corrections of Eq.~68!. The thickest line denotes
the propagator of the field componentA with the largest longitudi-
nal momentum. The thick line that completes the loop is the propa-
gator of the fieldB. Finally, the thin external lines denote the ex-
ternal field C, for which the effective Lagrangian is being
computed.
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it should be significant, the qualitative picture presented here
will be confirmed. If the above issues can be answered in a
satisfactory way, then one can proceed to a detailed compu-
tation of hadronic interactions within this approach. Deep
inelastic scattering from nuclei and Drell-Yan production in
heavy ion collisions might be computed. The initial condi-
tions for nucleus-nucleus collisions might be found in detail.
The fluctuation spectra and correlations between fluctuations
would also do much to verify the above picture. It would be
very useful to have data on the structure functions directly by
using nuclei in the DESYep collider HERA.
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APPENDIX A: NORMAL ORDERING THE DISTRIBUTION FUNCTION

We have to calculate

Gi j ~y,x' ;y8,x'8 !5E @dr#expS 2E dy9d2x'9
1

2m2~y9,Q2!
r2~y9,x'9 ! D i 2U~y,x'!¹ iU

†~y,x'!U~y8,x'8 !¹ jU
†~y8,x'8 !.

~A1!

This can be cast in the form

Gi j ~y,x' ;y8,x'8 !5K E
y

`

dy8$U`,y8@¹ iL~y8!#Uy8,`%~x'!E
ȳ

`

dȳ8$U`,y8@¹ iL~ ȳ8!#U ȳ 8,`%~ x̄'!L
L

, ~A2!

with the correlation function

^L~y,x'!L~y8,x'8 !&L5g4m2~y,Q2!d~y2y8!g~x'2x'8 !. ~A3!

The functiong is given in Eq.~26! and, as discussed in Sec. II, is infrared singular. The leading dependence on the infrared
cutoff resides in the constant termg~0!. Fortunately, all terms containingg~0! cancel in the expression for the correlation
function. To understand how these cancellations work in Eq.~A3!, let us first consider the normal ordering of individual link
operators first. To do so, let us break up any link operator fromy to ` into ‘‘infinitesimal factors’’:

U`,y~x'!5 lim
k→`

)
n51

k

U`,yk
~x'!Uyk ,yk21

~x'!3•••3Uy1 ,y
~x'!. ~A4!

In the large-k limit, eachUym ,ym21
covers an infinitesimal piece of the total path with a fixed lengthD5ym2ym21. Because

of the locality of Eq.~A3! in y, it is clear that there will be no contractions between different factors in this product. For an
individual factor, however, we may expand and perform the normal ordering

Uym ,ym21
~x'!511 i E

ym21

ym
dyL~y,x'!1 i 2E

ym21

ym
dyE

y

ym
dy8L~y,x'!L~y8,x'!1O~D3!

5:11 i E
ym21

ym
dy L~y,x'!:11S i 2 g4Ncg~0!

2 D E
ym21

ym
dy m2~y,Q2!1O~D2!, ~A5!

where we have kept all terms up to orderD. This is the only nonsuppressed tadpole contribution if the functionm2(y) is finite.
As a consequence, we have

Uym ,ym21
~x'!Uym21 ,ym22

~x'!5:11 i E
ym22

ym
dyL~y;x'!:11S 2

g4Ncg~0!

2 D E
ym22

ym
dy m2~y,Q2!1O~D2!

5:Uym ,ym22
~x'!:expF S 2

g4Ncg~0!

2 D E
ym22

ym
dy m2~y,Q2!G , ~A6!

which immediately carries over toU`,y(x') upon insertion into Eq.~A4!. The dangerous tadpole contributions therefore can
be factored out from a link operator by writing it in the normal-ordered form. Using this result, we find
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Gi j ~y,x' ;y8,x'8 !5E
y

`

dy8E
ȳ

`

dȳ8^:$U`,y8@¹ iL~y8!#Uy8,`%~x'!:$U`,y8@¹ iL~ ȳ8!#Uy8̄,`%~ x̄'!:&L

3expF S 2
g4Ncg~0!

2 D S E
ȳ 8

`

1E
y8

` D dy8m2~y8,Q2!G
5E

y

`

dy8E
ȳ

`

dȳ8G̃i j ~y8,x' ; ȳ8,x̄'!expF S 2
g4Ncg~0!

2 D S E
y8

`

1E
y8̄

` D dy8m2~y8,Q2!G . ~A7!

The expectation value of the product of normal-ordered
fields we dubbedG̃ does not contain any contractions within
the individualU ’s. This is now easily evaluated order by
order and then resummed. Expanding theU ’s to zeroth or-
der, we have

G̃i j
ab0~y8,x' ; ȳ8,x̄'!

5dabd~y82 ȳ8!g4m2~y8,Q2!¹ i¹̄ jg~x'2 x̄'!. ~A8!

In first order, a quick computation gives

G̃i j
ab1~y8,x' ; ȳ8,x̄'!5G̃i j

ab0~y8,x' ; ȳ8,x̄'!~2g4!~2Nc!

3g~x'2 x̄'!E
y8

y0

dy9m2~y9,Q2!.

~A9!

In this equation,Nc is the number of colors.
Similarly, in nth order, we find

G̃i j
abn~y8,x' ; ȳ8,x̄'!5

~g4!nNc
ng~x'2 x̄'!

n!

3F E
y8

`

dy9m2~y9,Q2!Gn
3G̃i j

ab0~y8,x' ; ȳ8,x̄'!. ~A10!

Summing up, multiplying the tadpole factors, and then per-
forming the remainingy8 and ȳ8 integrations now allows us
to write an explicit expression in which the leading infrared
divergence cancel. Assumingy. ȳ, the result is

Gi j
ab~y,x' ;y8,x'

8 !

52dab„¹ i¹ j8g~x'2x'8 !…
1

Nc@g~x'2x'8 !2g~0!#

3„12exp$g4Ncx~y,Q2!@g~x'2x'8 !2g~0!#%…,

~A11!

where we have defined

x~y,Q2!5E
y

`

dy8m2~y8,Q2!. ~A12!

The quantityx(y,Q2) is the total charge squared per unit
area at rapidity greater than the rapidityy.

APPENDIX B: THE EIKONALIZED PROPAGATOR

In this appendix, we will derive an expression for the
vector field propagator in the eikonal approximation. We will
solve the equation of motion for the hard fluctuation field in
the presence of an external soft vector potential. Throughout
this analysis we neglect the effects of the classical back-
ground field.

We start with the transverse component of the Yang-Mills
equations,

DmF
m i50, ~B1!

and write the total fieldAm as

Am5dAm1sm ,

wheredAm is the hard field describing the fluctuations with
high longitudinal momentum andsm is the soft field with
small longitudinal momenta only.

We assume that the only large momentum in the problem
is the longitudinal momentum of the hard fielddAi . There-
fore, in the equation of motion for the hard field, we keep
only those terms which involve derivatives of the hard field
with respect tox2, the coordinate conjugate to large momen-
tum p1. The equation of motion for the hard field then be-
comes

]2]2dAi2 i @s2,]2dAi #5D2~s!]2dAi50. ~B2!

To calculate the propagator we need to find eigenfunc-
tions of the operatorD2(s)]2 . In order to do this, we write

dAi
l~x!5eipxdÃi

l~x!,

where the eigenvaluel5p2 and dÃi is a slowly varying
function of x2. Then eigenvalue equation becomes

D2~s!dÃi~x!50,

which has the solution

dÃi ,a
a,l~x,p!5F P̂ expS 2 i E

2`

x1

dz1s2~z1,x2,xt! D G
ac

3e i
~l!~p! ^u~a!

c , ~B3!

wherea is the color label,l is the eigenvalue index, ande i
(l)

and u~a! are the polarization vector and color basis vector,
respectively. The eigenfunctions, therefore, are
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dAi ,a
a,l~x,p!5F P̂ expS 2 i E

2`

x1

dz1s2~z1,x2,xt! D G
ac

3e i
~l!~p! ^u~a!

c eipx. ~B4!

The propagator is constructed as

Gi j
ab~x,y!5E dl

dAi
a,l~x!dAj

†b,l~y!

l2 i e
.

Since the soft fields is a slowly varying function ofx2, we
can neglect its variation withx2 and write it as a function of
z2 wherez2;(x21y2) is the average~2! coordinate as-
sociated with the soft field. The expression for the propaga-
tor can be written as

Gi j
ab~x,y!5d i jd

2~xt2yt!E dp1dp2

~2p!2

3
e2 ip1~x22y2!e2 ip2~x12y1!

22p1p22 i e

3F P̂ expS 2 i E
y1

x1

dz1s2~z1,x2,xt! D G
ab

.

~B5!

Here we have used

p2522p1p21pt
2'22p1p2

and

(
l

e i
~l!~p!e j

~l!~p! ^ (
a

u~a!
c u~a!

d 52d i jd
cd.

The integration overp2 is straightforward and gives a
factor proportional tou(x12y1) for positivep1. To get the
propagator in momentum space, we Fourier transform with
respect to relative and center-of-mass coordinatesx22y2

andz2;(x21y2) to get

Gi j
ab~K1,k1,x1,y1,xt ,yt!

5
i

2
d i jd

2~xt2yt!u~x12y1!
1

K1

3F P̂ expS 2 i E
y1

x1

dz1s2~z1,k1,xt! D G
ab

, ~B6!

whereK1 andk1 are the momenta conjugate to (x22y2)
and (x21y2), respectively. For negativeK1 we get the
same expression above with the argument of theu function
switched around and a relative minus sign.
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