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The hypothesis is scrutinized that the weak interaction of hadronic systems at low energies is dominated by
the coupling of the pseudoscalar, vector, and axial-vector mesons to the weak gauge bosons. The strength of
the weak coupling of ther(770) meson is uniquely determined by vector-meson dominance in electromagnetic
interactions; flavor and chiral symmetry-breaking effects modify the coupling of other vector mesons and
axial-vector mesons. Many decay rates are calculated and compared to experimental data and partly to predic-
tions of other models. A parameter-free description of the decayK1→p1l 1l 2 is obtained. Predictions for
several not yet observed decay rates and reaction cross sections are presented. The relation between the
conserved vector current hypothesis and meson dominance is clarified. Phenomenological success of the meson
dominance suggests that in some calculations based on the standard model the weak quark-antiquark annihi-
lation and creation diagrams may be more important than anticipated so far. The processes are identified where
the meson dominance fails, implying that they are governed, on the quark level, by some other standard model
diagrams.@S0556-2821~97!01709-8#

PACS number~s!: 12.15.Ji, 12.40.Vv

I. INTRODUCTION

The idea of vector-meson dominance~VMD !, which was
proposed a long time ago@1#, has proven to be very fruitful
in describing the electromagnetic interactions of hadrons at
low energies. It is routinely used even today when the stan-
dard theory@2,3# provides a unified picture of all interactions
among leptons and quarks. The reason for the present-day
popularity of effective theories is the difficulty encountered
when building a bridge between the world of quarks and
gluons and that of hadrons.

According to the VMD hypothesis the electromagnetic
interactions of hadrons are mediated by neutral vector me-
sons (r0, v, f, and to a lesser extent also their higher recur-
rences! which couple to the electromagnetic fieldam accord-
ing to the Lagrangian

LVMD52e
mr
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SVr0

m
1
1

3
Vv

m2
A2
3
Vf

mD am , ~1.1!

whereV’s are vector-meson field operators. The presence of
the ratio of ther mass squared to therpp coupling constant
gr (gr

2536.5660.29) is required by the normalization con-
dition Fp(0)51 for the pion form factor. The other factors
follow from invariance under theU-spin SU~2! subgroup of
the~flavor! SU~3! group and the assumption that the physical
v meson does not contains quarks.

The idea of the universality of the vector current led very
soon to the application of VMD in weak interactions. The
early development was reviewed in@4,5#. But, unlike in
QED, the transition amplitudes between the weak gauge
bosons and mesons are nonvanishing also for pseudoscalar
and axial-vector mesons. It is, therefore, natural to generalize
the VMD and assume that the weak interaction of hadronic
systems is dominated by the coupling of pseudoscalar, vec-

tor, and axial-vector mesons to the gauge bosonsW6 and
Z0. We will refer to this hypothesis as meson dominance
~MD!.

Qualitative support for MD in weak interactions comes at
least from two sources:~1! Individual pseudoscalar, vector,
and axial-vector mesons are copiously produced in the decay
of the t lepton; ~2! MD naturally explains why the ratios
among various charge configurations of hadronic final states
in weak decays often follow the rules implied by isospin
invariance, which is otherwise violated in weak interactions.

The MD hypothesis has two components. First, the as-
sumption that the weak interaction of hadronic systems is
dominated by the coupling of individual mesons to the weak
gauge bosons means, on the quark level, restriction to a cer-
tain class of perturbative expansion diagrams. This class
does not include, e.g., the penguin and box diagrams. Sec-
ond, in order to make the MD a quantitative concept we have
to establish the effective Lagrangian of the interaction be-
tween mesons and gauge bosons. This will be done in Sec.
II.

The question arises whether we really need a simple and
approximate phenomenological approach to the electroweak
interaction since we believe that the fundamental theory ex-
ists, which allows one to calculate everything from first prin-
ciples. We think that the reasons for exploring MD are two-
fold.

It is true that the basic electroweak diagrams of most de-
cay modes are relatively simple. But, as a matter of fact, the
QCD effects play an important role. The calculation of QCD
corrections to the basic electroweak diagrams is the most
difficult and involved part@6#. In contrary, the MD approach
takes advantage of the fact that the mother nature made some
QCD calculations for us, even nonperturbatively, when she
built hadrons. It is not true in general. The results of some
QCD calculations~e.g., QCD penguin diagrams, QCD cor-
rections to the weak and electromagnetic penguins diagrams
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and to the box diagrams! are not accessible so easily and MD
cannot be explored in such cases. Anyhow, an approximately
correct description of some process by the MD may have
heuristic value for the more fundamental approaches by
showing which quark diagrams may be most important. We
will try to illustrate this point in Sec. V.

Another reason for our considering the MD approach is
the relations between theory and experiment. The fundamen-
tal theories or models more sophisticated than MD do not
often provide simple formulas for various distributions that
would be suitable for use by experimentalists to fit their data.
As a consequence, formulas lacking dynamic motivation or
sometimes even violating the basic principles of quantum
mechanics are used. The MD approach may be able to offer
formulas, even if approximate, that are simple and reflect, at
least in a crude way, the underlying dynamics.

We will try to keep this paper self-contained and provide
all the formulas and numbers we use. The values of input
parameters~masses, hadronic widths, lifetimes! needed in
our calculations were taken from@7#. Unless stated other-
wise, so were the experimental values of branching fractions
to which we compare our results. The quoted errors of our
results reflect only those of input parameters. No attempt has
been made to assess the systematic uncertainties of the me-
son dominance approach. Not to expand the scope of the
paper too much, we do not compare, with a few exceptions,
our results to those of existing models. The references to the
latter can be traced back from the most topical ones@8,9#,
some of them are mentioned in this paper later on.

Throughout the paperP, S, V, and A will be used as
generic labels for pseudoscalar, scalar, vector, and axial-
vector mesons, respectively. In Lagrangians, the field opera-
tors will always be those of individual members of isospin
multiplets. The isospin symmetry of hadronic Lagrangians
will be ensured through the relations among the coupling
constants for different charge combinations of participating
mesons.

In the next section, we write effective Lagrangians de-
scribing the coupling of vector and axial-vector mesons to
charged and neutral weak gauge bosonsW6 and Z0 and
define the parameters of our approach. Section III deals with
the decays of thet lepton, some used as a source of infor-
mation about the MD parameters. In Sec. IV, we investigate
vector current processes in which the core of hadronic part is
the PPV vertex, with vector mesonV converting into the
charged gauge boson. They include the following types of
decays: P1→P21l n l , P1→P21P3, P1→P21V, and
P1→P21A. We calculate also the cross sections of the
antineutrino-electron and meson-electron binary reactions
that are related to the semileptonic decay shown above by
crossing symmetry. In Sec. V we show that MD leads to a
parameter-free formula for the rate of the decay
K1→p1e1e2 that agrees with the experimental value. Pre-
dictions for the dimuon mode and for the transitions ofD1

andDs mesons into the same final state are also made. Sec-
tion VI is devoted to the relation between the conserved vec-
tor current~CVC! and MD hypotheses. We summarize our
main points and add a few comments in Sec. VII. Some
related issues are deffered to the appendices. In Appendix A
we extract some hadronic coupling constants from data on

hadronic and radiative decay widths. Appendix B shows the
decay rate ofP1→P21l n l for arbitrary form factors,
which was used in Sec. VI.

II. DEFINING MESON DOMINANCE
IN WEAK INTERACTIONS

In this section we will use plausible arguments based on
the standard model Lagrangian and the VMD in electromag-
netic sector in order to find the effective Lagrangian that
describes the coupling of vector and axial-vector mesons to
the weak gauge bosons, both charged and neutral. In a search
for it we first discuss the dynamical content of the VMD in
electromagnetic interactions from the quark model point of
view. Then, we will apply the same procedure to the weak
interactions.

A. Vector-meson dominance in electromagnetic interactions

The electromagnetic part of the standard model Lagrang-
ian

LEM~x!52 j m~x!am~x! ~2.1!

contains the electromagnetic field operatoram and the quark
electromagnetic current

j m~x!5e(
i51

3 F23 ūi~x!gmui~x!2
1

3
d̄i~x!gmdi~x!G ,

whereui (di) denotes the field operator of the up~down!
quark from thei th generation. The matrix element of an
electromagnetic process with ar0 in the initial state will
contain the factor

^0u j m~0!up,l&r05
2
3 e^0uū~0!gmu~0!up,l&r0

2 1
3 e^0ud̄~0!gmd~0!up,l&r0 , ~2.2!

wherep andl are the four-momentum and polarization of
r0, respectively. Only quarks of the first generation matter.
The matrix elements must transform like four-vectors. The
only two four-vectors we have at our disposal are the four-
momentum pm of the r0 and its polarization vector
em(p,l). Because we are interested in low energy interac-
tions, we will neglect the term proportional to the four-
momentum. We thus write

^0uū~0!gmu~0!up,l&r05Frem~p,l!, ~2.3!

whereFr is a constant. Isospin invariance together with the
isovector character of ther implies that

^0ud̄~0!gmd~0!up,l&r052^0uū~0!gmu~0!up,l&r0.

Putting it into Eq.~2.2! and using Eq.~2.3!, we get

^0u j m~0!up,l&r05eFrem~p,l!. ~2.4!

On the other hand, we have the relation

^0uVr0
m

~0!up,l&r05Nem~p,l!. ~2.5!
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Both Fr and the constantN depend on the normalization of
one-particle states, but their ratio does not. Comparing Eqs.
~2.4! and~2.5!, we see that the Lagrangian obtained from Eq.
~2.1! by the substitution

j m~x!→e
Fr

N Vr0
m

~x!

gives the same low energy matrix element as the original
Lagrangian~2.1!. In order the get correctly the first term in
Eq. ~1.1!, which is fixed by the normalization of the pion
form factor, the following relation must be held

Fr

N 5
mr
2

gr
. ~2.6!

Repeating all the steps for the isoscalarv andf mesons, and
using SU~3! invariance relations

^0uū~0!gmu~0!up,l&v5
1

A2
^0us̄~0!gms~0!up,l&f

5^0uū~0!gmu~0!up,l&r0, ~2.7!

together with Eq.~2.6!, we obtain the other terms of Eq.
~1.1!. We assumed that thef meson transforms like a pure
s̄s state.1

We consider it important to stress thatgr in Eq. ~1.1! and,
as a consequence, also in the weak Lagrangians we are going
to introduce in what follows, is the coupling constant of the
rpp interaction, determined from ther→pp decay width.
This is strictly required by the conditionFp(0)51 on the
electromagnetic form factor of thep1 meson calculated
from Eq. ~1.1!. In some papers this important constraint was
ignored and thegr was determined from the electronic decay
width of ther0 meson. It is true that if one calculates the rate
of the r0→e1e2 decay from the Lagrangian~1.1! with gr

determined fromr→pp, the result is obtained which is
smaller by a factor of 1.4560.07 than the experimental
value. But this is, as we will show elsewhere, the effect of
higher r resonances. It is improper to mimic this effect by
violating the normalization condition of the form factor.

Also, if higher mesons from ther family are added into
Eq. ~1.1!, the coupling ofr(770) to the electromagnetic field
may be modified. The normalization condition for the pion
form factor implies a definite relation amongrg coupling
constants. The safest way of accounting for the influence of
higher r resonances is to replace the properly normalized
form factor induced byr(770) with a properly normalized
form factor containing all considered resonances. Preference
is for the experimentally determined ones, if available.

B. Meson dominance in weak interactions

Now, we are going to apply the same procedure to the
weak interactions. First, we will fix the coupling of the

chargedr mesons to the charged weak gauge bosonsW6.
We start again from the standard model Lagrangian, this
time from the part that exhibits the charged current weak
interaction of theu andd quarks:

Lud52Wm
2 j ud

m 1H.c.,

j ud
m 5

g

2A2
Vudd̄gm~12g5!u, ~2.8!

whereg5e/sinuW is the electroweak coupling constant and
Vud is the relevant element of the Cabibbo-Kobayashi-
Maskawa~CKM! matrix @10,11#. The matrix element for a
process with ar1 in the initial state is proportional to

^0u j ud
m ~0!up,l&r1

5
g

2A2
Vud^0ud̄~0!gm~12g5!u~0!up,l&r1 .

The axial-vector part does not contribute, and for the vector
part we can write

^0ud̄~0!gmu~0!up,l&r15A2^0uū~0!gmu~0!up,l&r0

5A2Frem~p,l!. ~2.9!

Writing an equation analogous to Eq.~2.5!, and using the
value ofFr /N as implied by the VMD for electromagnetic
interactions, see Eq.~2.6!, we come to the conclusion that
the effective Lagrangian for the low energy weak interaction
of the chargedr mesons is

Lr652
gmr

2

2gr
VudWm

2Vr1
m

1H.c.

Now, let us investigate the coupling of theK*1 to W1.
The corresponding piece of the standard model Lagrangian is

Lus52Wm
2 j us

m 1H.c.,

j us
m 5

g

2A2
Vuss̄g

m~12g5!u. ~2.10!

In analogy with~Eq. 2.9! we define the constantFK* by the
relation

^0us̄~0!gmu~0!up,l&K*15A2FK* em~p,l!. ~2.11!

Equation~2.5! is valid also forK*1 with the same value of
the normalization constantN. Using Eq.~2.6! and defining

wK*5
FK*
Fr

mr
2

mK*1
2 , ~2.12!

we arrive at the conclusion that the Lagrangian

LK*652
gmK*1

2

2gr
wK*VusWm

2VK*1
m

1H.c.

gives the same values of all observables in low energy pro-
cesses with aK*6 in the initial or final state as the standard

1Relations~2.7! and others of this kind stem from the transforma-
tion properties of the wave functions and field operators, and do not
mean that we ignore the gluon or sea quark content of the meson
wave functions.
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model Lagrangian~2.10! after the constantwK* is properly
adjusted. If the SUf(3) symmetry was exact we would have
wK*51.

The case of the axial-vector mesona1 can be handled in
the same way. We define the constantFa1

by the relation

^0uū~0!gmg5u~0!up,l&a
1
05Fa1

em~p,l!. ~2.13!

With Eq. ~2.6! in mind, we further define

wa1
5
Fa1

Fr

mr
2

ma1
2 . ~2.14!

The Lagrangian

La
1
65

gma1
2

2gr
wa1

VudWm
2Aa

1
1

m
1H.c.

then leads to the same matrix elements for processes with the
a1 in the initial or final state as the original standard model
Lagrangian~2.8!. In that sense it represents an effective La-
grangian for the weak interaction ofa1

6 mesons. The con-
stantwa1

is a phenomenological parameter of the MD ap-
proach and should be determined from data. In the chiral
limit mu5md50, the r and a1 mesons constitute a parity
degenerate doublet and thewa1

would be unity.

The a1 meson belongs to the3P1 octet of axial-vector
mesons. There has not been any experimental indication that
its counterpart from the1P1 octet, namely, theb1 axial-
vector meson, also couples to the weak gauge bosons. For
instance, it has not been identified among the decay products
of the t lepton. One possible explanation follows. The va-
lence quark and antiquark in theb1 form a singlet spin state.
Their helicities in the meson rest frame thus tend to be equal,
what leads to a small matrix element of the weak quark cur-
rent. But the coupling of theb1 to the gauge bosons, in other
words, the existence of a second-class axial-vector current
@12#, is not ruled out absolutely by the quark model ap-
proach. There is no obvious reason for the matrix element of
the type~2.13! written for theb1 meson to vanish identically.

To complete our considerations of the MD in the charged
current weak interactions, let us recall that quarks from
higher generations enter the standard model Lagrangian in
the same way as theu andd8 quarks from the first genera-
tion. This suggests that the most general form of the charged
current MD is

LCC52
g

2gr
Wm

2F (
V5r1,K*1, . . .

mV
2VVwVV

m

2 (
A5a1

1 ,K1
1 , . . .

mA
2VAwAA

mG1H.c. ~2.15!

Here,Vm andAm are the field operators of positively charged
vector (r1, K*1, D*1, Ds*

1 , B*1) and axial-vector me-
sons @a1

1 , K1(1400)
1, D1

1 , Ds1
1 #, respectively. Unlisted

states either do not exist or have not yet been discovered.
VV andVA are the elements of the CKM matrix that corre-
spond to the valence quark composition of the particular vec-
tor or axial-vector meson. To make Eq.~2.15! compact we
have introducedwr1[1. In the case of exact SUf(6) sym-
metry also the otherwV would be equal to 1 and allwA
would be equal towa

1
1. The actual values may be different.

Anyhow, thewA should not differ too much from the
wV of the vector mesons with the same flavor, because the
corresponding vector and axial-vector mesons form a chiral
symmetry doublet. The relative sign of the vector and axial-
vector parts of Eq.~2.15! is important for processes to which
they both contribute.

The parameterswV andwA enter formulas for observable
quantities in combinations with other parameters~CKM ma-
trix elements, strong interaction coupling constants!. In some
cases it makes their extraction from the data impossible. This
does not diminish appreciably the predictive power of the
MD because the same product of parameters determines the
rates or cross sections of several processes. We can thus fix
the normalization using one piece of data and other quanti-
ties are then predicted by the MD. This approach will be
used extensively in Sec. IV.

In the cases when the vector or axial-vector meson that
couples to the gauge boson appears as one of the final-state
particles it is useful to define the quantities

YM5uwMVMu2, ~2.16!

whereM stands for any of the charged vector and axial-
vector mesons.VM is the element of the CKM matrix perti-
nent to the valence quark and antiquark of the particular
meson, andwM is the parameter in the effective charged
current MD Lagrangian~2.15! that appears in theM1W1

junction. TheYM ’s that will be fixed by data later on are
shown in Table I.

A few more words are needed about the strange axial-
vector mesons that exist in two sorts,K1(1270) and

TABLE I. ParametersYV andYA , defined by Eq.~2.16! and characterizing the coupling of vector and
axial-vector mesons to the charged gauge bosons, their sources, and values of parametersw extracted from
them.

V,A YV , YA wV , wA Source

r1 0.947960.0019 1 uVudu2

K*1 (4.2060.09)31022 0.92960.013 K1→p0e1ne , K*→Kp

Ds*
1 0.760.5 0.8360.33 B0→D2Ds*

1

a1
1 0.613460.0032 0.804460.0023 t2→a1

2nt

K1
1 (3.461.7)31022 0.8460.21 t2→K1

2nt
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K1(1400). Analysis of the branching fractions of thet2 lep-
ton suggests that the coupling ofK1(1400) to the weak
gauge bosons is stronger than that ofK1(1270). First of all,
thet2 branching fraction toK1(1400)

2 is (864)31023, to
K1(1270)

2, (464)31023. Next, the branching ratios of
t2 to K2p1p2, K̄0p2p0, andK2p0p0 systems are com-
patible with 4:4:1 ratio, which is typical for decay of an
I51/2 resonance (K1

2) to those systems through the
(K*p)2 intermediate state. It again points toK1(1400) with
its branching fraction toK*p of (9466)% rather than to
K1(1270) @(1665)%#. Finally, if the axial strange mesons
that couple to theW gauge boson were the3P1 stateK1A or
the 1P1 stateK1B , nearly equal mixes of theK1(1270) and
K1(1400), then theK1(1270) and its decay products would
be more visible int decays. Also, in the recent work@13#
current algebra was applied in the three-pseudoscalar-meson
decays of thet lepton. TheK2r0nt mode @the dominant
strong decay mode ofK1(1270)# was shown to be consistent
with zero.

The higher vector and axial-vector recurrences are not
explicitly shown in Eq.~2.15!. Generally, their influence will
be difficult to take into account due to insufficient knowledge
of their couplings to other hadrons. In some cases~certainly
in the phenomenologically most important case of ther me-
son family!, they can be taken into account by replacing a
simple pole contribution, stemming from the virtual meson
propagator, by an empirically determined electromagnetic
form factor. When appropriate, we will use that of@14#.

When using the same procedure to determine the coupling
of the vector and axial-vector mesons to theZ gauge boson,
we find that only the truly neutral~all additive quantum num-
bers vanishing! mesons can couple. The coupling of those
consisting of a down quark and a down antiquark from dif-
ferent generations is proportional to the off-diagonal ele-
ments of the productV†V and is, therefore, forbidden by the
unitarity of the CKM matrixV. The neutral mesons formed
of valence up quark and antiquark from different generations
are excluded by the form of the neutral weak current itself.
The effective Lagrangian describing the interaction of truly
neutral vector and axial-vector mesons with theZ boson has
the form

LNC52
g

2grcosuW
ZmF (

V5r0,v, . . .

mV
2GVV

m

2 (
A5a1

0 , f1 , . . .

mA
2GAA

mG , ~2.17!

where Gr05wr0(122sin2uW), Gv522/3wvsin
2uW,

GJ/c5A2wJ/c(1/224/3sin2uW), and GV5A2wV(21/2
12/3sin2uW) for V5f,Y. For axial-vector mesons we have
Ga

1
05wa

1
0, GA52wA /A2 for the pure d̄d states

@A5 f 1(1510),xb1#, GA5wA /A2 for the pure ūu states
(xc1), andGA50 for f 1(1285), the isoscalar axial-vector
counterpart of thev(782). Most of the constantswV and
wA represent new parameters, with values expected not to be
far from unity. Isospin symmetry enables one to relate some
of them to the corresponding parameters of the charged cur-

rent Lagrangian~2.15!, e.g.,wr05wv5wr1[1, wa
1
05wa

1
1.

Under exact SUf(3) symmetry we would also havewf51.
The weak interaction of pseudoscalar mesons is routinely

described by the Lagrangian

LP52 i
g

2A2
Wm

2 (
P5p1,K1, . . .

f PVP]mwP1H.c., ~2.18!

whereVP is the element of the CKM matrix pertinent to
valence quark and antiquark of the mesonP and f P is the
pseudoscalar-meson decay constant defined for thep1 me-
son by

^0ud̄~0!gmg5u~0!up&p15 i f p1pm ~2.19!

and analogously for other mesons. Observables~decay rates,
cross sections! of the processes with the pseudoscalar meson
P either in the initial or final state will be proportional to the
quantity2

ZP5u f PVPu2. ~2.20!

The values of these parameters for different pseudoscalar
mesons can be determined from their leptonic branching
fractionsP→l n and are shown in Table II. In the case of
thep1 andK1 leptonic decays the radiative corrections are
important. We used the prescription defined in Suzuki’s ar-
ticle in @7#, p. 319. For theD1 meson only an upper limit on
the leptonic branching fraction is known experimentally.
Here, we used the recent lattice calculation@15# result
f D15(208635612) MeV and uVcdu50.22460.016 from
@7#. We summed the errors quadratically.

From the MD point of view the coupling of scalar mesons
to weak gauge bosons is not excluded. However, the success
of the conserved vector current~CVC! hypothesis shows that
this coupling, which represents a second-class vector current
@12#, must be negligible. Nevertheless, let us define the
scalar-meson decay constant of thea0

1 meson analogously to
Eq. ~2.19! by means of the matrix element of the vector part
of the weak current

^0ud̄~0!gm0u~0!up&a
0
15 i f a

0
1pm, ~2.21!

and similarly for other charged scalar mesons@in fact, appar-
ently only one exists,K0(1430)#. The effective Lagrangian is
given as

2In this paper we will not be faced with the necessity to consider
the interference of several diagrams.

TABLE II. ParametersZP characterizing the coupling of pseu-
doscalar mesons to the charged gauge boson and their sources. For
definition, see Eq.~2.20!.

P ZP ~GeV2) Source

p1 (1.641960.0010)31022 p1→m1nm1m1nmg
K1 (1.24760.004)31023 K1→m1nm1m1nmg
D1 (2.260.5)31023 f D1 from @15#, uVcdu from @7#

Ds
1 (1.160.5)31021 Ds

1→m1nm
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LS5 i
g

2A2
Wm

2 (
S5a0

1 ,K0
1
f SVS]

mwS1H.c. ~2.22!

In the next section we will show on the basis of experimental
data that the decay constant of thea0

1 meson is at least 20
times smaller than that of thep1.

In this paper we will not consider processes in which a
truly neutral spin zero meson couples to the neutral weak
gauge bosonZ. We, therefore, do not write the correspond-
ing Lagrangians here.

What we have done in this section can only be considered
as a more or less educated guess, not derivation, of what the
effective Lagrangians for the weak interaction of vector,
axial-vector, pseudoscalar, and scalar vectors may look like.
Moreover, we have so far considered only real~incoming or
outgoing! mesons. Going off mass shell may, in principle,
convert the Lagrangian parameterswV , wA , f P , and f S into
arbitrary functions of meson virtualitiesp2. To proceed fur-
ther we will neglect this possibility and postulate the validity
of Lagrangians as given in Eqs.~2.15!, ~2.17!, ~2.18!, and
~2.22! for both real and virtual mesons. This postulate, to-
gether with the restriction to a certain class of quark dia-
grams, discussed in Sec. I, constitute the main ingredients of
the meson dominance in weak interactions.

III. MESON DOMINANCE AND DECAY MODES
OF THE t LEPTON

The decays of thet lepton have intensively been studied
both experimentally and theoretically. Theoretical methods
range from VMD to chiral perturbation theory, see, e.g.,
@16–20# and references therein. The main aim of this section
is to extract some MD parameters that will be used in Secs.
IV and V in the calculations of decay rates of pseudoscalar
mesons and cross sections of reactions involving them. Nev-
ertheless, in order to assess the possibilities and limitations
of the MD approach, we consider it useful to show its pre-
dictions for thet lepton decay modes, even if many of them
have already been obtained by other authors. In some cases
the MD works well, even for such a complex decay mode as
t2→p2p0hnt .

Some formulas presented here were derived by Tsai@21#
for decays of heavy leptons before thet lepton was actually
discovered@22#. His theoretical input included lepton univer-
sality, conserved vector current~CVC! hypothesis @23#,
VMD in electromagnetic interactions, and the Weinberg@24#
and Das-Mathur-Okubo@25# sum rules.

The formula for the partial decay width oft2 into a pseu-
doscalar meson and neutrino~see Fig. 1! is well known and
can be found, e.g., in@21,26,27#. For the reader’s conve-
nience and later reference it is shown also here:

Gt2→P2nt
5
GF
2mt2

3 ZP
16p S 12

mP
2

mt2
2 D 2. ~3.1!

Using the values ofZP parameters as given in Table II and
the mean lifetime of thet2 we get the branching fractions of
the p2 andK2 mode shown in Table III together with re-
sults of the evaluation of othert2 decay modes described
below.

The Feynman diagram that corresponds to the decay of
the t lepton to ar meson and a neutrino is shown in Fig. 1.
Using the MD Lagrangian~2.15! it is easy to write down the
corresponding matrix element. The resulting formula for the
partial decay width, first derived by Tsai@21#, is

Gt2→ntr25SGFuVudu
gr

D 2 mr
2

8pmt
3 ~mt

22mr
2!2~mt

212mr
2!.

~3.2!

Numerically, Eq.~3.2! yields a branching fraction of 19.0%.
To correct for the finiter width, we will consider the

three-body decayt2→p2p0nt going viar2 in intermedi-
ate state, see Fig. 2. Let us recall first that if the decaying
particle possesses spin zero or if we average over its spin
states, then the usual formula for the three-body decay
a→11213 ~see, e.g.,@7#, p. 176! simplifies to

dG5
1

8~2p!4ma
2 uM̄u2up1uup2* udM23dV2* , ~3.3!

wherep1 is the momentum of particle 1 in the rest frame of
the decaying particle,p2* is the momentum of particle 2 in
the rest frame of 2 and 3,dV2* is the corresponding solid
angle element, andM23 is the mass of the 2–3 subsystem.
The bar over the matrix element squared signifies the sum
over the final and average over the initial states.

The interaction among a vector field and two pseudoscalar
fields is described by the Lagrangian

LVP1P25 igVP1P2Vmw1]
m
↔

w21H.c. ~3.4!

If the decayV→P11P2 is kinematically allowed then its
rate comes out from Eq.~3.4! as

GV→P11P2
5

gVP1P2
2

48pmV
5 l3/2~mV

2 ,mP1
2 ,mP2

2 !, ~3.5!

where

l~x,y,z!5x21y21z222xy22xz22yz ~3.6!

is the so-called triangle function. In therpp case the cou-
pling constants for all three charge combinations have the
same absolute valuegr .

Using Lagrangians~2.15! and~3.4!, the three-body decay
formula ~3.3! and neglecting the difference between thep2

andp0 masses, we arrive at the partial width per unit interval
in thep2p0 system mass

FIG. 1. Matrix element of thet2 decay to neutrino and a pseu-
doscalar, vector, or axial-vector meson.

5390 55PETER LICHARD



dGt2→p2p0nt

dM
5

~GFuVudu!2

192p3mt
3s

~mt
22s!2~mt

212s!

3~s24mp
2 !3/2uF~s!u2, ~3.7!

wheres5M2 and

uF~s!u25
mr
4

~s2mr
2!21mr

2Gr
2 . ~3.8!

Let us note thatgr coming from the Lagrangian~2.15! can-
celed with that from ther2p2p0 vertex. To account for
contributions from higherr resonances, in actual calcula-
tions we replaced Eq.~3.8! by thep form factor taken from
@14#. The final result after the integration over the allowed
range ofM and translation into the branching fraction is
(24.460.4)%. Our value is a little bigger than that of Ku¨hn
and Santamaria@28#, who used the same formula but a dif-
ferent form factor, but still smaller than the experimental
value of (25.2460.16)%.

After consulting Fig. 2 we can see that the differential
partial width of the decayt2→K2K0nt can be obtained
from Eq. ~3.7! by substitutingmp→mK and multiplying by
(gr2K2K0 /gr)

2. The latter quantity could only be obtained
from the analysis of the kaon electromagnetic form factor.
Here, we determine its product withuVudu2 from the experi-
mental branching fraction. This product, denoted as
XK̄0K2r1, will be used as an input parameter in Sec. IV.

To get formulas for thet2 decay rates intoK*2, a1
2 , or

K1
2 mesons in narrow width approximation, we only need to

change the masses in Eq.~3.2! and replaceuVudu by
wK* uVusu, wa1

uVudu, or wK1
uVusu, respectively.

Tsai @21# assumed that the second Weinberg sum rule
@24# is saturated by narrow-widthr anda1 mesons and got
the prediction for thet2→a1

21nt decay rate. In our nota-
tion this situation would correspond towa1

51. Here, we

treatwa1
as a phenomenological parameter and determine its

value from the experimental branching fraction. The result is
wa1

50.804460.0023. The corresponding value of the pa-

rameterYa1
, defined by Eq.~2.16! is shown in Table I.

In the case oft2→K1
2nt we proceed similarly and obtain

wK1
50.8460.21.

The value (wK* uVusu)25(4.2060.09)31022 will be de-
termined in Sec. IV A from the experimental branching frac-
tion of K1→p0e1ne and the full width ofK*

1. The corre-
sponding t2→K*2nt branching fraction, which can be
considered a prediction of the MD approach, is shown in
Table III.

FIG. 2. Matrix element of the decayst2→p2p0nt and
t2→K2K0nt .

TABLE III. Branching fractions of thet lepton calculated in the MD approach and comparison with
experimental data. Column C shows the meson coupled to the weak gauge boson.

Final state C Meson dominance result Data Notes

p2nt p2 (10.9160.06)% (11.3160.15)%
K2nt K2 (7.1360.04)31023 (7.160.5)31023

p2p0nt r2 (24.460.4)% (25.2460.16)% ~a!
K2K0nt r2 (1.5560.28)31023 ~b!

p2vnt r2 (1.2260.56)% (1.8460.0560.14)% ~c,d!
p2fnt r2 (1.2060.48)31025 ,3.531024 ~c!
hp2p0nt r2 (1.7960.33)31023 (1.7160.28)31023 ~a!
K* (892)2nt K*2 (1.0660.03)% (1.2860.08)% ~e!
a1

2nt a1
2 (18.1160.37)% ~d,e,f!

K1(1400)
2nt K1

2 (864)31023 ~e,g!
hp2nt a0

2 ,1.431024 ~h!

aThe normalization is determined by the VMD in QED.
bUsed to fix Xr2K2K050.6460.12, which differs from what one would get from the SUf(4) coupling
constant ratio by about 20%.
cCalculation by Lo´pez Castro and Lo´pez Falco´n @31#.
dExperimental value taken from@32#.
eMD calculation in the narrow width approximation.
fUsed to fixYa1

.
gUsed to fixYK1

.
hCoupling of thep2h system top2, r2, or a1

2 is forbidden by the strong interaction and spin-parity
conservation laws. This mode put a limit on thea0

2(980) decay constantf a
0
2,7 MeV.
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A. Decays of the typet2
˜V1P1nt

When dealing with decayt2→vp2nt , see Fig. 3, we
have to exploit also the Lagrangian of interaction among two
vector fields and a pseudoscalar one

LV1V2P5gV1V2Pemnrs]mV1
n]rV2

swP . ~3.9!

The differential decay width in masses of thevp2 system
comes out as

dGt2→vp2nt

dM
5

~GFuVudu!2

6~4pmt!
3 S gr2vp2

gr
D 2 1M3 ~mt

22M2!2

3~mt
212M2!l3/2~M2,mv

2 ,mp
2 !uF~M2!u2.

~3.10!

Ther2vp2 coupling constant can be fixed using the VMD
and experimental branching fraction of the radiative decay
v→gp0, as discussed in Appendix A. It was shown by
Decker@29# that a simple form factor such as Eq.~3.8! did
not lead to a proper description of thevp2 mass spectrum
@30# and that a higherr pole had to be included. He used
what was known at that time asr(1600). Later, it became
clear that the 1600 MeV region actually contains two
r-like resonances. Lo´pez Castro and Lo´pez Falco´n @31#,
showed that a better description of the same data@30# is
provided by combiningr(770) with r(1450) rather than
with r(1700). Having fixed the admixture parameter, they
obtained the branching fraction that we included in our Table
III together with the recently published experimental value
@32#.

Formula ~3.10! gives, after obvious modifications, also
the differential decay width of not yet observed decay mode
t2→fp2nt . Here, ther2fp2 coupling constant can be

determined in a more direct way, namely, by exploring the
experimental branching fraction off→rp as shown in Ap-
pendix A. Instead of performing our own analysis we again
quote the result of Lo´pez Castro and Lo´pez Falco´n, assumed
that the form factor is the same as in thevp2 case.

The calculation of the branching fraction of the decay
t2→K* 0K2nt is complicated by the fact that two Feynman
diagrams, one withr2, the other witha1

2 in the intermediate
state, see Fig. 4, contribute to the transition amplitude. The
contribution of the former is proportional to ther2K* 0K2

coupling constant, the value of which can be determined by
analyzing theK* 0 andK*1 radiative decays by means of the
VMD in electromagnetic interactions. This analysis offers
two solutions for (gr2K* 0K2 /gr)

2 that are compatible with
experimental data on theK* radiative decays, namely,
(2.2260.18) GeV22 and (9.265.8)31022 GeV22.

If we forget for a moment about the axial-vector current
diagram and calculate the branching fraction only from the
diagram withr2 in the intermediate state, we find that it
plays a negligible role. Even for the larger solution shown
above, the resulting branching fraction is very small,
(6.060.5)31025, far below the experimental value of
(2.060.6)31023. It shows that the dominant contribution is
provided by the diagram witha1

2 in the intermediate state.3

Unfortunately, we do not have any possibility to fix the
a1

2K* 0K2 coupling constant. So, instead of an honest calcu-
lation let us make a crude estimate of what the experimental
information on thet2→K* 0K2nt and t2→a1

2nt would
imply if the former mode were a subprocess of the latter.
Dividing their branching fractions leads to
B(a1

2→K* 0K2)'1%. This value does not seem to be ex-
cluded by the ‘‘possibly seen’’ status of this mode in@7#.

Another example of thet2 decay modes with one pseu-
doscalar and one vector meson in final state is
t2→r2hnt . This mode was considered a possible test of
the Wess-Zumino term@33# for chiral anomalies@34#. The
expected branching fraction lay in the interval
(3.4,3.9)31024 @35#. In the MD approach we describe it by
means of the hadronic vertex connecting twor ’s with the
h, see Fig. 5. The proper interaction Lagrangian is again that
introduced in Eq.~3.9!. Because the narrow width approxi-
mation is not as justified as well as it was in the case of the
v andf mesons, we complete the diagram with two pions
originating from ther and evaluate thet2→p2p0hnt
branching fraction. Everything greatly simplifies if we as-
sume that the mass difference betweenp2 andp0 can be

3We must say that this conclusion disagrees with that reached in
Ref. @20#.

FIG. 3. Matrix element of the decayt2→v(f)p2nt .

FIG. 4. Two diagrams that contribute to decay
t2→K* 0K2nt , one withr2, the other witha1

2 in the intermediate
state.

FIG. 5. Matrix element of the decayt2→hp2p0nt .
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neglected. The Feynman diagram depicted in Fig. 5 then
leads to

Gt2→p2p0hnt
5

~GFgrrhuVudu!2

9~4p!5mt
3mr

4 E
2mp

mt2mh
dM2

3~M2
224mp

2 !3/2uF~M2
2!u2

3E
M21mh

mt dM1

M1
3 ~mt

22M1
2!2~mt

212M1
2!l3/2

3~M1
2 ,M2

2 ,mh
2 !uF~M1

2!u2. ~3.11!

One yet unknown parameter is the coupling constant in the
rrh vertex. As shown in Appendix A, the branching fraction
of r0→hg can be utilized and the value
(grrh /gr)

25(15.162.8) GeV22 is obtained. Using the
form factor @14# and integrating Eq.~3.11! numerically, we
end up with the branching fraction (1.7960.33)31023,
which agrees perfectly with the experimental value of
(1.7160.28)31023.

B. Decayt2
˜p2hnt

The experimental upper limit for the branching fraction of
the t2→p2hnt mode (1.431024) indicates that this mode
is suppressed relative tot2→r2hnt , which we considered
above, by at least one order of magnitude in spite of the
larger phase space available. This can easily be understood
within the MD approach. In fact, if the spin-parity conserva-
tion laws are strictly enforced in conjunction with those
based on isospin invariance, then there is no pseudoscalar,
vector, or axial-vector meson that can couple to thep2h
system. The only possibility to realize the transition from
W2 to this system is via thea0

2 scalar meson, see Fig. 6. It
gives us a chance to gain some information about the
strength of thea0

2W2 interaction, as shown in the following.
The dominant decay mode of thea0

2 meson is
a0

2→p2h. It allows us to replace the decayt2→p2hnt in
our considerations by a simpler one, namely,t2→a0

2nt .
4

The coupling of scalar mesons to the gauge bosons is similar
to that of pseudoscalar mesons, as shown by a comparison of
Eqs. ~2.18! and ~2.22!. We can, therefore, use Eq.~3.1! to
find an upper bound on the scalar-meson decay constant of
the a0

2 meson. The result isf a
0
2,7 MeV. For comparison,

the pseudoscalar decay constant of thep2 meson is about
131 MeV.

IV. PROCESSES CONTAINING THE P2P2V1 VERTEX
WITH V1 COUPLED TO W1

In this section we will consider charged weak current de-
cays of pseudoscalar mesons (P1) into a pseudoscalar meson
(P2) and an additional system, which may be anl n pair,
another pseudoscalar meson, a vector meson, or an axial-
vector meson. According to the MD hypothesis the processes
of this kind proceed by coupling the pseudoscalar-meson
pair to a charged vector meson (V), which in turn couples to
a charged gauge boson. The latter finally converts into one of
the systems mentioned above. TheP1→P21V transition is
governed by the Lagrangian~3.4!. It is useful to introduce
the quantity

XP1P2V
5YVS gVP1P2gr

D 2, ~4.1!

which will enter all our formulas for decay rates in this sec-
tion. ParameterYV is defined by Eq.~2.16!, gVP1P2 is the
coupling constant in the Lagrangian~3.4!.

Our general strategy will be to determine the quantities
~4.1! from some of the experimentally known branching
fractions of semileptonic decays and then use them for mak-
ing predictions for other decay modes. A notable exception
is the decayp1→p0e1ne , which proceeds via ther1 me-
son. Here, the quantity under consideration is simply given
by the ud element of the CKM matrix,Xp1p0r15uVudu2,
and is thus well known.

A. Decays of the typeP1˜P21l
1n l

The generic Feynman diagram for the weak decay of a
pseudoscalar-mesonP1 into another pseudoscalar-meson
P2 and anl

1n l pair is shown in Fig. 7. The corresponding
matrix element can easily be written on the basis of the lep-
ton part of the standard model Lagrangian and Eqs.~2.15!
and ~3.4!:

M5GFwVVV

gVP1P2
gr

mV
2

mV
22t

F ~p11p2!
m2

mP1
2 2mP2

2

mV
2

3~p12p2!
mG l̄gm~12g5!n, ~4.2!

wherep1 (p2) is the four-momentum of the incoming~out-
going! meson andt5(p12p2)

2 is the square of the four-

4This decay was proposed as a clear test for the existence of
second-class vector current by Leroy and Pestieau@36# soon after
the discovery of thet lepton @22#.

FIG. 6. Matrix element of the decayt2→hp2nt . FIG. 7. Generic Feynman diagram ofP1→P2l
1n l decays.
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momentum transfer fromP1 to P2. Obviously,t is also equal
to the mass squared of thel 1n l system. The evaluation
based on Eqs.~3.3! and~4.2! gives, after the integration over
the lepton momentum direction in thel 1n l rest frame, the
following formula for the differential partial width:

dGP1→P2l
1n l

dt
5

GF
2XP1P2V

3~4pmP1
!3
t2ml

2

t3
l1/2~mP1

2 ,mP2
2 ,t !

3@w1~ t !2w2~ t !#S mV
2

mV
22t D

2

, ~4.3!

where

w1~ t !52t42~4x14y1z!t31@2~x2y!21z~2x12y

2z!#t212z@~x2y!21z~x1y!#t24z2~x2y!2,

w2~ t !5
3tz

r 2
~2r2t !~ t2z!~x2y!2. ~4.4!

We used the notationr5mV
2 , x5mP1

2 , y5mP2
2 , and

z5ml
2 . Integrating Eq.~4.3! in case of thep1→p0e1ne

decay~usually referred to aspe3), we get a branching frac-
tion of (1.004160.0021)31028. The error comes from the
meanp6 lifetime we used to convert the decay rate into the
branching ratio and from theVud element of the CKM ma-
trix. The agreement between our result and the experimental
value of (1.02560.034)31028 is perfect.

As has already been mentioned, thepe3 decay is excep-
tional because the coupling constant in the hadronic vertex
just cancels with thegr coming from the MD Lagrangian
~2.15! and thewr1 parameter is exactly one, as it follows
from the normalization of the pion electromagnetic form fac-
tor. In other semileptonic decays the formulas for branching
fractions contain badly known or unknown parameters
XP1P2V

defined in Eq.~4.1!. Some experimental branching
fractions have been explored to determine those parameters,

with resulting values shown in Table IV. Others, shown in
Table V, provide the check of the soundness of the MD
results.

For example, the branching fraction of the decay
K1→p0e1ne is used to fix the value ofXK1p0K*1 at
(1.20660.015)31022; those of K1→p0m1nm ,
KL
0→p6e7n̄e(ne), and KL

0→p6m7n̄m(nm) then come as
predictions of the MD. The result for electron mode ofKL

0 is
somewhat higher than the experimental value. It may signal
the presence of isospin symmetry-violating effects@37,38#.
After taking the experimental value ofuVusu and determining
the coupling constant ratiogK*1K1p0

2 /gr
250.287260.0051

from the r and K*1 decay widths we isolate
wK*150.92960.013. The deviation of the latter from unity
is what one would expect for an SUf(3)-breaking effect.

For other decay modes such a detailed analysis cannot be
performed because the hadronic coupling constants of
vector-meson resonances are either inaccessible for funda-
mental reasons~e.g., hadronic decay is not kinematically al-
lowed! or because the decay widths are poorly known. We
are thus left with theXP1P2V

values shown in Table IV,

without the possibility to extract thewV parameters. But it
does not hamper our ability to predict the branching fractions
of related processesP1→P21P3 andP1→P21V(A).

A very interesting situation is in the semileptonic decays
of B mesons. Frequent decay modesB0→D2l 1n l ,
B1→D̄0l 1n l , and Bs

0→Ds
2l 1n l cannot be explained

within the MD framework without assuming the existence of
a vector meson with both charm and beautyBc*

1 . But such
a meson has not yet been discovered experimentally. In order
to proceed further we simply assume that it does exist and
choose its mass at 6.34 GeV/c2, as determined by Godfrey
and Isgur@39# in a relativized quark model with chromody-
namics. This value agrees with results of other potential
models@40#. We will return to this question, which is of vital
importance for the MD hypothesis, in Sec. VII.

In Table V we also show the predictions for semileptonic

TABLE IV. ParametersXP1P2V
, defined by Eq.~4.1!: Numerical values and their sources.

P1 P2 V XP1P2V Source Notes

p1 p0 r1 (0.947960.0020) uVudu2

K1 p0 K*1 (1.20660.015)31022 K1→p0e1n
K0 p2 K*1 (2.41260.030)31022 23XK1p0K*1

D1 p0 D*1 (8.963.4)31023 D1→p0l 1n
D0 p2 D*1 (1.860.7)31023 23XD1p0D*1

D1 K̄0 Ds*
1 0.26360.015 5XD0K2D

s*
1

D0 K2 Ds*
1 0.26360.015 D0→K2m1n

Ds
1 h Ds*

1 0.13960.039 Ds
1→hl 1n

Ds
1 h8 Ds*

1 0.1860.07 Ds
1→h8l 1n

B1 p0 B*1 (4.361.4)31027 5XB1p2B*1/2
B0 p2 B*1 (8.562.8)31027 B̄0→p2l 1n̄ l
B1 D̄0 Bc*

1 (3.560.9)31024 B0→D2l 1n ~a!

B0 D2 Bc*
1 (3.560.9)31024 5XB1D2B

c*
1 ~a!

Bs
0 Ds

2 Bc*
1 (1.360.4)31023 Bs

0→Ds
2l 1n ~a!

K̄0 K2 r1 (0.6460.12) t2→K2K0nt

aExistence ofBc*
1 with a mass of 6.34 GeV/c2 assumed.
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decay modes with thet lepton.5 It is natural to ask to what
extent the branching ratio of thet and light lepton modes can
discriminate among various models. Let us mention that for
theB1→p2 semileptonic decays our ratio is 0.52, while the
recent estimate by Khodjamirian and Ru¨ckl @41# is 0.7–0.8.

The branching fractions are not the only outcome of the
MD approach that can be compared with experimental data.
Any experimentally observable quantity can be calculated.
Let us consider, as an example, the form factorsf1(t) and
f2(t) of theKe3

1 decay, which are defined by

M5
GFVus

A2
@ f1~ t !~p11p2!

m1 f2~ t !~p12p2!
m#

3 l̄ gm~12g5!n. ~4.5!

Differential decay rate for arbitrary form factors is shown in
Appendix B. If we now compare Eq.~4.2! with the definition
~4.5! of f1(t), we see that in the MD approach thet depen-
dence of the latter is given by

f1~ t !5 f1~0!
mK*1
2

mK*1
2

2t
. ~4.6!

The comparison with the linear parametrization used by ex-
perimentalists is shown in Fig. 8. A faster than linear rise of

5The issue of applicability of the MD approach to decays of heavy
mesons will be addressed in Sec. IV D.

TABLE V. Branching fractions of semileptonicP1→P2 transitions calculated in the MD approach and
comparison with experimental data. Column C shows the meson coupled to the weak gauge boson.

Decay mode C MD result Data Notes

p1→p0e1ne r1 (1.004160.0021)31028 (1.02560.034)31028 ~a!
KL
0→K6e7n̄e(ne) r7 (3.460.6)31029 ~b,c,d!

K1→p0e1ne K*1 (4.8260.06)% ~e!
K1→p0m1nm K*1 (3.1060.04)% (3.1860.08)%
KL
0→p6e7n̄e(ne) K*7 (40.760.5)% (38.7860.27)% ~c!

KL
0→p6m7n̄m(nm) K*7 (26.1860.33)% (27.1760.25)% ~c!

KS
0→p6e7n̄e(ne) K*7 (7.0360.12)31024 (6.7060.07)31024 ~c,f!

KS
0→p6m7n̄m(nm) K*7 (4.5260.08)31024 (4.6960.06)31024 ~c,f!

D1→p0l 1n l D*1 (5.762.2)31023 ~e,g!
D0→p2l 1n l D*1 (4.461.7)31023 (3.821.0

11.2)31023 ~g!

D0→K2m1nm Ds*
1 (3.2360.19)% ~e!

D0→K2e1ne Ds*
1 (3.3360.20)% (3.6460.20)%

D1→K̄0m1nm Ds*
1 (8.360.5)% (7.022.0

13.0)%

D1→K̄0e1ne Ds*
1 (8.660.5)% (6.660.9)%

Ds
1→hl 1n l Ds*

1 (2.560.7)% ~e,g!
Ds

1→h8l 1n l Ds*
1 (8.763.4)31023 ~e,g!

B1→p0e1ne B*1 (9.463.1)31025 ,2.231023

B1→p0t1nt B*1 (4.961.6)31025 ~b!

B0→p2l 1n l B*1 (1.860.6)31024 ~g,h!
B0→p2t1nt B*1 (9.463.1)31025 ~b!

B0→D2l 1n l Bc*
1 (1.960.5)% ~e,g,i!

B0→D2t1nt Bc*
1 (4.761.2)31023 ~b,i!

B1→D̄0l 1n l Bc*
1 (2.060.5)% (1.660.7)% ~g,i!

B1→D̄0t1nt Bc*
1 (4.961.3)31023 ~b,i!

Bs
0→Ds

2l 1n l Bc*
1 (7.662.4)% ~e,g,i!

Bs
0→Ds

2t1nt Bc*
1 (1.960.6)% ~b,i!

aUsing uVudu50.973660.0010.
bNot measured yet.
cThe sum of the charge states indicated.
dHadronic coupling constant fixed byt2→K2K0nt .
eUsed to fix normalization.
fExperimental value was calculated fromKL

0 semileptonic rate and theKS
0 lifetime assumingDS5DQ @7#.

gAverage of thee1 andm1 branching fractions.
hUsed to determineXB0p2B*1. The experimental value is (1.860.460.360.2)31024 @57#, where errors are
statistical, systematic, and estimated model dependence. We took the liberty of summing the errors quadrati-
cally.
iThe existence ofBc*

1 assumed with a mass of 6.34 GeV/c2.
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the MD form factor may explain why the experimentally
determined slope parameters in theKm3 decays are higher
than those inKe3.

Furthermore, from Eq.~4.2! we are getting the form factor
ratio

f2~ t !

f1~ t !
52

mK1
2

2mp0
2

mK*1
2 520.2836760.00016, ~4.7!

which should be compared to the experimental value of
20.3560.15. Equations~4.6! and~4.7! were first derived by
Dennery and Primakoff@42#, who saturated the dispersion
relations for the form factors by aK* pole.6

B. Decays of the typeP1˜P21P3

The generic Feynman diagram of the processes we are
going to consider now is shown in Fig. 9. The parent pseu-
doscalar mesonP1 undergoes the strong interaction conver-
sion intoP2, one of the outgoing pseudoscalar mesons, and a
charged~virtual! vector-mesonV. The latter couples accord-
ing to Eq.~2.15! to theW boson, which in turn converts to
the second outgoing pseudoscalar mesonP3. To simplify the
discussion we will consider only positively chargedV’s,
which means neutral or positively chargedP1’s and, corre-
spondingly, negatively charged or neutralP2’s. This conven-
tion clearly shows which of the two final-state pseudoscalar
mesons is coupled to the gauge boson. Of course, we auto-
matically handle also the charge conjugate modes.

The mechanism considered here does not operate in all
P1→P21P3 transitions. It cannot explain any of the decays
into two neutral mesons. Also, some charged modes cannot
run in this way. Let us take as an exampleDs

1→K̄0K1.
There does not exist any vector meson that would appear
together with K̄0 as a result of the strong conversion of
Ds

1 . And what accompaniesK1 in such a conversion is

D* 0, which cannot couple to any of the weak gauge bosons.
The partial decay width comes out from the Feynman

diagram in Fig. 9 as

GP1→P21P3
5

GF
2

16pm1
3XP1P2V

ZP3~mP1
2 2mP2

2 !2

3l1/2~mP1
2 ,mP2

2 ,mP3
2 !. ~4.8!

ParametersXP1P2V
, defined by Eq.~4.1!, have already been

assigned numerical values using experimental information
on some semileptonic decay modes, as shown in Table IV.
Similarly, the parametersZP3 are defined by Eq.~2.20!.
Their values were determined from the leptonic branching
fractions of pseudoscalar mesons and are shown in Table II.

The results obtained from Eq.~4.8! for various input and
output mesons were converted to branching fractions by
means of experimental lifetimes. They can be divided into
three groups. In Table VI we present calculated branching
fractions that agree with experimental data. Their less lucky
companions are listed in Table VII. We defer the discussion
about possible meaning of discrepancies between our results
and empirical values to Sec. VII. The last group, shown in
Table VIII, comprises the branching fractions that have not
been measured yet. When the experimental information be-
comes more complete some of the modes listed there may
fall into the first category, some into the second one.

C. Decays of the typeP1˜P21V„A…

Keeping in mind our convention about charges of the par-
ent pseudoscalar mesons, the flavor-changing decays we are
going to analyze now can proceed in the lowest order of the
MD approach only through the diagram depicted in Fig. 10.
Because the vector (V) and axial-vector (A) mesons couple
to the charged gauge bosons in the same way, we can study
the two modes, one with an outgoing vector meson, the other
with an outgoing axial-vector meson, simultaneously. We
will label either of those two mesons asM , freeing the index
V for the intermediate vector meson that connects the had-
ronic vertex withW1. The partial decay width summed over
the spin projections ofM reads

GP1→P21M5
GF
2mM

2 XP1P2V
YM

8pgr
2mP1

3

3S mV
2

mV
22mM

2 D 2l3/2~mP1
2 ,mP2

2 ,mM
2 !.

~4.9!

The branching fractions calculated from Eq.~4.9! and mean

6In fact, they considered two vector resonances. One of them,
K* (730), was abandoned later on.

FIG. 8. Ke3
1 form factor f1(t): Meson dominance~solid!, linear

parametrization used by experimentalists to fit data with limits com-
ing from the experimental error of the slope parameter~dashed!.

FIG. 9. Generic Feynman diagram ofP1→P21P3 decays.
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lifetimes of the parent mesons (D1, D0, Ds
1 , B1, andB0)

are shown in Tables IX and X together with experimental
values. The former table lists the decay modes for which the
MD results do not contradict the experiment. As most of the
empirical values are given only as upper bounds at present,
some modes may move in future to Table X, which contain
the MD results that disagree with the data.

D. Meson dominance and decays of heavy mesons

The decays rates of heavy mesons containing a heavy
quark and a light antiquark, or vice versa, are usually calcu-
lated using the heavy quark effective theory@43#. The careful
reader has probably noticed when inspecting Tables V–X
that we used the MD formulas to calculate also the decay
fractions of the heavy mesonsD, Ds , B, andBs . It seems to
go against the spirit of the MD, as it has been declared in

Sec. II, because the energies in the parent rest frame of the
outgoing particles are large. But, as we will argue, the use of
MD for calculating the branching ratios of different light
meson modes is well justified.

In fact, what matters is the virtuality~four-momentum
squared! flowing through the junction where a meson and the
weak gauge boson meet. Let us speak, for definiteness, about
the decay ofB0 into D2 and a light mesonM1 ~where now
M can beP, V, orA), which is supposedly dominated by the
Bc*

1 ~see Figs. 9 and 10!. Because the mesonM1 is on the
mass shell, the virtuality in theW1M1 junction is equal to
the mass ofM squared, i.e., it is same as in the definitions of
the weak effective Lagrangians in Sec. II. The story at the
opposite end of theW1 line, in the Bc*

1W1 junction, is
different. Here, the virtuality is far from theBc*

1 mass
squared, and the coupling parameter may be different from

TABLE VI. Branching fractions of theP1→P21P3 decay modes in the tree level of MD and comparison
with experimental data. Column C shows the meson coupled to theW1 boson. Only results that do not
contradict existing data are listed.

Decay mode C Meson dominance result Data Notes

D1→p0p1 D*1 (4.061.6)31023 (2.560.7)31023

D0→p2K1 D*1 (2.260.9)31024 (2.961.4)31024 ~a!

D1→K̄0K1 Ds*
1 (6.860.4)31023 (7.261.2)31023

D0→K2p1 Ds*
1 (3.860.2)% (3.8360.12)%

Ds
1→hp1 Ds*

1 (2.660.7)% (2.060.6)%
B1→p0p1 B*1 (6.862.3)31026 ,1.731025

B1→p0K1 B*1 (5.161.7)31027 ,1.431025 ~a!
B1→p0Ds

1 B*1 (3.862.1)31025 ,2.031024

B0→p2p1 B*1 (1.360.4)31025 ,2.031025

B0→p2K1 B*1 (9.963.3)31027 ,1.731025 ~a!
B0→p2Ds

1 B*1 (7.464.1)31025 ,2.831024

B1→D̄0Ds
1 Bc*

1 (1.961.0)% (1.760.6)% ~b!

B0→D2p1 Bc*
1 (3.660.9)31023 (3.060.4)31023 ~b!

B0→D2Ds
1 Bc*

1 (18610)31023 (764)31023 ~b!

Bs
0→Ds

2p1 Bc*
1 (1.460.5)% ,12% ~b!

aDoubly Cabibbo-suppressed mode.
bExistence ofBc*

1 with a mass of 6.34 GeV/c2 assumed.

TABLE VII. Branching fractions of theP1→P21P3 decay modes in the tree level of MD and compari-
son with experimental data. Column C shows the meson coupled to theW1 boson. Only results that contra-
dict data are listed.

Decay mode C Meson dominance result Data Notes

K1→p0p1 K*1 (86.361.1)% (21.1660.14)%
KS
0→p2p1 K*1 (2.5260.03)% (68.6160.28)%

KS
0→p0p0 None 0 (31.3960.28)%

D0→p2p1 D*1 (3.161.2)31023 (1.5260.11)31023

D0→p0p0 None 0 (8.462.2)31024

D1→K̄0p1 Ds*
1 (9.860.6)% (2.7460.29)%

D0→K̄0p0 None 0 (2.1160.21)%

D0→K2K1 Ds*
1 (2.6660.16)31023 (4.3360.27)31023

D0→K̄0K0 None 0 (1.360.4)31023

Ds
1→h8p1 Ds*

1 (1.960.8)% (4.961.8)%

B1→D̄0p1 Bc*
1 (3.761.0)31023 (5.360.5)31023 ~a!

aExistence ofBc*
1 with a mass of 6.34 GeV/c2 assumed.
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the wB
c*

1, which is defined for the on-shellBc*
1 . Similar

changes may occur in the strongB0D2Bc*
1 vertex, where

again the dependence on the virtualities of participating me-
sons cannot be ruled out. The absolute predictions of the
decay rates may thus be unreliable. But we cannot make the
absolute predictions anyhow because we know neither
wB

c*
1 nor gB0D2B

c*
1, which combine intoXB0D2B

c*
1, see

Eqs. ~2.16! and ~4.1!. We can only calculate the ratios of
decay rates for different mesonsM1. When these mesons are
light, the differences among the virtualities in theW1Bc*

1

junction will be small in comparison with the mass of the
Bc*

1 meson. The virtuality modified coefficientsXB0D2B
c*

1

will have approximately the same value and will simply can-
cel out when a ratio of the decay rates is calculated. The
same happens when a light meson mode is compared to the
l 1n l one.

To push things to the edge we calculated the branching
ratios of various decay modes of theBc meson, containing
both heavy valence quark and antiquark. This meson has not
been discovered yet, but reliable calculations of its mass and
other properties exist in the literature, see, e.g.,@39,40#. Also,
the prospects of its impending discovery are bright, see@44#
and references therein. Following Godfrey and Isgur@39#, we
used in our calculations theBc mass of 6.27 GeV/c2. The
results of the MD approach are compared to the predictions
of some existing more fundamental models in Table XI.

E. Meson-electron-induced binary reactions

Let us consider the following weak interaction binary re-
actions of projectile mesons incident on target electrons:
p1e2→p0ne , K1e2→p0ne , p1e2→K̄0ne , and
K1e2→K0ne . First two of them are exoenergetic, whereas

the laboratory kinetic energy thresholds for the remaining
two are 223.1 GeV and 3.381 GeV, respectively. As a con-
sequence of the special kinematics~electron as a target!, the
reactions remain in the low center-of-mass energy range
(s,utu,1 GeV2) even for the highest meson beam energies
available. With a view toward successful description of the
semileptonic decays of pion and kaons, we believe that the
MD approach is suitable also for calculating the cross sec-
tions of the low energy reactions that are related to those
decays by crossing symmetry. The corresponding Feynman
diagram is depicted in Fig. 11. To make the differential cross
section formula concise, we introducedx5mP1

2 , y5me
2 ,

z5mP2
2 , andr5mV

2 . The formula then reads

dsP1e→P2n

dt
5
GF
2XP1P2V

~\c!2

8pl~s,x,y!
S r

r2t
D 2

3Ff1~s,t !1
x2z

r 2
f2~s,t !G , ~4.10!

with

FIG. 10. Generic Feynman diagram ofP1→P21M decays.
M stands for the outgoing vector or axial-vector meson.

TABLE VIII. Branching fractions in the tree level of MD of theP1→P21P3 decay modes that have not
yet been observed. Only the modes with branching fractions greater than31024 listed. Column C shows the
meson coupled to theW1 boson.

Decay mode C Tree diagram of MD Notes

D1→p0K1 D*1 (2.961.1)31024 ~a!
D1→hK1 D*1 (5.261.7)31024 ~a!
D1→h8K1 D*1 ,5.731024 ~a,b!
Ds

1→hK1 Ds*
1 (1.860.5)31023

Ds
1→h8K1 Ds*

1 (1.360.5)31023

Ds
1→K0K1 D*1 ,5.631024 ~a,c,d!

B1→D̄0K1 Bc*
1 (2.860.7)31024 ~a,e!

B1→D̄0D1 Bc*
1 (4.061.4)31024 ~a,e,f!

B0→D2K1 Bc*
1 (2.760.7)31024 ~a,e!

B0→D2D1 Bc*
1 (3.861.3)31024 ~a,e,f!

Bs
0→Ds

2K1 Bc*
1 (1.160.4)31023 ~a!

Bs
0→Ds

2D1 Bc*
1 (1.560.6)31023 ~a,e,f!

Bs
0→Ds

2Ds
1 Bc*

1 (7.464.0)% ~e!

aDoubly Cabibbo suppressed mode.
bUsingB(D1→h8p1),931023.
cUsingB(Ds

1→K0p1),831023.
dThis mode is experimentally indistinguishable fromDs

1→K̄0K1 and represents a negligible background to
it.
eExistence ofBc*

1 with a mass of 6.34 GeV/c2 assumed.
fD1 decay constant taken from@15#.
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f1~s,t !54s~s2x2y2z!14xz1y21~4s2y!t,f2~s,t !

52ry~2s1t2y22z!1y~x2z!~y2t !.

Total cross section as a function of the kinetic energy of
incident meson for the four meson-electron reactions men-
tioned above were obtained by numerical integration and are
shown in Fig. 12.

F. Antineutrino-electron-induced mesonic reactions

The electron-antineutrino energies required for meson-
pair production off target electrons are very high. We show
four most favorable final states with the threshold an-
tineutrino energies in parentheses:p2p0 ~73.8 GeV!,

K2p0 ~387 GeV!, K̄0p2 ~398 GeV!, andK2K0 ~962 GeV!.
Also, the fact that the electron antineutrinos are less copious
than the muon ones by a factor of 1024 in the high energy
antineutrino beams, produced by thep l 2

2 decays, makes the
experimental observation of this kind of reaction tricky. On
the other hand, as the cms energy of the two-meson system
remains small, the transverse momenta of outgoing mesons
will also be small. The reaction products will thus be con-
centrated in a very narrow cone in the laboratory system
polar angle with relatively small energy spread. This, and
also the negative total charge, may help to identify this kind
of reaction. The evaluation of the total cross section that
corresponds to the Feynman diagram in Fig. 13, gives the
result

TABLE IX. Branching fractions of theP1→P21V(A) decay modes in the tree level of MD and com-
parison with experimental data. Column C shows the meson coupled to theW1 boson. Only results that do
not contradict data are listed.

Decay mode C Meson dominance result Data Notes

Ds
1→h8r1 Ds*

1 (11.964.6)% (1264)%
B1→p0r1 B*1 (1.260.4)31025 ,7.731025

B1→p0K*1 B*1 (7.462.5)31027 ,9.931025 ~a!
B1→p0Ds*

1 B*1 (665)31025 ,3.331024 ~b!

B1→p0a1
1 B*1 (2.060.7)31025 ,1.731023

B0→p2r1 B*1 (2.460.8)31025 ,8.831025 ~c!
B0→p2K*1 B*1 (1.460.5)31026 ,7.231025 ~a!
B0→p2Ds*

1 B*1 (1.161.0)31024 ,531024 ~b!

B0→p2a1
1 B*1 (3.861.3)31025 ,4.931024 ~d!

B1→hDs*
1 B*1 (766)31024 ,831024 ~b!

B1→D̄0Ds*
1 Bc*

1 (2.061.7)% (1.261.0)% ~b,e!

B1→D̄0a1
1 Bc*

1 (9.862.6)31023 (564)31023 ~e!

B0→D2r1 Bc*
1 (6.361.7)31023 (7.861.4)31023 ~e!

B0→D2a1
1 Bc*

1 (9.462.5)31023 (6.063.3)31023 ~e!

aDoubly Cabibbo-suppressed mode.
bUsing (wD

s*
uVcsu)2539631, as determined fromB(B0→D2Ds*

1)5(2.061.5)%.
cExperimental value includes also thep1r2 mode.
dExperimental value includes also thep1a1

2 mode.
eExistence ofBc*

1 with a mass of 6.34 GeV/c2 assumed.

TABLE X. Branching fractions of theP1→P21V(A) decay modes in the tree level of MD and com-
parison with experimental data. Column C shows the meson coupled to theW1 boson. Only results that
contradict existing data are listed.

Decay mode C Meson dominance result Data Notes

D1→K̄0r1 Ds*
1 (11.760.7)% (6.662.5)%

D0→K̄0r0 None 0 (1.2060.17)%

D0→K2r1 Ds*
1 (4.5760.27)% (10.861.0)%

D1→K̄0K*1 Ds*
1 (0.660.4)% (3.061.4)%

D0→K2K*1 Ds*
1 (2.2060.14)31023 (3.560.8)31023

D1→K̄0a1
1 Ds*

1 (3.7760.22)% (8.161.7)%

D0→K2a1
1 Ds*

1 (1.560.1)% (7.361.1)%
Ds

1→hr1 Ds*
1 (3.360.9)% (10.363.2)%

B1→D̄0r1 Bc*
1 (0.760.2)% (1.3460.18)% ~a!

aExistence ofBc*
1 with a mass of 6.34 GeV/c2 assumed.

55 5399SOME IMPLICATIONS OF MESON DOMINANCE IN . . .



s n̄ e1e2→P11P2
5
GF
2~\c!2XP1P2V

24pr 2s3~s2y!2
uF~s!u2l1/2~s,x,z!

3@2r 2s3l~s,x,z!12r 2y2~2y23s!

3~x2z!21r 2sy~3s22y2!~2x12z2s!

13sy~x2z!2~s2y!2~s22r !#, ~4.11!

wherex5mP1
2 , y5me

2 , z5mP2
2 , r5mV

2 , and

uF~s!u25
mV
4

~s2mV
2 !21mV

2GV
2 . ~4.12!

For channels with ther resonance in thes channel we re-
placed function~4.12! by the form factor taken from Ref.
@14#, in which the experimental data one1e2→p1p2 were
fit with a formula exhibiting the correct analytic behavior. In
this way, we have accounted for a possible contribution from
higherr recurrences. For reactions with apK system in the
final state, which go through theK* resonance in thes chan-
nel, we do not have such a possibility. The single-pole for-
mula ~4.12! with energy-dependentK* width was used. The
dependence of the total cross section on the incident an-
tineutrino energy for all four final states is shown in Fig. 14.

V. MESON DOMINANCE AND NEUTRAL
FLAVOR-CHANGING DECAY MODES

The processes we are going to deal with now are usually
classified@7# as flavor-changing (DS51,DC51) weak neu-
tral current decay modes. This label is a little misleading for
some of them, e.g.,K1→p1l 1l 2. In the calculations
based on the standard model, the latter is described in terms
of diagrams that almost all contain@45# the charged gauge
bosonW6, i.e., the charged weak current. Also in the MD
approach we will calculate branching fractions of this and
similar decay modes using the diagrams where charged me-
sons are attached to the charged weak gauge bosons. Only in
a part of this class of processes (K1→p1n̄n, for example!,
the genuine weak neutral current operates in conjunction
with the charged one, which can only change the flavor.

We start with considering the decay mode

K1→p1l 1l 2, which was investigated theoretically al-
ready before its discovery in 1975@46#. References to this
early period can be found in@45#. Later works include@47–
49# and references therein. Present theoretical understanding
of this decay in the framework of chiral perturbation theory
has recently been summarized in@50,51#. The theoretical
prediction based on@47# contains one unknown parameter.
When extracting it from the experimental branching fraction
of the dielectron mode, a two-fold ambiguity remained. It
was resolved by choosing the solution that fits thee1e2

mass spectrum@52# better. Then, the prediction for the
m1m2 mode can be made.

In the MD approach we will describe the decay
K1→p1l 1l 2 by the diagram sketched in Fig. 15, forget-
ting for a while about other possible diagrams. In order to
evaluate the corresponding decay rate we assume that the
interaction among thea1, r, andp mesons is governed by
the Lagrangian density

La1rp5 iga1rp(
i , j ,k

Ci ; j ,kVjab
† ]awk

†Ai
b , ~5.1!

with

FIG. 11. Matrix element of the reactionP11e2→P21ne .

TABLE XI. SelectedBc
1 decays: MD predictions for branching ratios and their comparison with those of

various models. PQCD: using perturbative QCD framework proposed in@61#; BS: Bethe-Salpeter description
of the meson wave functions and the hadronic matrix elements; ISGW: model of Isgur, Scora, Grinstein, and
Wise @62#; BSW: model of Wirbel, Stech, and Bauer@63#.

Branching ratio MD PQCD@9# BS @58# ISGW @59# BSW @59# BSW @60#

Bc
1→hc 1 l 1n l /p

1 5.0 4.3 4.0 4.1
t1nt /p

1 1.1
K1/p1 0.075 0.068 0.078 0.074 0.078
r1/p1 2.3 3.0 2.6 2.4 2.6
K*1/p1 0.10 0.09 0.14 0.12 0.14
a1

1/p1 2.6
K1

1/p1 0.18
Bc

1→Bs1l
1n l /p

1 0.38 0.36 0.26 0.25 0.27
K1/p1 0.064 0.072 0.075 0.070 0.073
r1/p1 0.45 0.77 0.46 0.40 0.60
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Vjab5]aVjb2]bVja ~5.2!

being the vector field strength tensor. SymbolsAi , Vj , and
wk denote the field operators fora1, r, andp mesons, re-
spectively. Italic indices label various charge states of a par-
ticular meson andCi ; j ,k is the SU~2! Clebsch-Gordan coef-
ficient. Thea1→rp decay width comes from Eq.~5.1! as

Ga1→r1p5
ga1rp
2

96pma1
3 l1/2~x,y,z!

3F ~x2y2z!21
y

2x
~x2y1z!2G , ~5.3!

wherex5ma1
2 , y5mr

2 , andz5mp
2 . Substituting the experi-

mental value ofGa1
'400 MeV into Eq. ~5.3!, we get

ga1rp
2 '260 GeV22.

A straightforward evaluation of the diagram depicted in
Fig. 15 leads to the following formula for the differential
width in the l 1l 2 massM :

dGK1→p1l 1l 2

dM
5

~GFga1rpa!2

48pgr
4mK1

3 Ya
1
1ZK1l3/2

3~mK1
2 ,mp1

2 ,M2!AM224ml
2

3S 11
2ml

2

M2 D S mr
2

mr
22M2D 2. ~5.4!

In addition toga1rp , there are two other nontrivial param-

eters entering formula~5.4!, Ya
1
1 andZK1. Their values can

be found in Tables I and II, respectively. When we integrate
Eq. ~5.4! over the full range of dielectron masses and use the
experimental value of theK1 lifetime, we get the branching
fraction B(K1→p1e1e2)'3.131027. The experimental
value is (2.7460.23)31027. The uncertainty of our result
comes from thea1rp coupling constant, which is given by
the poorly known~and understood! width of thea1 meson.
But this uncertainty disappears when we calculate the
branching ratio of them1m2 ande1e2 modes, which is a
function only of the masses of participating particles. In
Table XII we show, therefore, the branching fraction of the
K1→p1m1m2 mode normalized by the experimental value
of the dielectron one.

FIG. 12. Total cross section in attobarns~1 ab5 10242 cm2) of
the reactions of positive pions and kaons with target electrons as a
function of the laboratory kinetic energy.

FIG. 13. Matrix element of the reactionn̄e1e2→P11P2.

FIG. 14. Total cross section in femtobarns~1 fb 5 10239

cm2) of two-meson production in reactions of the electron an-
tineutrino with target electrons as a function of antineutrino energy.

FIG. 15. Matrix element of the decayK1→p1e1e2 in the
meson dominance approach.
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As we have already indicated, there are other MD dia-
grams that can contribute to the amplitude of
K1→p1l 1l 2 decay mode. First of all, it might be a dia-
gram obtained from that in Fig. 15 by substitutions
a1

1→r1 andr0→v,f. But it vanishes identically as a con-
sequence of the presence of the totally antisymmetric Levi-
Cività tensor in the hadronic vertex together with the pion
momentum in theW1p1 junction.

Then, we have diagrams that contain only pseudoscalar
mesons. They are generated by taking the basic diagram in
which K1 converts top1 via W1 and attaching a virtual
photon alternatively to all possible lines. It can be shown that
the sum of those diagrams is vanishing. To simplify the dis-
cussion we will show it here in the limit of an infinitely
heavyW boson. In this limit we can introduce the following
effective Lagrangian for the weak interaction between pions
and kaons:

LpK52
GF

A2
f pVudf KVus]

mwp]mwK
†1H.c. ~5.5!

After switching on the electromagnetic interaction by the
minimal substitution principle, we are getting not only the
usual terms describing the emission of a photon from the
pion and kaon lines, but also contact terms generated from
Eq. ~5.5!. The one-photon part of the electromagnetic inter-
action Lagrangian thus reads

Lg5 ieamFwp
† ]mwp1wK

† ]mwK2
GF

A2
f pVudf KVus~wp

† ]mwK

1wK
† ]mwp!G , ~5.6!

wheream denotes the electromagnetic field operator. Now, it
is easy to check that the matrix element for the photon pro-
duction ~both real or virtual!, calculated as the sum of the
emission from kaon line, emission from pion line, and the
contact term, see Fig. 16, is identically zero. It is a conse-
quence of our treating pions and kaons as elementary quanta.
In @45# this kind of contribution was calculated assuming
nontrivial electromagnetic structure of the participating me-

sons. The result is proportional to the difference between
kaon and pion electromagnetic radii squared.

The last two diagrams conceivable in the lowest order of
MD are illustrated in Fig. 17. The matrix element with the
K*1 in the intermediate state vanishes identically. The con-
tribution from K1

1 is nonvanishing but small. This can be
seen from the following: When we consider this part of the
transition amplitude separately, ignoring the contribution
from thea1 diagram~Fig. 15!, the resulting branching frac-
tion of K1→p1e1e2 can be expressed in terms of the de-
cay width of K1

1→K1g. To get the correct experimental
number for the former, the latter had to be unrealistically
high, about 40%.

To complete our discussion about theK1→p1e1e2

mode let us stress that in the MD approach we have gotten a
parameter-free description of its decay rate, dominated by
the a1 diagram in Fig. 15. Other meson diagrams give
smaller contributions. Nevertheless, they will have to be
taken into account when a more detailed comparison with the
next generation of more precise data is made. Our result
suggests that in any approach based on the standard model it
is important to consider the diagram depicted in Fig. 18~a!. It
represents a seed for the class of diagrams, such as the one
shown in Fig. 18~b!, into which it develops after QCD cor-
rections are included. This class corresponds to the most im-
portant meson diagram, Fig. 15.

Finally, it has to be stressed that the successful description
of the decayK1→p1e1e2 was possible because the short-
distance part of the amplitude, which contains contributions
from the electromagnetic penguin diagrams→d1g* , the
Z0 penguin diagrams→d1Z0* , and theW box diagram, is
about three orders of magnitude smaller than the long-
distance part@6#.

To get an estimate of the branching fraction of the transi-
tion of charmed pseudoscalar mesonsD1 andDs

1 to a dilep-

FIG. 16. Three contributions to the matrix element of the decay
K1→p1g(g* ) related to Lagrangians~5.5! and ~5.6!.

TABLE XII. Branching fractions of the flavor-changing ‘‘weak neutral current’’ modes
P1→P21l

1l 2 calculated in the MD approach assuming the dominant role of thea1 resonance. Column C
shows the mesons coupled toW1.

Decay mode C MD result Other predictions Data

K1→p1e1e2 K1,a1
1 '3.131027 ~a! (2.7460.23)31027

K1→p1m1m2 K1,a1
1 (6.260.5)31028 ~b! (6.220.6

10.8)31028 @51# ,2.331027

D1→p1e1e2 D1,a1
1 (3.960.9)31027 ~c! ,1028 @53# ,6.631025

D1→p1m1m2 D1,a1
1 (3.960.9)31027 ~c! ,1028 @53# ,1.831025

Ds
1→p1m1m2 Ds

1 ,a1
1 (1.060.5)31025 ~d! ,4.331024

aUsing thea1rp coupling constant determined fromGa1
'400 MeV.

bNormalized by theK1→p1e1e2 experimental branching fraction.
cUsing thea1rp coupling constant determined fromK1→p1e1e2 and the lattice calculation@15# result for
theD1 decay constant.
dUsing thea1rp coupling constant determined fromK1→p1e1e2 and theDs

1 decay constant from the
experimental branching fraction ofDs

1→m1nm .
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ton and a pion we will again use Eq.~5.4! with obvious
modifications. The results shown in Table XII should really
be considered as an order-of-magnitude estimate because~i!
the a1 in Fig. 15 is very far from its mass shell and its
coupling toW may differ from that assumed in Eq.~2.15!;
~ii ! also higher charged pseudoscalar@for example,
p(1300)# or tensor@a2(1320)# resonances that couple to the
rp, vp, or fp system can appear in the intermediate state.
But it is highly improbable that the observed branching frac-
tions will be dramatically lower than those shown in Table
XII as a result of destructive interference. In fact, the matrix
element now is not a mere number, but a function of the
dilepton mass and the angle between the dilepton and pion.
A substantial cancellation would require the same functional
dependence of different contributions.

In spite of all the crudeness of our estimates, we can say
that the MD approach predicts the branching fraction of
D1→p1l 1l 2 that is at least by an order of magnitude
higher than the prediction of a standard model calculation
@53#. But even the MD prediction is about two orders of
magnitude below the present-day experimental limit. The
same is true for the MD prediction in theDs→p1l 1l 2

case.

To check the applicability of the MD approach to neutral
current processes mediated by the neutral gauge bosonZ, we
calculated the long-distance contribution to the
CP-conserving decayK1→p1n̄n. In the MD approach it
proceeds mainly according to diagram displayed in Fig. 19.
Its differential partial width is given by

dGK1→p1n̄n

dt
5
GF
4ga1rp

2 Ya
1
1ZK1

3gr
4~8pmK1!3

~122sin2uW!2t2l3/2

3~mK1
2 ,mp1

2 ,t !S mr
2

mr
22t D

2

, ~5.7!

wheret5(pK2pp)
2 is the four-momentum transfer squared

or, equivalently, the mass of then̄n system. The integrated
branching fraction (7.960.6)310218 does not have any ob-
servational value. From the theoretical point of view it is
interesting and perhaps surprising that our value is practi-
cally equal to the recent estimate 7.71310218 ~error not
given! @54# obtained from the finite part of the one-loop am-
plitude in the chiral perturbation theory.

VI. RELATION BETWEEN THE CONSERVED VECTOR
CURRENT AND MESON DOMINANCE HYPOTHESES

The conserved vector current~CVC! hypothesis is a use-
ful concept in the weak interaction phenomenology. From a
pragmatic point of view it enables the decay rate of some
flavor-conserving weak processes to be related to the data on
hadron production ine1e2 annihilation@26,21,55,56#. It is,
therefore, natural to ask what is the relation between MD and
CVC, which of the two approaches is more general, and
which has more predictive power.

It is evident that MD can be applied also to processes
during which the flavor of the hadronic system changes,
whereas the CVC cannot be applied. Let us, therefore, con-
sider only the flavor-conserving processes with the weak
vector current. At first sight it seems that MD in weak inter-
actions is a straightforward consequence of CVC hypothesis
andr0 dominance in electromagnetic interactions. If it were
true, the two concepts would lead to the same results in the
region where their domains of validity overlap.

A typical process of this type is thepe3 decay
p1→p0e1ne . We have shown that one can get good agree-
ment with the data by calculating its branching fraction from
the MD Lagrangian~2.15! without any further assumption. It
has also been claimed for a long time~see, e.g.,@26,27#! that
the agreement of the CVC result with experiment is perfect
and lends strongest support to the CVC hypothesis. To ex-

FIG. 17. Other two possible MD Feynman diagrams for
K1→p1e1e2.

FIG. 18. Selected quark diagrams of theK1→p1e1e2 decay
mode. ~a! Two ~differing by u↔d̄) of possible electroweak dia-
grams;~b! After the strong interactions are switched on, the previ-
ous diagrams develop into those that provide the most important
contributions, such as the one shown here. Unlabeled wavy curves
represent gluons.

FIG. 19. Long-distance part of the matrix element of the
CP-conserving decayK1→p1nn̄.
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amine this assertion let us sketch briefly the central point of
the CVC derivation.

From general principles it follows that the matrix element
for thepe3 decay has the form~4.5!. The continuity equation
for the conserved weak vector current requires

~p12p2!m@~p11p2!
m f1~ t !1~p12p2!

m f2~ t !#50,
~6.1!

which leads to the relation

f2~ t !52
mp1
2

2mp0
2

t
f1~ t !. ~6.2!

Becauset is the mass squared of thel n system, it cannot
vanish. In the limit of exact isospin symmetry we have
mp15mp0

and, therefore,

f2~ t ![0. ~6.3!

The usual CVC result for thepe3 branching fraction is ob-
tained by assuming that the identity~6.3! holds also when
isospin symmetry is broken. The other assumptions state that
the functionf1(t) can be replaced by a constant in the small
t range allowed kinematically in thepe3 decay and that the
relations among different components of the electroweak
isovector-vector current remain same as in the case of exact
isospin symmetry. The final formula can be found in Ref.
@27#.7 Although different from the MD formula, after nu-
merical evaluation, it gives practically identical value, which
agrees with the experimental branching ratio very well~see
Table V!.

But let us look at the CVC procedure described above a
little more closely. The assumption that relation~6.3! is valid
also when isospin symmetry is broken violates the relation
~6.1!. So, the usual CVC result is, in fact, obtained not by
assuming the conservation of the vector current, but rather
assuming a special type of its nonconservation, namely, such
that results in Eq.~6.3!.

If we strictly enforce the conservation of the vector cur-
rent by honoring Eq.~6.2!, which follows from it, we obtain8

the pe3 branching fraction of (0.887260.0019)31028,
which disagrees with the contemporary experimental value
(1.02560.034)31028.

To conclude: We found a process for which the CVC
hypothesis and MD give different results. Meson dominance
in the flavor-conserving vector current sector thus represents
a dynamic assumption that is different from what would be
obtained by merging the CVC hypothesis with the VMD in
electromagnetic interactions. The case of thepe3 decay sug-
gests that MD is better suited for description of the processes
in which the isospin invariance is broken.

VII. CONCLUSIONS AND COMMENTS

The hypothesis that the weak interaction of hadronic sys-
tems at low energies is dominated by the coupling of the
vector, axial-vector, and pseudoscalar mesons to the gauge
bosons has been scrutinized. The strength of the weak cou-
pling of ther(770) meson is uniquely determined by vector-
meson dominance in electromagnetic interactions; flavor and
chiral symmetry-breaking effects modify the coupling of
other vector mesons and axial-vector mesons. Corresponding
strength parameters and their products with~mostly un-
known! strong interaction coupling constants constitute the
free parameters of our approach. They are fixed by experi-
mental data on the branching fractions of the selected decay
modes of thet lepton and semileptonic decay modes of
pseudoscalar mesons. Some hadronic coupling constants
were determined from the widths of strong and radiative de-
cays.

After fixing the parameters, many decay rates of thet
lepton and pseudoscalar mesons (p, K, D, Ds , B, andBs)
have been calculated and compared to experimental data.
They fall into three categories.

~1! Decay modes where the calculated result is in good
agreement with observation. One can expect that these
modes, when calculated in the framework of the standard
model, are dominated by the weak quark-antiquark annihila-
tion and creation diagrams. The nicest example in this cat-
egory is the semileptonic decayp1→p0e1ne . The calcu-
lated branching fraction is (1.004160.0021)31028, while
experiment says (1.02560.034)31028. Many nonleptonic
decays are also well described. For example,D1→p0p1,
Ds

1→hp1, B1→D̄0Ds
1 , B0→D2r1. Also the branching

fraction of a quite complex modet2→hp2p0nt agrees
nicely with the experimental figure. So does that of the
‘‘neutral current flavor-changing’’ modeK1→p1e1e2.

~2! Decay modes where the calculation disagrees with ex-
perimental data. Here, the standard model diagrams that do
not have an analogy in the meson dominance approach (W
emission or absorption from a quark line, penguin diagrams,
box diagrams, etc.! are expected to dominate. The two-pion
decays of theK mesons are a typical example.

~3! Decay modes that have not been measured yet. Some
meson dominance predictions:B@KL

0→K6e7n̄e(ne)#
5(3.460.6)31029, B(B0→p2t1nt)5(9.463.1)31025,
B(Bs

0→Ds
2t1nt)5(1.960.6)%, B(Ds

1→h8K1)5(1.3
60.5)31023, B(K1→p1m1m2)5(6.260.5)31028.

An upper limit on the presence of the second-class vector
current was obtained using the experimental limit on the
t2→p2hnt branching fraction. In terms of the scalar decay
constant of thea0

2 meson it readsf a
0
2,7 MeV. The upper

bound is about 20 times smaller than that of the decay con-
stant of thep1 meson.

What comes as a surprise is the ability of the MD ap-
proach to provide a parameter-free description of the flavor-
changingDQ50 process,K1→p1e1e2. Also, the MD
tree diagram calculation of the long-distance part of the
flavor-changing neutral current decayK1→p1nn̄ gives the
same result as a one-loop evaluation in the chiral perturba-
tion theory with certain prescription for handling the diver-
gent part.

7In Ref. @26# additional approximations were made, which low-
ered the result by 2.5s. Equation~7.15! in @27# contains an obvious
misprint:p5 should be read asp3.
8For the differential decay rate formula see Appendix B.
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The cross sections of several not yet observed reactions of
pions, kaons, and electron-antineutrinos with target electrons
come as predictions of the meson dominance approach.
These include, e.g.,p1e2→p0ne , K1e2→p0ne , n̄ee

2

→p2p0.
The transitionsB→D̄ andBs→Ds

2 where the final state
meson is accompanied by anl 1n l system, or a positively
charged pseudoscalar, vector, or axial-vector meson cannot
be explained within the MD approach without assuming the
existence of the as yet unobserved vector mesonBc*

1 . The
results of MD calculations depend on its mass. We used the
value obtained from the potential models@39,40#. The ques-
tion arises whether it would be possible to determine the
Bc*

1 mass from the experimental branching ratios of various
decay modes using the MD formulas. In order to answer this
question we increased theBc*

1 mass by 0.5 GeV and recal-
culated the branching fractions. The biggest decrease was
experienced by semileptonic decay modes. But even here it
was only by 3.3%. It makes any effort to predict theBc*

1

mass using the MD approach unrealistic. Prospects of pro-
ducing theBc*

1 mesons were assessed already in early pa-
pers, e.g.,@39,40#. The present state of art can be found in
@44# and in references therein. There is a hope that an ob-
servable number ofBc andBc* events can be produced at the
CERNe1e2 collider LEP and Fermilab Tevatron.

On the theoretical side, the relation between the meson
dominance and the conserved vector current hypothesis has
been clarified.
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APPENDIX A: DETERMINING THE VVP COUPLING
CONSTANTS FROM DATA ON STRONG

AND RADIATIVE DECAYS

If the decayV1→V21P is energetically allowed, the
V1V2P coupling constant can be determined from its empiri-
cal decay rate. Using Lagrangian~3.9! we easily derive the
formula

GV1→V21P5
gV1V2P
2

96pmV1
3 l3/2~mV1

2 ,mV2
2 ,mP

2 !. ~A1!

Triangle functionl is defined by Eq.~3.6!. The experimen-
tally given branching fraction off→rp includes three dif-
ferent final states, which would be equally probable if the
isospin symmetry was exact. If we assume that the latter is
violated only through mass differences, we obtain
gfr1p2
2

5(1.1760.07) GeV22.
To get the expression for the rate of radiative decay

V1→g1P, we only need to replaceV2 by g.

GV1→g1P5
gV1gP
2

96pmV1
3 ~mV1

2 2mP
2 !3. ~A2!

VMD in electromagnetic interactions enables one to express
thegV1gP coupling constant by means of the hadronic ones.

For radiative decayv→gp0, the situation is simple because
only r0 can couple to thevp0 system. Using Eq.~1.1!, we
can write

gvgp0
2

5
4pa

gr
2 gvr0p0

2

and calculate

S gvr0p0

gr
D 25 24mv

3

a~mv
22mp0

2
!3

Gv→gp05~5.4060.32! GeV22.

~A3!

The radiative decayr0→hg can proceed only via the strong
r0hr0 vertex because the isospin conservation prevents cou-
pling of the r0h system to eitherv or f. Another conse-
quence of the isoscalar character of theh meson is that the
quantity

S grhr

gr
D 25 24mr

3

a~mr
22mh

2 !3
Gr0→hg5~15.162.8! GeV22

~A4!

has the same value for all charge states ofr.
The case ofK* radiative decays is most complicated be-

cause the resulting amplitude is given as a coherent sum of
three amplitudes withg coupled tor, v, andf. In spite of
this complication, we can determine theK*Kr coupling
constants because thev and f contributions to
K*1→K1g are equal to those toK* 0→K0g, whereas the
r0 contribution changes sign. We are thus getting the set of
equations

~x1y!25a1 , ~2x1y!25a0 .

where x5gK*1K1r0 /gr , y stands for the expression that
contains only isoscalar coupling constants, and

ac5
24mK* c

3

a~mK* c
2

2mKc
2

!3
GK* c→Kc1g

for c51,0. Using the relationgK*1K0r1
2

52gK*1K1r0
2 ,

which follows from isospin invariance, we eventually get
two values of (gK*1K0r1 /gr)

2 that are compatible with ex-
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perimental data on radiativeK* decays, namely
2.2160.14 GeV22 and (9.262.9)31022 GeV22.

APPENDIX B: DECAY P1˜P21l
1n l :

GENERAL FORM FACTORS

The general form of the matrix element is

M5C@ f1~ t !~p11p2!
m1 f2~ t !~p12p2!

m# l̄ gm~12g5!n,

wherep1 (p2) is the four-momentum of the incoming~out-
going! pseudoscalar meson andt5(p12p2)

2 is the mass
squared of the lepton system. Using Eq.~3.3! and integrating
over the solid angle in thel 1n l rest frame, we get the
following expression for the differential decay rate:

dGP1→P2l
1n l

dt
5

uCu2

3~4pmP1
!3
t2ml

2

t3
l1/2~mP1

2 ,mP2
2 ,t !

3$w1~ t !u f1~ t !u216zt~x2y!

3~ t2z!Re@ f1* ~ t ! f2~ t !#

13zt2~ t2z!u f2~ t !u2%. ~B1!

Functionw1(t) is defined in Eq.~4.4!. Also, the meaning of
other symbols is same as in Sec. IV A:x5mP1

2 , y5mP2
2 ,

z5ml
2 .

To get the total rate ofp1→p0e1ne that follows from
the requirement of exact conservation of the vector current,
see Sec. VI, we need to integrate Eq.~B1! with
C5GFVud , f1(t)51, and f2(t)52(x2y)/t.
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