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Three-cocycles and the operator product expansion
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Anomalous contributions to the Jacobi identity of chromoelectric fields and non-Abelian vector currents are
calculated using a nonperturbative approach that combines operator product expansion and a generalization of
the Bjorken-Johnson-Low limit. The failure of the Jacobi identity and the associated three-cocycles are dis-
cussed[S0556-282(97)03209-9

PACS numbeps): 11.40.Ex, 12.38.Lg

[. INTRODUCTION ments and respects all the desirable symmetries of the model.
The price is that not all such matrix elements need vanish.
The study and evaluation of commutators, as well as theiThe procedure we describe below providesiedinition of
algebraic properties, have been the motive of much researcit
over the past years. Many results, leading to important mea- Situations in which7#0 present problems in providing
surable effects were found using canonical commutation rewell-defined representations for the corresponding algebra of
lations which, unfortunately, are often ill defined. This wasoperators. A nonvanishing/ is then understood as an ob-
made clear by Schwingéf] in his evaluation of the matrix struction in constructing such representations in terms of
element(0|[ Jo(x),Ji(y)]|0) (J* denotes a curreptit equal  operator-valued distributiongl1]. However, objects which
time. This commutator has a noncanonical term proportionadre local in time and obey# 0 may still be defined in terms
to the gradient of & function which is mandated by locality, of their commutators with space-time smoothed operators.
Lorentz covariance, positivity, and current conservation, and The expression we obtain fgr depends on a small num-
which is not generated followingnaive canonical manipu- ber of undetermined constants. The present method is not
lations. powerful enough to determine whether such constants are
Much work has been done towards finding perturbativenonzero. Nonetheless, it is still possible to obtain some non-
expressions for the commutatd®. Recently, an effort was trivial information concerning the expression for our defini-
made to find a practical method to evaluate commutators in &ion of 7, mainly based on the consistent implementation of
nonperturbative way3], based on the operator product ex- the model's symmetries. We will comment on this fact in the
pansion(OPE [4] and on the Bjorken, Johnson, and Low last section.
(BJL) [5] definition of the commutator. The BJL definition It is well known[8—1(] that violations of the Jacobi iden-
preserves all desirable features of the theory, and reproducésy 7= 0 within an algebra generate, in general, violations of
the canonical results whenever these are well defifédn  associativity in the corresponding group. If the group genera-
the present paper we generalize the method proposgg] in tors, denoted bys,, satisfy
to the case of double commutatdrén particular we will _
study violations of the Jacobi identity. The present approach [
is based on a double high-energy lirttidken in a particular j[Gal’GaZ'Gaa‘]:aw[alazaS]¢0 @
orden of the Green function for three local operators.
Given any three operatord, B, and C we define the ([a;a,a3] denotes antisymmetrization in all variableg,
guantity the corresponding lack of associativity is parametrized by the
three-cocyclew (for a review, see Refd8]). Consistency
J[A,B,C]=[[A,B],C]+[[B,C],A]+[[C,A],B], (1) requires the closure relatid®]

which vanishes whenever the Jacobi identity is preserved. fela,a,@a,0,c=0 ()

Before we proceed, it is worth pointing out that in a theory

where all the linear operators are well defined, no violationgwhere summation over is understooy

of the Jacobi identity can appear, afdis identically zero. The existence and properties of three-cocycles has been

In this paper we will consider models in which the operatorsunder investigation in quantum field theory for some time

and their products require regularization; for such theoriesiow. The behavior of gauge transformations in an anomalous

we construct an operator which is naively equalit¢that is, gauge theory, as well as in a consistent gauge theory with

it coincides with the expressiofl) whenever the operator Chern-Simons term, can be given a unified description in

products are well defingdbut which has finite matrix ele- terms of cocycle$12]. Violations of the Jacobi identity also
appear in the quark model: if the Schwinger term in the
commutator between time and space components of a current

*Electronic address: muniain@phyun0.ucr.edu is ac number, the Jacobi identity for triple commutators of
"Electronic address: jose.wudka@ucr.edu spatial current components must fgil3]. This fact has been
For a related publication, see RET]. verified in perturbative BJL calculatiorjd4].
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In the context of quantum mechanics, three-cocycles ap-

pear in the presence of magnetic monopdl#@]. For ex- &—)(C)TA(X)B(Y)C(O)ZT(ABC)
ample, a single particle moving in a magnetic fiBldatisfies
Jvtv?v3]=(eh?/m?)V.-B, wherev' represent the com- +8(Xo~Yo) T{[A.B](x,)C(0)}

ponents of the (gauge-invariant velocity operator. If

S + 8(X)T{B A,C , 6
V-B+#0, as in the case of a point monopole, the Jacobi iden- (o) T{B(Yoll ](Xo)} ©

tity fails.
The paper is organized in the following manner. Section iTA(x)B(y)C(O)=T(ABC)
Il is dedicated to the description of the method. Section Ill,  dYo

as an application of the method, studies the failure in field _
theory of the Jacobi identity for chromoelectric fields. Fol- +(Yo XO)T{[B'A]%)C(O)}
lowing this, Sec. IV is dedicated to three-cocycles associated

’ +
to the QCD quark charges and Gauss’ law generators. The 3(Yo) T{A(X0)[B,Cly}, ()
results of these sections are compared to the results derivec1q o o
form perturbation theory in Sec. V. Conclusions are pre-Vnere the subscript in the commutators indicates the com-
sented in Sec. VI mon time of the operators.

To simplify the resulting expressions we define

Il. DESCRIPTION OF THE METHOD qlp= lim g lim  po 8

Go—®  Pg—%;do=const

In this section we will generalize the method proposed in
[3] to study double commutators and the possibility of vio-and obtain, after straightforward manipulations,
lation of Jacobi identity. The canonical evaluation of equal
time commutators sometimes presents ambiguifi§sand it
becomes necessary to have an alternative way to define and
calculate these objects. This is achieved by the Bjorken, . .
Johnson, and Low5] definition of the single commutators X(a|[B(0y),[C(0),A(0x)]]|B),
(for a review, se¢6]) which relies only on the construction
of the time-ordered product of the operators whose commu-
tator is desired. Specifically, the commutatorfdfandB is
obtained from

P, [ ixartye o

laClp,—p—k)= [ a" ety 105
X (a|[A(0X),[B(0y),C(0)]1|B),

lim pof d"xeP(a| TA(X/2)B(—x/2)| B)
pO—os

KLgC(—q—k,q)= f dnIxd"lye (Px+ay)

:ifd“—lxe—i5'§<a|[A(o,>Z/2),B(o,—>Z/2)]|ﬁ>, (4) X(al[C(0),[A(0X),B(0y)11|B).

wherek= —p—q. These expressions imply

where p°® stands for the time component of the four-
momentum. The BJL definitiori4) uses the time-ordered
productT, which (in general is not a Lorentz covariant ob-

ject [6], while in field theory(e.g., Feynman diagrams in _ N=1v AN—1) a—ip-X—iq-y
J|oerturbation theory one calc):/ulatges anyr:lssociatedq covariant _J d"xd" e P>l J[A,B.C][B), (10

object, usually denoted by* . The difference betweeh and

T* is local in time, involvingd(x,) and its derivative§6], ~ where, as above, JJA,B,C]=[A,[B,C]]+[B,[C,A]]

which translates into a polynomial ip® in momentum +[C,[A,B]].

space. Therefore, in EG4) we can replac@ by T* provided The above manipulations suggest that viefing.

we drop all polynomials inp®. Equivalently, the Fourier J[A,B,C] via (10). In the following we will use this defi-
transform of the commutator is the residue of thp®lerm  nition of 7.

©)

(glp* plat+ilig)C

in a Laurent expansion of the time-ordered prodTitt (di- Since we are interested in the large-momentum-transfer
vided byi). behavior, it is appropriate to express the product of operators

This approach can easily be extended to the study oih Ed.(5) as a sum of nonsingular local operators with pos-
double commutators. We first define sibly singularc-number coefficient§4],

Ny dny gl (Px+ay)
C(p,Q):f andnyei(px+qy)<a|TA(X)B(y)C(0)|ﬂ>, J d"xd yel <a|TA(X)B(y)C(O)|B>

©)

2When canonical manipulations are well defined we will have
and use théformal) identities J[A,B,C]=0.
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ajazaz
K1V VoH3V3

— ~13za3
K1ViMoVol3V3

+oee, (15

where the remaining terms will not contribute to the final

each term in the OPE should respect the same symmetriegsult. The Wilson coefficients multiplying the identity op-

(and possess the same internal quantum numlzessthe
Green'’s function5). As for the single commutator cag,
it is more convenient to derive the vario(@ouble commu-
tators from the covariant time-ordered prodi¢t; the dif-
ference T[A(X)B(y)C(2)]-T*[A(X)B(y)C(2)] is an op-
erator local inx—y, ory—z, or x—z. Thus, we will drop all
terms proportional to a polynomial ip°, q°, or k°.
Substituting Eq(11) in Eq. (10), we obtain

f A" Ixd"~ tye (P X9 o] TTA(0X),B(0Y),C(0)]|8)
=2 (qlptplictida)Ci(P,a){(a|O/(0)] B). (12

It is worth pointing out that similar manipulations have

erator will be such tha{tcill','_'_]=(massfz.

The coefficient functiort consists of a sum of terms each
of which takes the form
n factors

k®---Qk
(polynomial of degree ! in the k2)

(16)

For the present calculation we must have2(1—1).

In restricting the values af, note first that all terms of the
form k;-k; can be turned into a linear combination of the
k? by usingk,+k,+k3;=0; also note that multiplying the
above expression by a dimensionless function will, at most,
modify the final result by an overall multiplicative constant,
thus we can replacéor | >m)

been used to provide constraints on the general form of cur-

rent anomalie$15].

[ll. JACOBI IDENTITY FOR CHROMOELECTRIC
FIELDS

In this section we investigate the existence of three-

cocycles associated with th@hromgelectric fields of a

gauge theory, denoted W§=Fg;, whereF;,, is the non-

Abelian gauge field strength. We will consider the four-

dimensional case first and then briefly consider the case
two dimensions.

0]

(polynomial of degreen in kiz)
(polynomial of degreg in kiz)

1
— - . 2\ !
(polynomial of degreé—min k)

17

which implies that we can ignore all contributionsdaon-
taining factors of the fornk; - k; in the numerator. Using this
a}nd the fact that there are six “external” indices
1 23,71 23and noting that we need to include at most one
e tensor, we find that we can restrict ourselves to

We evaluate the Jacobi operator for three chromoelectrit, _ 55 4 & \ve will consider the case=0 in detail: the

fields by studying the behavior of the correlator of three

a az as
strength tensorsT{FﬂlVl(xl)Fﬂzvz(xz)FMBVS(XQ,)} for the

case ofu,=0, v,=0.
Following Eq.(5), we consider

ajasaz
Ml”lﬂz”zﬂs”s( Kioka)
:j dx, d4x el (Kaxa T kaxo)
* a ay ag
XTHF L, (X)F 2, (x)F 2, (0)}, (13)
which  must be symmetric under K{(u,,v,,a;)

—(kg,us,v5,85), and antisymmetric under u(,v,)

—(v;,u,) Wherer,s=1,2,3. In order to present the expres-

sions symmetrically, we define
k3: - kl_ k2. (14)

The canonical mass dimension@®équals— 2 which implies

others can be treated in the same way.
The coefficient corresponding =0 in Eq. (16) takes
the form

-1
71872853 2
2 T'uﬂ'lvﬂ'lll“ﬂ'ZVﬂ'ZM‘n'SV‘nGu ( EI‘ ervﬂ’ 1 (18)

w

where 7 denotes a permutation of 1,2,3; the summation is
over the 3! such permutations. The tensois constructed
out of the metric and the tensor. Since the tensor takes
values on a Lie algebra, its general expression will be of the
form
uabczulfabc+ uzdabc, (19)

wheref denotes thécompletely antisymmetrjayroup struc-
ture constants and”¢ denotes the completely symmetric
object tT3{TP, T¢} (T2 denote the group generatprs

Consider now the Iimitkr]Lks, abbreviated I, and letu

be the(unique index #r,s. The polynomial in the denomi-

that the only terms in the OPE which survive the doublehator can be written

limits are proportional to the identity operatbr:

(X XK+ (Xg+ X ) K2+ 2X k. - ks (u#r,8), (20)

3As in[3], we assume that the sum of three double commutators isvherex, =x.-1, and where we useErxrkar = Erxflrkr2 )

a renormalization group-invariant quantity.

Then, we have



5344 JAVIER P. MUNIAIN AND JOSEWUDKA 55

1 1 For the two-dimensional case only the terms containing
tbss =12 = 55 ORy (21 F?, in the OPE contribute to the double limits. The coeffi-
rar iy u

cient functions take the same form as in Etp) where now
wheres, . .- denotes the Kronecket. The above expression We haven<4. After a short calculation, we obtain
implies . . .

JIE*(x),E®(y),E®*(2)}

1 5§2+x3 5§3+x1 5x1+x2

(1lo+2la+ 3Ll)2r')7rkf: > s % % = ¢ u212283PED 53(x — v) $3(x - 2),
=A(X1,X2,X3). (22) (1+ 1dimensiony, (28)
A is a completely antisymmetric function of tieand so where uab°? js antisymmetric in its first three indices and
AR, Ry Xa) = v A(XL Xp Xa), 293 must be constructed out of traces of products of generators:

where v, denotes the signature of the permutation U8B =i[ 4 0 00can t fayazedea,nt fazaycoa,n]
Note thatA vanishes unless the sum of two of the param- (29

etersX is zero, which is not usually realized, within pertur-

bation theory. This can be understood by noting that expre

sion (18) will present poles wheneveA#0 and keck?

JUsing this expression, E28) is seen to satisfy Eq3).

(neglecting the spatial components sinde-). In the vi- IV. THE THREE-COCYCLE IN CURRENT ALGEBRA
cinity sz SZUCh_ poles the Wilson coefficient behaves as  yyg now follow the above procedure to study the Jacobi
1i(ki = 5°kj) with 7 a real constant depending on tRe.  igentity for three non-Abelian charges. We start from a

Such behavior is rarely generated within perturbation theor)éauge theory with anti-Hermitian generatdi®} and as-
[16]; the high-energy behavior of the triangle graph is, how-g e that a set of current operatdfs can be definedwe

ever, an exceptiofl 7]. will not need to specify the chirality properties of these cur-
The term under consideration then contributes to the surpenté We then C(F))nsi;yer the operz;{[opr P

of the three double limits the following quantity:

Cabc(klakz):f d4xd4yei(k1x+k2y)

A(Xl,Xz,X3)E V'”'TM771Vq-rl”“q-rzVqrzf’“ﬂgVﬁguaﬁlaﬂzaﬁs' wvp
24 * ax as as
24 XTHILO0IZ()IZ (O}, (30

For the case of interegt,=0 andv,=i,#0 whence, of all ) ) . .
possible contributions ta, only the term containing the ~ Which is symmetric ~ under ~any  permutation
tensor contributes. This leads to a term proportional to théKs.s.as)—(Kr,ur,a,) for r,s=1,2,3. As in the previous

three-dimensional antisymmetric tensor, se_ction we consider first the four-dimensio_nal case and then
briefly state the results for the two-dimensional theory.
TOi 00,0 3= T€i i i o= TVr€ilii, (25 We now expand?iif) in a series of local operators. The

terms that will contribute to the double limits are propor-

for some constant. The contribution to the limits then be- tional to the operatord, Ffw, Eiv, JZ, (DaFﬁy)b, and

comes (D.Fp,)°. The general expressions for arbitrary values of
the indices are quite involved and not very illuminating; we
ATe i 1., Udmandn=T¢, . (123, (26)  Will therefore consider only two cases: the terms propor-

v 12 tional to the unit operatofcorresponding to the vacuum ex-

) pectation value of7), and the cas@;=0 which can lead to
where we used the expression (19 and yjolations of the Jacobi identity in the global algebra gener-
7=6U,7A(X1,X5,X3). The terms containing®®®in Eq. (19  ated by the charges.
do not contribute.

The other cases1=2,4,6, although more involved, yield
the same type of expressions. Collecting all results, we ob-
tain We consider the Wilson coefficient associated with the

unit operator first. Using the same arguments as for the pre-
JLE(X),ES%(y), Ef3(2)]=Cej i1, TH{T?, T2} T% vious section, we conclude that the Wilson coefficient should
! 2 s take the same form as in E€L6) with | =1,n=23, explicitly

A. Terms proportional to 1

X 8(x—y)8*(x—2), (27)

_ c= 2, 7 K kB K7 (@m18n28x3
wherec is an undetermined constant. We note that this result St HmitmakazaBymrE TSt st
also satisfies the closure relati@®). A similar expression 1
was obtai_ned in Ref.18]; we will compare the present ap- x| X'Stk2 u) _ (31)
proach with the one followed in this reference in Sec. IV. u




55 THREE-COCYLES AND THE OPERATOR PRODUCT EXPANSION 5345

The evaluation of the three double limits is essentially the  Using thenrqgo,= 79,0 for some constant, we find that
same as for the previous case and we will omit the detailsthe term containing]i in Eq. (30) contributes the operator
We obtain

ret - TAY, v udman28m3b| QP (36)
(1lo+olgtalg)ci=2 VT oo giin K KisKoiGa aja, i
+ > st KK KN f t0 J[Q, Q.. Q..]. Then=2 andn=4 cases yield expres-
Bpibpobpgiin ot N asiat! ajayag a, a,agl- y p

sions of the same form.
(32 Finally, we consider the contributions proportional to the
operatorsD ,F 4, . In this case the coefficients are of the
form (16) with n=2(1—1), I<4. Again, concentrating on
the charge operators, we requitg , ;=0 and obtain, fol-
lowing the procedure outlined in the previous section, the
contribution to the sum of the three double limits of the form

wherev . is the signature of the permutation

The tensorsr® and 7' must be constructed out of the
metric and thee tensor. This implies that the result vanishes
when 1;=0, i.e., (0| 7[J335J5]|0)=0, as verified by ex-
plicit perturbative calculationgl4]. If we consider the case
wi=]i=0, we obtain terms-k!'k!?k? and~k115,-1j2|25 pro-
portional tOfala2a3 which also agree with the results ob-

constx f d3X(DHF )P unawlavZa-:er_ 3
tained in perturbation theorfi4]. ( o) EW @7

B. Jacobi identity for the global current algebra

. . . . An identical procedure can be followed fBrF. The result-
In studying violations of the Jacobi identity in the algebra. . - ) .
of the non-Abelian charges, we define ing expressions contaiD“F,, and vanish by virtue of the

Bianchi identities.

. Collecting the above results, we conclude that
Q3= f d3xJ3, (33
b
so that when calculating’] Q,Q%2,Q2%3] [see Eq.(1)], we a1 022 O%]=| .0+ o (fdgiD"F )
need consider only the cagg , s=0. J1Q™. Q™. Q%]= | €,Q7+ cor #0

In the previous subsection we showed that there are no
contributions to the operataf [J5'Jg2J3] proportional to X >, v UBnian28n3D (39
the unit operator. The contributions proportional to the op- i
eratorsF andF have Wilson coefficients of the same form as

in Eq. (16) with n=2I—1,1=1,2,3. Whenu;=0, the vari- ¢, some constants, andcge . Noting thatu must be con-
ous terma reasultmgéfrom the three double limits are ProPOT5tructed out of traces of generators and, using the Jacobi
tional to k-E® or k-BP, (r=1,2,3). Thus, they will not dentity for the generators, we obtain that this tensor takes
contribute to the global algeb(or which we seﬂZrZO). the form(29). It is easy to see that E¢B8) satisfies Eq(3).

Next, we consider the Wilson coefficients associated with _If we use the equations of motidd*“F ,,=J, and define
Jg. These again take the form (16) with C=C;+Cpg, We obtain
n=2(1-1),1=1,2,3. As an example, we study the1
case; the explicit form of the coefficient function is L

s j[Qal-Qaquaa] = CQb[falazcdca3b+ fa2a3cdca1b

ajaagh a 1a,;08,3b 2
CJ;M1M2M30‘_§ e (Z XeKor | +faza,cdcab]- (39
(34 1 A2 A3
For example, for S(B), we have J[Q"Q%Q]
where, as aboves denotes a permutation of 1,2,3 and =(c3/2)Q5.
udbcdis constructed from the traces of four group generators We can follow exactly the same procedure for the Gauss’
with all possible orderings. Evaluation of the contribution toidentity operators
the three double limits is almost identical to the one de-
scribed above. As a result, we get -
g Ga=Qa—f d3K(DHF )%, (40)
(1la+2lg+3ly)cy3= A(X1,X2,X3)
assuming that these operators close into an algebra we obtain
X voT Uan18m28730 that the Jacobi identity is violated,
27:‘ T g1t g2t 3%

(35) j[Gal’ GaZ:Ga3] :?Gb[falazcdca3b+ falzagpdcalb

with A defined in Eq(22). +faza clea,bl (412)
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VAVAVAVA

FIG. 2. One-loop graph contributing to the Jacobi identity for
three electric fields.

(a) (b)

FIG. 1. Vertices in the composite operatey, .

sponding to the(composité operatorF*? are of the form
shown in Fig. 1.

The one-loop contributions are given by the graph in Fig.
for those cases where’=0. Note, however, that in the 2 Which, however, does not contribute to the double limits.

physical subspace, which is annihilated by & the Jacobi In fact, it is a straightforward exercise to show that any graph

identity is valid (this would not be true if th&? fail to close ~ With one or more of the vertices of tyfte) in Fig. 1 with one
into an algebra under commutatjon gauge boson line will not contribute to the three limits. This

implies that the leading contributions to are at least

0O(g”), whereg is the gauge coupling constant, and occur at

the three-loop level. We will not evaluate the corresponding
For the two-dimensional case, some of the metric tensorgraphs in this paper.

which appear in the Wilson coefficients can be replaced by The absence of perturbative contributions, at least at low

the antisymmetric tensay,, . Expressing the results in terms orders, to Eq.(27) contradicts the results obtained [ih8]

of the left- and right-handed currendg r=Jo+J;, we ob-  where Eq.(27) was obtained by first calculating the anoma-

C. 1+1 dimensions

tain lous commutator of two electric fields and then using canoni-
cal commutation relations in the evaluation of the Jacobi

0| 7732 3° 3¢ 1|0y = o dor 4. fo K, opergtor(l). In that calculation the commutator of two elgc-
(017191, 90,95,110) Z [Canynngdane™ C1:ngnngfabel K tric fields was found to be proportional to the gauge field,

(42)  which raises questions about the gauge invariance of the
result? In view of these problems, we revisit calculation of
the commutator of two electric fields following the approach

)  described in3]. We define
Turning now to the global current algebra, one can easily

verify that the terms in the OPE containing the operators .

F2 do not generate violations of the Jacobi identity. In con- T‘”“ﬁ(P)ZJ d'xe P XFA(xI2)FB(—xI2), (44)
trast, terms containing the operatolg do contribute. A

straightforward calculatiorfalmost identical to the one de- \yhose OPE takes the form***A(p)1+--- wherer is a

scribed in the case of four dimensiongives tensor constructed fromp, the metric, and the tensor; the
term proportional to the unit operator is the only one that
E ChQE)[falazcdca3b+faza3cdcalb contributes to_the BJL limit. N .
h=L,R The terms inr that generate a nontrivial BJL limit are of
the formg““p”p?/p2+ perms, ande*"*?p. p#/p?+ perms,
(43) 13 " . . '}/ . .
where “perms” denotes similar terms with the indices ex-
a_ changed to insure antisymmetry ungder v, anda< B, and
whereQp=JdxJ;. symmetry under the exchangeu¥;p)< (aB;—p). The
commutator of two electric fields is obtained from the limit

where h;=L,R and K, denotes the spatial component of
K, .

JQ™,Q%,Q%]=

+ fa3alcdca2b] '

V. PERTURBATIVE CALCULATIONS

The previous results can be compared to the results ob- lim p°7%%, (45)
tained using perturbation theory. For the vacuum expectation Po—*
value of the operato/[JJJ] in four dimensions the results
are known[14] and agree with the results obtained in Sec
IV. The origin of the nonvanishing contribution of such a
graph can be traced to the peculiar behavior of the disconti- - S
nuities of the form factors for the triangle grafhv]. [E4(x/2),EL(—X/2)]=0, (46)

The situation is different when we consider the graphs
contributing to7[ EEE] calculated in Sec. lll.

The expression foc in Eq. (27) can be derived from 4A similar situation was discussed {i8]. Note, however, that
perturbation theory by obtaining the corresponding Wilsongauge invariance is not an issue when considering anomalous theo-
coefficients. To this end we first note that the vertices correries.

which, using the above expression faris seen to vanish.
‘We therefore conclude that
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where{\?} denote thgHermitian) generators of the group,

M @&_@_& g the gauge coupling constant, amdthe fermion mass. It is
@ (b) clear from the above expression that the sum of the three
limits vanishes by virtue of the Jacobi identity obeyed by the

group generators®. We therefore conclude that the constant

¢, in Eq. (39) is zero to this ordefsee[20] for a related
resuld.
(c) @ (e)

VI. CONCLUSIONS

i é i ?3 f é We considered the simultaneous use of the operator prod-
R—@— — uct expansionOPE and the Bjorken-Johnson-LowBJL)
) (9) (h) limit techniques to study double commutators and thus look
into possible violations of the Jacobi identity. The advan-
tages of the method are its nonperturbative nature, the fact

FIG. 3. One-loop graphs contributing to the Jacobi identity for that all symmetries are manifest at each stage of the calcula-

three currents. tion, and its calculational ease. The disadvantages of the
method are that all results are determined up to unknown
which disagrees with the results (df8]. multiplicative constants which could, in fact, be zefia

We believe that this discrepancy is due to the following.which case no violations of the Jacobi identity appe#e
In [18] the commutator was computed from the sea gull fornote, however, that the vanishing of such constants would be
the current-current commutator by using Amgie law to  accidental in the sense that it is not mandated by any sym-

relate the current t&2. The problem with this calculation is Metry of the model. _
that the sea gull is not unique, always being defined up to a _We were able to !slolate. cases where there cannot be vio-
covariant local contributiofi]. So, if we follow the proce- lations of the Jacobi identity. For example, the vacuum ex-

dure described ifi18] but add to the sea gull the covariant Pectation value of0|7[J5.J5,J51|0)=0 (when there is no
contribution symmetry breaking as discussed in Sec. IV A. As another

example, one can consider a four-dimensional gauge theory
with a scalar fielde; in this case7[ ¢,d,¢,A,]=0 identi-
MY _ |§ a Thy _uvaBab (4) (v __ Ca”y' . .
Ucowb(x'y)_WTr{T T PAL(Y) 90 (X)), As mentioned above, the method proposed provides a
(47) definition of the Jacobi operataf[A,B,C] in Eqg. (1). This
definition coincides with the naive expressidre., it van-
ishes whenever the operatoss, B, C, and their triple prod-
the final result is the one ifil8] multiplied by 1-¢. The  ucts are well defined. When regularization is needed, the
calculation using the OPE shows that, in fact 1. This also  expression for7 need not vanish. The origin of this effect
implies that the expressiof27) cannot be derived from Eq. can be seen as follows: the naive expressionfaontains
(1) by evaluating some commutators canonically and othergyo terms of the formABC, one from the first double com-
using the BJL limit. mutator in Eq(1), and one from the last double commutator.
We now consider the perturbative evaluation of the JacobThe the first equal time commutator, however, is evaluated
identity for three currents. Following our approach we will by first lettingtg—t, and subsequentliz—t,; the second
be interested in the Wilson coefficient for the teﬂﬁﬂn the  commutator is obtained by taking—t, and thentg—t,.
OPE of the operatdf*{JJJ}. The one-loop contributions to  The two limits need not commute leading to a nonzero con-
the OPE are obtained from the graphs in Fig. 3. tribution. This can be interpreted as a lack of associativity,
In this calculation of7 the contribution from graphé&f. (AB)C+#A(BC) which is related to the presence of a three-
Fig. 3) 3(a) and 3b) cancel each other; similarly graph&B  cocycle. A naive definition of7 would not exhibit this fea-
and 3d) cancel, while the contributions of(f3, 3(g), and ture, the cost being that the operator products are ill defined.
3(h) add up to zero. Graph(& requires careful evaluation; As applications, we considered violations of the Jacobi
we chose to regulate the theory using a higher covariant dedentity for three chromoelectric fields as well as for three
rivative method 19] in the gauge-boson sectdithe propa- non-Abelian charges and for three Gauss' law generators.
gator then becomes (in the Feynman gauge The resulting three-cocycles satisfy the closure relaf®)n
9,.,/[p*(1—p® A?)] and we obtain and, therefore, imply that the corresponding group is not
associative. The general analysis relates the violations of the
Jacobi identity to poles in the Wilson coefficient functions at
large timelike momenta. Such poles are absent in most per-
turbative contributions leading tg=0; this is the case for
(48 three chromoelectric fields and three current charges. The
one exception we have found corresponds to those perturba-
tive contributions generated by the triangle graph, which
5This regulator induces several new vertices in the theory, but thigenerate nontrivial violations to the Jacobi identity of three
does not affect the present calculation. (spacelike currents. The form of these perturbative results

2 A2
(xb[xaj,[xak,xai]]xb)an,

g
iLi{ graph 3e)}= 1672
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agrees with that obtained using the OPE and BJL limit apfails, the corresponding group can still be made associative
proach. by an appropriate quantization of the three-cocydi@l.
The fact that general considerations lead to a violation of
the Jacobi identity implies, as mentioned previously, that a
well-defined representation of such operators does not exist ACKNOWLEDGMENTS
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