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Anomalous contributions to the Jacobi identity of chromoelectric fields and non-Abelian vector currents are
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I. INTRODUCTION

The study and evaluation of commutators, as well as their
algebraic properties, have been the motive of much research
over the past years. Many results, leading to important mea-
surable effects were found using canonical commutation re-
lations which, unfortunately, are often ill defined. This was
made clear by Schwinger@1# in his evaluation of the matrix
element̂ 0u@J0(x),Ji(y)#u0& (Jm denotes a current! at equal
time. This commutator has a noncanonical term proportional
to the gradient of ad function which is mandated by locality,
Lorentz covariance, positivity, and current conservation, and
which is not generated following~naive! canonical manipu-
lations.

Much work has been done towards finding perturbative
expressions for the commutators@2#. Recently, an effort was
made to find a practical method to evaluate commutators in a
nonperturbative way@3#, based on the operator product ex-
pansion~OPE! @4# and on the Bjorken, Johnson, and Low
~BJL! @5# definition of the commutator. The BJL definition
preserves all desirable features of the theory, and reproduces
the canonical results whenever these are well defined@6#. In
the present paper we generalize the method proposed in@3#
to the case of double commutators,1 in particular we will
study violations of the Jacobi identity. The present approach
is based on a double high-energy limit~taken in a particular
order! of the Green function for three local operators.

Given any three operatorsA, B, and C we define the
quantity

J @A,B,C#5@@A,B#,C#1@@B,C#,A#1@@C,A#,B#, ~1!

which vanishes whenever the Jacobi identity is preserved.
Before we proceed, it is worth pointing out that in a theory
where all the linear operators are well defined, no violations
of the Jacobi identity can appear, andJ is identically zero.
In this paper we will consider models in which the operators
and their products require regularization; for such theories
we construct an operator which is naively equal toJ @that is,
it coincides with the expression~1! whenever the operator
products are well defined#, but which has finite matrix ele-

ments and respects all the desirable symmetries of the model.
The price is that not all such matrix elements need vanish.
The procedure we describe below provides adefinition of
J.

Situations in whichJÞ0 present problems in providing
well-defined representations for the corresponding algebra of
operators. A nonvanishingJ is then understood as an ob-
struction in constructing such representations in terms of
operator-valued distributions@11#. However, objects which
are local in time and obeyJÞ0 may still be defined in terms
of their commutators with space-time smoothed operators.

The expression we obtain forJ depends on a small num-
ber of undetermined constants. The present method is not
powerful enough to determine whether such constants are
nonzero. Nonetheless, it is still possible to obtain some non-
trivial information concerning the expression for our defini-
tion of J, mainly based on the consistent implementation of
the model’s symmetries. We will comment on this fact in the
last section.

It is well known @8–10# that violations of the Jacobi iden-
tity J50 within an algebra generate, in general, violations of
associativity in the corresponding group. If the group genera-
tors, denoted byGa , satisfy

J @Ga1
,Ga2

,Ga3
#5

i

3!
v [a1a2a3]

Þ0 ~2!

(@a1a2a3# denotes antisymmetrization in all variablesai),
the corresponding lack of associativity is parametrized by the
three-cocyclev ~for a review, see Refs.@8#!. Consistency
requires the closure relation@9#

f c[a1a2va3a4]c
50 ~3!

~where summation overc is understood!.
The existence and properties of three-cocycles has been

under investigation in quantum field theory for some time
now. The behavior of gauge transformations in an anomalous
gauge theory, as well as in a consistent gauge theory with
Chern-Simons term, can be given a unified description in
terms of cocycles@12#. Violations of the Jacobi identity also
appear in the quark model: if the Schwinger term in the
commutator between time and space components of a current
is a c number, the Jacobi identity for triple commutators of
spatial current components must fail@13#. This fact has been
verified in perturbative BJL calculations@14#.
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In the context of quantum mechanics, three-cocycles ap-
pear in the presence of magnetic monopoles@10#. For ex-
ample, a single particle moving in a magnetic fieldBW satisfies
J@v1,v2,v3#5(e\2/m3)¹W •BW , wherev i represent the com-
ponents of the ~gauge-invariant! velocity operator. If
¹W •BW Þ0, as in the case of a point monopole, the Jacobi iden-
tity fails.

The paper is organized in the following manner. Section
II is dedicated to the description of the method. Section III,
as an application of the method, studies the failure in field
theory of the Jacobi identity for chromoelectric fields. Fol-
lowing this, Sec. IV is dedicated to three-cocycles associated
to the QCD quark charges and Gauss’ law generators. The
results of these sections are compared to the results derived
form perturbation theory in Sec. V. Conclusions are pre-
sented in Sec. VI.

II. DESCRIPTION OF THE METHOD

In this section we will generalize the method proposed in
@3# to study double commutators and the possibility of vio-
lation of Jacobi identity. The canonical evaluation of equal
time commutators sometimes presents ambiguities@1#, and it
becomes necessary to have an alternative way to define and
calculate these objects. This is achieved by the Bjorken,
Johnson, and Low@5# definition of the single commutators
~for a review, see@6#! which relies only on the construction
of the time-ordered product of the operators whose commu-
tator is desired. Specifically, the commutator ofA andB is
obtained from

lim
p0→`

p0E dnxeipx^auTA~x/2!B~2x/2!ub&

5 i E dn21xe2 ipW •xW^au@A~0,xW /2!,B~0,2xW /2!#ub&, ~4!

where p0 stands for the time component of the four-
momentum. The BJL definition~4! uses the time-ordered
productT, which ~in general! is not a Lorentz covariant ob-
ject @6#, while in field theory ~e.g., Feynman diagrams in
perturbation theory!, one calculates an associated covariant
object, usually denoted byT* . The difference betweenT and
T* is local in time, involvingd(x0) and its derivatives@6#,
which translates into a polynomial inp0 in momentum
space. Therefore, in Eq.~4! we can replaceT by T* provided
we drop all polynomials inp0. Equivalently, the Fourier
transform of the commutator is the residue of the 1/p0 term
in a Laurent expansion of the time-ordered productT* ~di-
vided by i ).

This approach can easily be extended to the study of
double commutators. We first define

C~p,q!5E dnxdnyei ~px1qy!^auTA~x!B~y!C~0!ub&,

~5!

and use the~formal! identities

]

]x0
TA~x!B~y!C~0!5T~ȦBC!

1d~x02y0!T$@A,B#~x0!C~0!%

1d~x0!T$B~y0!@A,C#~x0!%, ~6!

]

]y0
TA~x!B~y!C~0!5T~AḂC!

1d~y02x0!T$@B,A#~y0!C~0!%

1d~y0!T$A~x0!@B,C#~y0!%, ~7!

where the subscript in the commutators indicates the com-
mon time of the operators.

To simplify the resulting expressions we define

qLp5 lim
q0→`

q0 lim
p0→`;q05const

p0 ~8!

and obtain, after straightforward manipulations,

qLpC~p,q!5E dn21xdn21ye2 i ~pW •xW1qW •yW !

3^au@B~0,yW !,@C~0!,A~0,xW !##ub&,

pLkC~p,2p2k!5E dn21xdn21ye2 i ~pW •xW1qW •yW !

3^au@A~0,xW !,@B~0,yW !,C~0!##ub&,

kLqC~2q2k,q!5E dn21xdn21ye2 i ~pW •xW1qW •yW !

3^au@C~0!,@A~0,xW !,B~0,yW !##ub&,
~9!

wherek52p2q. These expressions imply

~qLp1pLk1kLq!C

5E dn21xdn21ye2 ipW •xW2 iqW •yW^auJ @A,B,C#uB&, ~10!

where, as above, J@A,B,C#5@A,@B,C##1@B,@C,A##
1@C,@A,B##.

The above manipulations suggest that wedefine2.
J @A,B,C# via ~10!. In the following we will use this defi-
nition of J.

Since we are interested in the large-momentum-transfer
behavior, it is appropriate to express the product of operators
in Eq. ~5! as a sum of nonsingular local operators with pos-
sibly singularc-number coefficients@4#,

E dnxdnyei ~px1qy!^auTA~x!B~y!C~0!ub&

2When canonical manipulations are well defined we will have
J @A,B,C#50.
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5(
i
ci~p,q!^auOi~0!ub&, ~11!

each term in the OPE should respect the same symmetries
~and possess the same internal quantum numbers! as the
Green’s function~5!. As for the single commutator case@3#,
it is more convenient to derive the various~double! commu-
tators from the covariant time-ordered productT* ; the dif-
ferenceT@A(x)B(y)C(z)#2T* @A(x)B(y)C(z)# is an op-
erator local inx2y, or y2z, or x2z. Thus, we will drop all
terms proportional to a polynomial inp0, q0, or k0.

Substituting Eq.~11! in Eq. ~10!, we obtain

E dn21xdn21ye2 i ~pW •xW1qW •yW !^auJ @A~0,xW !,B~0,yW !,C~0!#ub&

5(
i

~qLp1pLk1kLq!ci~p,q!^auOi~0!ub&. ~12!

It is worth pointing out that similar manipulations have
been used to provide constraints on the general form of cur-
rent anomalies@15#.

III. JACOBI IDENTITY FOR CHROMOELECTRIC
FIELDS

In this section we investigate the existence of three-
cocycles associated with the~chromo!electric fields of a
gauge theory, denoted byEi

a5F0i
a , whereFmn

a is the non-
Abelian gauge field strength. We will consider the four-
dimensional case first and then briefly consider the case of
two dimensions.

We evaluate the Jacobi operator for three chromoelectric
fields by studying the behavior of the correlator of three
strength tensorsT$Fm1n1

a1 (x1)Fm2n2

a2 (x2)Fm3n3

a3 (x3)% for the

case ofm r50, n r50.
Following Eq.~5!, we consider

Cm1n1m2n2m3n3

a1a2a3 ~k1 ,k2!

5E d4x1d
4x2e

i ~k1x11k2x2!

3T* $Fm1n1

a1 ~x1!Fm2n2

a2 ~x2!Fm3n3

a3 ~0!%, ~13!

which must be symmetric under (kr ,m r ,n r ,ar)
↔(ks ,ms ,ns ,as), and antisymmetric under (m r ,n r)
↔(n r ,m r) wherer ,s51,2,3. In order to present the expres-
sions symmetrically, we define

k352k12k2 . ~14!

The canonical mass dimension ofC equals22 which implies
that the only terms in the OPE which survive the double
limits are proportional to the identity operator:3

Cm1n1m2n2m3n3

a1a2a3 5cm1n1m2n2m3n3

a1a2a3 11•••, ~15!

where the remaining terms will not contribute to the final
result. The Wilson coefficients multiplying the identity op-
erator will be such that@cm1•••

a1••• #5(mass)22.

The coefficient functionc consists of a sum of terms each
of which takes the form

~16!

For the present calculation we must haven52(l21).
In restricting the values ofn, note first that all terms of the

form ki•kj can be turned into a linear combination of the
ki
2 by usingk11k21k350; also note that multiplying the
above expression by a dimensionless function will, at most,
modify the final result by an overall multiplicative constant,
thus we can replace~for l.m)

~polynomial of degreem in ki
2!

~polynomial of degreel in ki
2!

→
1

~polynomial of degreel2m in ki
2!
, ~17!

which implies that we can ignore all contributions toc con-
taining factors of the formki•kj in the numerator. Using this
and the fact that there are six ‘‘external’’ indices
m1,2,3,n1,2,3 and noting that we need to include at most one
e tensor, we find that we can restrict ourselves to
n50,2,4,6. We will consider the casen50 in detail; the
others can be treated in the same way.

The coefficient corresponding ton50 in Eq. ~16! takes
the form

(
p

tmp1np1mp2np2mp3np3
uap1ap2ap3S (

r
xrkpr

2 D 21

, ~18!

wherep denotes a permutation of 1,2,3; the summation is
over the 3! such permutations. The tensort is constructed
out of the metric and thee tensor. Since the tensoru takes
values on a Lie algebra, its general expression will be of the
form

uabc5u1f
abc1u2d

abc, ~19!

wheref denotes the~completely antisymmetric! group struc-
ture constants anddabc denotes the completely symmetric
object trTa$Tb,Tc% (Ta denote the group generators!.

Consider now the limitkrLks, abbreviatedrLs , and letu

be the~unique! indexÞr ,s. The polynomial in the denomi-
nator can be written

~ x̃r1 x̃u!kr
21~ x̃s1 x̃u!ks

212x̃ukr•ks ~u5” r ,s!, ~20!

where x̃r5xp21r and where we used( rxrkpr
2 5( rxp21rkr

2 .
Then, we have

3As in @3#, we assume that the sum of three double commutators is
a renormalization group-invariant quantity.
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rLs
1

( r x̃rkr
2 5

1

2x̃u
d x̃ s1 x̃u

, ~21!

wheredx1x8 denotes the Kroneckerd. The above expression
implies

~1L212L313L1!
1

( r x̃rkr
25

1

2 F d x̃21 x̃3

x̃3
1

d x̃31 x̃1

x̃1
1

d x̃11 x̃2

x̃2
G

5A~ x̃1 ,x̃2 ,x̃3!. ~22!

A is a completely antisymmetric function of thex̃ and so

A~ x̃1 ,x̃2 ,x̃3!5npA~x1 ,x2 ,x3!, ~23!

wherenp denotes the signature of the permutationp.
Note thatA vanishes unless the sum of two of the param-

etersx̃ is zero, which is not usually realized, within pertur-
bation theory. This can be understood by noting that expres-
sion ~18! will present poles wheneverAÞ0 and ki

0}kj
0

~neglecting the spatial components sinceki
0→`). In the vi-

cinity of such poles the Wilson coefficient behaves as
1/(ki

22h2kj
2) with h a real constant depending on thexr .

Such behavior is rarely generated within perturbation theory
@16#; the high-energy behavior of the triangle graph is, how-
ever, an exception@17#.

The term under consideration then contributes to the sum
of the three double limits the following quantity:

A~x1 ,x2 ,x3!(
p

nptmp1np1mp2np2mp3np3
uap1ap2ap3.

~24!

For the case of interestm r50 andn r5 i rÞ0 whence, of all
possible contributions tot, only the term containing thee
tensor contributes. This leads to a term proportional to the
three-dimensional antisymmetric tensor,

t0ip10ip20ip35 t̃e ip1ip2ip35 t̃npe i1i2i3 ~25!

for some constantt̃. The contribution to the limits then be-
comes

At̃e i1i2i3(p uap1ap2ap35 t̄e i1i2i3d
a1a2a3, ~26!

where we used the expression ~19! and
t̄56u2t̃A(x1 ,x2 ,x3). The terms containingf

abc in Eq. ~19!
do not contribute.

The other cases,n52,4,6, although more involved, yield
the same type of expressions. Collecting all results, we ob-
tain

J @Ei1

a1~xW !,Ei2

a2~yW !,Ei3

a3~zW !#5 c̄e i1i2i3Tr$T
a1,Ta2%Ta3

3d3~xW2yW !d3~xW2zW !, ~27!

wherec̄ is an undetermined constant. We note that this result
also satisfies the closure relation~3!. A similar expression
was obtained in Ref.@18#; we will compare the present ap-
proach with the one followed in this reference in Sec. IV.

For the two-dimensional case only the terms containing
Fab
b in the OPE contribute to the double limits. The coeffi-

cient functions take the same form as in Eq.~16! where now
we haven<4. After a short calculation, we obtain

J @Ea1~xW !,Ea2~yW !,Ea3~zW !%

5 c̄8ua1a2a3bEbd3~xW2yW !d3~xW2zW !,

~111dimensions!, ~28!

where uabcd is antisymmetric in its first three indices and
must be constructed out of traces of products of generators:

ua1a2a3b5 i @ f a1a2cdca3b1 f a2a3cdca1b1 f a3a1cdca2b#.
~29!

Using this expression, Eq.~28! is seen to satisfy Eq.~3!.

IV. THE THREE-COCYCLE IN CURRENT ALGEBRA

We now follow the above procedure to study the Jacobi
identity for three non-Abelian charges. We start from a
gauge theory with anti-Hermitian generators$Ta% and as-
sume that a set of current operatorsJm

a can be defined~we
will not need to specify the chirality properties of these cur-
rents!. We then consider the operator

Cmnr
abc~k1 ,k2!5E d4xd4yei ~k1x1k2y!

3T* $Jm1

a1 ~x!Jm2

a2 ~y!Jm3

a3 ~0!%, ~30!

which is symmetric under any permutation
(ks ,ms ,as)→(kr ,m r ,ar) for r ,s51,2,3. As in the previous
section we consider first the four-dimensional case and then
briefly state the results for the two-dimensional theory.

We now expandCmnr
abc in a series of local operators. The

terms that will contribute to the double limits are propor-
tional to the operators1, Fmn

a , F̃mn
a , Ja

b , (DaFbg)
b, and

(DaF̃bg)
b. The general expressions for arbitrary values of

the indices are quite involved and not very illuminating; we
will therefore consider only two cases: the terms propor-
tional to the unit operator~corresponding to the vacuum ex-
pectation value ofJ ), and the casem i50 which can lead to
violations of the Jacobi identity in the global algebra gener-
ated by the charges.

A. Terms proportional to 1

We consider the Wilson coefficient associated with the
unit operator first. Using the same arguments as for the pre-
vious section, we conclude that the Wilson coefficient should
take the same form as in Eq.~16! with l51,n53, explicitly

c15 (
r ,s,t,p

tmp1mp2mp3abg
rst kpr

a kps
b kpt

g urst
ap1ap2ap3

3S (
u

xu
rstkpu

2 D 21

. ~31!
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The evaluation of the three double limits is essentially the
same as for the previous case and we will omit the details.
We obtain

~1L212L313L1!c15( npt̄mp1mp2mp3i jn
d;rst kpr

i kps
j kpt

n da1a2a3

1( t̄mp1mp2mp3i jn
f ;rst kpr

i kps
j kpt

n f a1a2a3,

~32!

wherenp is the signature of the permutationp.
The tensorst̄d and t̄ f must be constructed out of the

metric and thee tensor. This implies that the result vanishes
when m i50, i.e., ^0uJ @J0

aJ0
bJ0

c#u0&50, as verified by ex-
plicit perturbative calculations@14#. If we consider the case
m i5 j i50, we obtain terms;kr

j 1ks
j 2kt

j 3 and;kr
j 1d j 1 j 2

kW s
2 pro-

portional to f a1a2a3 which also agree with the results ob-
tained in perturbation theory@14#.

B. Jacobi identity for the global current algebra

In studying violations of the Jacobi identity in the algebra
of the non-Abelian charges, we define

Qa5E d3xWJ0
a , ~33!

so that when calculatingJ @Qa1,Qa2,Qa3# @see Eq.~1!#, we
need consider only the casem1,2,350.

In the previous subsection we showed that there are no
contributions to the operatorJ @J0

a1J0
a2J0

a3# proportional to
the unit operator. The contributions proportional to the op-
eratorsF andF̃ have Wilson coefficients of the same form as
in Eq. ~16! with n52l21, l51,2,3. Whenm i50, the vari-
ous terms resulting from the three double limits are propor-
tional to kW r•EW

b or kW r•B
b, (r51,2,3). Thus, they will not

contribute to the global algebra~for which we setkW r50).
Next, we consider the Wilson coefficients associated with

Ja
b . These again take the form ~16! with
n52(l21), l51,2,3. As an example, we study thel51
case; the explicit form of the coefficient function is

cJ;m1m2m3a
a1a2a3b 5(

p
tmp1mp2mp3au

ap1ap2ap3bS (
r
xrkpr

2 D 22

,

~34!

where, as above,p denotes a permutation of 1,2,3 and
uabcd is constructed from the traces of four group generators
with all possible orderings. Evaluation of the contribution to
the three double limits is almost identical to the one de-
scribed above. As a result, we get

~1L212L313L1!cJ5A~x1 ,x2 ,x3!

3(
p

nptmp1mp2mp3au
ap1ap2ap3b,

~35!

with A defined in Eq.~22!.

Using thent000a5 t̄ga0 for some constantt̄, we find that
the term containingJm

a in Eq. ~30! contributes the operator

S t̄A(
p

npu
ap1ap2ap3bDQb ~36!

to J @Qa1
Qa2

Qa3
#. The n52 andn54 cases yield expres-

sions of the same form.
Finally, we consider the contributions proportional to the

operatorsDaFbg . In this case the coefficients are of the
form ~16! with n52(l21), l<4. Again, concentrating on
the charge operators, we requirem1,2,350 and obtain, fol-
lowing the procedure outlined in the previous section, the
contribution to the sum of the three double limits of the form

const3E d3xW~DmFm0!
b(

p
npu

ap1ap2ap3b. ~37!

An identical procedure can be followed forDF̃. The result-
ing expressions containDmF̃m0 and vanish by virtue of the
Bianchi identities.

Collecting the above results, we conclude that

J @Qa1,Qa2,Qa3#5F c̄JQb1 c̄DFS E d3xWDmFm0D bG
3(

p
npu

ap1ap2ap3b ~38!

for some constantsc̄J and c̄DF . Noting thatu must be con-
structed out of traces of generators and, using the Jacobi
identity for the generators, we obtain that this tensor takes
the form~29!. It is easy to see that Eq.~38! satisfies Eq.~3!.

If we use the equations of motionDmFmn5Jn and define
c̄5 c̄J1 c̄DF , we obtain

J @Qa1,Qa2,Qa3#5 c̄Qb@ f a1a2cdca3b1 f a2a3cdca1b

1 f a3a1cdca2b#. ~39!

For example, for SU~3!, we have J @Q1,Q2,Q3#
5( c̄A3/2)Q8.

We can follow exactly the same procedure for the Gauss’
identity operators

Ga5Qa2E d3xW~DmFmn!a, ~40!

assuming that these operators close into an algebra we obtain
that the Jacobi identity is violated,

J @Ga1,Ga2,Ga3#5 c̄8Gb@ f a1a2cdca3b1 f a2a3cdca1b

1 f a3a1cdca2b# ~41!
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for those cases wherec̄850. Note, however, that in the
physical subspace, which is annihilated by theGa, the Jacobi
identity is valid~this would not be true if theGa fail to close
into an algebra under commutation!.

C. 111 dimensions

For the two-dimensional case, some of the metric tensors
which appear in the Wilson coefficients can be replaced by
the antisymmetric tensoremn . Expressing the results in terms
of the left- and right-handed currentsJL,R5J07J1, we ob-
tain

^0uJ @Jh1
a Jh2

b Jh3
c #u0&5(

r
@cd;h1h2h3

r dabc1cf ;h1h2h3
r f abc#Kr ,

~42!

where hi5L,R and Kr denotes the spatial component of
kr .

Turning now to the global current algebra, one can easily
verify that the terms in the OPE containing the operators
F̃a do not generate violations of the Jacobi identity. In con-
trast, terms containing the operatorsJm

a do contribute. A
straightforward calculation~almost identical to the one de-
scribed in the case of four dimensions!, gives

J @Qa1,Qa2,Qa3#5S (
h5L,R

c̄hQh
bD @ f a1a2cdca3b1 f a2a3cdca1b

1 f a3a1cdca2b#, ~43!

whereQh
a5*dxJh

a .

V. PERTURBATIVE CALCULATIONS

The previous results can be compared to the results ob-
tained using perturbation theory. For the vacuum expectation
value of the operatorJ @JJJ# in four dimensions the results
are known@14# and agree with the results obtained in Sec.
IV. The origin of the nonvanishing contribution of such a
graph can be traced to the peculiar behavior of the disconti-
nuities of the form factors for the triangle graph@17#.

The situation is different when we consider the graphs
contributing toJ @EEE# calculated in Sec. III.

The expression forc̄ in Eq. ~27! can be derived from
perturbation theory by obtaining the corresponding Wilson
coefficients. To this end we first note that the vertices corre-

sponding to the~composite! operatorFmn are of the form
shown in Fig. 1.

The one-loop contributions are given by the graph in Fig.
2 which, however, does not contribute to the double limits.
In fact, it is a straightforward exercise to show that any graph
with one or more of the vertices of type~a! in Fig. 1 with one
gauge boson line will not contribute to the three limits. This
implies that the leading contributions toc̄ are at least
O(g7), whereg is the gauge coupling constant, and occur at
the three-loop level. We will not evaluate the corresponding
graphs in this paper.

The absence of perturbative contributions, at least at low
orders, to Eq.~27! contradicts the results obtained in@18#
where Eq.~27! was obtained by first calculating the anoma-
lous commutator of two electric fields and then using canoni-
cal commutation relations in the evaluation of the Jacobi
operator~1!. In that calculation the commutator of two elec-
tric fields was found to be proportional to the gauge field,
which raises questions about the gauge invariance of the
result.4 In view of these problems, we revisit calculation of
the commutator of two electric fields following the approach
described in@3#. We define

T mnab~p!5E d4xe2 ip•xFmn~x/2!Fab~2x/2!, ~44!

whose OPE takes the formtmnab(p)11••• where t is a
tensor constructed fromp, the metric, and thee tensor; the
term proportional to the unit operator is the only one that
contributes to the BJL limit.

The terms int that generate a nontrivial BJL limit are of
the formgmapnpb/p26 perms, andemnagpgp

b/p26 perms,
where ‘‘perms’’ denotes similar terms with the indices ex-
changed to insure antisymmetry underm↔n, anda↔b, and
symmetry under the exchange (mn;p)↔(ab;2p). The
commutator of two electric fields is obtained from the limit

lim
p0→`

p0t0i0 j , ~45!

which, using the above expression fort, is seen to vanish.
We therefore conclude that

@Ea
i ~xW /2!,Ea

j ~2xW /2!#50, ~46!

4A similar situation was discussed in@3#. Note, however, that
gauge invariance is not an issue when considering anomalous theo-
ries.

FIG. 1. Vertices in the composite operatorFmn .

FIG. 2. One-loop graph contributing to the Jacobi identity for
three electric fields.
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which disagrees with the results of@18#.
We believe that this discrepancy is due to the following.

In @18# the commutator was computed from the sea gull for
the current-current commutator by using Ampe`re’s law to
relate the current toĖi

a . The problem with this calculation is
that the sea gull is not unique, always being defined up to a
covariant local contribution@6#. So, if we follow the proce-
dure described in@18# but add to the sea gull the covariant
contribution

scovab
mn

~x,y!5
i j

24p2Tr $Ta,Tb%emnabAa
b~y!]bd~4!~x2y!,

~47!

the final result is the one in@18# multiplied by 12j. The
calculation using the OPE shows that, in fact,j51. This also
implies that the expression~27! cannot be derived from Eq.
~1! by evaluating some commutators canonically and others
using the BJL limit.

We now consider the perturbative evaluation of the Jacobi
identity for three currents. Following our approach we will
be interested in the Wilson coefficient for the termJa

b in the
OPE of the operatorT* $JJJ%. The one-loop contributions to
the OPE are obtained from the graphs in Fig. 3.

In this calculation ofJ the contribution from graphs~cf.
Fig. 3! 3~a! and 3~b! cancel each other; similarly graphs 3~c!
and 3~d! cancel, while the contributions of 3~f!, 3~g!, and
3~h! add up to zero. Graph 3~e! requires careful evaluation;
we chose to regulate the theory using a higher covariant de-
rivative method@19# in the gauge-boson sector.5 The propa-
gator then becomes ~in the Feynman gauge!
gmn /@p

2(12p2/L2)# and we obtain

jLi$ graph 3~e!%5
g2

16p2 ~lb@laj ,@lak,lai##lb!ln
L2

m2 ,

~48!

where$la% denote the~Hermitian! generators of the group,
g the gauge coupling constant, andm the fermion mass. It is
clear from the above expression that the sum of the three
limits vanishes by virtue of the Jacobi identity obeyed by the
group generatorsla. We therefore conclude that the constant
c̄J in Eq. ~38! is zero to this order~see@20# for a related
result!.

VI. CONCLUSIONS

We considered the simultaneous use of the operator prod-
uct expansion~OPE! and the Bjorken-Johnson-Low~BJL!
limit techniques to study double commutators and thus look
into possible violations of the Jacobi identity. The advan-
tages of the method are its nonperturbative nature, the fact
that all symmetries are manifest at each stage of the calcula-
tion, and its calculational ease. The disadvantages of the
method are that all results are determined up to unknown
multiplicative constants which could, in fact, be zero~in
which case no violations of the Jacobi identity appear!. We
note, however, that the vanishing of such constants would be
accidental in the sense that it is not mandated by any sym-
metry of the model.

We were able to isolate cases where there cannot be vio-
lations of the Jacobi identity. For example, the vacuum ex-
pectation value of̂ 0uJ @J0

a ,J0
b ,J0

c#u0&50 ~when there is no
symmetry breaking!, as discussed in Sec. IV A. As another
example, one can consider a four-dimensional gauge theory
with a scalar fieldf; in this caseJ @f,]mf,An#50 identi-
cally.

As mentioned above, the method proposed provides a
definitionof the Jacobi operatorJ @A,B,C# in Eq. ~1!. This
definition coincides with the naive expression~i.e., it van-
ishes! whenever the operatorsA, B, C, and their triple prod-
ucts are well defined. When regularization is needed, the
expression forJ need not vanish. The origin of this effect
can be seen as follows: the naive expression forJ contains
two terms of the formABC, one from the first double com-
mutator in Eq.~1!, and one from the last double commutator.
The the first equal time commutator, however, is evaluated
by first letting tB→tA and subsequentlytC→tA ; the second
commutator is obtained by takingtC→tA and thentB→tA .
The two limits need not commute leading to a nonzero con-
tribution. This can be interpreted as a lack of associativity,
(AB)CÞA(BC) which is related to the presence of a three-
cocycle. A naive definition ofJ would not exhibit this fea-
ture, the cost being that the operator products are ill defined.

As applications, we considered violations of the Jacobi
identity for three chromoelectric fields as well as for three
non-Abelian charges and for three Gauss’ law generators.
The resulting three-cocycles satisfy the closure relation~3!
and, therefore, imply that the corresponding group is not
associative. The general analysis relates the violations of the
Jacobi identity to poles in the Wilson coefficient functions at
large timelike momenta. Such poles are absent in most per-
turbative contributions leading toJ50; this is the case for
three chromoelectric fields and three current charges. The
one exception we have found corresponds to those perturba-
tive contributions generated by the triangle graph, which
generate nontrivial violations to the Jacobi identity of three
~spacelike! currents. The form of these perturbative results

5This regulator induces several new vertices in the theory, but this
does not affect the present calculation.

FIG. 3. One-loop graphs contributing to the Jacobi identity for
three currents.
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agrees with that obtained using the OPE and BJL limit ap-
proach.

The fact that general considerations lead to a violation of
the Jacobi identity implies, as mentioned previously, that a
well-defined representation of such operators does not exist
@11#. For example, a representation for the gauge field opera-
tors cannot be extended to include theEi

a ; these objects are
then to be defined in terms of their commutators with space-
time smeared operators.

It is also worth noticing that even if the Jacobi identity

fails, the corresponding group can still be made associative
by an appropriate quantization of the three-cocycle@10#.
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