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We test the capability of state-of-the-art lattice techniques for a precise determination of relativistic correc-
tions to the static interquark potential by use of SU~2! gauge theory. Emphasis is put on the short-range
structure of the spin-dependent potentials, with the lattice resolutiona ranging from a'0.04 fm ~at
b52.74! down toa'0.02 fm ~at b52.96! on volumes of 324 and 484 lattice sites. We find a new Coulomb-
like contribution to the long-range spin-orbit potentialV18 . @S0556-2821~97!05209-0#

PACS number~s!: 11.15.Ha, 12.38.Aw, 12.38.Gc, 12.39.Pn

I. INTRODUCTION

Quarkonia spectroscopy provides a wealth of information
and thus constitutes an important observational window to
the phenomenology of confining quark interactions. It has
been known for a long time that purely phenomenological or
QCD-inspired potential models offer a suitable heuristic
framework to understand the empirical charmonium (J/c)
and bottomonium (Y) spectra@1–3#.

On a more fundamental level, one would prefer to start
out from the basic QCD Lagrangian to solve the heavy
quarkonia bound state problem. Two alternative strategies
lend themselves for reaching this goal:~i! direct extraction of
the bound states on the lattice from aneffective nonrelativ-
istic lattice Lagrangian approximation~NRQCD! @4#; ~ii ! use
of an effective nonrelativistic Hamiltonian framework
through the intermediary of potentials determined from lat-
tice QCD.

Considerable efforts have been made recently to deter-
mine the quarkonia spectra within the NRQCD approxima-
tion of QCD @5#; the notorious technical problems to deter-
mine excited states in the Euclidean formulation have been
tackled with remarkable success. In the alternative
Schrödinger-Pauli setting, the technical problems are shifted
towards the lattice determination of 1/m2 corrections to the
potential. The spin dependent~SD! @6,7# and velocity-
dependent~VD! @8# contributions need to be extracted from
~Euclidian! time asymptotia of rather complex observables
that require renormalization and must obey constraints fol-
lowing from Lorentz symmetry@9,8#.

First attempts to compute the relativistic corrections to the
static potential on the lattice have been pioneered in the mid
1980s@10–13#. In the meantime tremendous improvements
have been achieved both in computational power and meth-

ods. The central potential has been determined with high
accuracy in quenched QCD@14–16# and, more recently, in
full QCD with two dynamical flavors of light Wilson sea
quarks@17#. In view of the general interest in the potential
formulation of the meson binding problem, renewed effort
should be made to unravel the structure of SD and VD po-
tentials. This will provide us with a better understanding of
the structure of the interaction in the intermediate distance
regime 0.15 fm,r,1 fm which is of tantamount impor-
tance to the binding problem.

As a first step within this program we shall present in this
paper a high statistics study of the spin-dependent forces in
SU~2! gauge theory. Though the two color formulation will
not yet allow to proceed to spectrum calculations we would
expect the key features of gluodynamical confinement to be
revealed. In a follow-up paper@18# ~referred to as II! we
shall apply our techniques to the SU~3! case.

The present article is organized as follows. In Sec. II, we
provide an introduction into the Hamiltonian formulation of
QCD binding problems, the expected theoretical scenario of
potentials as well as the lattice observables from which to
determine them. In Sec. III, useful lattice techniques will be
elaborated. In particular we shall discuss the systematic un-
certainties of the approach. The resulting SU~2! gauge poten-
tials will be presented in Sec. IV.

II. THE HEAVY QUARK POTENTIAL

A. Hamiltonian formulation of the meson binding problem

Starting from a Foldy-Wouthuysen transformation of the
Euclidean quark propagator in an external gauge field, the
asymptotic (T→`) expression^W(R,T)&}exp@2V̂0(R)T#
for expectation values of Wilson loops can be derived.
V0(r )5a21V̂0(R) denotes the potential between static
quarks, separated by a distancer5aR. R and T are the
spatial and temporal extents of the~rectangular! Wilson loop.
By perturbing the propagator in terms of the inverse quark
massesm1

21 andm2
21 around its static solution, one arrives
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at the semirelativistic Hamiltonian~in the c.m. system, i.e.,
p5p152p2 andL5L15L2),

H5(
i51
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2mi
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8mi
3D 1V~r ,p,L ,S1,S2!, ~1!

where the potential

V~r ,p,L ,S1,S2!5V0~r !1VSD~r ,L ,S1,S2!1VVD~r ,p!, ~2!

consists of a central part, SD@6,7#, and VD @8# corrections:1
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k51
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2 $pi ,pj ,Ti j %Weyl ~5!

with Si j5d i j Vb(r )2Ri jVc(r ) and Ti j5d i j Vd(r )

2Ri jVe(r ). The symbol$a,b,c%Weyl5
1
4 $a,$b,c%% denotes

Weyl ordering of the three arguments.V182V4 are related to
spin-orbit and spin-spin interactions,Vb2Ve to orbit-orbit
interactions, and the Darwin-like term that incorporates
¹2Va modifies the central potential.2 V182V4 and ¹2Va

2Ve can be computed from lattice correlation functions in
Euclidean time of Wilson loop-like operators. Pairs of the
potentials are related by Lorentz invariance to the central
potential@9,8#:

V28~r !2V18~r !5V08~r !, ~6!

Vb~r !12Vd~r !5
r

6
V08~r !2

1

2
V0~r !, ~7!

Vc~r !12Ve~r !52
r

2
V08~r !, ~8!

such that only six SD and VD potentials turn out to be truly
independent.

In the present SU~2! investigation, we restrict ourselves to
the spin-dependent terms. Note, that the Hamiltonian Eq.~1!
contains dimension six operators and thus is not renormaliz-
able. For this reason the theory—being truncated at order
1/m2—is only an effective one with validity range of small
gluon momenta~compared to the heavy quark masses!. This
very fact gave rise to a discrepancy between the Eichten-
Feinberg-Gromes formulas Eq.~3! and perturbative expan-
sions@21,19# in powers of the couplingg, where additional
logarithmic mass dependencies occurred from dimensional
regularization. The underlying problem is now solved and
one loop matching coefficients between the effective Hamil-
tonian and QCD have been obtained from HQET@20#.

B. Expectations on SD potentials

In addition to the exact constraint, Eq.~6!, derived by
Gromes@9#, some approximate relations between the SD po-
tentials are anticipated from exchange symmetry arguments.
We start from the standard assumption that the origin of the
central potential is due to vector and scalarlike gluon ex-
change contributions. Given the fact that a vectorlike ex-
change can at most grow logarithmically withr @22#, the
nature of the linear part of the confining potential can only be
scalar. As we will see,V28(r ) is short ranged, such that the
confining part only contributes toV18(r ). This leads us to
expectV28(r ) to be purely vectorlike. Under the additional
assumptions that pseudoscalar contributions can be neglected
and thatV18 does not contain a vectorlike contribution, one
ends up with the scenario of interrelations@9#,

V3~r !5
V28~r !

r
2V29~r !, ~9!

V4~r !52¹2V2~r !, ~10!

which of course has to be in agreement with leading order
perturbation theory. However, Eqs.~9!–~10! hold true for
any effective gluon propagator that transforms like a Lorentz
vector. In principle, to this order inm21, V3 , andV4 could
contain additional pseudoscalar pieces.

Tree-level continuum perturbation theory~see Appendix!
yields the following expectations for the central, spin-orbit,
and spin-spin potentials:

V0~r !52
e

r
, ~11!

V18~r !50, ~12!

V28~r !5
e

r 2
, ~13!

1Here, we just state the classical values for the couplings to the
potentials. Radiative corrections give rise to small deviations from
these tree-level results@19#. The corresponding one loop coeffi-
cients have recently been determined in the framework of heavy
quark effective theory~HQET! in Ref. @20#. In the unequal mass
case additional contributions appear, whose tree-level coefficients
are zero, that can also be parametrized in terms ofV18 andV28 .
2In following the convention of Ref.@8# we have included this

term intoVvd although it does not explicitly depend on the velocity.
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V3~r !5
3e

r 3
, ~14!

V4~r !58ped3~r !, ~15!

wheree5CFas andCF53/4 for SU~2!. Note, that combin-
ing the perturbative result onV28(r ) with the Gromes rela-
tion, Eq.~6!, and a funnel type parametrization of the central
potential@1#,

V0~r !52
e

r
1kr , ~16!

the first spin-orbit potential should take the form

V18~r !52k. ~17!

In the Appendix we shall also derive the corresponding
tree-level results for the lattice potentials. We will show that
an exact lattice relation betweenṼ18 and Ṽ28 and a linear
combination of the central potential, taken at different lattice
coordinates, in analogy to the Gromes relation does not exist.
However, the relation should be retrieved in the continuum
limit and approximately hold within the scaling region on the
lattice.

C. How to compute the potentials

In the potential picture, the quarks interact instanta-
neously through a potential that only depends on the dis-
tance, spins, and velocities of the sources, Eqs.~1!, ~3! and
~5!. All time dependence has been separated and implicitly
included into coefficient functions of various interaction
terms, the so called SD and VD potentials. These can be
computed by a nonperturbative integration over gluonic in-
teractions. Therefore, the SD and VD potentials incorporate a
summation over all possible interaction timest. One obtains
the following expressions in terms of expectation values in
presence of a gauge field background for the SD potentials
@6,7#:3

Rk

R
Ṽ18~R!52e i jk lim

t→`
E
0

t

dtt^^B̂i~0,0!Êj~0,t !&&W , ~18!

Rk

R
Ṽ28~R!5e i jk lim

t→`
E
0

t

dtt^^B̂i~0,0!Êj~R,t !&&W , ~19!

Ri j Ṽ3~R!52 lim
t→`

E
0

t

dtF ^^B̂i~0,0!B̂j~R,t !&&W

2
d i j
3

^^B̂~0,0!B̂~R,t !&&WG , ~20!

Ṽ4~R!52 lim
t→`

E
0

t

dt^^B̂~0,0!B̂~R,t !&&W . ~21!

With a→0, the above potentials should approach their con-
tinuum counterparts and rotational invariance should be re-
stored, Ṽ18(R)5a2V18(aR), Ṽ28(R)5a2V28(aR), Ṽ3(R)
5a3V3(aR), andṼ4(R)5a3V4(aR).

The expectation valuê̂ F1F2&&W is defined as

^^F1F2&&W5
^TrP@exp~ ig*]WdxmAm!F1F2#&

^TrP@exp~ ig*]WdxmAm!#&
, ~22!

where ]W denotes a closed path@the contour of a Wilson
loop W(R,T)#. P denotes path ordering of the arguments.
Following Huntley and Michael~HM! @13# we have chosen
the following discretized version of Eq.~22! for the case of
two color field insertions:

^^F̂1F̂2&&W52
^P@W~P12P1

†!~P22P2
†!#&^W&

^P@W~P11P1
†!#&^P@W~P21P2

†!#&
, ~23!

where the subscripts 1 and 2 represent the multi-indices
(n1 ,m1 ,n1) and (n2 ,m2 ,n2), respectively.ni are integer
valued four-vectors. The above ratio of ‘‘eared’’ Wilson
loops is visualized in Fig. 1. In order to avoid imaginary
phases and factorsg2a4 from Eqs. ~18!–~21!, we use the
following conventions for the electric and magnetic fields:

F̂mn5ga2Fmn , Êi5F̂ i4 , B̂i5
1
2 e i jk F̂ jk . ~24!

In what follows, we have chosenPmn(n) to be the aver-
age of the four plaquettes, enclosing the lattice pointn,

Pmn~n!5 1
4 @Pm,n~n!1Pm,n~n!1P2m,2n~n!1P2m,n~n!#

~25!

with

Pm,n~n!5Um~n!Un~n1m̂ !Um
† ~n1 n̂ !Un

†~n!, ~26!

whereU2m(n)5Um
† (n2m̂). This choice ofP makes Eq.

~23! correct up to ordera2, the discretization error of the
Wilson action, used for generating the gauge field back-
ground.

In practical computation, the temporal extentT of the
Wilson loopW within Eqs.~18!–~21! is adapted according to
the formulaT5t12Dt. We choose to keep the minimal
distance,Dt, between the ‘‘ears’’ and the spatial closures of
the Wilson loop fixed. Note, that, strictly speaking, Eqs.
~18!–~21! apply for the limit Dt→`. Our coordinates are

3We have put the expressions into a form that is more suitable for
lattice simulations. Via spectral decompositions of the underlying
correlation functions, equality of the expressions to those of Refs.
@6,7# can easily be shown.

FIG. 1. Nonperturbative renormalization prescription for eared
Wilson loops.
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such that the Wilson loopW(R,t12Dt) extends from
n452Dt to n45t1Dt into the temporal direction and from
n50 to n5R into the spatial directions. Physically speaking,
Dt represents the time we allow the gluon field to decay into
the ground state, after~before! creation~annihilation! of the
qq̄ state. Hence this deexcitation time must be considered as
an important control parameter of our measurements.

III. LATTICE SIMULATIONS

A. Simulation parameters

Since, apart fromV18 , all SD potentials are expected to be
short ranged, we will focus our attention onto short distance
properties, i.e., aim at the smallest lattice resolution possible
on our computers. The present simulations have been per-
formed onV5Ls

3Lt5164, 324, and 484 lattices atb52.74
andb52.96 which correspond to lattice spacingsa'0.041
anda'0.022 fm, respectively~Table I!. The number of in-
dependent Monte Carlo configurationsnconf, generated at
each set of parameters, is included into the table. The above
physical scales have been adjusted such that the string ten-
sion comes out to be4 Ak5440 MeV. Using such small
physical volumes, finite-size effects~FSE’s! have to be in-
vestigated. This will be done by comparing results obtained
on a 164 lattice with 324 results atb52.74. Finite lattice
resolution~i.e., finite a! effects are investigated by relating
results, obtained at the two different values of the coupling.

B. Updating algorithm

The numerical calculations are performed on lattices with
hypercubic geometry and periodic boundary conditions in all
four directions. Throughout the simulation the standard Wil-
son action

SW52b (
n,m.n

1

2
TrPm,n~n! ~27!

with b54/g2 has been used.
For the updating of the gauge fields, a hybrid of heatbath

and overrelaxation algorithms has been implemented@23#.
The Fabricius-Haan heatbath sweeps@24# have been ran-
domly mixed with the overrelaxation step with probability
1/14. The links have been visited in lexicographical ordering
within hypercubes of 24 lattice sites, i.e., within each such
hypercube, first all links pointing into direction 1ˆ are visited

site by site, then all links in direction 2ˆ etc. After at least
2000 heatbath thermalization sweeps, measurements are
taken every 100 or 200 sweeps atb52.74 andb52.96,
respectively, to ensure decorrelation. We find no signs of any
autocorrelation effects between successive configurations
within any of the measured observables.

C. Link integration

Statistical fluctuations have been reduced by ‘‘integrating
out’’ temporal links that appear within the Wilson loops and
the electric ears analytically, wherever possible. By ‘‘link
integration’’ we mean the following substitution@25#:

U4~n!→W4~n!5
*SU~2!dUUe

2bSn,4~U !

*SU~2!dUe
2bSn,4~U ! ~28!

with

Sn,m~U !52 1
2 Tr@UFm

† ~n!#, ~29!

and

Fm~n!5 (
nÞm

Un~n!Um~n1 n̂ !Un
†~n1m̂ !. ~30!

W4(n) is in general not an SU~2! element anymore.
In this way, timelike links are replaced by the mean value

they take in the neighborhood of the enclosing staples
F4(n). Only those links that do not share a common
plaquette can be integrated independently.

In the case of SU~2! gauge theory,W4(n) can be calcu-
lated analytically:

W4~n!5
I 2@b f m~n!#

f m~n!I 1@b f m~n!#
Fm~n!, ~31!

where fm(n)5Adet@Fm(n)#. I n denote the modified Bessel
functions.

D. Smearing

In order to achieve a satisfying overlap between the
quark-antiquark ground state and the state created by the
spatial parts of the Wilson loop, we have applied a smearing
procedure@26,27# by iteratively replacing each spatial link
Ui(n) within the Wilson loop, by a ‘‘fat’’ link:

Ui~n!→NS aUi~n!1(
jÞ i

U j~n!Ui~n1 ĵ !Uj
†~n1 î ! D , ~32!

with the appropriate normalizationN and free parametera.
We find satisfactory ground state enhancement with the pa-
rameter choiceniter5150 anda52. In Fig. 2 the resulting
central interquark potentials are displayed. In Fig. 3, the cor-
responding ground-state overlapsC0(R) are shown as a
function of the source separation atb52.74. As can be seen,
all overlaps are well above 0.9.

E. Spectral decomposition

In this section we will discuss the control of excited state
contributions at finite deexcitation timeDt. As explained

4This scale can only provide a rough orientation as here we are
simulating SU~2! gauge theory, not full QCD.

TABLE I. Simulation parameters. The physical scale has been
obtained fromAk5440 MeV.

b V5Ls
3Lt a/fm Ls /fm nconf

2.74 164 0.041 0.65 1290
2.74 324 0.041 1.30 200
2.96 324 0.022 0.70 204
2.96 484 0.022 1.05 67
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above, the spatial transporters within the Wilson loops have
been smeared to suppress such pollutions from the very be-
ginning, allowing us to work with moderate values ofDt.
This is vitally important, as statistical errors increase with
the size of the Wilson loop. In practice, we have decided to
keepDt fixed at a value suited for sufficient deexcitation and
to increase the temporal extent of the Wilson loop according
to T5t12Dt, i.e., with the separationt between the two
ears. We foundDt52 to be appropriate.5

Previous authors@11,12# have replaced the integrals over
interaction times by discrete sums. This results in cutoff er-
rors due to the finiteness oft as well as additional order
a2 integration errors. Both sources of systematic uncertain-
ties can be significantly reduced by exploiting transfer matrix
techniques. For illustration of such techniques we start from
the static potential which can be computed from Wilson
loops: at Euclidean timet50, a creation operator,

GR
†5q~0!U~0→R!q†~R! ~33!

with a gauge covariant transporterU(0→R) is applied to the
vacuum stateu0&. q†(R) creates a heavy quark spinor at
positionR. Theqq̄ pair is then propagated tot5T by static
Wilson lines in presence of the gauge field background, and
finally annihilated byGR . A spectral decomposition of the
Wilson loopPW5^W(R,T)& exhibits the following behavior
~T5e2aH denotes the transfer matrix,T un&5e2aEnun&!:

PW5
Tr~GRT TGR

†T Lt2T!

Tr~T Lt!

5
(m,nuemn~R!u2e2V̂n~R!Te2Êm~Lt2T!

(me
2ÊmLt

5(
n

udn~R!u2e2V̂n~R!T@11O~e2E1~Lt2T!!# ~34!

with

dn~R!5^0uGRun,R&, ~35!

emn~R!5^muGRun,R&. ~36!

un,R& is thenth eigenstate of aqq̄ pair, separated by a dis-
tanceR. Cn(R)5udn(R)u2 takes positive values, whenever
such a state has a nonvanishing overlap to the creation op-
eratorGR

† , applied to the vacuum.un& is thenth pure glue
eigenstate~glueball!. V̂n(R) denotes thenth excitation of the
qq̄ potential and the vacuum energyE0 has been set to zero.
E1 is the mass gap, i.e., the mass of theA1

1 glueball. Due to
its heavy mass andLt@T, such back-propagating terms can
be neglected to high accuracy. The overlaps are normalized,
(nCn(R)51, such that a ground-state overlapC0(R)'1
impliesCn(R)!1 for all n.0. C0(R) can be increased by
optimizing the path combinationU(0→R) within the cre-
ation operator Eq.~33! ~smearing!.

Now, let us define the operators

Fi5q
1

2i
~P i2P i

†!q†, ~37!

Gi5q 1
2 ~P i1P i

†!q†, ~38!

i.e., qP iq
†5Gi1 iFi , for the chromofield insertions within

the nominator and denominator of Eq.~23!. i5(ni ,m i ,n i)
denotes the position of the insertion as well as the color field
component. In the present case,ni either takes the position
0 or R. Let

f mn
i ~R!5^m,RuFi un,R&, ~39!

5This choice is based on the observation that the^^BB&&W corre-
lation functions~required for computation ofṼ4 which can be de-
termined most precisely! did not show any statistically significant
deviation at anyR andb value, in comparison to data obtained with
Dt51. The choiceDt52 is a posteriori justified also by the facts
that the potentials obey the Gromes relation@Eq. ~6!# and that all
results exhibit the expected scaling behavior under variation of the
lattice spacinga.

FIG. 2. Corrected central potentialVcorr2Vc in units of the
string tension atb52.74 andb52.96. The fit curve corresponds to
the parametrization Eq.~55! with parameter values as in the last
column of Table II.

FIG. 3. Ground-state overlaps as a function of the quark sepa-
rationR ~in lattice units! at b52.74.
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gmn
i ~R!5^m,RuGi un,R&. ~40!

Hermiticity of Fi andGi implies f mn
i* 5 f nm

i andgmn
i* 5gnm

i .
A spectral decomposition of a Wilson loopW(R,T) with

earsF1 andF2 inserted at timesn450 andn45t, respec-
tively ~the Wilson loop extends fromn452Dt to
n45t1Dt!, yields ~where we have neglected the back-
propagation of pure glue states!

PW
1252

1

4
^P@W~R,T!~P12P1

†!~P22P2
†!#&

5
Tr~GT DtF1T tF2T DtG†T Lt2T!

Tr~T Lt!

5e2V̂0T (
l ,m,n

Re@dldn* f lm
1 f mn

2 #e2~DV̂l1DV̂n!Dte2DV̂mt ~41!

with DV̂n5V̂n2V̂0 . For better readability, theR depen-
dence ofGR , V̂n(R), dn(R) as well asf mn

i (R) has been
omitted from the above equation.

Next, let us investigate the behavior of the Wilson loops
with one ear, appearing in the denominator of Eq.~23!. For
an insertion ofGi at timen450 or n45t we find

QW
i 5

1

2
^P@W~R,T!~P i1P i

†!#&

5
Tr~GT DtGiT t1DtG†T Lt2T!

Tr~T Lt!

5e2V̂0T(
m,l

Re~dldm* glm
i !e2~DV̂l1DV̂m!Dte2DV̂mt. ~42!

In combining the above expressions we finally obtain, for
^^F̂1F̂2&&W5PW

12PW /(QW
1 QW

2 ),

^^F̂1F̂2&&W5(
m

Dm
12e2DV̂mt@11Em

12e2DV̂1Dt1•••# ~43!

with

Dm
125

Re~ f 0m
1 f m0

2 !

g00
1 g00

2 ~44!

and

Em
125

Re@~d1 /d0!~ f 1m
1 f m0

2 1 f 0m
1 f m1

2 !#

Re~ f 0m
1 f m0

2 !
2
Re@~d1 /d0!g10

1 #

g00
1

2
Re@~d1 /d0!g10

2 #

g00
2 . ~45!

Again, all constants are understood to depend onR.
Note, that unwanted excited state contributions are sup-

pressed by the ratiod1 /d0 as well as bye
2DV̂1Dt. The small-

est value ofDt that appears within an integral over interac-
tion times will determine the reliability of the result. The
bosonic string picture expectation isDV̂1(R)5p/R @28#.
This has been qualitatively confirmed in numerical studies

@29,30#. Thus,Dt52 yields an excited state suppression by a
factor exp(22p/R) for large R, in addition to the ratio
d1 /d0 .

The creation operatorG† projects only onto states within
the A1g representation of the appropriate symmetry group
D4h @29#. The lowest continuum angular momentum to
which it couples isL50. The hybrid (L51) stateEu is the
next excitation. The combination of magnetic ears we use,
applied to aqq̄ state within theA1g representation, results in
a pureEu state which has no overlap withA1g , such that
D0
1250 within all correlation functions of interest, i.e., all

correlators decay exponentially with Euclidean timet. This
does not hold true for some of the VD potentials.

Unlike in the case of the central potential, where the sum
of the ~non-negative! overlap coefficientsCm is normalized
to 1, theDm

12 are not normalized and can be negative. How-
ever, due to invariance under time inversion,(mDm

1250 in
the case ofV18 andV28 since the correlation function has to
vanish att50. In combining Eq.~43! with Eqs.~20! or ~21!,
we obtain forṼ3 or Ṽ4

Ṽ3,4} (
m.0

E
0

`

dtDm
12e2DV̂mt5 (

m.0

Dm
12

DV̂m

~46!

with appropriate color field positionsn150,n25R and com-
ponentsm1 ,n1 ,m2 ,n2 . Equations~18! and ~19! yield

Ṽ1,28 } (
m.0

E
0

`

dttDm
12e2DV̂mt5 (

m.0

Dm
12

~DV̂m!2
. ~47!

From the above formulas it is evident that not only eigen-
values of the transfer matrix but also amplitudes enter in the
computation of the SD potentials, which illustrates where
renormalization constants come in, which are effectively re-
moved by the multiplication with (g00

1 g00
2 )21 @Eq. ~44!#. This

factor originates from the denominator of Eq.~23!. The pa-
rametersDm

12 andDV̂m can be fixed from a fit to Eq.~43!.
The hybrid potentialsV̂m can in principle also be determined
independently@29#. We leave this for future high-precision
studies on anisotropic lattices. For the time being, we evalu-
ate the integrals Eqs.~18!–~21! numerically where our inter-
polation method has been inspired by the multiexponential
result of the spectral decomposition, Eq.~43!.

F. Interpolation procedure

In order to determine the SD potentials, one must evaluate
integrals over correlation functions@see Eqs.~18!–~21!# that
depend on the interaction timet in a multiexponential way,
Eq. ~43!. In the following,Ci(t) will denote the two point
function which has to be integrated out in order to determine
Ṽi
(8) at a given value ofR. For i51,2, Ci(t) will be

weighted by an additional factort @Eqs.~18! and~19!#. Two
different methods of interpolatingCi(t) in between the dis-
cretet-values have been adopted.

~1! Wherever the quality of the signals allowed for rea-
sonable fits, the data has been fitted to a two-exponential
ansatz:

C~ t !5D1exp~2DV̂1t !1D2exp~2DV̂2t !. ~48!

5314 55GUNNAR S. BALI, KLAUS SCHILLING, AND ARMIN WACHTER



This amounts to three-parameter fits in case ofC1 andC2
(D11D250) and four-parameter fits forC3 andC4 . Unfor-
tunately, stable fits have only been possible for the region of
smallR where we do not necessarily expect the hybrid po-
tentials to agree with string model predictions.

~2! Alternatively we have performed a local exponential
interpolation:

Ci~ t8!5Ci~ t !e
2Bi ~ t !~ t82t !, Bi~ t !5 lnF Ci~ t !

Ci~ t11!G ~49!

for t<t8,t11 andCi(t)Ci(t11).0. Due to the multiex-
ponential character of the correlation function~or statistical
fluctuations! the sign might change within the given interval.
Thus, forCi(t)Ci(t11)<0, we interpolate linearly:

Ci~ t8!5Ci~ t !1@Ci~ t11!2Ci~ t !#~ t82t !. ~50!

ForC1(t) andC2(t) quadratical interpolations are performed
within the interval 0<t8,1 to account for
C1(0)5C2(0)50, where we demand continuity of the inter-
polating function and its derivative att51.

The interpolation procedure is illustrated in Figs. 4–7 for
some examples. As can be seen from Fig. 4 whereC1(t) is
displayed forR510, the quadratic interpolation fort,1
might differ significantly from the fit. However, this region
does only weakly contribute to the potential sinceC1(t) as
well asC2(t) are weighted by an additional factort. In Figs.
5 and 6,C2(t) is displayed forR52 andR54, respectively.
C4(t) at R52 changes its sign as can be seen from Fig. 7.

All statistical errors have been bootstrapped. For each po-
tentialṼi

(8), numerical integration has been performed up to a
value t5t i , with t i chosen such that the result is stable
~within statistical accuracy! under the replacement
t i→t i21 for all R. Subsequently, systematic cutoff errors
have been estimated from the exponential tail of fits to large
t data points but came out to be negligible in all cases when
compared to the statistical error from the numerical integra-
tion up to t i . Whenever the deviations between the fit and
interpolation results turned out to be significant~see, e.g.,
Fig. 7!, we have included them as a systematic uncertainty
into the final error on the potential value.

G. Renormalization and matching

The SD and VD potentials are computed from amplitudes
of correlation functions rather than from eigenvalues of the

FIG. 4. The correlation functionC1(t) for R510. The solid
curve denotes our interpolation while the dashed curve corresponds
to a three-parameter fit to the data.

FIG. 5. The correlation functionC2(t) for R52. The solid
curve denotes our interpolation while the dashed curve corresponds
to a three-parameter fit to the data.

FIG. 6. The correlation functionC2(t) for R54. The solid
curve denotes our interpolation while the dashed-dotted curve cor-
responds to a three-parameter fit to the data.

FIG. 7. The correlation functionC4(t) for R52. The solid
curve denotes our interpolation while the dashed curve corresponds
to a four-parameter fit to the data.
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transfer matrix. This gives rise to renormalizations in respect
to the corresponding continuum potentials. A different way
to illustrate the necessity of renormalization is the fact that
the color electric~magnetic! ears,

F̂mn5ga2Fmn5
1

2i
~Pmn2Pmn

† !@11O~a2!#, ~51!

explicitly depend on the lattice scalea and, therefore, dis-
cretization.

As in the low-energy regime of interest the renormaliza-
tion constants are likely to receive relevant high-order cor-
rections, we apply the nonperturbative HM renormalization
prescription@13# @cf. Eq. ~23! and Fig. 1# that is geared to
‘‘dividing out’’ the two amplitudesg00

1 and g00
2 @Eqs. ~44!,

~40!# from the naive lattice two point function. Terms that do
not depend on a dimensionful parameter~which is the dis-
tance between the sourcesR in the case of interest! will give
rise to divergences in the continuum limit. The idea behind
the HM procedure is to systematically remove such terms
from the correlation functions in order to arrive at residual
renormalization constants that are close to one.

In terms of perturbation theory, one can classify the re-
lated diagrams into pure self-interactions within the ears,
pure interactions within the Wilson loops, interactions be-
tween ears and the loop and—to higher orders—mixes
thereof. By our renormalization procedure all divergent dia-
grams that consist only of ear or Wilson loop self interac-
tions, cancel identically. In addition, many more complicated
contributions are removed. WithinV282V4 , all divergences
of ordersg6 and less vanish while in case ofV18 this holds
only true up to order6 g4, such that the renormalization con-
stants involved will only differ from identity on a three loop
@11O(g6)# or two loop @11O(g4)# level, respectively.

The spirit of the procedure is close to the one of Lepage-
Mackenzie who suggest to construct ‘‘tadpole improved’’

operators@31#. In fact, one finds the HM renormalization and
the tadpole improvement prescriptions to render near-equal
results~within 2%, as compared to overall renormalization
effects of 60%, at our presentb values!. The remaining dif-
ference between the ‘‘tadpole improved’’ operator and the
HM renormalized counterpart can be explained in terms of
more complicated diagrams involving interactions between
the ears and the timelike parts of the Wilson loop. We take
the small size of this difference as an indication that other
similar higher order terms, which we have not been able to
cancel out completely, can be neglected.

Direct numerical checks of the accuracy of the approach
are possible in two ways, namely~i! by varying the lattice
resolutiona and testing scaling of the results7 and ~ii ! by
comparing the data with the prediction onV282V18 from the
Gromes relation, Eq.~6!, between spin-orbit potentials and
the central potential~which does not undergo renormaliza-
tion!,

V08~r !5V2,ren8 ~r !2V1,ren8 ~r !. ~52!

In Fig. 8 we check our data onV282V18 in units of the string
tensionk against the force, obtained from a fit to the central
potential,V0(r ) @Eq. ~55!, Table II#. As can be seen, the two
data sets scale beautifully onto each other and reproduce the
central force up to lattice artifacts at smallr .

Renormalization is not a pure lattice problem in this case.
By truncating the 1/m expansion of the SU~2! Lagrangian at
a given order, the ultraviolet behavior is altered in respect to
the full theory. Therefore, the resulting effective Lagrangian
has to be matched to full SU~2! gauge theory at a renormal-
ization scalem5p/a giving rise to coefficientsci(m,m),
connecting an SU~2! potential at the heavy quark massm,
Vi(r ;m) to the corresponding potential, computed in the
framework of the effective theory at scalem, e.g.,
Vi(r ;m)5ci(m,m)Vi(r ;m). This problem, which becomes
visible beyond the tree level, has been treated in a systematic
manner for SD potentials by Chenet al. @20#. The Gromes
relation still remains valid@V08(r )5V28(r ;m)2V18(r ;m)#,
and constrains the matching coefficients whose one loop val-
ues have been derived in the reference. Unlike the renormal-

6Within Ṽ18 , gluon exchanges between the two ears that are not
canceled by the denominator of Eq.~23! contribute to the self-
energy.

7However, due to the running of the matching constants to the full
theory with the lattice scale, residual scaling violations of about
2.7% forV18 , andV28 and 5.5% forV3 andV4 are expected after
having rescaled the potentials by relative factors as large as
a2.74
2 /a2.96

2 '3.2 anda2.74
3 /a2.96

3 '5.7, respectively. Needless to say,
that we cannot resolve such tiny effects from our lattice data.

FIG. 8. Test of the Gromes relation Eq.~6!. The combination
V282V18 is compared to the central force as obtained from the pa-
rametrization Eq.~55!.

TABLE II. Fit parameters to the central potential@Eqs. ~53!–
~55!#.

Parameter b52.74 b52.96 Average value

K 0.00785~13! 0.00246~8!

e 0.2611~35! 0.2507~41! 0.2567~74!

f̂ 0.0598~33! 0.1114~76! 0.00541(38)/AK
d̂ 0.0437~50! 0.000108(12)/K

V̂c 0.4898~12! 0.4334~9!

g 0.1707~12! 0.1409~9!
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ization constants that relate the lattice potentials to the con-
tinuum counterparts, in this case, we can rely on perturbative
results, with the one loop correction being an effect of just a
few percent.

H. Finite volume effects

It is well known from previous simulations of SU~2!
gauge theory~see Ref.@26#! that finite-size effects~FSE’s!
on the central potential, computed from Wilson loops, and
the string tension are negligible within the numerical accu-
racy of typical lattice studies, as long as the spatial lattice
extent is kept larger thanLs'1 fm ~andLt>Ls!. However,
since the critical temperature of the deconfinement phase
transition corresponds to a scale of about 0.65 fm@32#, the
slope of the potential decreases rapidly as the extent of the
box is reduced below about 0.8 fm. Nonetheless, one might
expect the SD potentialsV282V4 to be affected much less by
the infrared cutoff than the central potential, as they are of
much shorter range than the latter@see Eqs.~11!, ~13!–~15!
or Eqs.~A39!–~A42! of the Appendix#.

All results atb52.74 have been obtained on a volume of
324 lattice sites which is comfortably large. In addition, we
have performed simulations on a 164 lattice, whose physical
extent approximately corresponds to that of a 324 lattice at
b52.96 ~Table I!, to estimate FSE’s on the individual po-

tentials. Atb52.96, we have determined the string tension
and parametrization of the central potential on a 484 lattice
which is sufficiently large to avoid serious FSE’s. The ex-
tracted scalea50.022 fm is in agreement with the expecta-
tion we have from the data collected in Ref.@26#. As ex-
pected, we find significant FSE’s on the central potential
obtained on a 324 lattice at thisb value as can be seen from
Fig. 9. The slope is reduced by about 35% on the small
volume while the string tension on a 164 lattice atb52.74
comes out to be smaller by as much as 50%, compared to
V5324.

At b52.96, the computer memory forced us to restrict
ourselves to the smaller volume (V5324) for the SD poten-
tials. In the following, we compare results obtained on the
164 lattice to V5324 results atb52.74 to justify the as-
sumption that theb52.96 SD potentials are not seriously
affected by FSE’s. As can be seen from Figs. 10–13, for all
SD potentials FSE’s are statistically insignificant. Differ-
ences between the constant long-range contributions toṼ18 ,
which we do expect, are hidden within the large statistical
errors of the^^Bi(0,0)Ej (0,t)&&W correlators. We conclude
that though a spatial lattice extent of 0.7 fm is too small to
extract the infinite volume central potential, it suffices for
extractingṼ282Ṽ4 as well as the short-distance contribution
to Ṽ18 .

FIG. 9. Comparison of the central potentialV̂0(R) at b52.96
between a 324 and a 484 lattice ~in lattice units!.

FIG. 10. Comparison between2Ṽ18(R) at b52.74 obtained on
a 164 lattice and a 324 lattice ~in lattice units!.

FIG. 11. Comparison betweenṼ28(R) at b52.74 obtained on a
164 lattice and a 324 lattice ~in lattice units!.

FIG. 12. Comparison betweenṼ3(R) at b52.74 obtained on a
164 lattice and a 324 lattice ~in lattice units!.
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IV. PHYSICS RESULTS

A. Getting started: The central potential

The lattice potential dataV̂0(R) has been computed from
smeared Wilson loops by the method described in Ref.@26#.
Our general strategy is to derive continuum parametrizations
of the lattice data points which will enable us to construct
derivatives and compare the results to theoretical expecta-
tions, such as the exact Gromes relation@Eq. ~6!# or the
approximate relations, Eqs.~9! and ~10!. The continuum
tree-level results on the central and SD potentials have been
presented in Sec. II B. Equations~11!–~15! and the corre-
sponding lattice expressions are derived in the Appendix
@Eqs. ~A6!, ~A33!, ~A25!, ~A26!, and ~A22!#, such that we
can correct the lattice data for the differences before attempt-
ing to fit them to a continuous parametrization.

Let

V̂corr~R!5V̂0~R!2gdV̂0~R! ~53!

with

dV̂0~R!5
1

R
24pGL~R! ~54!

be the tree-level corrected central potential. The lattice gluon
propagatorGL(R) is defined in the Appendix@Eq. ~A5!#.
The lattice central potential can be fitted to the ansatz@in-
cludingg of Eq. ~53! as a fit parameter#,

V̂corr~R!2V̂c5KR2
e

R
1

f̂

R2 2
d̂

R3 , ~55!

with self-energyV̂c , string tensionK, and Coulomb coeffi-
ciente. The 1/R2 and 1/R3 functional form of the corrections
corrections that account for the running of the coupling is not
meant to be physical but has just been introduced to effec-
tively parametrize the data within the given range ofR val-
ues. For theb52.74 data we have setd̂50, such that we
have five fit parameters in this case while we allow for six
parameters atb52.96. The resulting parameter values are
displayed in Table II. For technical reasons~link integra-
tion!, only potential values forR>& have been obtained,
such that the fits do not includeR51.

In Fig. 2, the potentialsV̂corr2V̂c from bothb values are
displayed in units of the string tensionK, as extracted from
the fits, together with a fit curve that corresponds to the~av-
eraged! values of fit parameterse50.257, f5a f̂
50.0054/Ak, andd5a2d̂50.00011/k. As can be seen, the
two data sets scale nicely onto each other which means that
the result applies to the continuum. Violations of rotational
invariance are removed by our correction method, even at
very small values ofR, and the data is well described by the
parametrization over the wholer range.

B. Spin dependent potentials

Our results on the first spin-orbit potentialV18 are dis-
played in Fig. 14~in units of the string tension!. The two
data sets show approximate scaling behavior. In addition to a
constant long range contribution2K as expected from Eq.
~17!, we find an attractive short range contribution that can
be fitted to a Coulomb-like ansatz,

Ṽ18~r !52
h

R2 2K. ~56!

For these one parameter fits we have constrained the constant
long-range part to the value of the string tension, as obtained
from the central potential. We find the values
h50.0474(58) andh50.0439(23) atb52.74 andb52.96
for this dimensionless parameter, respectively. Averaging
these two numbers yieldsh50.0458(25). Previously, there
has been no evidence for such a short-range contribution8

which amounts to about one fifth of thee/r contribution to
the central potential.

8However, from the results of Ref.@20# and the Gromes relation,
we can derive the following one-loop connection between results on
V18(r ;m i), obtained at lattice spacingsa15p/m1 and a25p/m2

@18#: V18(r ;m2)5V18(r ;m1)2{12@a(m2)/a(m1)#
9/25} V28(r ;m1),

which means~i! that such a contribution must exist and~ii ! that its
relative weight will increase with decreasing lattice spacing. How-
ever, the actual magnitude of this admixture is still surprising as the
prefactor of the admixture fromV28 is as small as about 0.03 under
a scale change by a factor 2.

FIG. 13. Comparison betweenṼ4(R) at b52.74 obtained on a
164 lattice and a 324 lattice ~in lattice units!.

FIG. 14. The spin-orbit potentialV18 , together with a fit curve of
the form2V18(r )5k1h/r 2 ~with h50.046! in units of the string
tension.
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Taking into account the running coupling improved effec-
tive parametrization of the central potential@Eq. ~55!# and
the Gromes relation, we expect

V28~r !5
e2h

r 2
2
2 f

r 3
1
3d

r 4
~57!

as opposed to the tree-level expectation Eq.~13!. The Cou-
lomb coupling has to be reduced by the amount that goes
into V18 .

If we assumeV18 to be generated exclusively from scalar-
like exchanges and neglect the possibility of pseudoscalar
contributions toV3 , Eq. ~9! leads us to modify Eq.~14! and
expect

V3~r !5
3~e2h!

r 3
2
8 f

r 4
1
15d

r 5
. ~58!

In Figs. 15 and 16, the spin-orbit potentialV28 and the
spin-spin potentialV3 are displayed, together with the expec-
tations Eqs.~57! and ~58!, respectively. In both cases, we
observe reasonable agreement between data and expecta-
tions. For small values ofR, scaling violations between the
two data sets from the differentb-values are evident as well
as ~in case ofV3! some deviations from the expectation. As

we will see in Sec. IV C, these differences can be explained
as finitea effects and understood in terms of lattice pertur-
bation theory.

In Fig. 17, the spin-spin potentialṼ4 is displayed in lattice
units for the twob values. An oscillatory behavior is ob-
served which is similar to that of the latticed function, ex-
pected on the tree level@Eq. ~A22! of the Appendix#. More-
over, the two data sets nearly coincide with each other, in
distinct violation of scaling. Higher order corrections to the
d function which might scale with an appropriate dimension
should account for the differences between the two data sets
at smallR.

C. Finite a aspects

In Figs. 18–20, we focus on the smallR behavior of the
SD potentialsṼ28 , Ṽ3 , andṼ4 . We restrict ourselves to dis-
play theb52.74 results only which are in qualitative agree-
ment with those obtained atb52.96. In addition to the data
~with error bars!, the tree-level perturbative expressions from
the Appendix are displayed@squares, Eq.~A33! for Ṽ28 , Eqs.
~A25! and~A26! for Ṽ3 , and Eq.~A22! for Ṽ4#. The normal-
ization constantsc5CFas have been obtained from fits to
the first seven data points. All three SD potentials are quali-
tatively described by these one parameter fits and deviations
of the data from a continuous curve can be understood in
terms of this lattice expectation.

The fit parameters are displayed in Table III. From the
analysis of the central potential, we would expect values
c5e2h'0.21 while the tree-level lattice expectations@with
lattice couplingas51/(pb)# arec50.087 andc50.081 for
b52.74 andb52.96, respectively. In agreement with the
perturbative expectation, allci come out to decrease with
increasingb. We find c5e2h as determined fromV0 and
V18 to be about 2.5 times larger than the naive tree-level value
while this factor reduces to 1.8 in case ofṼ28 and 1.3 for
Ṽ3 and Ṽ4 as these potentials are dominated by higher mo-
mentum gluon exchanges and thus more perturbative. In or-
der to investigate if the remaining differences between data
points and tree-level expectation~with renormalized cou-
pling ci as fit parameters! can be explained in terms of higher
order perturbative corrections, we attempt to model running
coupling effects.

FIG. 15. The spin-orbit potentialV28 in comparison to the con-
tinuum expectation from Eq.~57!.

FIG. 16. The spin-spin potentialV3 in comparison to the con-
tinuum expectation from Eq.~58!.

FIG. 17. The spin-spin potentialṼ4 for the two b values in
lattice units.
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The only additional diagrams that contribute toV0 at
O(g4) on the lattice as well as in the continuum are one loop
corrections to the gluon self-energy. The renormalization of
the coupling, emanating from these diagrams, has been com-
puted on the lattice for on-axis separations of the sources
@33,34#. One can account for this correction by building in a
running coupling constanta(q) into the gluon propagator in
momentum space@Eq. ~A5!#. Instead of attempting to com-
pute the correct lattice sum, we model this effect by the
corresponding continuum expression

a~ t !5
1

4pb0t
S 11

b

t
lnt1

b2

t2
lnt D 21

~59!

with

t5 lnS q̂2L2D , ~60!

b05
11N

48p2 , b15
34N

3~16p2!2
, b5

b1
b0
2 , ~61!

where we replace q2 by its lattice counterpart
q̂254( i sin

2(qi/2) to account for the periodic boundary con-
ditions @13,35#. The caseb50 corresponds to the one-loop

result. The difference to the correct lattice expression of Ref.
@34# is small.L is a QCD scale parameter that can be related
to the usual schemes via perturbation theory.

To O(g6), apart from a renormalization of the gluon
propagator, additional exchange contributions appear that
can be resumed into a single running coupling by renormal-
ization group arguments. These arguments do not apply to
the lattice where rotational invariance is broken, such that, in
addition to its absolute value, the direction ofq has to be
taken into account. Bearing this in mind, we will nonetheless
attempt to model two-loop effects by the continuum two-
loop running coupling of Eq.~59!.

In case of the SD potentialsV28–V4 , not only the gluon
self-energy contributes toO(g4) but also exchange diagrams
between the ears, incorporating a three gluon vertex. In the
continuum these can be resumed into an effective running
coupling. Due to this resummation, the scale parametersL i

~for Vi
(8)) can differ from each other. Again, we attempt to

model this effect by plugging the continuum running cou-
pling at scalesq̂ into the lattice tree-level expressions.

In case of the SD potentials, the infrared region is sup-
pressed by powers ofq @Eqs. ~A40!–~A42!#, such that the
form of the propagator in the nonperturbative domain has
little effect. To remove the unphysical pole atq5L, an in-
frared protection can be built in into the propagator by sub-
stituting t by tc5 ln(q2/L21c2) with a constantc. The small-
est momentum on the finite lattice isq5p/(aLs). We
choosec25max@0,e2p2/(aLsL)2# ~e is the Euler constant!

FIG. 18. Comparison of the lattice potentialṼ28 ~points with
error bars! to the tree level~open squares! and two-loop running
coupling improved~open circles! lattice perturbation theory.

FIG. 19. Same as Fig. 18 forṼ3 .

FIG. 20. Same as Fig. 18 forṼ4 .

TABLE III. The tree-level constantsc5CFas andL parameters
from the running coupling analysis ofV28 , V3 , andV4 .

Tree level c2 c3 c4

b52.74 0.17 0.12 0.13
b52.96 0.14 0.10 0.11

runninga L2 /Ak L3 /Ak L4 /Ak
1 loopb52.74 0.29 0.12 0.08
1 loopb52.96 0.25 0.10 0.07

2 loopb52.74 0.67 0.32 0.20
2 loopb52.96 0.61 0.29 0.18
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to guaranteet>1 with c2 being negligible at large momenta9

q'1/a.
We do not attempt to fit the central potential to its pertur-

bative expectation because this would require us to put a
1/q4-like piece into the propagator by hand to generate the
string tension. Also, as we found out, a large part of the
short-range structure is of scalar nature and would have to be
modeled separately. A running coupling analysis of the cen-
tral force in position space can be found in Refs.@15, 16#.

Fits of the one loop as well as the two-loop running cou-
pling improved expectations~with one free parameterL! to
the first 4–8 data points of each potential have been per-
formed. The results of the two-loop fits to 7 data points are
included into Figs. 18–20~circles, dotted lines!. The running
coupling improves agreement with the data in case ofV3 and
V4 . However, in case ofV28 , the tree-level result is favored
by the data, indicating that the continuum inspired running
coupling model is not universally applicable. Differences be-
tween one- and two-loop potential values are small, com-
pared to differences between tree level and one loop. The
L parameters remain stable against a variation of the fit
range within 10% in either case.

In Table III, results on theL parameters from our one and
two-loop fits are collected. We do not include any errors
since the fits are only thought to qualitatively describe the
data with reducedx2 values of typically 10–100. Note, that
small errors in the data points are amplified into large uncer-
tainties onL, due to the logarithmic dependence. We ob-
serve approximate scaling between the two sets ofL param-
eters atb52.74 andb52.96 within 15%. However, the two
loop values are larger by about a factor two than the corre-
sponding one loop values. At present, it is not entirely clear
whether this difference just represents the statistical and sys-
tematic uncertainty of the approach or whether it is caused
by an inadequate lattice modeling of two-loop running cou-
pling effects.

V. CONCLUSIONS AND OUTLOOK

We have devised methods to determine spin-dependent
interquark forces to high precision. From our high statistics
lattice simulation in SU~2! gauge theory, we find reliable
renormalized potentials with good scaling behavior. There is
clear evidence for a short-range scalar exchange contribution
in the long-range spin-orbit potential at the level of 20% of
the Coulomb part of the central potential. The other SD po-
tentials are found to be short ranged and are qualitatively
understood by means of perturbation theory.

An extension of the present investigations to the case of
interest, SU~3! gauge theory, and inclusion of velocity-
dependent corrections will be presented in II@18#. As a fur-
ther step, predictions from various models of QCD interac-
tions, such as dual QCD@36#, can be tested against lattice
results on the potentials. Also spectra, wave functions, and
decay constants for arbitrary~sufficiently large! values of the
quark masses can be computed just by solving a simple dif-

ferential equation@37#. Subsequently, these results can be
confronted with experiment or compared to results from di-
rect lattice NRQCD predictions@5# as a first-principles check
of the viability of the instantaneous approximation of the
potential picture.
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APPENDIX: WEAK-COUPLING EXPANSION
OF LATTICE POTENTIALS

In this appendix, we will elaborate the tree-level expecta-
tions for the SD potentials from a weak-coupling expansion
of SU~N! gauge theory on the lattice. Some of these expres-
sions have already been derived in Ref.@13# for on-axis
source separations. To illustrate the method, we start with the
central potential before considering SD corrections. We in-
clude the corresponding continuum expressions for com-
pleteness.

1. Central potential

A weak-coupling expansion of the Wilson loop
PW5^W(R,T)& yields, to lowest order ing2,

PW5expS 2CFg
2
1

2 (
m,n,m,n

Jm~m!G~m2n!dmnJn~n! D
~A1!

5expSCFg
2T(

t50

T21

[G~R,t !2G~0,t !] D ~A2!

for T@R, where Jm(m)561 if (m,m)P]W and
Jm(m)50 elsewhere. Only terms, extensive inT, have been
kept in Eq. ~A2!. For SU~2!, the color factorCF5(N2

21)/(2N) becomesCF53/4. G(n) denotes the lattice
gluon propagator in position space:

G~n!5
1

Ls
3Lt

(
qÞ0

eiqn

(mq̂m
2
, q̂m52 sinS qm

2 D ~A3!

with

qi5
2p

Ls
mi , mi52

Ls

2
11, . . . ,

Ls

2
,

q45
2p

Lt
m4 , m452

Lt

2
11, . . . ,

Lt

2
. ~A4!

Note, that we have neglected the zero-momentum contribu-
tion toW which is suppressed by a factorRT/(Ls

3Lt).
With

GL~R!5(
t
G~R,t !5

1

Ls
3 (
qÞ0

eiqR

( i q̂i
2

~A5!

9A posteriori, the infrared protection turned out to be unnecessary
on our lattice extentsaLs<1.3 fm since allL values that have been
obtained, resulted in the valuec50.
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and V̂0(R)52 limT→`ln@W(R,T)#/T, one obtains

V̂0~R!52CFg
2@GL~R!2GL~0!# ~A6!

→V̂c2CFas

1

R
~R→`! ~A7!

for the central potential with as5g2/(4p).
V̂c5CFg

2GL(0) denotes a self-energy constant.

2. Spin-spin potentials

To computeṼ18(R) –Ṽ4(R) from Eqs. ~18!–~21!, only
gluon exchanges between the two color field insertions~ears!
have to be considered to orderg2. Starting from

^P1P2&5exp~2CFg
2X12! ~A8!

with

X125 (
m,n,m,n

Jm
1 ~m!G~m2n!dmnJn

2~n!, ~A9!

whereJm
i (n)561 ~the sign depends on the orientation of

the link! if ( n,m)P]Pi andJm
i (n)50 elsewhere, we obtain,

to orderg2 @Eq. ~23!#,

^^F̃1F̃2&&W52
1

4
^~P12P1

†!~P22P2
†!&

52
1

2
~^P1P2&2^P1P2

†&! ~A10!

5sinh~CFg
2X12!5CFg

2X12,
~A11!

with F̃ j5 1/2i (Pj2Pj
†). Note, that the self-energy contri-

butions from interactions within one ear are not small,
though of orderg4, but a 60% contribution at ourb values.
However, such contributions are canceled by the denomina-
tor of Eq. ~23!. Within the potentialsṼ28–Ṽ4 , all orderg

6

self-interactions are canceled as well.
Let us consider the correlation function between two mag-

netic ears at positions (0,0) and (R,t) where we choose the
first ear to be within theî2 ĵ plane and the latter within the
î2 k̂ plane withiÞ j , iÞk. In this case, we obtain

V1252E
0

`

dt^^F̃1F̃2&&W52CFg
2~D j

~2 !Dk
~1 !

1d jkD i
~2 !D i

~1 !!GL~R!, ~A12!

where

D i
~1 ! f ~n!5 f ~n1 î!2 f ~n!, ~A13!

D i
~2 ! f ~n!5 f ~n!2 f ~n2 î! ~A14!

are forward/backward differences. Note, that

GL~R!52E
0

`

dtG~R,t !. ~A15!

Interactions between averages of four adjacent plaquettes
centered around lattice points0 andR, which we use for the
magnetic ears@Eq. ~25!#, can be derived from Eq.~A12! by
averaging over the 16 possible combinations of single
plaquette ears:

V12
A 52CFg

2~D j
~2 !Dk

~1 !1d jkD i
~2 !D i

~1 !!J j
~1 !Jk

~2 !J iGL~R!
~A16!

52CFg
2~D jDkJ i1d jkD i

2J j !GL~R! ~A17!

with

J i
~1 ! f ~n!5 1

2 @ f ~n!1 f ~n1 î!#, ~A18!

J i
~2 ! f ~n!5 1

2 @ f ~n!1 f ~n2 î!#, ~A19!

J i f ~n!5 1
4 @2 f ~n!1 f ~n1 î!1 f ~n2 î!#, ~A20!

D i f ~n!5 1
2 @ f ~n1 î!2 f ~n2 î!#. ~A21!

Note that J i5
1
2(J i

(1)1J i
(2))5J i

(1)J i
(2) , J iJ j5

1
2

(J i1J j ), D i5
1
2(D i

(1)1D i
(2))5D i

(1)J i
(2)5D i

(2)J i
(1) .

Since allJ andD are linear combinations of translations,
they commute with each other.

In the case ofṼ4 the two magnetic ears are parallel, i.e.,
j5k, such that a sum over the three possiblei , j combina-
tions @Eq. ~21!# yields

Ṽ4~R!522CFg
2(
i51

3

D i
2J i

~' !GL~R!

522CFg
2D~2!JGL~R! ~A22!

with

J i
~' !5

1

2 (
jÞ i

J j , J5
1

3 (
i

J i , ~A23!

D i
~2!5D i

~1 !D i
~2 ! , D~2!5(

i
D i

~2! . ~A24!

Note thatD i
25D i

(2)J i .
Correlators betweenBl andBm are required for computa-

tion of Ṽ3 . Since the direction ofB is orthogonal to the plane
of the corresponding plaquettes, we find the relationsk5 l ,
j5m and iÞ j , iÞk for lÞm. In case (l ,i , j ) are cyclic,
(m,i ,k) are automatically anticyclic, such that we obtain an
overall minus sign. We find, forjÞk from Eq. ~20!,10

RjRk

R2 Ṽ3~R!5CFg
2D jDkJ iGL~R!. ~A25!

For l5m5 i we obtain

10Obviously, this expression is only useful for off-axis separa-
tions, whereRjÞ0 andRkÞ0.
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3Rii Ṽ35CFg
2@2D i

2J i
~' !2D j

2~2Jk2J i !

2Dk
2~2J j2J i !#GL~R!

5CFg
2
1

2
@5D i

~2!J2D~2!J2D j
~2!Jk

2Dk
~2!J j #GL~R! ~A26!

with jÞ i , kÞ i , jÞk, Ri j5RiRj /R
22d i j /3.

It is easy to see that the above expressions amount to

V4~r !522CFas¹
2
1

r
58pCFasd

3~r ! ~A27!

and

V3~r !5CFas

r 2

r i r j
] i] j

1

r
53CFas

1

r 3
~A28!

or

V3~r !5CF~Rii !
21

1

3
~2] i

22] j
22]k

2!
1

r

5CFas~Rii !
21

3r i
22r 2

r 5
53CFas

1

r 3
~A29!

in the continuum limit.

3. Spin-orbit potentials

For computation ofṼ18 and Ṽ28 one has to take into ac-
count correlators between plaquettes in theî2 ĵ plane and
the î24̂ plane. To lowest order ing only exchanges between
the links oriented inî direction have to be taken into account.
With

2E
0

`

dtt@G~R,t !2G~R,t11!#5GL~R!, ~A30!

we obtain

W125E
0

`

dtt^^F̃1F̃2&&W52CFg
2
1

2
D i

~2 !GL~R! ~A31!

for the integrated correlation function. Averaging over the
relevant plaquette combinations finally yields

W12
A 52CFg

2 1
2D jJ iGL~R!. ~A32!

Thus, Ṽ18 vanishes to orderg2 while the leading order ex-
pression for the second spin-orbit potential@Eq. ~19!# is

Ṽ28~R!52
R

Rj
CFg

2D jJ j
~' !GL~R!. ~A33!

In the continuum this amounts to

V28~r !52CFas

r

r j
] j

1

r
5CFas

1

r 2
. ~A34!

4. Tree-level relations

Tree-level relations between the lattice potentials that are
analogous to Eqs.~6! and ~10! can be derived:

Ṽ28~R!5
R

Rj
D jJ j

~' !V̂0~R!1Ṽ18~R!, ~A35!

Ṽ4~R!52D i
~2!JV̂0~R!52(

i
D i SRi

R
Ṽ28~R! D . ~A36!

From Eq.~A35! one might attempt to generalize the Gromes
relation. Let us assume for the moment that a linear differ-
ence operator exists, such that

Ṽ28~R!2Ṽ18~R!5(
n
c~n!V̂0~R1n! ~A37!

with constantsc(n). Both sides of the above equation can be
expanded in orders ofg2. At orderg2 we find

(
n
c~n!GL~R1n!5

R

Rj
D jJ j

~' !GL~R!. ~A38!

The factorR/Rj illustrates thatc(n) has to depend onR, in
contradiction to the ansatz, i.e., nonlinear corrections have to
be included. Also, in our numerical studies we find the tree-
level relation Eq.~A35! to be substantially violated at small
R. Of course, the continuum Gromes relation as well as the
above lattice version are retrieved at largeR.

5. Continuum results

For continuum potentials one obtains the tree-level ex-
pressions

V0~r !52CFasE dq3

2p2

eiqr

q2
52CF

2as

p E
0

`

dq
sin qr

qr

52CF

as

r
, ~A39!

V28~r !52 iCFasE dq3

2p2

qr

q2r
eiqr

52CF

2as

p E
0

`

dqq2r j 1~qr !5CF

as

r 2
, ~A40!

V3~r !52CFasE dq3

2p2

~qr !2

q2r 2
eiqr

52CF

2as

p E
0

`

dqq2 j 2~qr !

53CF

as

r 3
, ~A41!
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V4~r !5CFasE dq3

2p2 eiqr5CF

2as

p E
0

`

dqq2
sinqr

qr

58pCFasd
3~r !. ~A42!

A linear confining contribution can be introduced by adding

a 1/q4 term toV0 in momentum space. The integrals for the
SD potentials are suppressed at lowq like q2 or q3, such that
we naively expect perturbation theory to be more reliable in
this case than for the ground-state potential. Also, finite-size
effects are expected to be smaller.V18 vanishes at the tree
level.
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