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We test the capability of state-of-the-art lattice techniques for a precise determination of relativistic correc-
tions to the static interquark potential by use of (38lUgauge theory. Emphasis is put on the short-range
structure of the spin-dependent potentials, with the lattice resoluioranging from a~0.04 fm (at
B=2.74 down toa~0.02 fm(at 3=2.96 on volumes of 32 and 4¢ lattice sites. We find a new Coulomb-
like contribution to the long-range spin-orbit potentig]. [S0556-282(97)05209-7

PACS numbgs): 11.15.Ha, 12.38.Aw, 12.38.Gc, 12.39.Pn

[. INTRODUCTION ods. The central potential has been determined with high
accuracy in quenched QC[14-1¢ and, more recently, in

Quarkonia spectroscopy provides a wealth of informatiorfull QCD with two dynamical flavors of light Wilson sea
and thus constitutes an important observational window ta@uarks[17]. In view of the general interest in the potential
the phenomenology of confining quark interactions. It hadormulation of the meson binding problem, renewed effort
been known for a long time that purely phenomenological orshould be made to unravel the structure of SD and VD po-
QCD-inspired potential models offer a suitable heuristictentials. This will provide us with a better understanding of
framework to understand the empirical charmoniudvi() the structure of the interaction in the intermediate distance
and bottomoniumY’) spectrag 1-3]. regime 0.15 fm<r<1fm which is of tantamount impor-

On a more fundamental level, one would prefer to startance to the binding problem.
out from the basic QCD Lagrangian to solve the heavy As a first step within this program we shall present in this
quarkonia bound state problem. Two alternative strategiepaper a high statistics study of the spin-dependent forces in
lend themselves for reaching this go@):direct extraction of SU(2) gauge theory. Though the two color formulation will
the bound states on the lattice from effective nonrelativ- not yet allow to proceed to spectrum calculations we would
istic lattice Lagrangian approximatigddNRQCD) [4]; (ii) use  expect the key features of gluodynamical confinement to be
of an effective nonrelativistic Hamiltonian framework revealed. In a follow-up papdn8] (referred to as )l we
through the intermediary of potentials determined from lat-shall apply our techniques to the &) case.
tice QCD. The present article is organized as follows. In Sec. I, we

Considerable efforts have been made recently to detelprovide_ an introduction into the Hamiltonian f_ormulation_of
mine the quarkonia spectra within the NRQCD approxima-QCD plndlng problems, the e_xpected theoretical scenario of
tion of QCD[5]; the notorious technical problems to deter- potentials as well as the lattice observables from which to

mine excited states in the Euclidean formulation have beegetermme them. m. Sec. il useful I.att|ce techniques W'." be
tackled with remarkable success. In the alternativeelaborated' In particular we shall discuss the systematic un-

Schralinger-Pauli setting, the technical problems are shifte _ertamtles of the approach. The resulting(3Lyauge poten-

towards the lattice determination ofmi? corrections to the lals will be presented in Sec. IV.

potential. The spin dependerSD) [6,7] and velocity-

dependentVD) [8] contributions need to be extracted from

(Euclidian time asymptotia of rather complex observables IIl. THE HEAVY QUARK POTENTIAL

that require renormalization and must obey constraints fol- A Hamiltonian formulation of the meson binding problem

lowing from Lorentz symmetry9,8]. ) )
First attempts to compute the relativistic corrections to the_ Starting from a Foldy-Wouthuysen transformation of the

static potential on the lattice have been pioneered in the miffuclidean quark propagator in an external gauge field, the

1980s[10-13. In the meantime tremendous improvementsasymptotic T—c) expression(W(R,T))xexd—Vo(R)T]

have been achieved both in computational power and metHor expectation values of Wilson loops can be derived.
Vo(r)=a Vy(R) denotes the potential between static
quarks, separated by a distanceaR. R and T are the

*Electronic address: bali@hep.ph.soton.ac.uk spatial and temporal extents of ttrectangular Wilson loop.
"Electronic address: schillin@theorie.physik.uni-wuppertal.de By perturbing the propagator in terms of the inverse quark
*Electronic address: wachter@hlrserv.hirz kfa-juelich.de massesn; * andm, * around its static solution, one arrives
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at the semirelativistic Hamiltoniatin the c.m. system, i.e., r 1
p=pi;=—p;andL=L;=L,), Vb(r)+2Vd(r)=EVé(r)—EVO(r), (7)
2 2 4
H=3 [ Mt g aa | +VIRLSIS), () r
= 2mI 8m; VC(r)+2Ve(r)=—§ Vo(r), (8)

where the potential

V(r!p!Lis_L!SZ)=V0(r)+VSD(r1L181!SZ)+VVD(r!p)! (2)

consists of a central part, §B,7], and VD[8] corrections:

such that only six SD and VD potentials turn out to be truly
independent.

In the present S(2) investigation, we restrict ourselves to
the spin-dependent terms. Note, that the Hamiltonian(Eq.
contains dimension six operators and thus is not renormaliz-

LS; LS,\ V§(r)+2Vvi(r) ablez. For this reason the theory—being truncated at order
Vgp(r,L,S.,S)) = (—7 —Z T 1/m“—is only an effective one with validity range of small
my gluon momentdcompared to the heavy quark magsdhis
/ i very fact gave rise to a discrepancy between the Eichten-
LSS Vo) | 515 Feinberg-Gromes formulas E) and perturbative expan-
mm; —r mam; sions[21,19 in powers of the coupling, where additional
S logarithmic mass dependencies occurred from dimensional
RijVs(r)+ ?J V4(r)> (3) regularization. The underlying problem is now solved and
one loop matching coefficients between the effective Hamil-
tonian and QCD have been obtained from HQRT].

with

5 B. Expectations on SD potentials
Ri=7z ~ 3 @ In addition to the exact constraint, E¢), derived b
' ) y

Gromed 9], some approximate relations between the SD po-
and tentials are anticipated from exchange symmetry arguments.
We start from the standard assumption that the origin of the
central potential is due to vector and scalarlike gluon ex-
change contributions. Given the fact that a vectorlike ex-
change can at most grow logarithmically with[22], the
nature of the linear part of the confining potential can only be
- mym, {Pi 2P} SijHweyi scalar. As we will seeY,(r) is short ranged, such that the

confining part only contributes t¥/;(r). This leads us to
(5) expectVy(r) to be purely vectorlike. Under the additional

assumptions that pseudoscalar contributions can be neglected

and thatV; does not contain a vectorlike contribution, one
with Sij= 8;;Vp(r) — Ri;V(r) and  T;;=6;;V4(r)  ends up with the scenario of interrelatioiés,

Ve(r). The symbol{a,b,c}ye,=i{a.{b,c}} denotes

Weyl ordering of the three argumeni$; —V, are related to Va(r)= 2( )
spin-orbit and spin-spin interaction¥,,— V. to orbit-orbit
interactions, and the Darwin-like term that incorporates
V2V, modifies the central potentialV;—V, and V2V, Va(r)=2V2Vy(r), (10

—V, can be computed from lattice correlation functions in hich of h be i ith leadi d
Euclidean time of Wilson loop-like operators. Pairs of theWhich of course has to be In agreement with leading order

potentials are related by Lorentz invariance to the centraP®rturbation theory. However, Eqe9)—(10) hold true for
potential[9,8]: any effective gluon propagator that transforms like a Lorentz

vector. In principle, to this order im™?, V3, andV, could
V(1) —Vi(r)=V4(r), (6) contain additional_pseudoscalar p'ieces. _
Tree-level continuum perturbation theoisee Appendix
yields the following expectations for the central, spin-orbit,
and spin-spin potentials:
'Here, we just state the classical values for the couplings to the

1
VVD(r:p):g m
1

+ 5 |[V3Vo(r) + V2V4(r)]
2

+E 2 {plvp]ale}WeyI

—Va(r), €)

potentials. Radiative corrections give rise to small deviations from e

these tree-level resulfsl9]. The corresponding one loop coeffi- Vo(r)=— P (13)
cients have recently been determined in the framework of heavy

quark effective theorfHQET) in Ref. [20]. In the unequal mass Vi(r)=0, (12)

case additional contributions appear, whose tree-level coefficients
are zero, that can also be parametrized in termg;oand V.
2In following the convention of Ref[8] we have included this Vi(r)= e (13)
; ; P ; 2 2
term intoV,4 although it does not explicitly depend on the velocity.
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3e
- | |
V= (44 E d Do P
e e
V,(r)=8med(r), (15) -
. < > < > < >
wheree=Crag and C=3/4 for SU?2). Note, that combin- 7

ing the perturbative result oW,(r) with the Gromes rela-
tion, Eq.(6), and a funnel type parametrization of the central

. FIG. 1. Nonperturbative renormalization prescription for eared
potential[1], p p p

Wilson loops.

e . . .
Vo(r)=——+«r, (16 \74(R):2|imf dt((B(O,O)B(R,)w. (21

T— 00

the first spin-orbit potential should take the form With a— 0, the above potentials should approach their con-

o tinuum counterparts and rotational invariance should be re-
Vi) =—«. (7 stored, Vi(R)=a?Vi(aR), Vj(R)=a?Vj(aR), Va(R)
=a’V;(aR), andV,(R)=a’V,(aR).

In the Appendix we shall also derive the corresponding The expectation valué(F ,F,))y is defined as
1v2//wW

tree-level results for the lattice potentials. We will show that
an exact lattice relation betweevi; and V5 and a linear (TrPLexp(ig f swdX,A L) F1F2])
combination of the central potential, taken at different lattice ((FiF2)w= (TrPLexXp(ig) mdX, AT (22
coordinates, in analogy to the Gromes relation does not exist. 9J awlXuPu
However, the relation should be retrieved in the continuumyhere 9w denotes a closed pafthe contour of a Wilson
limit and approximately hold within the scaling region on the |oop W(R, T)]. P denotes path ordering of the arguments.
lattice. Following Huntley and Michae{HM) [13] we have chosen
the following discretized version of E§22) for the case of
C. How to compute the potentials two color field insertions:

In the potential picture, the quarks interact instanta- (P[W(Hl—HI)(Hz—H;)]XW)
neously through a potential that only depends on the dis¢(F;F,))y=— : —,
tance, spins, and velocities of the sources, E#js.(3) and (PLW(IT+ 1) IXPLW(IT,+115) 1)
(5). All time dependence has been separated and implicitl
included into coefficient functions of various interaction . .
terms, the so called SD and VD potentials. These can pEN1-#1,v1) and (z,42,v5), respect_lvely.rji are Integer
computed by a nonperturbative integration over gluonic in_valued_ fogr-ve_ctors._ Th_e above ratio of ea_red_ W|_Ison
teractions. Therefore, the SD and VD potentials incorporate Jpops is visualized ;n 4':'9' 1. In order to avoid imaginary
summation over all possible interaction tinteOne obtains phase_s and facto_rg a’ from Egs. (.18)_(21)’ we use the.
the following expressions in terms of expectation values infollowmg conventions for the electric and magnetic fields:
prese;nce of a gauge field background for the SD potentials
[6,7]:

(23

zvhere the subscripts 1 and 2 represent the multi-indices

F.=0a8F,,, E=Fiy, Bi=iexFix. (29

R , A . In what follows, we have chosd ,,(n) to be the aver-
Ek Vi(R)szijk lim j dtt<<Bi(0,O)Ej(O,t)))W, (18 age of the four plaguettes, enclosing the lattice paint
70 0

H,u,v(n)z %[Pp,,v(n)—i_P,U,,v(n)_'— Pf,u,fv(n)—i_pr,,V(n)]
- . R 25
—kv;(R)zei-knmf dtt((B;(0,0)E;(R,1)))w, (19 @9
R Frmado ! with

- o D P..(N=U, (MU, (n+m)UL(n+»)Uln), (26
7000 whereU_M(n)=UL(n—,u). This choice ofll makes Eq.
S5 (23) correct up to ordem?, the discretization error of the
. <(I§(0,0)I§(R,t)>>w}, (200  Wilson action, used for generating the gauge field back-
3 ground.
In practical computation, the temporal extehtof the
Wilson loopW within Eqgs.(18)—(21) is adapted according to
3We have put the expressions into a form that is more suitable fofhe formulaT=t+2At. We choose to keep the minimal
lattice simulations. Via spectral decompositions of the underlyingdistance At, between the “ears” and the spatial closures of
correlation functions, equality of the expressions to those of Refsthe Wilson loop fixed. Note, that, strictly speaking, Egs.
[6,7] can easily be shown. (18)—(21) apply for the limit At—oo. Our coordinates are
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TABLE |. Simulation parameters. The physical scale has beersjte by site, then all links in direction &tc. After at least

obtained fromy/x =440 MeV. 2000 heatbath thermalization sweeps, measurements are
s taken every 100 or 200 sweeps @t=2.74 andB3=2.96,

B V=L,L, a/fm L,/fm Neont respectively, to ensure decorrelation. We find no signs of any

274 16 0.041 0.65 1290 autocorrelation effects between successive configurations

274 33 0.041 1.30 200 within any of the measured observables.

2.96 32 0.022 0.70 204

2.96 48 0.022 1.05 67 C. Link integration

Statistical fluctuations have been reduced by “integrating
out” temporal links that appear within the Wilson loops and
such that the Wilson loop/NV(R,t+2At) extends from the electric ears analytically, wherever possible. By “link
n,=— At to ny=t+ At into the temporal direction and from integration” we mean the following substitutig@5]:
n=0to n=R into the spatial directions. Physically speaking,

At represents the time we allow the gluon field to decay into fsu<2)dUU9_'BS“’4(U)

the ground state, aftébeforg creation(annihilation of the Ua(n)—W,(n)= fsu(z)dUe’BSM(U) (28)
qq state. Hence this deexcitation time must be considered as
an important control parameter of our measurements. with
_ t
lll. LATTICE SIMULATIONS Sh.u(U)== zTTUF ()], (29
A. Simulation parameters and

Since, apart fronv, all SD potentials are expected to be - R
short ranged, we will focus our attention onto short distance F.(n)= ZJ U, (MU, (n+»)U (n+pu). (30)
properties, i.e., aim at the smallest lattice resolution possible TH

on our computers. The present simulations have been PeW,(n) is in general not an S() element anymore.

formed onV=L}L,=16% 32, and 48 lattices at3=2.74 In this way, timelike links are replaced by the mean value
and 8=2.96 which correspond to lattice spacings 0.041 they take in the neighborhood of the enclosing staples
anda~0.022 fm, respectivelyTable ). The number of in-  F,(n). Only those links that do not share a common
dependent Monte Carlo configurationg,, generated at plaquette can be integrated independently.

each set of parameters, is included into the table. The above |n the case of S(2) gauge theoryW,(n) can be calcu-
physical scales have been adjusted such that the string tepted analytically:

sion comes out to Be\x=440 MeV. Using such small
physical volumes, finite-size effectsSE’S have to be in- [ Bf.(n)]
vestigated. This will be done by comparing results obtained f (M1 BF ()]
on a 18 lattice with 32 results atB=2.74. Finite lattice

resolution(i.e., finite a) effects are investigated by relating where f ,(n)=de{F,(n)]. |, denote the modified Bessel
results, obtained at the two different values of the couplingfunctions.

W,y(n)= Fu(n), (31)

B. Updating algorithm D. Smearing

The numerical calculations are performed on lattices with In order to achieve a satisfying overlap between the
hypercubic geometry and periodic boundary conditions in alquark-antiquark ground state and the state created by the
four directions. Throughout the simulation the standard Wil-spatial parts of the Wilson loop, we have applied a smearing
son action procedure[26,27] by iteratively replacing each spatial link

1 U;(n) within the Wilson loop, by a “fat” link:
Sw=-B2 5TrP,,(n) 27) L
nu>v U;(n)—N an(n)+J§i U(mUi(n+)U](n+) |, (32
with B=4/g? has been used.

For the updating of the gauge fields, a hybrid of heatbattith the appropriate normalizatiod and free parametet.
and overrelaxation a|g0rithms has been |mp|emerﬁm We find SatiSfaCtory grOUnd state enhancement with the pa-
The Fabricius-Haan heatbath swedpd] have been ran- rameter choiceme=150 anda=2. In Fig. 2 the resulting
domly mixed with the overrelaxation step with probability central interquark potentials are displayed. In Fig. 3, the cor-
1/14. The links have been visited in lexicographical ordering’esponding ground-state overlagi%(R) are shown as a
within hypercubes of 2 lattice sites, i.e., within each such function of the source separation/at2.74. As can be seen,

hypercube, first all links pointing into directionare visited ~ all Overlaps are well above 0.9.

E. Spectral decomposition

“This scale can only provide a rough orientation as here we are In this section we will discuss the control of excited state
simulating SW2) gauge theory, not full QCD. contributions at finite deexcitation timat. As explained
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FIG. 2. Corrected central potentid,,— V. in units of the FIG. 3. Ground-state overlaps as a function of the quark sepa-
string tension aB=2.74 andB8=2.96. The fit curve corresponds to rationR (in lattice unit3 at 8=2.74.
the parametrization Eq55) with parameter values as in the last

column of Table II. T(IRTTLT )
W= T

above, the spatial transporters within the Wilson loops have . .

been smeared to suppress such pollutions from the very be- S mnlemn(R)|?e” V(R Te™ En(L,~T)
ginning, allowing us to work with moderate values &f. - S o Enl

This is vitally important, as statistical errors increase with m
the size of the Wilson loop. In practice, we have decided to 9 _ 3
keepAt fixed at a value suited for sufficient deexcitation and = ; |dn(R)|?e ¥ M1+ O(e 5157 T)]  (34)
to increase the temporal extent of the Wilson loop according

to T=t+2At, i.e., with the separatioh between the two with

ears. We found\t=2 to be appropriate.

Previous authorfl1,12 have replaced the integrals over dn(R)=(0|T'g[n,R), (35
interaction times by discrete sums. This results in cutoff er-
rors due to the finiteness of as well as additional order emn(R)=(m|T'g[n,R). (36)

a? integration errors. Both sources of systematic uncertain- , ) - . )

ties can be significantly reduced by exploiting transfer matrixln'R> is thenth elgenstage of aq pair, separated by a dis-
techniques. For illustration of such techniques we start fronfanceRr. Ca(R)=dy(R)| ta_ke_s positive values, When_ever
the static potential which can be computed from WilsonSUCh a ftate h"?‘s a nonvanishing ovgrlap o the creation op-
loops: at Euclidean timé=0, a creation operator, eratorl'z, applied to the vacuunin) is the nth pure glue
eigenstatégluebal). V,(R) denotes thath excitation of the

qq potential and the vacuum energy has been set to zero.

E, is the mass gap, i.e., the mass of kg glueball. Due to

its heavy mass and_>T, such back-propagating terms can

) i i ) be neglected to high accuracy. The overlaps are normalized,
with a gauge covariant transportd(0— R) is applied to the 3,C.(R)=1, such that a ground-state overl@h(R)~1

vacuum statd0). q'(R) creates a heavy quark spinor at implies C,(R)<1 for all n>>0. Co(R) can be increased by

positionR. Theqq pair is then propagated to=T by static  gptimizing the path combinatiok)(0—R) within the cre-
Wilson lines in presence of the gauge field background, andtion operator Eq(33) (smearing,.

finally annihilated byl'g. A spectral decomposition of the Now, let us define the operators
Wilson loopP=(W(R,T)) exhibits the following behavior
(T=e 2" denotes the transfer matrig|n)=e~2En|n)):

I't=q(0U(0—R)q"(R) (33

Fi=a5(-11q! (37)
| 2| [ | '

Gi=a3(IL+11)q’, (38
®This choice is based on the observation that(¢&8B)),, corre- . + . ' . . -
lation functions(required for computation 07/4 which can be de- Le., gllig’=G+i7;, for the chromofield insertions within

termined most preciselydid not show any statistically significant ;[jhe nomlr;]ator and defn(;]ml_nator_of E@3). III :(nh"“‘ ’Ti) field
deviation at anyR andg value, in comparison to data obtained with enotes the position of the insertion as well as the color fie

At=1. The choiceAt=2 is a posteriorijustified also by the facts COMPONent. In the present casg,either takes the position
that the potentials obey the Gromes relati@. (6)] and that all 0 Or R. Let

results exhibit the expected scaling behavior under variation of the i
lattice spacinga. fin(R)=(m,R|F[n,R), (39
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gl (R)=(mR|G|n,R). (40)  [29,30. Thus,At=2 yields an excited state suppression by a
factor exp-2#/R) for large R, in addition to the ratio
Hermiticity of 7 andG; implies f % =f,, andg,=gnm- dy/do.
A spectral decomposition of a Wilson loa(R, T) with The creation operatdFT projects only onto states within

earsF; and F, inserted at times,=0 andn,=t, respec- the Aj4 representation of the appropriate symmetry group
tively (the Wilson loop extends fromn,=—At to  Dan [29]. The lowest continuum angular momentum to
n,=t+At), yields (where we have neglected the back- Which it couples is.=0. The hybrid { =1) stateE, is the
propagation of pure glue stajes next excitation. The combination of magnetic ears we use,
applied to agq state within theA,4 representation, results in
a purek, state which has no overlap with,q, such that
D$?=0 within all correlation functions of interest, i.e., all
correlators decay exponentially with Euclidean titmeThis
_ T(PTA AT RTATITST) does not hold true for some of the VD potentials.
B Tr(7T"7) Unlike in the case of the central potential, where the sum
of the (non-negativg overlap coefficient<C,, is normalized
:ef\A/OT 2 Rq:dldur\]—fllmmen]ef(A\Aq+A\A/H)AtefA\A/mt (42) to 1, theD%2 are not normalized and can be negative. How-
I,m,n ever, due to invariance under time inversidh,]Drlnzzo in
. A A A . the case ofV; andV, since the correlation function has to
with AV,=V,—V,. For better readability, th&® depen-  yanish at=0. In combining Eq(43) with Egs.(20) or (21),
dence ofl'r, Vi(R), dn(R) as well asfy,(R) has been e gbtain forvs or V,
omitted from the above equation.

1
Pi=— Z(PIW(R,T) (I~ [} (T~ T1)])

Next, let us investigate the behavior of the Wilson loops - o . D#Z
with one ear, appearing in the denominator of E2B). For V3 4% E f dtDﬁfe‘Ath: E = (46)
an insertion ofg; at timen,=0 or n,=t we find m=0 J0 m>0 AVp
1 with appropriate color field positions; =0,n,=R and com-
Q{N:§<P[W(R,T)(Hi+HiT)]> ponentsuq,v1,u2,v,. Equations(18) and(19) yield
12
THO TG THATTTLTy < 12 AU Din
= V7 50c dttD e m= — . 4
Tr(T5) L2 mE>O 0 m mzo (AV,)? @0

From the above formulas it is evident that not only eigen-
values of the transfer matrix but also amplitudes enter in the
computation of the SD potentials, which illustrates where
In_ combining the above expressions we finally obtain, forrenormalization constants come in, which are effectively re-
((F1F2))w= PP, /(QLQ2), moved by the multiplication withdj,g3) ~* [Eq. (44)]. This

factor originates from the denominator of E@3). The pa-
(EEDw=S Dﬁ]ze*Ath[l+E#ze*A{’lAt+---] 43 rametersI.Dﬁ]2 and gvm can pe fix.ed.from a fit to Eq(.43?.
m The hybrid potential¥/,, can in principle also be determined
independenthyf29]. We leave this for future high-precision
with studies on anisotropic lattices. For the time being, we evalu-
Re(fL f2 ate the integrals Eq$18)—(21) numerically where our inter-
1. Re(fomfio)

:e—floTE Re(dldsr;]g:m)e—(m"/,+A{/m)Ate—A(/mt_ (42)
m,|

polation method has been inspired by the multiexponential

m géogg0 (44) result of the spectral decomposition, E43).
and F. Interpolation procedure
R (d:/d)(fL §2 +fL f2 Rd (d. /d)at In order to determine the SD potentials, one must evaluate
12_ €.(d1/do)( m o om m)] _ Rel(dy . 0)910l integrals over correlation functiodsee Eqs(18)—(21)] that
Re(fomfmo) Y00 depend on the interaction tintein a multiexponential way,
Re (d. /d)q2 Eqg. (43). In the following, C;(t) will denote the two point
_ M_ (45)  function which has to be integrated out in order to determine
Y00 V(") at a given value ofR. For i=1,2, C;(t) will be

weighted by an additional facte{Eqgs.(18) and(19)]. Two

Again, all constants are understood to dependRon different methods of interpolatin@;(t) in between the dis-

Note, that unwanted excited state contributions are su
cretet-values have been adopted.

pressed by the ratid; /d, as well as bye™*V1%". The small- (1) Wherever the quality of the signals allowed for rea-
est value ofAt that appears within an integral over interac- sonaple fits, the data has been fitted to a two-exponential
tion times will determine the reliability of the result. The gngatz:

bosonic string picture expectation V,;(R)==/R [28]. . R

This has been qualitatively confirmed in numerical studies C(t)=Dexp—AVit)+Doexp—AV,t). (48



Ab Initio CALCULATION OF RELATIVISTIC.. .. 5315

55
0.0006 . . T y . . 0.001 . . . .
R=10 ro—
0.0005 |, imer?. — 4 0.0008 |
N it ---- ;
0.0004 | | - 0.0006 F //
0.0003 |-/ ] o 00004 Ff
i g ;
= ! O i
= ] ] 0.0002 f
& 0.0002 i -
0.0001 Ia N\ I [ ] 0
e -0. 2 E
0 . 0.000:
-0.0004 . L ' .
-0.0001 |- : 0 2 4 6 8 10
1 1 [ L 1 1 t

FIG. 6. The correlation functiorC,(t) for R=4. The solid
curve denotes our interpolation while the dashed-dotted curve cor-

FIG. 4. The correlation functiol©,(t) for R=10. The solid responds to a three-parameter fit to the data.

curve denotes our interpolation while the dashed curve corresponds
to a three-parameter fit to the data. The interpolation procedure is illustrated in Figs. 4—7 for
some examples. As can be seen from Fig. 4 wiidr@) is

This amounts to three-parameter fits in caseCofandC,  displayed forR=10, the quadratic interpolation far<1
(D;+D5,=0) and four-parameter fits f@, andC,. Unfor-  might differ significantly from the fit. However, this region
tunately, stable fits have only been possible for the region ofloes only weakly contribute to the potential sifcg(t) as
small R where we do not necessarily expect the hybrid po-well asC,(t) are weighted by an additional factorin Figs.
tentials to agree with string model predictions. 5 and 6,C,(t) is displayed foR=2 andR=4, respectively.

(2) Alternatively we have performed a local exponential C,(t) at R=2 changes its sign as can be seen from Fig. 7.
All statistical errors have been bootstrapped. For each po-

interpolation:
tential V{"), numerical integration has been performed up to a
Ci(t) 49) value t=7;, with 7; chosen such that the result is stable
Ci(t+1) (within  statistical accuragy under the replacement
7,—1;— 1 for all R. Subsequently, systematic cutoff errors
have been estimated from the exponential tail of fits to large

for t<t’<t+1 andC;(t)C;(t+1)>0. Due to the multiex-
t data points but came out to be negligible in all cases when

ponential character of the correlation functi@r statistical 1€ ¢ case
fluctuations the sign might change within the given interval. compared to the statistical error from the numerical integra-
tion up to r;. Whenever the deviations between the fit and

Thus, forC;(t)C;(t+1)=<0, we interpolate linearly:
interpolation results turned out to be significasee, e.g.,
Ci(t")=C;(t) +[Ci(t+1)—C;()](t' —1). (500  Fig. 7), we have included them as a systematic uncertainty
into the final error on the potential value.

Ci(t")=Ci(he BV, Bi(t)=In

For C,(t) andC,(t) quadratical interpolations are performed

within the interval 0<t’<1l to account for G. Renormalization and matching
C4(0)=C,(0)=0, where we demand continuity of the inter-
polating function and its derivative at1.

The SD and VD potentials are computed from amplitudes
of correlation functions rather than from eigenvalues of the

0.01 T T T T

0.015 T T T

R=2 —+—— 0
L L 001 | /f
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0.005 003 |/
-0.04 [ .
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Caft)

-0.05 v
0

-0.06 |
-0.07 L

FIG. 5. The correlation functiorC,(t) for R=2. The solid FIG. 7. The correlation functiorC,(t) for R=2. The solid
curve denotes our interpolation while the dashed curve correspondsirve denotes our interpolation while the dashed curve corresponds
to a three-parameter fit to the data. to a four-parameter fit to the data.



5316 GUNNAR S. BALI, KLAUS SCHILLING, AND ARMIN WACHTER 55

TABLE Il. Fit parameters to the central potent{&gs. (53)—

(55)].
Parameter B=2.74 B=2.96 Average value

i K 0.0078%13) 0.002468)

i— e 0.261135) 0.250741) 0.256774)

S f 0.059833) 0.111476)  0.00541(38){K

3 d 0.043750)  0.000108(12)K
Vv, 0.489812  0.43349)
g 0.170712) 0.14099)

-5 L 1 L L L
02 04 ?;(61,2 0.8 1 12 operatorg31]. In fact, one finds the HM renormalization and

the tadpole improvement prescriptions to render near-equal
results(within 2%, as compared to overall renormalization

FIG. 8. Test of the Gromes relation E(f). The combination effects of 60%, at our presegt values. The remaining dif-
V,—V] is compared to the central force as obtained from the paference between the “tadpole improved” operator and the
rametrization Eq(55). HM renormalized counterpart can be explained in terms of

more complicated diagrams involving interactions between
transfer matrix. This gives rise to renormalizations in respecthe ears and the timelike parts of the Wilson loop. We take
to the corresponding continuum potentials. A different waythe small size of this difference as an indication that other
to illustrate the necessity of renormalization is the fact thasimilar higher order terms, which we have not been able to
the color electridmagneti¢ ears, cancel out completely, can be neglected.

Direct numerical checks of the accuracy of the approach
are possible in two ways, nameli) by varying the lattice
resolutiona and testing scaling of the resultand (ii) by
comparing the data with the prediction ®3—V; from the

explicitly depend on the lattice scake and, therefore, dis- Gromes relation, Eq(6), between spin-orbit potentials and

E —nqa2 — 1 T 2
F,uv_ga F,u.v_z (H/LV_HMV)[l—’_O(a )]1 (51)

cretization. the central potentiafwhich does not undergo renormaliza-
As in the low-energy regime of interest the renormaliza-tion),
tion constants are likely to receive relevant high-order cor-
Y 9 Vé(r)zvé,rer{r)_vi,rer(r)- (52)

rections, we apply the nonperturbative HM renormalization
prescription[13] [cf. Eq. (23) and Fig. 1 that is geared o | Fig. g we check our data oviy—V; in units of the string
dividing out” the two amplitudesgg, and gy [Eds. (44),  tensionx against the force, obtained from a fit to the central
(40)] from the na|ve.latt|ce_ two point functlo_n. Terms thgt do potential,Vo(r) [Eq. (55), Table I. As can be seen, the two
not depend on a dimensionful parametenhich is the dis-  gata sets scale beautifully onto each other and reproduce the
tance between the sourcRsn the case of interegwill give  :entral force up to lattice artifacts at small
rise to divergences in the continuum limit. The idea behind  Renormalization is not a pure lattice problem in this case.
the HM procedure is to systematically remove such termsy truncating the 1/m expansion of the @ Lagrangian at
from the correlation functions in order to arrive at residualy given order, the ultraviolet behavior is altered in respect to
renormalization constants that are close to one. the full theory. Therefore, the resulting effective Lagrangian

In terms of perturbation theory, one can classify the reas to be matched to full §) gauge theory at a renormal-
lated diagrams into pure self-interactions within the ears;,ation scalep=m/a giving rise to coefficientsc;(w,m)
pure interactions within the Wilson loops, interactions be-connecting an S(2) potential at the heavy quark mass
tween ears and the loop and—to higher orders—mixeg, (;.m) to the corresponding potential, computed in the
thereof. By our renormalization procedure all divergent dia-tamework of the effective theory at scalg, e.g.
grams that consist only of ear or Wilson loop self interac-VA(r.m):CA(M m)V,(r: ). This problem, which l;ecom’es
. . . e . ] ’ ] ’ ] ’ . H
tions, cancel identically. In add,'t'on,- many more complicated, jsip|e heyond the tree level, has been treated in a systematic
contnbutlor;s are removeq. W|th.|‘vizl— V,, all dlvgrgences manner for SD potentials by Chest al. [20]. The Gromes
of ordersg® and less Xamsh while in case ®f t.hls_holds relation still remains valid[V{(r)=V5(r;u)—Vi(r;u)],
only true up to ordérg*, such that the renormalization con- and constrains the matching coefficients whose one loop val-
stants involved will only differ from identity on a three loop es have been derived in the reference. Unlike the renormal-
[1+0(g®)] or two loop[1+0(g*] level, respectively.

The spirit of the procedure is close to the one of Lepage

Mackenzie who suggest to construct “tadpole improved”
99 P P "However, due to the running of the matching constants to the full

theory with the lattice scale, residual scaling violations of about
_ 2.7% for V7, andV;, and 5.5% forV; andV, are expected after
Swithin V1, gluon exchanges between the two ears that are nobaving rescaled the potentials by relative factors as large as
canceled by the denominator of E(R3) contribute to the self- a3 -/a34¢~3.2 anda3,/a o«~5.7, respectively. Needless to say,
energy. that we cannot resolve such tiny effects from our lattice data.
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FIG. 9. Comparison of the central potentié}(R) at S=2.96 FIG. 11. Comparison betweey(R) at 3=2.74 obtained on a
between a 32and a 48 lattice (in lattice units. 16" lattice and a 32lattice (in lattice units.

ization constants that relate the lattice potentials to the corientials. At3=2.96, we have determined the string tension
tinuum counterparts, in this case, we can rely on perturbativend parametrization of the central potential on 4 Kfitice
results, with the one loop correction being an effect of just awhich is sufficiently large to avoid serious FSE'’s. The ex-
few percent. tracted scal@=0.022 fm is in agreement with the expecta-
tion we have from the data collected in RER6]. As ex-
H. Finite volume effects pected, we find significant FSE’s on the central potential
obtained on a 3Plattice at thisg value as can be seen from

It is well known from previous simulations of 38) g 9 The slope is reduced by about 35% on the small
gauge theorysee Ref[26]) that finite-size effectsFSE'S | /5j ;me while the string tension on a “Lettice atg=2.74

on the central potential, computed from Wilson loops, and,,nes out to be smaller by as much as 50%, compared to
the string tension are negligible within the numerical accu-,_

racy of typical lattice studies, as long as the spatial lattice
extent is kept larger thab,~1 fm (andL =L ;). However,
since the critical temperature of the deconfinement pha
transition corresponds to a scale of about 0.65 32|, the
slope of the potential decreases rapidly as the extent of th
box is reduced below about 0.8 fm. Nonetheless, one mighie. 1o by FSE’s. As can be seen from Figs. 10—13, for all
expect the SD potentialé,—V, to be affected much less by S :

the infrared cutoff than th iral potential th fD potentials FSE’s are statistically insignificant. Differ-

€ infrared cutolt than the central potential, as they are 04,.e5 petween the constant long-range contributions; to
much shorter range than the latjeee Eqs(11), (13)~(15) which we do expect, are hidden within the large statistical
or Egs.(A39)—(A42) of the Appendi}. pect, 9

All results atB=2.74 have been obtained on a volume of S1TOrS of the«Bi(O!O)Ei(Q’t)>>W correlators. We conclude
; X L iy that though a spatial lattice extent of 0.7 fm is too small to
32* lattice sites which is comfortably large. In addition, we

. . At e . extract the infinite volume central potential, it suffices for
have performed simulations on a“llattice, whose physical oV I he short-di buti
extent approximately corresponds to that of 4 gtice at  SXractingV,—Vy, as well as the short-distance contribution

B=2.96 (Table ), to estimate FSE’s on the individual po- 0 Vi.

At B=2.96, the computer memory forced us to restrict
ourselves to the smaller volum¥ € 32%) for the SD poten-
Sfials. In the following, we compare results obtained on the
16* lattice to V=32* results atB=2.74 to justify the as-
mption that the3=2.96 SD potentials are not seriously
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FIG. 10. Comparison betweenV/(R) at 8=2.74 obtained on FIG. 12. Comparison betweery(R) at =2.74 obtained on a
a 16 lattice and a 32 lattice (in lattice units. 16 lattice and a 32lattice (in lattice units.
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FIG. 13. Comparison bt_atweéﬂ(R) at §=2.74 obtained on a FIG. 14. The spin-orbit potentid; , together with a fit curve of
16" lattice and a 32lattice (in lattice unit3. the form —V;(r)=«+h/r? (with h=0.048 in units of the string

tension.
IV. PHYSICS RESULTS

A. Getting started: The central potential ~In Fig. 2, the potential¥/c,— V. from both 8 values are

) ) . displayed in units of the string tensidf, as extracted from
The lattice potential dat®o(R) has been computed from the fits, together with a fit curve that corresponds to(tne
smeared Wilson loops by the method described in . eraged values of fit parameterse=0.257 f=af

Our general strategy is to derive continuum parametrizations. 20
of the lattice data points which will enable us to construct 0.0054K/x, andd=a’d=0.00011k. As can be seen, the

derivatives and compare the results to theoretical expect%WO data sets scale nicely onto each other which means that
. he result applies to the continuum. Violations of rotational
tions, such as the exact Gromes relat{@y. (6)] or the bp

approximate relations, Eq¢9) and (10). The continuum invariance are removed by our correction method, even at
PP » B4 ’ : very small values oR, and the data is well described by the
tree-level results on the central and SD potentials have been

presented in Sec. Il B. Equatiori$1)—(15) and the corre- parametrization over the wholerange.
sponding lattice expressions are derived in the Appendix

[Egs. (A6), (A33), (A25), (A26), and (A22)], such that we B. Spin dependent potentials
can correct the lattice data for the differences before attempt- Qur results on the first spin-orbit potentisl; are dis-
ing to fit them to a continuous parametrization. played in Fig. 14(in units of the string tension The two
Let R ) ) data sets show approximate scaling behavior. In addition to a
Veord R)=Vo(R)—géVy(R) (53)  constant long range contributionK as expected from Eq.
(17), we find an attractive short range contribution that can
with be fitted to a Coulomb-like ansatz,
~ h
~ 1 ’ —
Vo(R)= 5 —47G(R) (54) Vin=-mz =K. (56)

be the tree-level corrected central potential. The lattice gluoffOr these one parameter fits we have constrained the constant
propagatorG, (R) is defined in the AppendifEq. (A5)]. long-range part to the value c_Jf the string tension, as obtained
The lattice central potential can be fitted to the angatz ~ 'om the central potential. We find the values

cluding g of Eq. (53) as a fit parametgr h=0.0474(58) anch=0.0439(23) a{3=2.74 andB=2.96
for this dimensionless parameter, respectively. Averaging

these two numbers yields=0.0458(25). Previously, there
, (55) has been no evidence for such a short-range contrifution
which amounts to about one fifth of tleér contribution to
the central potential.

Veord R) =V =KR—

2 o

f
+ o

Xl @

with self-energy\A/C, string tensiorK, and Coulomb coeffi-
ciente. The 1R? and 1R?3 functional form of the corrections
corrections that account for the running of the coupling is not .
meant to be physical but has just been introduced to effec- However, from the results of Reff20] and the Gromes relation,

. . L . we can derive the following one-loop connection between results on
tively pararr]netﬂze theddata W|trr]nn theégt;D/en range;bfxal- VI(r:u), obtained at lattice spacings =/, and ay=/u,
ues. For theB=2.74 data we have set=0, such that we 18]: Vi(r:M2)=Vi(r;M1)—{l—[a(uz)/a(,ul)]g’zs}Vé(r;m),

have five fit parameters in this case while we allow for siXyyhich meangi) that such a contribution must exist afi that its
parameters aB=2.96. The resulting parameter values arere|ative weight will increase with decreasing lattice spacing. How-
displayed in Table Il. For technical reasofigik integra-  ever, the actual magnitude of this admixture is still surprising as the
tion), only potential values foR=v2 have been obtained, prefactor of the admixture frond is as small as about 0.03 under
such that the fits do not include=1. a scale change by a factor 2.
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FIG. 15. The spin-orbit potential’, in comparison to the con- FIG. 17. The spin-spin potential, for the two 8 values in
tinuum expectation from Eq(57). lattice units.

Taking into account the running coupling improved effec-We Will see in Sec. IV C, these differences can be explained

the Gromes relation, we expect bation theory. -
In Fig. 17, the spin-spin potenti®, is displayed in lattice
e—h 2f 3d units for the twoB values. An oscillatory behavior is ob-
Vy(r)= -z 3T E (57 served which is similar to that of the lattigdfunction, ex-

pected on the tree leveEq. (A22) of the Appendi}. More-

as opposed to the tree-level expectation @48). The Cou-  OVer: the two data sets nearly coincide with each other, in

lomb coupling has to be reduced by the amount that goegistinct violation of scaling. Higher order corrections to the
into V/} . 6 function which might scale with an appropriate dimension

should account for the differences between the two data sets

If we assumeéV/; to be generated exclusively from scalar-
aE}t smallR.

like exchanges and neglect the possibility of pseudoscal

contributions toV3, Eq. (9) leads us to modify Eq.14) and o
expect C. Finite a aspects

In Figs. 1820, we focus on the sm&lbehavior of the
(58) SD potentialsv,, V3, andV,. We restrict ourselves to dis-
play the=2.74 results only which are in qualitative agree-
ment with those obtained #&=2.96. In addition to the data

In Figs. 15 and 16, the spin-orbit potentih and the  (with error bars, the tree-level perturbative expressions from
spin-spin potentiaV/; are displayed, together with the expec- the Appendix are displaydséquares, Eq(A33) for V5, Egs.
tations Eqgs.(57) and (58), respectively. In both cases, we A25) and(A26) forv3, and Eq(A22) forv4]. The normal-
observe reasonable agreement between data and expegigiiion constante=Cra, have been obtained from fits to
tions. For small values R, scaling violations between the 4 first seven data points. All three SD potentials are quali-
two data sets from the differefi-values are evident as well a4yely described by these one parameter fits and deviations
as(in case ofV3) some deviations from the expectation. AS ot the data from a continuous curve can be understood in
terms of this lattice expectation.

The fit parameters are displayed in Table Ill. From the
analysis of the central potential, we would expect values
c=e—h=~0.21 while the tree-level lattice expectatidmgth
lattice couplingas=1/(78)] arec=0.087 andc=0.081 for
B=2.74 andB=2.96, respectively. In agreement with the
perturbative expectation, al, come out to decrease with
increasingB. We findc=e—h as determined fronv, and
V; to be about 2.5 times larger than the naive tree-level value

while this factor reduces to 1.8 in case "7@ and 1.3 for

V3 andV, as these potentials are dominated by higher mo-
mentum gluon exchanges and thus more perturbative. In or-
04 02 03 04 05 06 07 08 09 1 der to investigate if the remaining differences between data
e’ points and tree-level expectatiqwith renormalized cou-
pling c; as fit parametejsan be explained in terms of higher

FIG. 16. The spin-spin potentiad; in comparison to the con- order perturbative corrections, we attempt to model running
tinuum expectation from Eq58). coupling effects.
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result. The difference to the correct lattice expression of Ref.
[34] is small.A is a QCD scale parameter that can be related

O(g*) on the lattice as well as in the continuum are one loopto the usual schemes via perturbation theory.

corrections to the gluon self-energy. The renormalization of To O(g®), apart from a renormalization of the gluon
the coupling, emanating from these diagrams, has been corpropagator, additional exchange contributions appear that
puted on the lattice for on-axis separations of the sourcesan be resumed into a single running coupling by renormal-
[33,34]. One can account for this correction by building in aization group arguments. These arguments do not apply to

running coupling constant(q) into the gluon propagator in
momentum spacfEq. (A5)]. Instead of attempting to com-

the lattice where rotational invariance is broken, such that, in
addition to its absolute value, the direction gfhas to be

pute the correct lattice sum, we model this effect by thetaken into account. Bearing this in mind, we will nonetheless

corresponding continuum expression

_ 1 b I il I - 59
a(t)_47rb0t + 1 Int+ 7 Int (59)
with
a2
t:|n(xz), (60)
_ 1IN b — 34N be b, 61
=282 1731602 P2 (62)
where we replace q> by its lattice counterpart

q°=43; sirf(g/2) to account for the periodic boundary con-
ditions [13,35. The caséb=0 corresponds to the one-loop

0.09 —+—————————————
0.08 |
0.07 -
0.06 - ;
0.05 F 1
0.04 b 1
0.03 } L
0.02 | 1
ol

o 1 L 1 1
1.5

V4H(R)

o

FIG. 19. Same as Fig. 18 f&3.

attempt to model two-loop effects by the continuum two-
loop running coupling of Eq(59).

In case of the SD potentialé,—V,, not only the gluon
self-energy contributes 1©(g*) but also exchange diagrams
between the ears, incorporating a three gluon vertex. In the
continuum these can be resumed into an effective running
coupling. Due to this resummation, the scale parameters
(for V(")) can differ from each other. Again, we attempt to
model this effect by plugging the continuum running cou-
pling at scaleg) into the lattice tree-level expressions.

In case of the SD potentials, the infrared region is sup-
pressed by powers af [Egs. (A40)—(A42)], such that the
form of the propagator in the nonperturbative domain has
little effect. To remove the unphysical pole@t A, an in-
frared protection can be built in into the propagator by sub-
stitutingt by t.=In(g%A2+c?) with a constant. The small-
est momentum on the finite lattice ig=/(aL,). We
choosec?=max0,e— 7?/(aL,A)?] (eis the Euler constant

TABLE lll. The tree-level constants=Crag andA parameters
from the running coupling analysis &f;, V3, andV,.

Tree level C, C3 Cs

B=2.74 0.17 0.12 0.13
B=2.96 0.14 0.10 0.11
running Ayl Azl\k A4k
1 loop B=2.74 0.29 0.12 0.08
1 loop B=2.96 0.25 0.10 0.07
2 loop B=2.74 0.67 0.32 0.20
2 loop B=2.96 0.61 0.29 0.18
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to guarante¢= 1 with c? being negligible at large momenita ferential equatior{37]. Subsequently, these results can be

g~1/a. confronted with experiment or compared to results from di-
We do not attempt to fit the central potential to its pertur-rect lattice NRQCD prediction$] as a first-principles check

bative expectation because this would require us to put af the viability of the instantaneous approximation of the

1/g*-like piece into the propagator by hand to generate thepotential picture.

string tension. Also, as we found out, a large part of the

short-range structure is of scalar nature and would have to be ACKNOWLEDGMENTS

modeled separately. A running coupling analysis of the cen- i ) _
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included into Figs. 18—2(xircles, dotted lines The running

coupling improves agreement with the data in casépand APPENDIX: WEAK-COUPLING EXPANSION

V,. However, in case o¥,, the tree-level result is favored OF LATTICE POTENTIALS

by the data, indicating that the continuum inspired running |, this appendix, we will elaborate the tree-level expecta-
coupling model is not universally gpplicable. Differences be+ions for the SD potentials from a weak-coupling expansion
tween one- and two-loop potential values are small, comy 5iyN) gauge theory on the lattice. Some of these expres-
pared to dlfferences_ between tree_ level anq one loop. Th§ions have already been derived in REF3] for on-axis

A parameters remain stable against a variation of the fiforce separations. To illustrate the method, we start with the
range within 10% in either case. central potential before considering SD corrections. We in-

In Table I, results on the parameters from our one and ¢|,de the corresponding continuum expressions for com-
two-loop fits are collected. We do not include any eITorSp|eteness.

since the fits are only thought to qualitatively describe the
data with reduceg? values of typically 10—100. Note, that
small errors in the data points are amplified into large uncer-
tainties onA, due to the logarithmic dependence. We ob- A Wweak-coupling expansion of the Wilson loop
serve approximate scaling between the two sets param-  Pw=(W(R,T)) yields, to lowest order iy,

eters afB=2.74 andB=2.96 within 15%. However, the two

1
loop values are larger by about a factor two than the corre Pw= ex;{ _Cngim,E J,,(m)G(m-— n)%w]v(n))

1. Central potential

sponding one loop values. At present, it is not entirely clear v

whether this difference just represents the statistical and sys- (A1)

tematic uncertainty of the approach or whether it is caused o1

by an inadequate lattice modeling of two-loop running cou-

oling effects. =ex ch2Tt:20 [G(R,t)—G(0,1)] (A2)
V. CONCLUSIONS AND OUTLOOK for T>R, where J,(m)==*1 if (mu)esW and

J,(m)=0 elsewhere. Only terms, extensiveTlin have been
We have devised methods to determine spin-dependelkgpt in Eq. (A2). For SU2), the color factorCg=(N?
interquark forces to high precision. From our high statistics—1)/(2N) becomesCr=3/4. G(n) denotes the lattice
lattice simulation in Sl(JZ) gauge theory, we find reliable gluon propagator in position space:
renormalized potentials with good scaling behavior. There is
clear evidence for a short-range scalar exchange contribution 1 glan A
q,=2 sir(

in the long-range spin-orbit potential at the level of 20% of G(n)= 3L E < a2

i q—“) (A3)
r q#0 E#q

2

the Coulomb part of the central potential. The other SD po- u
tentials are found to be short ranged and are qualitativelwth
understood by means of perturbation theory.

An extension of the present investigations to the case of oo
interest, SWY3) gauge theory, and inclusion of velocity- a=
dependent corrections will be presented if18]. As a fur-
ther step, predictions from various models of QCD interac- o L L
tions, such as dual QCIB6], can be tested against lattice Uu= My, My=——+1 ..., —
results on the potentials. Also spectra, wave functions, and L. 2 2
decay constants for arbitragufficiently large values of the
guark masses can be computed just by solving a simple di

mi, mi:_70-+l,...,70,

(A4)

Il}lote, that we have neglected the zero-momentum contribu-
tion to W which is suppressed by a factBfT/(L3L ).
With

%A posteriorj the infrared protection turned out to be unnecessary 1
on our lattice extental ,< 1.3 fm since allA values that have been G (R)= 2 G(R,t)= 3 2 ~
obtained, resulted in the valuge=0. t o 9#0 2Q

eiqR

(A5)
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and\A/o(R)= —lim7_.IN[W(R,T)]/T, one obtains Interactions between averages of four adjacent plaquettes
R centered around lattice poindsandR, which we use for the
Vo(R)=—Crg% G (R)—G.(0)] (AB6) magnetic ear$Eqg. (25)], can be derived from EqA12) by

averaging over the 16 possible combinations of single
- 1 plaquette ears:
—Ve=Cras 5 (R==) (AT)
= —CegX(ATAL + 8 A TAT) EMDETEG(R)
for the central potential  with as=0g%(47). (A16)
V.=Crg%G,(0) denotes a self-energy constant.

= —Crg’(AjAE + 8)ATEGL(R) (AL7)
2. Spin-spin potentials
=, =~ with
To computeV;(R)—V,4(R) from Egs. (18)—(21), only

gluon exchanges between the two color field insertieass ~(+>f f(m +f(n+ A18

have to be considered to ordgf. Starting from (n)=3Lfm+f(n I)] (A18)

(P1P2)=exp(— Crg®X1)) (A8) 2 (M) =3+ f(n-i)], (A19)

with =) =21[2f(n)+f(n+))+f(n—1)],  (A20)

— 2 ~ -~

Xlz—m,nyﬂvyJi(m)G(m—”)%Jv(”)' (A9) Aif(n)=3[f(n+D)—f(n—1)]. (A21)

whereJ!,(n)==1 (the sign depends on the orientation of Note that == WED+E(M)=EMED, E, Ef%

the link) |f(n ) € 9P; andJ',(n)=0 elsewhere, we obtain, (Ei+5)), -=-(A(+)+A( N=APE )_A.( 41008
to orderg? [Eq. (23)], Since allE and A are linear combinations of translations,

they commute with each other.
In the case oW, the two magnetic ears are parallel, i.e.,
j=Kk, such that a sum over the three possihlecombina-
1 tions[Eq. (21)] yields
== ((P1P2)—(P1P1)) (A10) 3

V4(R) = —2cpgzi§l AZEMGL(R)

== 1 + T
((F1F2))w=— 2 ((P1—Pp(P,—Py))

=sinh(Crg®X2) = Crg®Xy,,
(A11) =—-2Cg?APEG,(R) (A22)

with Fj= 1/20 (P;— P]T). Note, that the self-energy contri-
butions from interactions within one ear are not small,
though of orderg®, but a 60% contribution at oys values.
However, such contributions are canceled by the denomina-
tor of Eq. (23). Within the potentialsv,—V,, all orderg®
self-interactions are canceled as well.

Let us consider the correlation function between two mag- (2 A(FIA() (2)— (2)
netic ears at position<(0) and R,t) where we choose the AT=ATAL A _Z A (h24)
first ear to be within the—j plane and the latter within the

with

III

1
o E=3XE. (A2

I\)IH

22

i —k plane withi#j, i #k. In this case, we obtain Note thatAZ=A2E,;.
Correlators betweeB, andB, are required for computa-
V..=2 | dt(F.F = —Ceg2(ATIA) tion of V3. Since the direction dB is orthogonal to thg plane
12 f « 2)hw FO7(4) K of the corresponding plaquettes, we find the relatibad,

(=) x (+) j=mandi#j, i#k for |#m. In case (,i,j) are cyclic,
+ oA ATT)GL(R), (A12)  (m,i k) are automatically anticyclic, such that we obtain an

overall minus sign. We find, foj#k from Eq. (20),'°
where Vi inus sig i s g.(20

AP =f(n+i)—f(n), (A13) % V3(R)=Crg2A;AZG(R). (A25)

AT (ny=f(n)—f(n—i Al4
i THm=fm—fn=D (Al4) Forl=m=i we obtain
are forward/backward differences. Note, that

GL(R)=2fwdtG(R,t). (A15) 0bviously, this expression is only useful for off-axis separa-
0 tions, whereR;#0 andR,#0.



3R, Va=Crg?2A7E(" - AJ(25,~ E)

_Ak(ZEj_Ei)]GL(R)

1
=Crg? 5 [SAPE-APE-APE,

—APE(IGL(R) (A26)

It is easy to see that the above expressions amount to

1
V4(I’)=—2C,:asV2F=87TCFasé\3(r) (A27)
and
r2 1 1
V3(r)=Crasg P did; F:?’CFC“S 3 (A28)
it
or
1 1
Va(r)=Ce(Ri) ™t 3 (20F = =) ©
r2—r2
=Cras(R;) " =3Ceas 3 (A29)

in the continuum limit.

3. Spin-orbit potentials

For computation 01\/’ and V2 one has to take into ac-
count correlators between plaquettes in theaj plane and
thei — 4 plane. To lowest order ig only exchanges between

the links oriented in direction have to be taken into account.

With
Zdett[G(R,t)—G(R,H 1)]=G.(R), (A30)
0
we obtain

o ~~ 1
W= jo dtt<<FlF2>>W=_CngzAi(i)GL(R) (A31)

for the integrated correlation function. Averaging over the

relevant plaquette combinations finally yields

= —Crg?AEGL(R). (A32)

Thus,\~/1 vanishes to ordeg? while the leading order ex-
pression for the second spin-orbit potenfiaf. (19)] is

Vi(R)=~ = Ceg?AE[VGL(R).  (A33)
J

In the continuum this amounts to
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r
—Cras — 4, (A34)

Vy(r)= — 3 —=Cras 3.
J

r

4. Tree-level relations

Tree-level relations between the lattice potentials that are
analogous to Eq€6) and(10) can be derived:

R —(L 9 vl
AEfVo(R)+VI(R),

Vj(R)= R (A35)

V4(R)=2APEVy(R) = 2ZA( VZ(R)) (A36)

From Eq.(A35) one might attempt to generalize the Gromes
relation. Let us assume for the moment that a linear differ-
ence operator exists, such that

ViR-Vi(R)=Z c(nVo(R+n)  (A37)

with constant(n). Both sides of the above equation can be
expanded in orders a?. At orderg? we find

> c(nG

n

(A38)

(R+n)—— AE{YGL(R).

The factorR/R; illustrates that(n) has to depend oR, in
contradiction to the ansatz, i.e., nonlinear corrections have to
be included. Also, in our numerical studies we find the tree-
level relation Eq(A35) to be substantially violated at small
R. Of course, the continuum Gromes relation as well as the
above lattice version are retrieved at lafge

5. Continuum results

For continuum potentials one obtains the tree-level ex-
pressions

dg® e'r 2as (» singr
VO(r)__CFasf 22 fo dq
Qg
=-Cg r (A39)
, . do® ar
Vz(r)z—ICFasf ﬁqTr elar
CY
=-C _f dqofrj(qr)= CF_2 (A40)
do? (ar)?
Va(r)= CFasf 202 Z ar
205 (= )
=—Ck —Sf dgc?jx(ar)
7 Jo
—3CF—3S (A41)
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3

) 2a5 (= singr
V4(r):CFasJ 272 e'9=Ce ﬂ_s jo dgof qr
=87Crasd(r). (A42)
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a 14* term toV, in momentum space. The integrals for the
SD potentials are suppressed at lgwke g2 or g, such that

we naively expect perturbation theory to be more reliable in
this case than for the ground-state potential. Also, finite-size
effects are expected to be smalldf; vanishes at the tree

A linear confining contribution can be introduced by addinglevel.
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