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PACS number~s!: 11.10.St, 13.60.Hb

I. INTRODUCTION

In recent years many attempts have been made to under-
stand the nucleon structure functions measured in lepton
deep-inelastic scattering~DIS!. Although perturbative QCD
is successful in describing the variation of structure functions
with the squared momentum transfer, their magnitude and
shape is governed by the nonperturbative physics of compos-
ite particles, and is, so far, not calculable directly from QCD.

A variety of models has been invoked to describe nucleon
structure functions. Bag model calculations for example,
which are driven by the dynamics of quarks bound in a
nucleon bag, quite successfully describe nonsinglet unpolar-
ized and polarized structure functions~see, e.g.,@1,2# and
references therein!. However, such calculations are not rela-
tivistically covariant.

A covariant approach to nucleon structure functions is
given by so-called ‘‘spectator models’’@3–5#. Here, the
leading twist, nonsinglet quark distributions are calculated
from the process in which the target nucleon splits into a
valence quark, which is scattered by the virtual photon, and a
spectator system carrying baryon number 2/3. Furthermore,
the spectrum of spectator states is assumed to be saturated
through single scalar and vector diquarks. Thus, the main
ingredient of these models are covariant quark-diquark ver-
tex functions.

Until now, vertex functions have been merely param-
etrized such that the measured quark distributions are repro-
duced, and no attempts have been made to connect them to
some dynamical models of the nucleon. In this work we
construct the vertex functions from a model Lagrangian by
solving the Bethe-Salpeter equation~BSE! for the quark-
diquark system. However, we do not aim at a detailed, quan-
titative description of nucleon structure functions in the
present work. Rather, we outline how to extract quark-
diquark vertex functions from Euclidean solutions of the
BSE. In this context several simplifications are made. We
consider only scalar diquarks as spectators and restrict our-

selves to the SU~2! flavor group. The inclusion of
pseudovector diquarks and the generalization to SU~3! flavor
are relatively straightforward extensions and will be left for
future work. It should be mentioned that the quark-diquark
Lagrangian used here does not account for quark confine-
ment inside nucleons. However, the use of a confining quark-
diquark interaction should also be possible within the
scheme that we use.

As an important result of our work we find that the vertex
function of the nucleon is highly relativistic even in the case
of weak binding. Furthermore, we observe that the nucleon
structure functionF1 is determined to a large extent by the
relativistic kinematics of the quark-diquark system and is not
very sensitive to its dynamics as long as the spectator system
is treated as a single particle.

The outline of the paper is as follows. In Sec. II we intro-
duce the spectator model for deep-inelastic scattering. Sec-
tion III focuses on the scalar diquark model for the nucleon
which yields the quark-diquark vertex function as a solution
of a ladder BSE. In Sec. IV we present numerical results for
the quark-diquark vertex function and the nucleon structure
functionF1. Finally, we summarize and conclude in Sec. V.

II. DEEP-INELASTIC LEPTON SCATTERING
IN THE SPECTATOR MODEL

Inclusive deep-inelastic scattering of leptons from had-
rons is described by the hadronic tensor

Wmn~q,P!5
1

2pE d4jeiq•j^PuJm~j!Jn~0!uP&, ~1!

whereP andq are the four-momenta of the target and ex-
changed virtual photon, respectively, andJm is the hadronic
electromagnetic current. In unpolarized scattering processes
only the symmetric piece ofWmn5Wnm is probed. It can be
expressed in terms of two structure functionsF1 and F2,
which depend on the Bjorken scaling variable,
x5Q2/2P•q, and the squared momentum transfer
Q252q2:
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Wmn~q,P!5S 2gmn1
qmqn

q2 DF1~x,Q
2!1S Pm2qm

P•q

q2 D
3S Pn2qn

P•q

q2 DF2~x,Q
2!

P•q
. ~2!

In the Bjorken limit (Q2,P•q→`; but finitex) in which we
work throughout, both structure functions depend up to loga-
rithmic corrections onx only, and are related via the Callan-
Gross relation:F252xF1.

The hadronic tensorWmn is connected via the optical
theorem to the amplitudeTmn for virtual photon-nucleon for-
ward Compton scattering:

1

p
ImTmn~q,P!5Wmn~q,P!. ~3!

In the Bjorken limit the interaction of the virtual photon with
a valence quark from the target leads to a spectator system
carrying diquark quantum numbers, i.e., baryon number 2/3
and spin 0 or 1. In the spectator model it is assumed that the
spectrum of spectator states can be saturated through a single
scalar and pseudovector diquark@3–5#. In the following we
will restrict ourselves to contributions from scalar diquarks
only. The generalization to include a pseudovector diquark
contribution is left for future work. The corresponding
Compton amplitude is~Fig. 1!

TS
mn~q,P!5 K 561

t3
2 L

N
E d4k

~2p!4i
ū~P!Ḡ~k,P2k!S~k!

3gmS~k1q!gnS~k!D~P2k!G~k,P2k!u~P!,

~4!

where the flavor matrix has to be evaluated in the nucleon
isospin space. The integration runs over the quark momen-
tum k. The Dirac spinor of the spin-averaged nucleon target
with momentum P is denoted by u(P). Furthermore,
S(k)51/(mq2k”2 i e) and D(k)51/(mD

2 2k22 i e) are the

propagators of the quark and diquark, respectively, whileG
is the quark-diquark vertex function. To obtain the hadronic
tensor, the scattered quark and the diquark spectator have to
be put on mass shell according to Eq.~3!:

S~k1q!→ ipd„mq
22~k1q!2…~mq1k”1q” !,

D~P2k!→ ipd„mD
2 2~P2k!2…. ~5!

The vertex functionG for the target, which in our approach
is a positive energy, spin-1/2 composite state of a quark and
a scalar diquark, is given by two independent Dirac struc-
tures:

G~k,P2k!u~P2k!25m
D
25S f 1on~k2!1

2k/

M
f 2
on~k2! DL~1 !~P!,

~6!

whereL (1)(P)51/21P” /2M is the projector onto positive
energy, spin-1/2 states andM5AP2 is the invariant mass of
the nucleon target. Note that according to the on-shell con-
dition in Eq. ~5! the scalar functionsf 1/2

on will depend onk2

only.
From Eqs.~3!–~6! we then obtain for the valence quark

contribution to the structure functionF1:

F1
val~x!5K 561

t3
2 L

N

1

16p3E
2`

kmax
2 dk2

mq
22k2 S S 12x1

~mq1M !22mD
2

mq
22k2

xD f 1on~k2!24

2F11x1
2mq

M
x1S 12

2mq

M D ~mq1M !22mD
2

mq
22k2

xG f 1on~k2! f 2on~k2!2

1H 4mq
22k2

M2 1F12S 2mq

M D 2G ~112x!1S 12
2mq

M D 2x1S 12
2mq

M D 2~mq1M !22mD
2

mq
22k2

xJ f 2on~k2!24 D . ~7!

The upper limit of thek2 integral is denoted by

kmax
2 5xSM22

mD
2

12xD . ~8!

Note thatkmax
2 →2` for x→1. This implies that for any

regular vertex functionF1
val→0 for x→1 and thus the struc-

ture function automatically has the correct support.
Since the spectator model of the nucleon is valence-quark

dominated, the structure functionF1
val in Eq. ~7! is identified

with the leading twist part ofF1 at some typical low momen-
tum scale,m2&1 GeV2. The physical structure function at

FIG. 1. The diquark spectator contribution to the virtual forward
Compton amplitude in the Bjorken limit.
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largeQ2@m2 is then to be generated viaQ2 evolution.
It should be mentioned that the Compton amplitude in Eq.

~4! and also the expression for the structure function in Eq.
~7! contain poles from the quark propagators attached to the
quark-diquark vertex functions. From Eq.~8! it follows that
these poles do not contribute whenM,mD1mq . This con-
dition is automatically satisfied if the nucleon is considered
as a bound state of the quark and diquark, as done in the
following.

In the next section we shall determine the vertex function
G, or equivalentlyf 1

on and f 2
on from Eq. ~6! as solutions of a

ladder BSE.

III. SCALAR DIQUARK MODEL FOR THE NUCLEON

We now determine the vertex function~6! as the solution
of a BSE for a quark-diquark system. We start from the
Lagrangian

L5c̄a~ i ]”2mq!ca1]mfa* ]mfa2mD
2fa*fa

1 i
g

2A2
ebc
a cb

TC21g5t2ccfa*

2 i
g

2A2
ebc
a c̄bC

21g5t2c̄c
Tfa , ~9!

where we have explicitly indicated SU~3! color indices but
have omitted flavor indices. We restrict ourselves to flavor
SU~2!, wheret2 is the symmetric generator which acts on
the isodoublet quark fieldc with massmq . The charged
scalar fieldf represents the flavor-singlet scalar diquark car-
rying an invariant massmD . Similar Lagrangians have been
used recently to describe some static properties of the
nucleon, such as its mass and electromagnetic charge~see,
e.g.,@6–8#!.

The nucleon with four-momentumP and spinS is de-
scribed by the bound state Bethe-Salpeter~BS! vertex func-
tion G:

TF^0uTca~x!fb~y!uP,S&

5dabS~k!D~P2k!iG~k,P2k!u~P,S!.
~10!

Here,u(P,S) is the nucleon Dirac spinor andTF stands for
the Fourier transformation.1 @Again, we have omitted SU~2!
flavor indices.#

We will now discuss the integral equation for the vertex
functionG in the framework of the ladder approximation.

A. Ladder BSE

For the following discussion of the integral equation for
the vertex functionG we write the quark momentum as
q1hqP and the diquark momentum as2q1hDP. The
weight factorshq andhD are arbitrary constants between 0
and 1 and satisfyhq1hD51. Within the ladder approxima-

tion the BSE for the vertex function of a positive energy,
spin-1/2 model nucleon can be written as~see Fig. 2!:

G~q,P!u~P,S!5g2E d4k

~2p!4i
S@2k2q2~hq2hD!P#

3S~hqP1k!D~hDP2k!G~k,P!u~P,S!,

~11!

where the flavor and color factors have already been worked
out. The scattering kernel is given by au-channel quark ex-
change according to the interaction Lagrangian in Eq.~9!.

Since we are only interested in positive energy solutions,
we may write the vertex function as

G~q,P!5S a f1~q,P!1b f2~q,P!1
q”

M
f 2~q,P! DL~1 !~P!.

~12!

The arguments of the scalar functionsf a(q,P) are actually
q2 andP•q, but we use this shorthand notation for brevity.
With a andb we denote as yet unspecified scalar functions
of q2 andP•q which will be chosen later for convenience.
@The definition of f 1/2

on in Eq. ~6! corresponds to a specific
choice ofa andb.#

B. Wick rotation

After multiplying the BSE in Eq.~11! with appropriate
projectors~which depend ona andb), we obtain a pair of
coupled integral equations for the scalar functionsf 1(q,P)
and f 2(q,P):

f a~q,P!5g2E d4k

~2p!4i
D̃q@2q2k2~hq2hD!P#

3Dq~hqP1k!DD~hDP2k!Kab~q,k,P! f b~k,P!,

~13!

where Dq(p)[1/(mq
22p22 i e) and DD(p)[1/(mD

2 2p2

2 i e) are the denominators of the quark and diquark propa-
gators, respectively. The indicesa andb stand for the inde-
pendent Dirac structures of the vertex functionG, i.e., in the
scalar-diquark model they run from 1 to 2 according to Eq.
~12!. Consequently, the functionKab(q,k,P) is a 232 ma-
trix, where its explicit form depends on the definition of the
scalar functionsf a(q,P). We use a form factor for the
quark-diquark coupling which weakens the short range inter-
action between the quark and the diquark and ensures the
existence of solutions with a positive norm. For simplicity,

1We use the normalization̂P8uP&52P0(2p)3d (3)(PW 82PW ) and
(Su(P,S)ū(P,S)5AP21P” 5M1P” .

FIG. 2. The Bethe-Salpeter equation for a quark-diquark system
in the ladder approximation.
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we use au-channel form factor which can be conveniently
absorbed into the denominator of the exchanged quark
propagator as follows:

Dq~p!→D̃q~p![Dq~p!
L2

L22p22 i e
. ~14!

As a next step let us analyze the singularities of the integrand
in Eq. ~13!. For this purpose we choose the nucleon rest
frame wherePm5Pm

(0)[(M ,0W ) and put the weight constants
hq andhD to the classical values:

hq[
mq

mq1mD
[
12h

2
, ~15!

hD[
mD

mq1mD
[
11h

2
. ~16!

Here, we have introduced the asymmetry parameter
h[(mD2mq)/(mq1mD), such that the invariant quark and
diquark mass is given by mq5m̄(12h) and
mD5m̄(11h), respectively, wherem̄5(mq1mD)/2. In the
complexk0 plane,Dq(hqP1k) andDD(hDP2k) will be
singular for

k052hqM6Eq~kW !7 i e, ~17!

k05hDM6ED~kW !7 i e, ~18!

whereEq(kW )5Amq
21kW2 andED(kW )5AmD

2 1kW2. The cuts lie
in the second and fourth quadrants of the complexk0 plane.
However, for a bound state, 0,M,mq1mD , a gap occurs
between these two cuts which includes the imaginaryk0 axis.

Next, consider the singularities of the exchanged quark
propagator:

k052q01hM6Emi
~qW 1kW !7 i e, ~19!

whereEmi
(kW )5Ami

21kW2 andmi5mq ,L for i51,2, respec-
tively. The sum of the second and third terms at the right-
hand side~RHS! of Eq. ~19! is bound by

hM1Emi
~qW 1kW !>~mD2mq!

M

mq1mD
1mi , ~20!

hM2Emi
~qW 1kW !<~mD2mq!

M

mq1mD
2mi . ~21!

The diquark should be considered as a bound state of two
quarks which impliesmD,2mq . Together withmi>mq ,
namely, setting the form factor massL larger thanmq , we
havemD2mq1mi.0 andmD2mq2mi,0. Consequently,
we find from Eqs.~20! and ~21! hM1Emi

(qW 1kW ).0 and

hM2Emi
(qW 1kW ),0 for any momentaqW andkW . Therefore, if

2q01hM2Emi
(qW 1kW ).0 or 2q01hM1Emi

(qW 1kW ),0,
a so-called ‘‘displaced’’ pole will occur in the first or third
quadrant, respectively. In other words, the displaced pole-
free condition is

hM2Emi
~qW 1kW !,q0,hM1Emi

~qW 1kW !, ~22!

for anykW . SincekW is an integration variable,Emi
(qW 1kW ) will

adopt its minimum valuemq at kW52qW for i51. The above
condition, therefore, simplifies to

~q02hM !2,mq
2 . ~23!

If q0 is Wick rotated to pure imaginary values, i.e.,
qm→q̃m5( iq4,qW ) with real q4P(2`,`), the displaced
poles will move to the second and fourth quadrants. Then,
after also rotating the momentumkm→ k̃m5( ik4,kW ), we ob-
tain the Euclidean vertex functionsf b( k̃,P

(0)) from the
Wick-rotated BSE:

f a~ q̃,P~0!!5g2E d4kE
~2p!4

D̃q@2q̃2 k̃2~hq2hD!P~0!#

3Dq~hqP
~0!1 k̃!DD~hDP

~0!2 k̃!

3Kab~ q̃,k̃,P~0!! f b~ k̃,P~0!!, ~24!

whered4kE5dk4d3kW .
If we are in a kinematic situation where no displaced

poles occur, i.e., Eq.~23! is satisfied, we may obtain the
Minkowski space vertex functionf a(q,P) from the Euclid-
ean solution through

f a~q,P~0!!5g2E d4kE
~2p!4

D̃q@2q2 k̃2~hq2hD!P~0!#

3Dq~hqP
~0!1 k̃!DD~hDP

~0!2 k̃!

3Kab~q,k̃,P~0!! f b~ k̃,P~0!!. ~25!

It should be emphasized that for a given Euclidean solution
f b( k̃,P

(0)), Eq.~25! is not an integral equation but merely an
algebraic relation betweenf a(q,P

(0)) and f b( k̃,P
(0)). If,

however, displaced poles occur, i.e., Eq.~23! is not satisfied,
one needs to add contributions from the displaced poles to
the RHS of Eq.~25!. This will lead to an inhomogeneous
integral equation for the functionf a(q,P

(0)), where the in-
homogeneous term is determined by the Euclidean solution
f b( k̃,P

(0)).
Since the Euclidean solutionsf a(q̃,P

(0)) are functions of
q̃ 252qE

2[2@(q4)
21uqW u2#, q̃•P(0)5 iq4M for a fixedM ,

it is convenient to introduce four-dimensional polar coordi-
nates:

q45qEcosaq ,

qi5uqW uq̂i , ~26!

uqW u5qEsinaq .

Here, 0,aq,p and the three-dimensional unit vectorq̂i is
parametrized by the usual polar and azimuthal angles
q̂i5(sinuqcosfq ,sinuqsinfq ,cosuq). In the following we,
therefore, considerf a(q̃,P

(0)) as a function ofqE and
cosaq . Furthermore, it is often convenient~and traditional!
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to factor out the coupling constantg2 together with a factor
(4p)2, and define the ‘‘eigenvalue’’l215(g/4p)2. Then,
the BSE in Eq.~24! is solved as an eigenvalue problem for a
fixed bound state massM .

C. O„4… expansion

In the following we will define the scalar functions
f a(q,P) for positive energy (M.0) bound states via

G~q,P!5F f 1~q,P!1S 2
P•q

M2 1
q”

M D f 2~q,P!GL~1 !~P!,

~27!

i.e., we now make a specific choice for the scalar functions
a andb in Eq. ~12!. In the rest frame of this model nucleon,
this leads to

FJ35S/2
JP51/21

~q,P~0!!5G~q,P~0!!u~P~0!,S!

5S f 1~q,P
~0!!

qW •sW

M
f 2~q,P

~0!!D xS . ~28!

Here, we have explicitly used the Dirac representation. The
Pauli matricessW act on the two-component spinorxS , where
the spin labelS561 is the eigenvalue ofs3: s3xS5SxS .
In terms of the O~3! spinor harmonicsYlmJ @9#,

Y0S1/2~ q̂!5
1

A4p
xS and Y1S1/2~ q̂!52q̂•sWY0S1/2~ q̂!, ~29!

we have

FJ35S/2
JP51/21

~q,P~0!!5A4pS f 1~q,P
~0!!Y0S1/2~ q̂!

2
uqW u
M

f 2~q,P
~0!!Y1S1/2~ q̂!

D .
~30!

From Eq.~30! we observe thatf 1 and f 2 correspond to the
upper and lower components of the model nucleon, respec-
tively.

After the Wick rotation, as discussed in the previous sub-
section, the scalar functionsf a become functions ofqE and
cosaq . Therefore, we can expand them in terms of Gegen-
bauer polynomialsCn

1(z) @10#:

f a~qE ,cosaq!5 (
n50

`

i nf a
n~qE!Cn

1~cosaq!. ~31!

We have introduced the phasei n to ensure that the coeffi-
cient functions f a

n are real. The integral measure in O~4!
polar coordinates is

E d4kE
~2p!4

5
1

~4p!2
E
0

`

dkEkE
3 2

pE0
p

daksin
2ak

1

2pE dV k̂ .

~32!

Multiplying the BSE in Eq.~24! with the Gegenbauer poly-
nomial Cn

1(cosaq) and integrating over the hyperangleaq ,
reduces the BSE to an integral equation for the O~4! radial
functions f a

n :

l~M ! f a
n~qE!5 (

b51

2

(
m50

` E
0

`

dkEKab
nm~qE ,kE! f b

m~kE!.

~33!

Here,l(M ) is the eigenvalue which corresponds to a fixed
bound state massM . Furthermore, note that the integral ker-
nel

Kab
nm~qE ,kE!5~2 i !ni m

2

pE0
p

daqsin
2aqCn

1~cosaq!

3
2

pE0
p

daksin
2akCm

1 ~cosak!
1

2pE dV k̂kE
3

3D̃q@2q̃2 k̃2~hq2hD!P~0!#

3Kab~ q̃,k̃,P~0!!Dq~hqP
~0!1 k̃!

3DD~hDP
~0!2 k̃! ~34!

is real, so that we can restrict ourselves to real O~4! radial
functions f a

n .
To close this section we shall introduce normalized O~4!

radial functions. Since the scalar functionsf 1(q,P) and
f 2(q,P) correspond to the upper and lower components of
the model nucleon, respectively, one may expect that
f 2(q,P) becomes negligible when the quark-diquark system
forms a weakly bound state. Thus, one can use the relative
magnitude of the two scalar functions,f 2(q,P)/ f 1(q,P), as
a measure of relativistic contributions to the model nucleon.
To compare the magnitude of the Wick-rotated scalar func-
tions f 1(q̃,P) and f 2(q̃,P), we introduce normalized O~4!
radial functions. Recall the O~4! spherical spinor harmonics
@11,12#:

Zn jlm~a,u,f!5F22l11~n11!~n2 l !!

p~n1 l11!! G1/2
3 l ! ~sina! lCn2 l

11 l~cosa!Ylmj ~u,f!.

~35!

The integersn andl denote the O~4! angular momentum and
the ordinary O~3! orbital angular momentum, respectively.
The half-integer quantum numbersj andm stand for the
usual O~3! total angular momentum and the magnetic quan-
tum number. We rewrite the Wick-rotated solution
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FJ35S/2
JP51/21

(q̃,P(0)) in terms of the spinor harmonics

Zn jlm(a,u,f) and define the normalized O~4! radial func-
tionsFn(qE) andGn(qE) as

FJ35S/2
JP51/21

~ q̃,P~0!!

[A2pS (
n50

`

i nFn~qE!Zn~1/2! 0S~aq ,q̂!

(
n51

`

i n21Gn~qE!Zn~1/2! 1S~aq ,q̂!
D .
~36!

The extra factorA2p is introduced for convenience. The
normalized O~4! radial functionsFn andGn are then linear
combinations of thef a

n :

Fn~qE!5 f 1
n~qE!, ~37!

Gn~qE!52
qE
2M

An~n12!S f 2n21~qE!

n
1
f 2
n11~qE!

n12 D .
~38!

Equivalently, we can express the Wick-rotated scalar func-
tions as

f 1~qE ,cosa!5 (
n50

`

i nFn~qE!Cn
1~cosa!, ~39!

f 2~qE ,cosa!52 (
n51

`
2M

qE

i n21

An~n12!
Gn~qE!Cn21

2 ~cosa!.

~40!

D. Euclidean solutions

In this subsection we present our results for the integral
equation in Eq.~33!. For simplicity, we considered the quark
and diquark mass to be equal:mq5mD5m̄. In this case the
kernelKab

nm can be evaluated analytically in a simple manner,
since forh50 the denominator of the propagator for the
exchanged quark does not depend on the nucleon momentum
P. We fixed the scale of the system by setting the massm̄ to
unity. The ‘‘mass’’ parameter in the form factor was fixed at
L52m̄.

We solved Eq.~33! as follows. First, we terminated the
infinite sum in Eq.~31! at some fixed valuenmax. Then, the
kernel in Eq.~34! for the truncated system becomes a finite
matrix with dimension (23nmax)

2. Its elements are functions
of qE andkE . Next, we discretized the Euclidean momenta
and performed the integration overkE numerically together
with some initially assumed radial functionsf a

n . In this way
new radial functions and an ‘‘eigenvalue’’l associated with
them were generated. The value ofl was determined by
imposing the normalization condition onf a

n such that the
resultant valence-quark distribution is properly normalized.
We then used the generated radial functions as an input and
repeated the above procedure until the radial functions and
l converged.

Note that our normalization differs from the commonly
used one@13#, since we are going to apply the vertex func-
tion only to processes with the diquark as a spectator, i.e., we
do not consider the coupling of the virtual photon directly to
the diquark. The ordinary choice of normalization would not
lead to an integer charge for the model nucleon in the spec-
tator approximation. We, therefore, normalize the valence-
quark distribution itself.

Regarding Eq.~33! as an eigenvalue equation, we found
the ‘‘eigenvalue’’ l ~coupling constant! as a function of
M2, varying the latter over the range 0.85m̄2<M2<
1.99m̄2. The eigenvaluel was stable, i.e., independent of the
number of grid points and the maximum value ofkE . Fur-
thermore, for a weakly bound state,M.1.6m̄, the solutions
were independent of the choice of the starting functions.
However, for a strongly bound state,M,1.4m̄, we found
that the choices of the starting functions were crucial for
convergence. A possible reason of this instability for a
strongly bound system is because of the fact that we did not
use the O~4! eigenfunctionsFn andGn in numerical calcu-
lations but the functionsf a

n defined in Eq. ~31!. Since
strongly bound systems,M;0, are approximately O~4! sym-
metric, a truncated set of functionsf a

n may be an inappropri-
ate basis for numerical studies of the BSE.

We found that the eigenvaluel converges quite rapidly
whennmax, the upper limit of the O~4! angular momentum,
is increased. This stability of our solution with respect to
nmax is independent ofM . We observe that contributions to
the eigenvaluel from f a

n(qE) with n.4 are negligible. This
dominance of the lowest O~4! radial functions has also been
observed in the scalar-scalar-ladder model@14# and utilized
as an approximation for solving the BSE in a generalized
fermion-fermion-ladder approach@15#.

To compare the magnitude of the two scalar functions
f 1(q̃,P) and f 2(q̃,P) we show in Fig. 3 the normalized O~4!
radial functionsFn and Gn . As the dependence ofl on
nmax suggests, radial functions with O~4! angular momenta
n.4 are quite small compared to the lower ones. Together
with the fast convergence ofl, this observation justifies the
truncation of Eq.~33! at n5nmax. Note that even for very
weakly bound systems (;0.5% binding energy!, the magni-
tude of the ‘‘lower-component’’f 2(q̃,P) remains compa-
rable to that of the ‘‘upper-component’’f 1(q̃,P). This sug-
gests that the spin structure of relativistic bound states is
nontrivial, even for weakly bound systems. So-called ‘‘non-
relativistic’’ approximations, in which one neglects the non-
leading components of the vertex function@ f 2(q̃,P) in our
model#, are, therefore, only valid for extremely weak bind-
ing, 2m̄→M only.

E. Analytic continuation

In the previous subsection we obtained the quark-diquark
vertex function in Euclidean space. Its application to deep-
inelastic scattering, as discussed in Sec. II, demands an ana-
lytic continuation to Minkowski space. Here, the scalar func-
tions f a , which determine the quark-diquark vertex function
through Eq.~12!, will depend on the Minkowski space mo-
mentaq2 andP•q.

5304 55K. KUSAKA, G. PILLER, A. W. THOMAS, AND A. G. WILLIAMS



Recall that our Euclidean solution is based on the expan-
sion of the scalar functionsf a in terms of Gegenbauer poly-
nomials in Eq.~31!. This expansion was defined in Sec. IIIC
for real hyperanglesaq , with 21,cosaq,1. Consequently,
the infinite sum over the O~4! angular momentan in Eq. ~31!
is absolutely convergent for pure imaginary energiesq0.
Now, we would like to analytically continueq0 to physical,
real values. The Euclidean hyperangleaq is defined in Eu-
clidean space such that

cosaq5
q4

A2q2
. ~41!

In Minkowski space, cosaq is then purely imaginary
(cosaq52iq0/A2q2) for spacelike q, and real (cosaq

52q0/Aq2) if q is timelike. Note that the angular momen-
tum sum~31! converges even for complex values of cosaq as
long asucosaqu,1. Then, an analytic continuation off a to
Minkowski space is possible. In terms of the Lorentz invari-
ant scalarsq2 andP•q we obtain

z5cosaq52 sgn~q2!
P•q

Aq2M2
. ~42!

Then, the convergence condition for the sum over the O~4!
angular momenta in Eq.~31! reads

~P•q!2,M2uq2u. ~43!

Even if Eq.~43! is satisfied, the radial functionsf a
n them-

selves may contain singularities which prevent us from per-
forming the analytic continuation by numerical methods.
However, note that the Euclidean solutions forf a

n are regular
everywhere on the imaginaryq0 axis. Consequently, the
RHS of the ‘‘half-Wick-rotated’’ equation~25! contains no
singularities if the displaced pole-free condition in Eq.~23!
is met. Therefore, in Minkowski space, the radial functions
f a are regular everywhere in the momentum region where
the displaced pole-free condition~23! and the convergence
condition~43! are satisfied. Here, the analytic continuation to
Minkowski space is straightforward. Recall the normalized
O~4! radial functionsFn andGn from Eqs. ~37! and ~38!,
which are linear combinations off a

n . Writing them as
Fn(qE)5qE

nF̃n(qE
2) andGn(qE)5qE

nG̃n(qE
2), we find for the

scalar functionsf a(q
2,P•q) from Eqs.~39! and ~40!:

f 1~q
2,P•q!5 (

n50

`
F̃n~2q2!

Mn ~Aq2M2!nCn
1~z!, ~44!

f 2~q
2,P•q!52 (

n51

`
2

An~n12!

G̃n~2q2!

Mn22

3~Aq2M2!n21Cn21
2 ~z!. ~45!

Note that the Gegenbauer polynomialsCn
1@Cn21

2 # together

with the square root factors (Aq2M2)n @(Aq2M2)n21# are
nth @(n21)th# order polynomials ofq2, M2, andP•q and
contain, therefore, noAq2M2 factors. Since in the kinematic
region under consideration,f 1(q

2,P•q) and f 2(q
2,P•q) are

regular, it is possible to extrapolateF̃n(2q2) and
G̃n(2q2) numerically from spacelikeq2 to timelike q2 as
necessary.

Finally, we are interested in the quark-diquark vertex
function as it appears in the handbag diagram for deep-
inelastic scattering. Therefore, we need the functionsf a for
on-shell diquarks only. The squared relative momentumq2

and the Lorentz scalarP•q are then no longer independent
but related by

P•q52
mq1mD

2mD
F2q21S mD

mq1mD
D 2@~mq1mD!22M2#G .

~46!

Then, f 1 and f 2 from Eqs.~44! and~45! are functions of the
squared relative momentumq2 only.

In Sec. II the parametrization~6! for the Dirac matrix
structure of the vertex function was more convenient to use.
The corresponding functionsf a

on which enter the nucleon
structure function in Eq.~7! are given by

f 1
on~k2!5 f 1~q

2,P•q!1
mD
2 2k2

2M2 f 2~q
2,P•q!, ~47!

f 2
on~k2!5

1

2
f 2~q

2,P•q!. ~48!

FIG. 3. The normalized O~4! radial functionsFn andGn from
Eq. ~36! for M51.8m̄ as functions of the Euclidean momentum
qE .
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Here, the argumentsq2 andP•q, of the scalar functionsf a
on the RHS should be understood as functions ofk2 through
Eq. ~46!, together with the relation

q25
mD

mq1mD
Fk22mqS M2

mq1mD
2mDD G . ~49!

As already mentioned, the procedure just described yields
radial functionsf a

on in Minkowski space only in the kine-
matic region where the conditions, Eqs.~23! and ~43!, are
met. These are satisfied for weakly bound states
M2&(mD1mq)

2 at moderate values ofuk2u. On the other
hand, the nucleon structure function in Eq.~7! at small and
moderate values ofx is dominated by contributions from
small quark momenta uk2u,mq

2 . Consequently, the
Minkowski space vertex function obtained in the kinematic
region specified by the displaced pole-free condition~23!
and the convergence condition~43! determines the valence-
quark distribution of a weakly bound nucleon at small and
moderatex.

In the case of strong binding,M2!(mq1mD)
2, or at

largex, the nucleon structure function is dominated by con-
tributions from large spacelikek2. Here, the above analytic
continuation to Minkowski space is not possible and the sum
over the O~4! angular momenta in Eq.~31! should be evalu-
ated first. In principle, this is possible through the Watson-
Sommerfeld method@16–18#, where the leading power be-
havior of f a(q

2,P•q) for asymptoticP•q can be deduced by
solving the BSE at complex O~4! angular momenta@19#, or
by assuming conformal invariance of the amplitude and us-
ing the operator product expansion technique as outlined in
Ref. @18#.

However, the use of the operator product expansion is
questionable here, since in the quark-diquark model, which
is being used, we have introduced a form factor for the
quark-diquark coupling and our model does not correspond
to an asymptotically free theory. Existence of the form factor
also makes the analysis of complex O~4! angular momenta
complicated. Therefore, a simpler approach is used. It can be
shown from a general analysis that BS vertex functions
which satisfy a ladder BSE are regular for spacelikek2,
when one of the constituent particles is on mass shell. Fur-
thermore, from the numerical solution studied in the previous
section, we found that the magnitude of the O~4! partial
wave contributions to the functionf a

on decreases reasonably
fast for large O~4! angular momentan, except at very large
k2. We, therefore, use the expansion formulas~44! and ~45!
with an upper limit onn<nmax to evaluatef a

on defined by
Eqs. ~47! and ~48! as an approximation. Nevertheless, this
application of BS vertex functions to deep-inelastic scatter-
ing emphasizes the need to solve Bethe-Salpeter equations in
Minkowski space from the very beginning, as has been done
recently for scalar theories without derivative coupling@20#.

IV. NUMERICAL RESULTS

In this section we present results for the valence contribu-
tion to the nucleon structure functionF1 from Eq.~7!, based
on the numerical solutions discussed above. First, we show
in Fig. 4 the physical, on-shell scalar functionsf a

on for a
bound state massM51.8m̄. The maximal O~4! angular mo-

mentum is fixed atnmax54. Figure 4 demonstrates that the
magnitude off 1

on and f 2
on is quite similar, even for a weakly

bound quark-diquark system. Furthermore, we find that for
weakly bound states (M*1.8m̄), the dependence off a

on on
nmax is negligible in the region of moderate, spacelike
2k2&5 m̄2. However, for larger spacelike values ofk2 the
convergence of the O~4! expansion in Eq.~31! decreases for
any M2, and numerical results for fixednmax become less
accurate.

In Fig. 5 the structure functionF1
val is shown for various

values ofM2 using nmax54. The distributions are normal-
ized to unity. One observes that for weakly bound systems
(M51.99m̄), the valence-quark distribution peaks around
x;1/2. On the other hand, the distribution becomes flat if
binding is strong (M51.2m̄). This behavior turns out to be
mainly of kinematic origin. To see this, remember thatF1

val is
given by an integral@cf., Eq. ~7!# over the squared quark
momentumk2, bounded bykmax

2 5x@M22mD
2 /(12x)#. The

latter has a maximum atx512mD /M . Therefore, the peak
of the valence distribution for weakly bound systems occurs

FIG. 4. The on-shell scalar functionsf 1
on ~solid! and 2 f 2

on

~dashed! as a function of the quark momentumk2 for M51.8m̄ and
nmax54.

FIG. 5. The valence-quark distributionF1
val from Eq. ~7! for

different binding for the model proton. The solid, dashed, and dot-
dashed lines show the results for weak (M51.99m̄), moderate
(M51.8m̄), and strong (M51.2m̄) binding, respectively.
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at x'1/2 for mD5mq . For a more realistic choice
mD;2mq , the valence distribution would peak atx;1/3.
The more strongly the system is bound, the lesskmax

2 varies
with x. This leads to a broad distribution in the case of strong
binding. Thus, the global shape ofF1

val is determined to a
large extent by relativistic kinematics.

Note that successful fits to the measured nucleon valence
contribution toF1 exhibit at low mass scales a significant
maximum atx'1/3 @21,22#. This behavior is in agreement
with our result forF1

val in the case of weak quark-diquark
binding. At the present stage of development of the model
we hesitate to compare our results with data. For example,
we would need to treat vector diquarks explicitly, including
their mass difference from the scalar diquarks@23#. Never-
theless, from the results we have obtained we can certainly
conclude that in terms of quark-diquark degrees of freedom
the nucleon has to be viewed as a weak bound state.

To investigate the role of the relativistic spin structure of
the vertex function we discuss the contribution of the ‘‘rela-
tivistic’’ component f 2

on to the nucleon structure function
F1
val . Figure 6 shows that the contribution fromf 2

on is negli-
gible for a very weakly bound quark-diquark state
(M51.99m̄). Here, the ‘‘nonrelativistic,’’ leading compo-
nent f 1

on determines the structure function. However, even for
moderate binding the situation is different. In Fig. 7 one
observes that the contribution from the ‘‘relativistic’’ com-
ponent is quite significant forM51.8m̄. Nevertheless, the
characteristicx dependence, i.e., the peak of the structure
function atx'1/2, is still because of the ‘‘nonrelativistic’’
component.

V. SUMMARY

The aim of this work was to outline a scheme whereby
structure functions can be obtained from a relativistic de-
scription of a model nucleon as a quark-diquark bound state.
For this purpose we solved the BSE for the nucleon starting
from a simple quark-diquark Lagrangian. From the Euclid-
ean solutions of the BSE we extracted the physical quark-
diquark vertex functions. These were applied to the spectator
model for DIS, and the valence-quark contribution to the
structure functionF1 was calculated.

Although the quark-diquark Lagrangian used here is cer-
tainly not realistic, and the corresponding BSE was solved
by applying several simplifications, some interesting and
useful observations were made. We found that the spin struc-
ture of the nucleon, seen as a relativistic quark-diquark
bound state, is nontrivial, except in the case of very weak
binding. Correspondingly, the valence-quark contribution to
the structure function is governed by the ‘‘nonrelativistic’’
component of the nucleon vertex function only for a very
weakly bound state. Furthermore, we observed that the shape
of the unpolarized valence-quark distribution is mainly de-
termined by relativistic kinematics and does not depend on
details of the quark-diquark dynamics. However, at large
quark momenta, difficulties in the analytic continuation of
the Euclidean solution for the vertex function to Minkowski
space emphasize the need to treat Bethe-Salpeter equations
in Minkowski space from the very beginning.
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