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Analytic perturbation theory in QCD and Schwinger’s connection
between theB function and the spectral density
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We argue that a technique called analytic perturbation theory leads to a well-defined method for analytically
continuing the running coupling constant from the spacelike to the timelike region, which allows us to give a
self-consistent definition of the running coupling constant for timelike momentum. The correspg®ding
function is proportional to the spectral density, which confirms a hypothesis due to Schwinger.
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An outstanding problem in QCD is the extrapolation of
limited perturbation-theory information so as to make con-
tact with experiment. An important example is given by the
running coupling constant, in which low-order calculations ; : : :
are summed by the renormalization group. It has been knoWthe corresponding analytic running coupling constant has the
since the early 1950s that this is really not self-consistent,
because of the appearance of an unphysical spacelike singu- —) 2 1 1 A?
larity, the “ghost pole.” However, as it has been argued in a(q9)= ,3_ Inq%/ A2 + AZ— 2|’ ()
Refs.[1,2], a possible way to resolve the ghost-pole problem 0
for the QCD running coupling constant can be found bywhereB,=11—3 N is the first coefficient of theg function
imposing Kdlén—Lehmann analyticity. This method, which with N; active flavors, and\ is the QCD scale. The analyti-
was elaborated early in the development of QBRY, leads cally improved coupling constar(8) has no ghost pole at
to the definition of the analytic running coupling constant ing®=A?, and its correct analytic properties are provided by
the c;()mplexq2 plane with a cut along the negative part of the nonperturbative contribution, the second term in By.
the real axis[In this paper we use a metric with signature Which has appeared automatically through use of the spectral
(—1,1,1,1), so thag®>0 corresponds to a spacelike mo- representatior(1). The analytic running coupling constant
mentum transfef.According to Refs[1,2] the connection ©btained in such a way turns out to be remarkably stable in
between the analytic couplira(?) and the spectral density the infrared region with respect to higher loop corrections

is given by the spectral representatitine overbar sid- and has the universal infrared limit gt=0: a(0)=1/8,,
’rzi(fife)slthgelvanaly)tlically ?mprovedpquant)ty ( Y 9 which does not depend on the value/of being a universal

_ a2,3077'
"~ [1+aByIn(of u?) P +a?B5m?’

2

constant.
» 2)=“—5(q2) . i mda (o) " Il. SPACELIKE AND TIMELIKE RUNNING COUPLINGS
= mJo  otQi—ie The method described above defines the running coupling

constant in the Euclideafspacelike range of momentum,
g°>0, wherea(q?) is real. In this paper we wish to param-

(The questions about the validity of the spectral represente£(rize processes with timelike momentum transfer, for ex-
tion, which is rather obvious in QED, are resolved 5 for ample, the process & e~ annihilation into hadrons. To do

the general caseFor instance, in the one-loop approxima- so, we must make use of some nontriviallana}lytic co_ntinua—
tion to the spectral function tion procedure from the spacelike to the timelike region. To

this end one usually applies the dispersion relation for the
Adler D function, defined in terms of the correlation function
for the quark vector curredii(g?) as

,dII(—g%)
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This “vacuum polarization” satisfies an unsubtracted disperhas the form 1/8oIn(zA?)] with a ghost pole atz=A?2,

sion relation, which contradicts the assumption theff’(z) is an analytic
- d function in the cutz plane. A consequence of this problem is
H(—q2)=const+f SZR(s), (5)  the fact that, ifas(s)—obtained in such a way—is substi-
0st+q tuted into Eq.(11), the original one-loop formula in the

: . I L spacelike region is not reproduced.
with the e™ e~ annihilation ratio given by

1 I1l. ANALYTIC PERTURBATION THEORY
R(s)= =—[IlI(s+ie)—II(s—ie€)]. (6) o . i
2i This difficulty can be avoided in the framework of what

we call analytic perturbation theory, in which the running

_Consequently, the dispersion relation for the Adler functlonCoupling constant is forced to have the correct analytic

IS properties: We definea®(g?) in terms of the spectral den-
» ds sity according to Eq(l), that is, the effective coupling in the
D(q2)=q2f ———>R(s). (7)  spacelike region is given by
0 (s+0°)
2The D f_unction is an analytic fqnction in Fhe co_mplgx ?ﬁ(QZ):i ) iazp(g)_ (13
g- plane with a cut along the negative real axis. Taking into mJo ot (q
account these analytic properties we can write down the in- _ o
verse relation foiR(s): As a result, from Eq912) and(13), the effective coupling in
the timelike region is given by the elegant expression
1 s+iedz
2 Cie o
i Jomie 2 o= Lo 19
T)s O

where the contour goes from the por# s—ie to the point
z=s+ie and lies in the region of analyticity of the function |t is clear that both coupling constan&"(g2) and

D(2). . . _ . ad(s) have the same universal limit ag?=+0 and
Let us define effective coupling constart®'(g?) inthe s 1 0 and similar tails ag>—o ands—o. However, in

spacelike region ands (s) in the timelike region based on the intermediate region the effect of analytic continuation
the following expressions fdd(q“) andR(s): becomes important. As we will see below in perturbation
theory, the distinction between the different effective cou-

2 Seff 2
D(@%)=[1+d;a™ ()], ©) pling constants is several percent, which may be important
R(s)m[1+r1§§ﬁ(s)], (10) for extracting the QCD coupling constant from various ex-

perimental data.

whered; andr, are the first coefficients of perturbative ex-
pansions(The superscript eff refers to the summation of all IV. ONE-LOOP RESULTS
the remaining terms in the perturbative expansion of these
guantities). In fact,d; =r . The subscrips in Eq.(10) means
“s channel” (the timelike regioh From Egs.(7) and (8),
one finds the connections between these effective couplin
constants in the spacelike and timelike regions:

Let us consider this problem at the one-loop level. The
perturbative contribution of the leading logarithms to the ef-
fgective coupling in the spacelike region can be written as

* 2\n
- ds _, 5(1)(q2)=anzo —aBoln%) . (15
?ﬁ(qz):quo 57923 (s) 11 -
In any finite order this function has the correct analytic prop-
and erties. The ghost pole appears due to the naive sum of the
, infinite geometrical series in Eq15). However, we should
et oy — i S+|Ed_Leff _ consider the series in E¢L5) as an asymptotic series and try
ac (s) - a®(—z). (12 o . S .
2l Js-ie Z to find its sum in such a way as to maintain the required

analytic properties, taking into account the fact that the sum

These equations serve to define the effective couplingf an asymptotic series is not unique. To this end, let us
Eg“(s) which parametrizes thR(s) ratio and plays the role consider the correlation function for which, from Edd)
of the running coupling in the timelike region. One usually and (9), the contribution of the leading logarithms has the
applies the standard perturbative approximatiorefdz) to  form
derive the effective coupling in thechannel from Eq(12).
This way leads to the so-calleg? terms which play an im-
portant role in the phenomenological analysis of various pro- 1The correct analytic properties of tH2 function can also be
cesses[6]. However, the perturbative approximation of maintained in the framework of the so-called variational perturba-
a®f(z) breaks the analytic properties mentioned above. Fotion theory[7] which is based on a new small expansion parameter
example, in the one-loop approximation the functasti(z) [8].
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Carrying out the sum and taking the imaginary part, we im- 10}
mediately find, from Eq(6),

'
1 + aﬂo o, 2 'l, “;“)(-‘)
'

r
R(s)ecl+ — urcco" . (17 o"(q)) Y /

\/(1+aﬁo|—)2 (ampBo)? 05y v o

-

where L=Ins/u? By introducing the QCD parameter
A?=u’exp(—1/aB,), we obtain, for the running coupling
constant in thes channel,

09,50 50 0 50 100

I /A 2 -qZ/A2 or /A
1 n(s/A)
at(s)= arccos —————. (18)
mBo VIn“(s/A%) +ar FIG. 1. Plot of the spacelike and timelike definitions of the

one-loop running coupling constants;(q?) anda{(s). The ab-

The same result for the running coupling constant in thescissa is, respectively; g%/A2? and s/A? for the two functions.
timelike region can be obtained by substituting the one-loofHere, we have displayed=4sa and have usedll;=3 in S,.
spectral density2) into Eq.(14). Moreover, the substitution
of Eqg. (18) into Eq. (11) reproduces the one-loop analytic the coupling defined in the Euclidean region this statement is
running coupling(3) which parametrizes thB function and  true through the two-loop approximation, but it breaks down
has the asymptotic expansidh5). Thus, the summation of if one takes into account three-loop contributiorf$he
the leading logarithms for the physical quantRys) leads to  analogous thing happens in QED for the conventional charge
a D function with the correct analytic properties. definitions[10].) However, Schwinger’s identification is cer-

Let us compare the two one-loop couplilﬂ%)(s), given tainly correct if we construct thg function for the coupling
by Eq.(18), anda™)(q?), given by Eq.(3). As noted above, (14) defined in the timelike region: indeed,
they have a universal value at O,

1 PR ) (22
al(0)=am(0)= o, (19 Tods T
0

) 2 22 As noted above, in perturbation theory, the difference be-
and, in fact, are exactly the samesat A, q°=A". ASymp-  yeen the couplings in the spacelike and timelike regions is
totically, for large spacelike and timelike momenta, respeCyiven by three-loop  diagrams and, therefore,

tively, B=a*da®/dg?= —p(s)/m+O(3 loop).

1

1
a®(g?)~ B, IngZIAZ" g’>A? (20 VI. CONCLUSIONS

5 We have considered the procedure of constructing the
T(s)~ 1 1 - 1 s=A2, (21 QCP running coupling constant by using analytic perturba-
Bo Ins/A2 3 In’s/A?)’ ’

0.10

exhibiting the fact that thé- ands-channel couplings differ

in three-loop order. In general, these two couplings, in their
respective regimes, agree numerically quite closely, as
shown in Fig. 1, with the relative difference being no more

than 9%, as shown in Fig. 2. Similar features hold in two-

loop order, the discrepancy between the couplings in the in-
termediate region dropping to about 5%.

o
o
&

o (qz ) /“:w (s)-1

V. SCHWINGER'’S IDENTIFICATION

More than two decades ago, Schwinger propd&gdhat
the Gell-Mann-Low function, or thg function, in QED
could be represented by a spectral function for the photon ‘ . ‘ .
propagator, which has direct physical meaning. The precise ! 10 “1":(1}”\2 P 10000 100000
connection, of course, depends on the definition of the run-
ning coupling constarf9,10]. Remarkably, we find that this FIG. 2. Plot of the relative difference of the two coupling con-
idea is realized in our proposal for the timelike coupling stants shown in Fig. ig™(x)/atY(x)— 1. Here, the argument is
constant in QCD. For thg function which corresponds to x=qg% A2 for @ andx=s/A? for as.
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tion theory. The fundamental quantity here is the spectraévant for a physical description of the timelike regime. Fi-
densityp(o), in terms of which the running coupling in the nally, we have shown that Schwinger’s proposed connection
Euclidean region is expressed through the spectral represepetween the renormalization groypfunction and the spec-
tation (13), while the running coupling in the timelike region tral density is valid for the coupling defined in the timelike
is expressed by Eq14). Both these couplings have the sameregion.

universal infrared limit,

_Eff(o):a = _fxd_a'p( )_ (23 ACKNOWLEDGMENTS
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