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We argue that a technique called analytic perturbation theory leads to a well-defined method for analytically
continuing the running coupling constant from the spacelike to the timelike region, which allows us to give a
self-consistent definition of the running coupling constant for timelike momentum. The correspondingb
function is proportional to the spectral density, which confirms a hypothesis due to Schwinger.
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I. INTRODUCTION

An outstanding problem in QCD is the extrapolation of
limited perturbation-theory information so as to make con-
tact with experiment. An important example is given by the
running coupling constant, in which low-order calculations
are summed by the renormalization group. It has been known
since the early 1950s that this is really not self-consistent,
because of the appearance of an unphysical spacelike singu-
larity, the ‘‘ghost pole.’’ However, as it has been argued in
Refs.@1,2#, a possible way to resolve the ghost-pole problem
for the QCD running coupling constant can be found by
imposing Källén–Lehmann analyticity. This method, which
was elaborated early in the development of QED@3,4#, leads
to the definition of the analytic running coupling constant in
the complexq2 plane with a cut along the negative part of
the real axis.@In this paper we use a metric with signature
(21,1,1,1), so thatq2.0 corresponds to a spacelike mo-
mentum transfer.# According to Refs.@1,2# the connection
between the analytic couplingā(q2) and the spectral density
r(s) is given by the spectral representation~the overbar sig-
nifies the analytically improved quantity!

ā~q2![
ās~q

2!

4p
5
1
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r~s!

s1q22 i e
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~The questions about the validity of the spectral representa-
tion, which is rather obvious in QED, are resolved in@5# for
the general case.! For instance, in the one-loop approxima-
tion to the spectral function,
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the corresponding analytic running coupling constant has the
form

ā~1!~q2!5
1

b0
F 1

lnq2/L2 1
L2

L22q2G , ~3!

whereb05112 2
3 Nf is the first coefficient of theb function

with Nf active flavors, andL is the QCD scale. The analyti-
cally improved coupling constant~3! has no ghost pole at
q25L2, and its correct analytic properties are provided by
the nonperturbative contribution, the second term in Eq.~3!,
which has appeared automatically through use of the spectral
representation~1!. The analytic running coupling constant
obtained in such a way turns out to be remarkably stable in
the infrared region with respect to higher loop corrections
and has the universal infrared limit atq250: ā(0)51/b0,
which does not depend on the value ofL, being a universal
constant.

II. SPACELIKE AND TIMELIKE RUNNING COUPLINGS

The method described above defines the running coupling
constant in the Euclidean~spacelike! range of momentum,
q2.0, whereā(q2) is real. In this paper we wish to param-
etrize processes with timelike momentum transfer, for ex-
ample, the process ofe1e2 annihilation into hadrons. To do
so, we must make use of some nontrivial analytic continua-
tion procedure from the spacelike to the timelike region. To
this end one usually applies the dispersion relation for the
AdlerD function, defined in terms of the correlation function
for the quark vector currentP(q2) as

D~q2!52q2
dP~2q2!

dq2
. ~4!
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This ‘‘vacuum polarization’’ satisfies an unsubtracted disper-
sion relation,

P~2q2!5const1E
0

` ds

s1q2
R~s!, ~5!

with thee1e2 annihilation ratio given by

R~s!5
1

2p i
@P~s1 i e!2P~s2 i e!#. ~6!

Consequently, the dispersion relation for the Adler function
is

D~q2!5q2E
0

` ds

~s1q2!2
R~s!. ~7!

The D function is an analytic function in the complex
q2 plane with a cut along the negative real axis. Taking into
account these analytic properties we can write down the in-
verse relation forR(s):

R~s!52
1

2p i Es2 i e

s1 i edz

z
D~2z!, ~8!

where the contour goes from the pointz5s2 i e to the point
z5s1 i e and lies in the region of analyticity of the function
D(z).

Let us define effective coupling constantsāeff(q2) in the
spacelike region andās

eff(s) in the timelike region based on
the following expressions forD(q2) andR(s):

D~q2!}@11d1ā
eff~q2!#, ~9!

R~s!}@11r 1ās
eff~s!#, ~10!

whered1 and r 1 are the first coefficients of perturbative ex-
pansions.~The superscript eff refers to the summation of all
the remaining terms in the perturbative expansion of these
quantities.! In fact,d15r 1. The subscripts in Eq. ~10! means
‘‘ s channel’’ ~the timelike region!. From Eqs.~7! and ~8!,
one finds the connections between these effective coupling
constants in the spacelike and timelike regions:

āeff~q2!5q2E
0

` ds

~s1q2!2
ās
eff~s! ~11!

and

ās
eff~s!52

1

2p i Es2 i e

s1 i edz

z
āeff~2z!. ~12!

These equations serve to define the effective coupling
ās
eff(s) which parametrizes theR(s) ratio and plays the role

of the running coupling in the timelike region. One usually
applies the standard perturbative approximation foraeff(z) to
derive the effective coupling in thes channel from Eq.~12!.
This way leads to the so-calledp2 terms which play an im-
portant role in the phenomenological analysis of various pro-
cesses@6#. However, the perturbative approximation of
aeff(z) breaks the analytic properties mentioned above. For
example, in the one-loop approximation the functionaeff(z)

has the form 1/@b0ln(z/L
2)# with a ghost pole atz5L2,

which contradicts the assumption thataeff(z) is an analytic
function in the cutz plane. A consequence of this problem is
the fact that, ifas

eff(s)—obtained in such a way—is substi-
tuted into Eq. ~11!, the original one-loop formula in the
spacelike region is not reproduced.

III. ANALYTIC PERTURBATION THEORY

This difficulty can be avoided in the framework of what
we call analytic perturbation theory, in which the running
coupling constant is forced to have the correct analytic
properties.1 We defineāeff(q2) in terms of the spectral den-
sity according to Eq.~1!, that is, the effective coupling in the
spacelike region is given by

āeff~q2!5
1

pE0
` ds

s1q2
r~s!. ~13!

As a result, from Eqs.~12! and~13!, the effective coupling in
the timelike region is given by the elegant expression

ās
eff~s!5

1

pEs
` ds

s
r~s!. ~14!

It is clear that both coupling constantsāeff(q2) and
ās
eff(s) have the same universal limit atq2510 and

s510 and similar tails asq2→` and s→`. However, in
the intermediate region the effect of analytic continuation
becomes important. As we will see below in perturbation
theory, the distinction between the different effective cou-
pling constants is several percent, which may be important
for extracting the QCD coupling constant from various ex-
perimental data.

IV. ONE-LOOP RESULTS

Let us consider this problem at the one-loop level. The
perturbative contribution of the leading logarithms to the ef-
fective coupling in the spacelike region can be written as

ā~1!~q2!5a(
n50

` S 2ab0ln
q2

m2D n. ~15!

In any finite order this function has the correct analytic prop-
erties. The ghost pole appears due to the naive sum of the
infinite geometrical series in Eq.~15!. However, we should
consider the series in Eq.~15! as an asymptotic series and try
to find its sum in such a way as to maintain the required
analytic properties, taking into account the fact that the sum
of an asymptotic series is not unique. To this end, let us
consider the correlation function for which, from Eqs.~4!
and ~9!, the contribution of the leading logarithms has the
form

1The correct analytic properties of theD function can also be
maintained in the framework of the so-called variational perturba-
tion theory@7# which is based on a new small expansion parameter
@8#.
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P~q2!}2 ln
q2

m2 1const1
d1
b0

(
n50

`
1

n11 S 2ab0ln
q2

m2D n11

.

~16!

Carrying out the sum and taking the imaginary part, we im-
mediately find, from Eq.~6!,

R~s!}11
r 1

pb0
arccos

11ab0L

A~11ab0L !21~apb0!
2
, ~17!

where L5 lns/m2. By introducing the QCD parameter
L25m2exp(21/ab0), we obtain, for the running coupling
constant in thes channel,

ās
~1!~s!5

1

pb0
arccos

ln~s/L2!

Aln2~s/L2!1p2
. ~18!

The same result for the running coupling constant in the
timelike region can be obtained by substituting the one-loop
spectral density~2! into Eq. ~14!. Moreover, the substitution
of Eq. ~18! into Eq. ~11! reproduces the one-loop analytic
running coupling~3! which parametrizes theD function and
has the asymptotic expansion~15!. Thus, the summation of
the leading logarithms for the physical quantityR(s) leads to
a D function with the correct analytic properties.

Let us compare the two one-loop couplingsās
(1)(s), given

by Eq. ~18!, andā(1)(q2), given by Eq.~3!. As noted above,
they have a universal value at 0,

ās
~1!~0!5ā~1!~0!5

1

b0
, ~19!

and, in fact, are exactly the same ats5L2, q25L2. Asymp-
totically, for large spacelike and timelike momenta, respec-
tively,

ā~1!~q2!;
1

b0

1

lnq2/L2 , q2@L2, ~20!

ās
~1!~s!;

1

b0

1

lns/L2S 12
p2

3

1

ln2s/L2D , s@L2, ~21!

exhibiting the fact that thet- ands-channel couplings differ
in three-loop order. In general, these two couplings, in their
respective regimes, agree numerically quite closely, as
shown in Fig. 1, with the relative difference being no more
than 9%, as shown in Fig. 2. Similar features hold in two-
loop order, the discrepancy between the couplings in the in-
termediate region dropping to about 5%.

V. SCHWINGER’S IDENTIFICATION

More than two decades ago, Schwinger proposed@9# that
the Gell-Mann–Low function, or theb function, in QED
could be represented by a spectral function for the photon
propagator, which has direct physical meaning. The precise
connection, of course, depends on the definition of the run-
ning coupling constant@9,10#. Remarkably, we find that this
idea is realized in our proposal for the timelike coupling
constant in QCD. For theb function which corresponds to

the coupling defined in the Euclidean region this statement is
true through the two-loop approximation, but it breaks down
if one takes into account three-loop contributions.~The
analogous thing happens in QED for the conventional charge
definitions@10#.! However, Schwinger’s identification is cer-
tainly correct if we construct theb function for the coupling
~14! defined in the timelike region: indeed,

bs5s
dās

eff

ds
52

r~s!

p
. ~22!

As noted above, in perturbation theory, the difference be-
tween the couplings in the spacelike and timelike regions is
given by three-loop diagrams and, therefore,
b5q2dāeff/dq252r(s)/p1O(3 loop).

VI. CONCLUSIONS

We have considered the procedure of constructing the
QCD running coupling constant by using analytic perturba-

FIG. 1. Plot of the spacelike and timelike definitions of the
one-loop running coupling constants,ā (1)(q2) andās

(1)(s). The ab-
scissa is, respectively,2q2/L2 and s/L2 for the two functions.
Here, we have displayeda54pa and have usedNf53 in b0.

FIG. 2. Plot of the relative difference of the two coupling con-
stants shown in Fig. 1,ā (1)(x)/ās

(1)(x)21. Here, the argument is
x5q2/L2 for ā andx5s/L2 for ās .
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tion theory. The fundamental quantity here is the spectral
densityr(s), in terms of which the running coupling in the
Euclidean region is expressed through the spectral represen-
tation ~13!, while the running coupling in the timelike region
is expressed by Eq.~14!. Both these couplings have the same
universal infrared limit,

āeff~0!5ās
eff~0!5

1

pE0
`ds

s
r~s!5

1

b0
, ~23!

which turns out to be remarkably stable with respect to
higher-loop corrections@2#. Further, both coupling constants
have the same leading asymptotic behavior. Thus, in com-
parison with standard perturbation theory, the strong require-
ment of analyticity modifies the theory in the infrared and
intermediate domains significantly, which is particularly rel-

evant for a physical description of the timelike regime. Fi-
nally, we have shown that Schwinger’s proposed connection
between the renormalization groupb function and the spec-
tral density is valid for the coupling defined in the timelike
region.
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