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Recently Appelquist, Terning, and Wijewardhana investigated the zero-temperature chiral phase transition in
SU(N) gauge theory as the number of fermionsNf is varied. They argued that there is a critical number of
fermionsNf

c , above which there is no chiral symmetry breaking and below which chiral symmetry breaking
and confinement set in. They further argued that the transition is not second order even though the order
parameter for chiral symmetry breaking vanishes continuously asNf approachesNf

c on the broken side. In this
note I propose a simple physical picture for the spectrum of states asNf approachesNf

c from below~ i.e., on
the broken side! and argue that this picture predicts very different andnonuniversalbehavior than is the case
in an ordinary second order phase transition. In this way the transition can becontinuouswithout behaving
conventionally. I further argue that this feature results from the~presumed! existence of an infrared Banks-
Zaks fixed point of the gauge coupling in the neighborhood of the chiral transition and, therefore, depends on
the long-distance nature of the non-Abelian gauge force.@S0556-2821~97!04608-0#

PACS number~s!: 11.15.2q, 11.30.Rd

Recently Appelquist, Terning, and Wijewardhana@1#
have investigated the zero-temperature chiral phase transi-
tion in SU(N) gauge theory as the number of massless Dirac
fermionsNf is varied. To second order, theb function of
such a theory is given by
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For a small number of flavors the theory is asymptotically
free and one expects QCD-like behavior, with confinement
and with the chiral SU(Nf)L3SU(Nf)R symmetry broken to
its vectorial subgroup. If the number of flavors is large
enough ~in perturbation theory, greater than 11N/2)
asymptotic freedom~and hence chiral symmetry breaking
and confinement! is lost. For a range ofNf less than 11N/2
the first term in theb function is negative and the theory is
asymptotically free, but there appears~in perturbation
theory! to be a nontrivial infrared~Banks-Zaks! fixed point
@2# because the second term in theb function ispositive. For
Nf just slightly less than 11N/2, this fixed pointa* is at
weak coupling and the analysis is self-consistent. AsNf is
lowered further, the fixed point moves tolarger coupling.

In vectorlike gauge theories an analysis of the gap equa-
tion @3,4# suggests that, in a theory with an approximately
constant coupling, chiral symmetry breaking occurs only if
the couplinga exceeds a critical value
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The authors of@1# suggested that the Banks-Zaks fixed point
@2# persists to large coupling, and that the chiral-symmetry-
breaking transition inNf should be associated with the point
wherea*5ac . They thereby estimated that

Nf
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Furthermore, Appelquist, Terning, and Wijewardhana sug-
gested that the nature of this phase transition is peculiar.
Based on a gap equation analysis@5# of the dynamical mass
S(p) of the fermions in the broken phase, they argued that
the order parameter for chiral symmetry breaking@which is
proportional toS(0)#,

S~0!'LexpS 2p

Aa* /ac21
D , ~6!

goes to zero continuously1 asNf→(Nf
c)2 ~and a*→ac

1).
Here the high-energy scaleL represents the scale at which
the coupling is far enough from the fixed point value to begin
to run @1#.

On the other hand, based on an analysis of the Bethe-
Salpeter equation for the quark-antiquark scattering ampli-
tude, Appelquist, Terning, and Wijewardhana argue that in
the symmetric phase~close to the transition, whenNf is just
aboveNf

c) there are no light scalar resonances. Indeed, since
the theory withNf*Nf

c is presumed to be in a conformally

*Electronic address: sekhar@bu.edu

1For momenta belowS(0), thefermions can be integrated out and
no longer contribute to theb function. Therefore, strictly speaking,
for anyNf,Nf

c there is no fixed point. Nonetheless, forNf close to
Nf
c the coupling remains close toa* for a large range of momenta,

in a manner reminiscent of ‘‘walking technicolor’’@6#.
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invariant ‘‘non-Abelian Coulomb’’ phase@2#, it cannot have
any isolated states. They then concluded that the phase tran-
sition is not second ordereven though the order parameter
changes continuously.

In this work I propose a simple physical picture for the
spectrum of states asNf approachesNf

c from below~i.e., on
the broken side! and argue that this picture predicts very
different andnonuniversalbehavior than is the case in an
ordinary second-order phase transition. In this way the tran-
sition can becontinuouswithout behaving conventionally
@7#. I further argue that this feature results from the~pre-
sumed! existence of an infrared Banks-Zaks fixed point of
the gauge coupling in the neighborhood of the chiral transi-
tion and therefore depends on the long-distance nature of the
non-Abelian gauge force.

Before moving to the case of a long-range force, let us
review the familiar behavior of the chiral phase transition in
a model with short-range interactions, the Nambu–Jona-
Lasinio ~NJL! model @8#. Here the fundamental interactions
are modeled by chirally invariant local four-fermion opera-
tors
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where thela/2 are the generators of SU(N) ‘‘color’’ and the
c are theNf flavors of fermions. This interaction is attractive
in the chiral-symmetry-breaking channel, but is suppressed
by a ~large! energy scaleL. In the limit where the NJL
coupling k is small, chiral symmetry remains unbroken.
When the coupling is large, the chiral-symmetry-breaking
scale~as characterized by the value of theF constant—the
analogue of fp in QCD—or by S, the momentum-
independent dynamical mass of the fermion! is of orderL.
There is a critical valuekc , estimated to bep/3 in the large-
N limit, below which chiral symmetry is unbroken and above
which it is broken. If the transition between these two re-
gimes issmooth, as it is in the gap equation in the fermion-

bubble approximation, the dynamical mass of the fermion
goes smoothly to zero ask→(kc)

1, and remains identically
zero fork<kc .

In the case of the Nambu–Jona-Lasinio model, the spec-
trum of bosonic excitations@9# is shown in Fig. 1. Note that,
aside from the light scalar-multipletf on the unbroken side
and thes and Goldstone bosonsp on the broken side,all
other ‘‘excitations’’ have a mass of orderL. The reason for
this is that the intrinsic physical scale of the interactions is
alwaysof orderL. Neark5kc , the scalar states areanoma-
lously light due to the ‘‘fine-tuning’’@10# of the NJL inter-
action.

This picture should be contrasted with the analogous
change of the spectrum of particles near the chiral phase
transition in non-Abelian gauge theory asNf→(Nf

c)2. Be-
cause of the infrared fixed point, the high-energy scaleL
@see Eq.~6!# is no longer relevant. In this case theonly rel-
evant dynamical scale is the magnitude of dynamical mass
S(0). All other scales, theF constant, the confinement scale,
etc., are of the same order of magnitude@1#. Therefore, if
S(0)→0 continuously asNf→(Nf

c)2, we expect the spec-
trum of bosonic excitations to be as shown in Fig. 2. Note
that asNf→(Nf

c)2, the entire spectrum collapses to zero
mass. So long as the Banks-Zaks fixed point persists2 in the
non-Abelian gauge theory, all high-energy scales are irrel-
evant. Therefore, unlike the NJL model, ifS(0)→0 the
mass of all excitations must also tend to zero.

What are the implications of this behavior? In the case of
the NJL model near the critical coupling, it is appropriate to
‘‘integrate out’’ all higher-mass states and the critical behav-
ior of the theory is determined entirely by the infrared be-
havior of the corresponding scalar field theory.3 We therefore

2More properly, since we are in the broken phase where no true
fixed point exists, so long as the coupling remains close toa* over
a large range of momenta.
3In some cases the resulting scalar theory cannot have a second-

order transition, but will have a fluctuation-induced first-order tran-
sition instead@11#. If the transition is driven to be first order, all
relevant dimensional quantities will be@12,13# of orderL.

FIG. 1. Spectrum of bosonic excitations in the NJL model for
couplings close tokc . Chiral symmetry is broken fork.kc , and
preserved fork,kc . Thes andp in the broken phase combine to
be the scalarf multiplet in the unbroken phase. The vector and
axial-vector resonances form one chiral multiplet, and are therefore
degenerate, in the unbroken phase.

FIG. 2. Spectrum of bosonic excitations in SU(N) gauge theory
for Nf close toNf

c . For Nf,Nf
c , chiral symmetry is broken. For

Nf*Nf
c , the theory is assumed to be in a conformally invariant

‘‘non-Abelian Coulomb’’ ~NAC! phase@2# which has no isolated
single-particle states.
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expect similar behavior inanySU(Nf)3SU(Nf) chirally in-
variant four-dimensional field theory withshort-range inter-
actionsnear the phase boundary: i.e., we expect the behavior
to beuniversal.

In contrast, in the case of non-Abelian gauge theory with
Nf just belowNf

c , we cannotreduce the theory to an effec-
tive low-energy scalar theory. In principleall ‘‘higher’’ reso-
nances contribute to any correlation function and the behav-
ior is nonuniversal. In this case it is plausible that the order
parameter changes continuously asNf→(Nf

c)2, even though
the theory withNf*Nf

c has no light scalar states.
Finally, I note that arguments similar to those presented

here may cast light on the discrepancies between the gap
equation@14,15# and the effective scalar field-theory@16#
analyses of the chiral phase transition in QED3.

In this work I have proposed a simple physical picture for
the spectrum of states in SU(N) gauge theory as the number

of flavorsNf approaches the critical numberNf
c from below

~i.e., from the broken side!. This picture predicts very differ-
ent andnonuniversalbehavior than is the case in a conven-
tional second-order phase transition. I have further argued
that this feature results from the~presumed! existence of a
Banks-Zaks fixed point of the gauge coupling in the neigh-
borhood of the chiral transition and therefore depends on the
long-distance nature of the non-Abelian gauge force.
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