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Recently Appelquist, Terning, and Wijewardhana investigated the zero-temperature chiral phase transition in
SU(N) gauge theory as the number of fermidisis varied. They argued that there is a critical number of
fermionsN¢$, above which there is no chiral symmetry breaking and below which chiral symmetry breaking
and confinement set in. They further argued that the transition is not second order even though the order
parameter for chiral symmetry breaking vanishes continuously; @pproachesl; on the broken side. In this
note | propose a simple physical picture for the spectrum of statds approached; from below( i.e., on
the broken sideand argue that this picture predicts very different aoduniversabehavior than is the case
in an ordinary second order phase transition. In this way the transition canrtimuouswithout behaving
conventionally. | further argue that this feature results from (ffresumeg existence of an infrared Banks-

Zaks fixed point of the gauge coupling in the neighborhood of the chiral transition and, therefore, depends on
the long-distance nature of the non-Abelian gauge fdr86556-282(97)04608-0

PACS numbeps): 11.15~q, 11.30.Rd

Recently Appelquist, Terning, and Wijewardhaha] T 27N
have investigated the zero-temperature chiral phase transi- =3¢ (R) = 3(N2—1)° (4)
tion in SU(N) gauge theory as the number of massless Dirac 2

fermionsN; is varied. To second order, th function of  The authors of1] suggested that the Banks-Zaks fixed point
such a theory is given by [2] persists to large coupling, and that the chiral-symmetry-
breaking transition ilNs should be associated with the point

#%a(ﬂ) =B(a)=—ba’(n)—ca’(u)—da*(pu)—---, wherea* = . They thereby estimated that

1) 100N%—66
= ( (5)

(o3
Ni=N 25N°—15 /"

where

1 Furthermore, Appelquist, Terning, and Wijewardhana sug-
b= g (1IN=2Ny), (2)  gested that the nature of this phase transition is peculiar.
o . .
Based on a gap equation analyid$ of the dynamical mass
2 2 (p) of the fermions in the broken phase, they argued that
N |. (3)  the order parameter for chiral symmetry breakimdnich is
N proportional to2 (0)],

34N2—10NN;—3

€= 242

For a small number of flavors the theory is asymptotically B
free and one expects QCD-like behavior, with confinement 2(0)%/&6)@( —Tr) (6)
and with the chiral SU{;), X SU(N¢) g symmetry broken to Va, lac—1
its vectorial subgroup. If the number of flavors is large
enough (in perturbation theory, greater than N/B)  goes to zero continuousiyas N¢—(Nf)~ (and a* —ay).
asymptotic freedom(and hence chiral symmetry breaking Here the high-energy scalk represents the scale at which
and confinementis lost. For a range ofl; less than 1M/2  the coupling is far enough from the fixed point value to begin
the first term in theB function is negative and the theory is to run[1].
asymptotically free, but there appeaf® perturbation On the other hand, based on an analysis of the Bethe-
theory to be a nontrivial infraredBanks-Zaks fixed point ~ Salpeter equation for the quark-antiquark scattering ampli-
[2] because the second term in {Bdunction ispositive For ~ tude, Appelquist, Terning, and Wijewardhana argue that in
N; just slightly less than I14/2, this fixed pointa* is at ~ the symmetric phasglose to the transition, wheN; is just
weak coupling and the analysis is self-consistent.Nd\sis  aboveNt) there are no light scalar resonances. Indeed, since
lowered further, the fixed point moves karger coupling. the theory withN¢=N¥ is presumed to be in a conformally
In vectorlike gauge theories an analysis of the gap equa-
tion [3,4] suggests that, in a theory with an approximately
constant coupling, chiral symmetry breaking occurs only if For momenta below (0), thefermions can be integrated out and
the couplinga exceeds a critical value no longer contribute to thg function. Therefore, strictly speaking,
for any N;<<N{ there is no fixed point. Nonetheless, fdf close to
N¢ the coupling remains close t* for a large range of momenta,
*Electronic address: sekhar@bu.edu in a manner reminiscent of “walking technicolof6].
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) o ) FIG. 2. Spectrum of bosonic excitations in 3Y(gauge theory
FIG. 1. Spectrum of bosonic excitations in the NJL model for for N, close toN¢. For Ny<N¢, chiral symmetry is broken. For

couplings close tac;. Chiral symmetry is broken fok>«c, and N =N¢, the theory is assumed to be in a conformally invariant

preserved foik<«.. Theo and in the broken phase combine to «non_apelian Coulomb” (NAC) phase[2] which has no isolated
be the scalak) multiplet in the unbroken phase. The vector and gingle-particle states.

axial-vector resonances form one chiral multiplet, and are therefore
degenerate, in the unbroken phase. bubble approximation, the dynamical mass of the fermion
goes smoothly to zero as—(«.)*, and remains identically
invariant “non-Abelian Coulomb” phasg?], it cannot have zero fork<k,.
any isolated states. They then concluded that the phase tran- In the case of the Nambu—Jona-Lasinio model, the spec-
sition is not second orderven though the order parameter trum of bosonic excitationg9] is shown in Fig. 1. Note that,
changes continuously. aside from the light scalar-multiplet on the unbroken side
In this work | propose a simple physical picture for the and theoc and Goldstone bosons on the broken sideall
spectrum of states a¢; approache$\{ from below(i.e., on  other “excitations” have a mass of ordér. The reason for
the broken sideand argue that this picture predicts very this is that the intrinsic physical scale of the interactions is
different andnonuniversalbehavior than is the case in an alwaysof orderA. Nearx= k., the scalar states asmoma-
ordinary second-order phase transition. In this way the tranlously light due to the “fine-tuning”[10] of the NJL inter-
sition can becontinuouswithout behaving conventionally action.
[7]. | further argue that this feature results from tfpre- This picture should be contrasted with the analogous
sumed existence of an infrared Banks-Zaks fixed point of change of the spectrum of particles near the chiral phase
the gauge coupling in the neighborhood of the chiral transitransition in non-Abelian gauge theory bs— (Nf) . Be-
tion and therefore depends on the long-distance nature of theause of the infrared fixed point, the high-energy schle
non-Abelian gauge force. [see Eq.6)] is no longer relevant. In this case thaly rel-
Before moving to the case of a long-range force, let usvant dynamical scale is the magnitude of dynamical mass
review the familiar behavior of the chiral phase transition inX,(0). All other scales, thE constant, the confinement scale,
a model with short-range interactions, the Nambu-Jonaetc., are of the same order of magnitidg. Therefore, if
Lasinio (NJL) model[8]. Here the fundamental interactions 3,(0)—0 continuously aN;— (Nf) ~, we expect the spec-
are modeled by chirally invariant local four-fermion opera-trum of bosonic excitations to be as shown in Fig. 2. Note

tors that asN;—(Nf) ~, the entire spectrum collapses to zero
mass. So long as the Banks-Zaks fixed point pefsistthe

Am[— A2 12 non-Abelian gauge theory, all high-energy scales are irrel-
L==7F= %07“7!/!} : (7)  evant. Therefore, unlike the NJL model, ¥(0)—0 the

mass of all excitations must also tend to zero.

What are the implications of this behavior? In the case of
where thex®/2 are the generators of SNJ “color” and the  the NJL model near the critical coupling, it is appropriate to
i are theN; flavors of fermions. This interaction is attractive “integrate out” all higher-mass states and the critical behav-
in the chiral-symmetry-breaking channel, but is suppressefbr of the theory is determined entirely by the infrared be-
by a (large energy scaleA. In the limit where the NJL havior of the corresponding scalar field thedie therefore
coupling « is small, chiral symmetry remains unbroken.

When the coupling is large, the chiral-symmetry-breaking————

scale(as characterized by the value of tReconstant—the  2More properly, since we are in the broken phase where no true
analogue of f in QCD—or by X%, the momentum- fixed point exists, so long as the coupling remains close*tmver
independent dynamical mass of the fermig of orderA.  a large range of momenta.

There is a critical valug,, estimated to ber/3 in the large- %In some cases the resulting scalar theory cannot have a second-
N limit, below which chiral symmetry is unbroken and above order transition, but will have a fluctuation-induced first-order tran-
which it is broken. If the transition between these two re-sition instead 11]. If the transition is driven to be first order, all
gimes issmooth as it is in the gap equation in the fermion- relevant dimensional quantities will §&2,13 of orderA.
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expect similar behavior iany SU(N¢) X SU(N;) chirally in-  of flavorsN; approaches the critical numbiRf from below
variant four-dimensional field theory witshort-range inter-  (i.e., from the broken sideThis picture predicts very differ-
actionsnear the phase boundary: i.e., we expect the behavig@nt andnonuniversalbehavior than is the case in a conven-
to beuniversal tional second-order phase transition. | have further argued
In contrast, in the case of non-Abelian gauge theory wittthat this feature results from th@resumed existence of a
N; just belowN¢, we cannotreduce the theory to an effec- Banks-Zaks fixed point of the gauge coupling in the neigh-
tive low-energy scalar theory. In principél “higher” reso-  borhood of the chiral transition and therefore depends on the
nances contribute to any correlation function and the behaJ/ong-distance nature of the non-Abelian gauge force.

ior is nonuniversal In this case it is plaUSibIe that the order | thank Koichi Yamawaki and the Organizers of the Inter-
parameter changes continuouslyNass—(Nf) ~, even though national Workshop on Perspectives of Strong Coupling
the theory withN;=N¢ has no light scalar states. Gauge TheoriesSCGT 96 held in Nagoya for holding a

Finally, I note that arguments similar to those presentedstimulating conference where this work was begun. | also
here may cast light on the discrepancies between the gapank Nick Evans, Stephen Selipsky, Rohana Wijewardhana,
equation[14,15 and the effective scalar field-theofy6] Elizabeth Simmons, and John Terning for discussions and
analyses of the chiral phase transition in QED3. for comments on the manuscript. This work was supported in

In this work | have proposed a simple physical picture forpart by the Department of Energy under Grant No. DE-
the spectrum of states in SN} gauge theory as the number FG02-91ER40676.
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