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The sum of all the ladder and rainbow diagrams inf3 theory near six dimensions leads to self-consistent
higher order differential equations in coordinate space which are not particularly simple for arbitrary dimension
D. We have now succeeded in solving these equations, expressing the results in terms of generalized hyper-
geometric functions; the expansion and representation of these functions can then be used to prove the absence
of renormalization factors which are transcendental for this theory and this topology to all orders in perturba-
tion theory. The correct anomalous scaling dimensions of the Green functions are also obtained in the six-
dimensional limit.@S0556-2821~97!01208-3#

PACS number~s!: 11.10.Gh, 11.10.Jj, 11.10.Kk

I. INTRODUCTION

In a recent paper@1# we managed to derive closed forms
for ladder corrections to self-energy graphs~rainbows! and
vertices, in the context of dimensional renormalization. We
only succeeded in carrying out this program for Yukawa
couplings near four dimensions, although we did obtain the
differential equations pertaining to thef3 theory as well; but
we were not able to solve the latter in simple terms. We have
now managed to obtain closed expressions forf3 theory as
well and wish to report the results here. The answers are
indeed nontrivial and take the form of0F3 functions, which
perhaps explains why they had eluded us so far. Interest-
ingly, the closed form results for Yukawa-type models lead
to Bessel functions with curious indices and arguments; but
as these can also be written as0F1 functions, the analogy
with f3 is close after all.

Given the exact form of the results, both for rainbows and
ladders, we are able to test out Kreimer’s@2# hypothesis
about the connection between knot theory and renormaliza-
tion theory with confidence, fully verifying that the renor-
malization factors for such topologies are indeed nontran-
scendental. At the same time we are able to determine the
Z factors to any given order in perturbation theory and show
that in theD→6 limit, the correct anomalous dimensions of
the Green functions do emerge, which is rather satisfying.
The variousZ factors come out as poles in 1/(D26) when
the Green functions are expanded in the normal way as pow-
ers of the coupling constant, but the complete result produces
the renormalized Green function to all orders in coupling for
any dimensionD.

In the next section we treat the vertex diagrams, convert-
ing the differential equation for ladders into hypergeometric
form. Upon picking the correct solution we are able to do
two things:~i! establish that in theD→6 limit one arrives at

the correct anomalous scaling factor for the vertex function,
and~ii ! obtain theZ factors through a perturbative expansion
of argument of the hypergeometric function. The case~i! is a
bit tricky; it requires an asymptotic analysis, because the
indices of the hypergeometric function as well as the argu-
ment diverge in the six-dimensional limit. The next section
contains the analysis of the rainbow graphs; the equations are
similar to the vertex case, but different solutions must be
selected, resulting in a different anomalous dimension. It is
nevertheless true that the self-energy renormalization con-
stant remains nontranscendental. A brief concluding section
ends the paper.

II. LADDER VERTEX DIAGRAMS

We will only treat the massless case, since this is suffi-
cient to specify theZ factors once an external momentum
scale is introduced. To further simplify the problem we shall
consider the case where the vertex is at zero-momentum
transfer, leaving just one external momentump. The equa-
tion for the one-particle irreducible vertexG, in the ladder
approximation, thereby reduces to

G~p!5Z1 ig2E 1

q2
G~q!

1

q2
dDq/~2p!D

~p2q!2
. ~1!

Letting G(p)[p4G(p), the equation can be Fourier trans-
formed into the coordinate space equation forG:

@]42 ig2Dc~x!#G~x!5ZdD~x!, ~2!

where Dc is the causal Feynman propagator for arbitrary
dimensionD. Since the couplingg is dimensionful when
DÞ6, it is convenient to introduce a mass scalem and define
a dimensionless coupling parametera via

g2

4pD/2

G~D/221!

~2x2!12D/2[
4a~mr !62D

r 4
.

Then, rotating to Euclidean space (r 252x2), the ladder ver-
tex equation simplifies to
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F S d2dr2 1
D21

r

d

dr D
2

2
4a~mr !62D

r 4 GG~r !5ZdD~r !. ~3!

This is trivial to solve whenD56, since it becomes homo-
geneous forr.0 and the appropriate solution is

G~r !}r b, b5212A522A41a,

reducing toG(r )}r22 or G(p)51 in the free field case
(a50); it represents a useful limit when analyzing the full
equation~3!, to which we now turn.

Let us define the scaling operatorQ r5r (d/dr). This al-
lows us to rewrite the square of the d’Alembertian operator
as

]45F d2dr2 1
D21

r

d

drG
2

5r24~Q r22!Q r~Q r1D24!~Q r1D22!. ~4!

Hence forr.0 the original equation~3! reduces to the sim-
pler form

@Qr~Qr22!~Qr1D24!~Qr1D22!24ar62D#G50,
~5!

wherer5mr andQr is the corresponding scaling operator.
Next, rescaling the argument tot54an4r21/n, with
n[1/(D26), we obtain the hypergeometric equation

@Q t~Q t12n!~Q t2122n!~Q t2124n!2t#G50. ~6!

Being of fourth order, there are four linearly independent
solutions:

0F3~b1 ,b2 ,b3 ;t !,

t12b1
0F3~22b1 ,b22b111,b32b111;t !,

t12b2
0F3~22b2 ,b32b211,b12b211;t !,

t12b3
0F3~22b3 ,b12b311,b22b311;t !,

whereb1[112n, b2524n, andb3522n. The appropri-
ate solution, which neart50 behaves asr 42D whena50, is
the last choice: namely,

G}t112n
0F3~212n,214n,122n;t !.

Near r50 this behaves liker2221/n. Finally, renormalizing
the Green functionG to equalmD24 whenr51/m, the scale
we introduced previously for the coupling constant, and re-
storing the original variables, we end up with the exact result

G~r !5r 42D
0F3S 22

2

62D
,22

4

62D
,11

2

62D
;
4a~mr !62D

~62D !4 D
0F3S 22

2

62D
,22

4

62D
,11

2

62D
;

4a

~62D !4D
. ~7!

To check that the poles in (D26) cancel out at any given
order in perturbation theory, one simply expands the numera-
tor and denominator in Eq.~7! to any particular power in the
dimensionless couplinga and take the limit asD→6. For
instance, to ordera3, with a little work one arrives at

r 2G~r !→11
a

4
ln~mr !1

a2

64
ln~mr !@112ln~mr !#

1
a3

1536
ln~mr !@916ln~mr !14ln2~mr !#

1O~a4!. ~8!

It is most gratifying that this agrees perfectly with the expan-
sion of the scaling indexb obtained previously atD56. The
most significant point is that there is no sign of a transcen-
dental constant in the singularities of the perturbation expan-
sion for f3 theory near six dimensions, signifying that the
renormalization constantZ is free of them, in agreement with
the Kreimer hypothesis based on knot theory.

One last~rather difficult! check on our work is to see what
happens directly to Eq.~7! as D approaches six, without
having to invoke perturbation theory. For that an asymptotic
analysis@3# based on the method of steepest descent~see for

example, de Bruijn@4#! is needed. We start by making use of
the Barnes integral representation@5,6# of the hypergeomet-
ric function:

0F3~b1 ,b2 ,b3 ;t !

5
1

2ipE2 i`

1 i` G~b1!G~b2!G~b3!

G~b11z!G~b21z!G~b31z!
G~2z!tzdz.

In our case theb arguments lead us to evaluate the integral

I n~r ![
1

2ipE2 i`

i` G~214n!G~212n!G~122n!G~2z!

G~214n1z!G~212n1z!G~122n1z!

3 @4an4r21/n#zdz ~9!

in the limit asn→`. We shall show that as a function of

r, I n behaves liker12A522A41a. Remember thatG(r )
}r2221/nI n(r ).

For the method of steepest descents, suppose we write
I n as

1

2p i E2 i`

i`

gn~z!exp@ f n~z!#dz,
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wheregn is a ‘‘slowly varying’’ function. We see from Eq.
~9! that all the poles of the integrand lie on the positive real
axis. If z is such that Re(z),0 and f n8(z)50, then an ap-
proximate evaluation ofI n is given by

agn~z!exp@ f n~z!#/A2pu f n9~z!u,

where

a[exp@2 iarg„f n9~z!…/2#.

On applying the reflection formula for the gamma function
@5# to both G(122n) and G(122n1z) appearing in Eq.
~9!, we find that we can write

gn~z!5r2z/n
sinp~2n2z!

sin~2pn!
,

providedn is not an integer, and

exp@ f n~z!#5
G~214n!G~212n!G~2n2z!G~2z!

G~214n1z!G~212n1z!G~2n!
~4an4!z.

Since

f n8~z!5 ln~4an4!2@c~2n2z!1c~2z!1c~212n1z!

1c~214n1z!#,

wherec denotes the psi~or digamma! function, we look for
a zero atz52jn say, where 0, j,2. Since we assume
n@1 and since forx@1, c(x)5 lnx1O(1/x), we find that
j must satisfy the quartic

j~j12!~j22!~j24!54a.

The four solutions of this equation are

j516A562A41a

and are all real if 0<a,9/4. In particular we shall choose
the zerob say in ~0,2! which is closest to the origin; that is

b512A522A41a.

With this value ofb we find

f n9~2bn!.~12b!~412b2b2!/~an!.

Since in fact 0,b,1, we have that argf n9(2bn)50 so that
a51. Again,

gn~2bn!5
sin@~21b!pn#

sin~2pn!
rb

and, after some algebra,

exp@ f n~2bn!#5
4A2pb~b12!

a3/2n1/2 F 16~21b!

~42b!2~22b!G
2n

3exp~24bn!,

approximately. Consequently, forn@1 but not an integer,
we find

0F3~212n,214n,122n;4an4r21/n!

;
rbsin@~21b!pn#

asin~2pn!

4b~b12!exp~24bn!

~12b!1/2~412b2b2!1/2

3 F 16~21b!

~42b!2~22b!G
2n

.

Using this asymptotic expansion, we obtain simply from
Eq. ~7! that

G~r !5mbr 52D2A522A41a, ~10!

which is just the scaling behavior at six dimensions which
we were seeking. We have therefore fully verified the cor-
rectness of Eq.~7! in all the limits. The last step is to convert
the answer to Minkowski space by making the familiar sub-
stitution r 2→2x21 i e.

III. RAINBOW DIAGRAMS

Let DR(p) denote the renormalizedf propagator in rain-
bow approximation, so thatp2DR(p)512SR(p)/p

2, where
SR is the rainbow self-energy. The propagator obeys the in-
tegral equation in momentum space

p4DR~p!5Zp21 ig2E dDk

~2p!D
DR~p2k!

k2
, ~11!

where Z now refers to the wave-function renormalization
constant. As always we convert this into anx-space differ-
ential equation:

@]42 ig2Dc~x!#DR~x!52Z]2dD~x!. ~12!

Interestingly, this is exactly the same equation as Eq.~2!,
apart from the right-hand side, and it can therefore be con-
verted into hypergeometric form by following the same steps
as before. The only difference is that we should look for a
different solution, because asg→0, DR(p)→1/p2, or
DR(x);(x2)12D/2.

A simple analysis shows the correct solution is

t114n
0F3~214n,216n,112n;t !;

t54an4~mr !21/n, n51/~D26!,

because this reduces tor 22D when a50. Actually we can
solve Eq.~12! directly atD56 whenaÞ0 because it is a
simple homogeneous equation leading to

DR~x!}r212A512A41a

and thereby determine the anomalous dimension from the
exponent ofr . Anyhow, the exact solution of the rainbow
sum for anyD and renormalized atr51/m is here obtained
to be
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DR~r !5r 22D
0F3S 22

4

62D
,22

6

62D
,12

2

62D
;
4a~mr !62D

~62D !4 D
0F3S 22

4

62D
,22

6

62D
,12

2

62D
;

4a

~62D !4D
. ~13!

The numerator and denominator of Eq.~13!, when expanded in powers ofa will reproduce the~renormalized! perturbation
series; to third order we find, in the limit asD→6, that all poles disappear and

r 4DR~r !512
a

12
ln~mr !1

a2

1728
ln~mr !@1116ln~mr !#2

a3

124416
ln~mr !@103166ln~mr !112ln2~mr !#1O~a4!.

This coincides perfectly with the expansion of the scaling
exponent atD56.

Lastly we need to show that theD→6 limit of Eq. ~13!
collapses to the scaling behavior found above, via an
asymptotic analysis of the Barnes representation. We have
indicated how this can be proven in the previous section and
thus we skip the formal details to avoid boring the reader.
The long and the short of the analysis is that no transcenden-
tals enter into the above expressions for the self-energy~in-
cluding their singularities, which are tied to the wave-
function renormalization constant!. These results confirm
nicely the Kreimer@2# hypothesis that theZ factors will be
simple rationals for such topologies.

IV. CONCLUSIONS

We have succeeded in evaluating an all-orders solution of
Green functions for ladder and rainbow diagrams for any
dimensionD in f3 theory; the results are nontrivial, involv-
ing 0F3 hypergeometric functions. We have demonstrated
that, in the limit asD→6, the correct six-dimensional scal-
ing behavior~which can be separately worked out! is repro-
duced. One can likewise determine the exact solutions for

massless bubble ladder exchange inf4 theory, because the
equations are very similar: they are also of fourth order and
can be converted into hypergeometric form too@7#.

More intriguing is the question of what happens when
self-energy and ladder insertions are considered, so far as
renormalization constants are concerned. A recent paper by
Kreimer @8# has shown that such topologies with their dis-
joint divergences can produce transcendentalZ in accor-
dance with link diagrams that are of the~2,q) torus knot
variety, where the highestq is determined by the loop num-
ber. It would be interesting to show this result without re-
sorting to perturbation theory by summing all those graphs
exactly, as we have done in this paper.~Kreimer cautions
that multiplicative renormalization may screen his new find-
ings.! The generalization to massive propagators@9# does not
seem beyond the realms of possibility either, although it has
a marginal bearing onZ-factors.
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