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Nucleon spin fluctuations in a dense medium reduce the ‘‘naive’’ values of weak interaction rates~neutrino
opacities, neutrino emissivities!. We extend previous studies of this effect to the degenerate case which is
appropriate for neutron stars a few ten seconds after formation. If neutron-neutron interactions by a one-pion
exchange potential are the dominant cause of neutron spin fluctuations, a perturbative calculation of weak
interaction rates is justified forT&3m/(4pap

2 )'1 MeV, wherem is the neutron mass andap'15 the pion
fine-structure constant. At higher temperatures, the application of Landau’s theory of Fermi liquids is no longer
justified; i.e., the neutrons cannot be viewed as simple quasiparticles in any obvious sense.
@S0556-2821~97!00402-5#

PACS number~s!: 97.60.Jd, 13.15.1g, 14.60.Lm, 95.30.Cq

I. INTRODUCTION

In a dense nuclear medium the effective neutrino interac-
tion rates are modified by the presence of nucleon-nucleon
interactions. While the importance of spatial spin-spin corre-
lations has been recognized for a long time, it had been over-
looked that the interaction-induced temporal fluctuations of
the spin of a single nucleon can be a more important effect.
It reduces the naive neutrino opacities and neutrino emissivi-
ties of nuclear matter below their naive values@1–4#. These
studies focused on a classical nucleon plasma, i.e., on non-
relativistic and nondegenerate conditions which are thought
to obtain in the core of a supernova for the first few seconds
after collapse. It was found that the spin-fluctuation rate in
this environment is so large that it is not possible to calculate
weak interaction rates by a perturbative expansion in terms
of the nucleon-nucleon interaction potential.

We presently study the same effect for a degenerate me-
dium in order to derive a perturbative expression for the
cross-section reduction by nucleon spin fluctuations, and in
order to understand the physical conditions of temperature
and density where a ‘‘naive’’ calculation of weak interaction
rates may be justified. Many attempts have been made to
calculate neutrino opacities and emissivities for the physical
conditions pertaining to neutron stars because of the obvious
importance of these quantities for a theoretical understanding
of neutron-star cooling@5#. While many of these works are
dedicated to calculating the impact of spatial correlation ef-
fects on neutrino interaction rates, none of them appears to
have addressed the important issue of nucleon spin autocor-
relations.

One may take a somewhat different perspective on the
same problem if one notes that these calculations are based
on Landau’s theory of interacting Fermi liquids where a
‘‘nucleon’’ is a quasiparticle excitation of the medium@6#.
This picture is justified only if the quasiparticles near the
Fermi surface do not interact too strongly, i.e.,t21!T,
where t is a typical time between collisions andT is the
temperature of the medium. Landau’s condition is based on
the observation that atT50 the Fermi-Dirac distribution is a

step function which, at nonzero temperature, is smeared out
over an energy range of approximate widthT. Collisions, on
the other hand, introduce an energy uncertainty of order
t21 which clearly should be much smaller thanT in order
for the Fermi-Dirac distribution to make any sense. When
Landau’s condition is violated it is not possible to speak of
quasiparticles which obey Fermi statistics. Degeneracy ef-
fects ensure that the time between collisions becomes large
at low temperatures, so there is no significant restriction in
the T→0 limit. For hot neutron-star matter, however, it is
not a priori obvious that Landau’s condition is satisfied. We
were unable to locate any discussion of this problem in the
entire literature pertaining to weak interaction rates in neu-
tron stars@5#. Therefore, it is not frivolous to raise the ques-
tion of how cold the medium in a neutron star has to become
before a Fermi-liquid treatment becomes possible.

As previously argued@1–3#, the cross-section reduction
by nucleon spin fluctuations becomes large when a typical
nucleon spin-fluctuation rate is of order the ambient tempera-
tureT or larger. Since nucleons interact by a spin-dependent
force, the spin-fluctuation rate is roughly identical with the
nucleon collision rate. Therefore, the condition that the spin-
fluctuation rate be much less thanT ensures both that the
weak interaction rates are not much affected by nucleon spin
fluctuations and that Landau’s condition is satisfied.

The main problem in the degenerate case is to identify the
quantity which is to be interpreted as the relevant effective
spin-fluctuation rate. Because only the spins of nucleons near
the Fermi surface have a chance of evolving in a nontrivial
way, and because Landau’s condition pertains to the quasi-
particles near the Fermi surface, it is clear that we need to
define an appropriate effective spin-fluctuation rate for the
quasiparticles near the Fermi surface.

The impact of nucleon-nucleon collisions on weak inter-
action rates is best understood in the language of linear-
response theory where the medium is described by the dy-
namical density and~iso!spin-density structure functions.
This method allows for a straightforward calculation of the
reduction of weak interaction rates in the perturbative limit
where the Landau condition is satisfied, and thus allows for a
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delineation of the physical parameters where this treatment is
justified.

We will limit ourselves to the simple situation of a non-
relativistic, single-species medium, i.e., we will study non-
relativistic degenerate neutron matter. This excludes the im-
portant Urca processes from consideration which are more
difficult to address because they involve two degenerate
Fermi seas~protons and neutrons! with vastly different
Fermi momenta. We believe that for the present exploratory
purposes a simple toy model is best suited to illuminate the
issues at hand. Therefore, we shall limit our attention to the
neutral-current scattering processn1n→n1n in nonrelativ-
istic degenerate neutron matter in the presence of interactions
which cause the neutron spins to fluctuate.

In Sec. II we introduce the relevant spin-density structure
function and derive a simple sum rule which is used in Sec.
III to calculate thenn scattering cross-section reduction by
neutron spin fluctuations. In Sec. IV we summarize and dis-
cuss our result.

II. DYNAMICAL STRUCTURE FUNCTIONS

A. Definition

In nonrelativistic neutron matter all weak interaction rates
are determined by the dynamical density and spin-density
structure functions. In an isotropic medium they are given by
@2#

Sr~v,k!5
1

nBV
E

2`

1`

dteivt^r~ t,k!r~0,2k!&,

Ss~v,k!5
4
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dteivt^s~ t,k!•s~0,2k!&, ~1!

wherenB is the baryon~here neutron! density,V the volume
of the system,k the momentum transfer, andv the energy
transfer from the weak probe to the neutron medium. Fur-
ther, r(t,k) is the spatial Fourier transform at timet of the
neutron density operator,r(x)5c†(x)c(x), wherec(x) is
the neutron field operator, a Pauli two-spinor. Similarly,
s(t,k) is the Fourier transform of the spin-density operator,
s(x)5 1

2c
†(x)tc(x), with t a vector of Pauli matrices. The

expectation valuê•••& is taken over a thermal ensemble so
that detailed balanceSr,s(v,k)5Sr,s(2v,2k)ev/T is sat-
isfied. Note that a positivev is energy given to the medium
by the weak probe.

The energies of the neutrinos which interact with the me-
dium are much smaller than the neutron mass or momenta so
that the long-wavelength limitk→0 is an adequate first ap-
proximation. In practice, its validity is questionable if
neutron-neutron correlations or collective modes are impor-
tant which for the moment we shall assume is not the case.
Then, the neutrino differential scattering cross section is
given by

ds

de2
5
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2

4p SCV
2 Sr~e12e2!
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2 Ss~e12e2!
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where e1,2 is the energy of the incoming and outgoing
neutrino, respectively, and Sr,s(v) stands for
limk→0Sr,s(v,k). Further,GF is the Fermi constant, and

CV521 andCA'21.15 are the neutral-current weak cou-
pling constants for the neutron@2#. In bulk nuclear matter,
CA may be suppressed somewhat.

In a noninteracting medium, the density and spin-density
operators remain constant so that the dynamical structure
functions are proportional tod(v). In the nondegenerate
case, they areSr,s(v)52pd(v). To include neutron-
neutron anticorrelations induced by the Pauli exclusion prin-
ciple one evaluates the expectation values in Eq.~1! by nor-
mal ordering of the neutron field operators, taking proper
account of the anticommutation relations. Then, one arrives
at the intuitive result

Sr,s~v!52pd~v!
1

nB
E 2d3p

~2p!3
f p~12 f p!, ~3!

wheref p is the occupation number of the neutron field mode
p. In the nondegenerate limit one may neglect the Pauli
blocking factor (12 f p) so that one arrives at the previous
result if one notes thatnB5* f p2d

3p/(2p)3. Here, the factor
2 counts the two neutron spin degrees of freedom.

Even after ‘‘turning on’’ interactions between the neu-
trons, or between the neutrons and some external potential,
the density operator remains constant. The vector current
quantity that does fluctuate in the presence of interactions is
the neutron velocity which in the nonrelativistic limit is
small. Therefore,Sr(v) remains proportional tod(v).

However, if the interaction involves a spin-dependent
force as expected for neutron-neutron interactions, the spin-
density structure function will be broadened because the spin
of a given neutron near the Fermi surface will ‘‘forget’’ its
initial orientation roughly after the collision timet. The
width of Ss(v) roughly representst21 so that the Landau
condition corresponds to the requirement that the width of
Ss(v) must be much less thanT. If this is satisfied, the
neutrino-scattering rates and thus the neutrino opacities are
well approximated by the noninteracting result forSs(v). Of
course, it may be modified by neutron-neutron correlations
or collective modes, effects that were the main focus of
many of the previous papers@5#.

B. Normalization

An important general property of the dynamical structure
functions is their normalization. If one integrates both sides
of Eq. ~1! overdv, the termeivt yieldsd(t) so that the time
integral can be trivially done. Then, the normalization for the
spin-density case is

E
2`

1`dv

2p
Ss~v!5

4

3nBV
^s~0,0!•s~0,0!&. ~4!

If one ignores spin-spin correlations, the right-hand side
~RHS! is independent of the neutron spins’ evolution. For the
sake of argument one may imagine that this evolution is
caused by the interaction with some external potential rather
than by neutron-neutron collisions so that there is no reason
to expect spin-spin correlations.

In this case one may evaluate the RHS of Eq.~4! as above
and find
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The occupation numbers are given by a Fermi-Dirac distri-
bution so that the RHS is

1

nB
E 2d3p

~2p!3
1

e~E2m!/T11 S 12
1

e~E2m!/T11D , ~6!

whereE5p2/2m is the kinetic energy,m the neutron quasi-
particle effective mass, andm the nonrelativistic neutron
chemical potential. Then, Eq.~6! is

1

nBp2E
0

`

dpp2
ez

~ez11!2
, ~7!

wherez[(E2m)/T. For very degenerate conditions the in-
tegrand is strongly peaked nearz50 ~the Fermi surface! so
that after a transformation of the integration variable toz one
may replacep with pF and one may extend the lower limit of
integration to2`. The integral can then be evaluated ana-
lytically so that altogether

E
2`

1`dv

2p
Sr,s~v!5

3

2h
. ~8!

Here,

h5
EF

T
5

pF
2

2mT
~9!

is the degeneracy parameter in the nonrelativistic and very
degenerate limit withEF5pF

2/2m the nonrelativistic Fermi
energy.

Therefore, in a noninteracting degenerate medium the
structure functions areSr,s(v)5(3/2h) 2pd(v). The total
scattering cross section of a neutrino with energye1 is then
s5(3/2h)(CV

213CA
2)GF

2e1
2/4p.

C. Perturbative representation ofSs„v…

If neutrons interact by a spin-dependent force it causes a
nontrivial evolution of their spins and thus a nonzero width
of Ss(v). Except in the neighborhood ofv50, where
multiple-scattering effects become important,Ss(v) can be
calculated on the basis of a bremsstrahlung or medium-
excitation amplitude@3,4#. Because for smallv the result
generically varies asv22, it is useful to represent it in the
form

Ss
brems~v!5

Gs

v2 s~v/T!H ev/T for v,0,

1 for v.0.
~10!

The explicit distinction between positive and negative energy
transfers represents the detailed-balance condition. Further,
s(x) is an even function which is normalized such that
s(0)51. In the classical limit of hard collisions one has
s(x)51 for all x as discussed in more detail in Refs.@3,7#. In
general,s(x) embodies information about the detailed form
of the interaction potential and about quantum corrections to
the classical result. In the nondegenerate case,Gs has the

interpretation of an average spin rate of change, or con-
versely,Gs

21 is the approximate time for a given nucleon
spin to relax, i.e., to forget its initial orientation.

Explicit calculations ofGs and s(x) exist for a single-
species nuclear medium where the nucleon interaction is
modeled by a one-pion exchange~OPE! potential@2#. For a
degenerate medium the relevant expressions can be extracted
from Ref. @9#:

Gs,OPE54pap
2T3/pF

2 , ~11!

where the neutron Fermi momentum is given by
nB5pF

3/3p2, ap[( f2m/mp)
2/4p'15 with f'1.0 is the

pion fine-structure constant,m is the neutron mass, and the
pion mass has been neglected in the OPE potential. One also
finds, from Ref.@9#,

sOPE~x!5
~x214p2!uxu
4p2~12e2uxu!

, ~12!

which is 1 atx50 while for uxu@1 it is uxu3/4p2.
Sigl @8# has derived an f-sum rule which implies that the

integral*Ss(v)vdv must exist and thus thats(x) must be a
decreasing function for largex. This conclusion also pertains
to the degenerate case: if the energy transferv to the me-
dium far exceeds the Fermi energyEF , a nucleon is lifted far
above the Fermi surface so that degeneracy effects cannot
cause a modification of the nondegenerate result. Thus, the
degenerate and nondegenerates(x) must be identical for
uxu@EF /T apart from a multiplicative factor which arises
because of our normalization,s(0)51.

Explicit calculations ofs(x) for various assumptions con-
cerning the neutron interaction potential and for various de-
grees of neutron degeneracy are left for a future study@10#.

D. Physical estimate ofGs

It will turn out that thenn scattering cross-section reduc-
tion is primarily sensitive to the neutron spin-fluctuation rate
Gs . Therefore, it is useful to understand on physical grounds
its overall magnitude and its scaling with temperature and
density. To this end we assume that neutrons scatter with a
velocity-independent cross sectionsn which is caused by a
spin-dependent force such that the neutron spin is flipped in
a typical collision. If the interaction is approximated by an
OPE potential, on dimensional grounds the cross section is
estimated to besn'ap

2 /m2. We will assume that the scat-
tering is either due to a random collection of external scat-
tering centers with a densitync , or due to collisions with the
other neutrons with a densitynB .

If the neutrons are nondegenerate they move with a typi-
cal thermal velocityv'(3T/m)1/2. By assumption, the spin-
fluctuation rate is roughly equivalent to the collision rate so
thatGs'nc^snv&'ncsn(3T/m)

1/2. With the above estimate
for sn and with the other neutrons being the scattering cen-
ters (nc5nB), one finds thatGs scales asap

2T1/2m25/2. This
agrees with an explicit calculation which yields 4Ap for the
numerical factor@2#.

Next, we consider degenerate neutrons for which a typical
velocity is pF /m. If they interact with external scattering
centers, the collision rate for neutrons near the Fermi surface
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is aboutncsnpF /m. However, only the scattering of neutrons
with an energyE within about a distanceT from the Fermi
surface is not blocked by degeneracy effects. This is an ap-
proximate fraction,T/EF51/h, of all neutrons. Therefore,
the spin-fluctuation rate averaged over all neutrons is
Gs'ncsn(pF /m)(T/EF).

Finally, if the scattering is among degenerate neutrons we
havenc5nB and a typical relative velocitypF /m. The aver-
age collision rate among neutrons is reduced by several fac-
tors of h215T/EF . Two such factors arise because each
initial-state neutron must have an energy within aboutT of
the Fermi surface. One further factor arises because one
final-state neutron must also lie near the Fermi surface;
energy-momentum conservation then ensures that the other
one satisfies this condition as well. Altogether, we thus find
Gs'snnB(pF /m)(T/EF)

3. With nB5pF
3/3p2 and sn'ap

2 /
m2 we thus recover Eq.~11! apart from the numerical coef-
ficient. ThisGs is the spin-fluctuation rate averaged over all
neutrons. The spin-fluctuation rate of those neutrons which
lie near the Fermi surface is larger by a factorh.

III. CROSS-SECTION REDUCTION

A. General result

We may now proceed to calculate thenn scattering cross
section in the presence of spin fluctuations of the degenerate
neutrons. To this end we begin with the total axial current-
scattering cross sectionsA of a neutrino with energye1. In
the structure-function language it is thed«2 integral of the
axial part of Eq.~2! or, equivalently,

sA5
3CA

2GF
2

4p E
2`

1`dv

2p
Ss~v!~«12v!2Q~«12v!. ~13!

The problem with this expression is that it diverges if one
uses the perturbative expressionSs

brems(v) instead of the full
but unknownSs(v). Following the treatment of the nonde-
generate case@3# we note, however, that Eq.~13! can still be
evaluated on the basis ofSs

brems(v) without knowledge of the
detailed low-v behavior if one includes the sum rule equa-
tion ~8!.

To this end we note that for degenerate free neutrons the
nn scattering cross section issA,free5(3/2h)(3/
4p)CA

2GF
2«1

2 as stressed after Eq.~9!. Therefore, the
interaction-induced modificationdsA[sA2sA,free is given
by

dsA

sA,free
5211E

2`

1`dv

2p

2hSs~v!

3

~«12v!2Q~«12v!

«1
2 .

~14!

Then, we may proceed analogously to Ref.@3# and replace
21 with an integral over the structure function by virtue of
the sum rule equation~8!,

dsA

sA,free
5E

2`

1`dv

2p

2hSs~v!

3 F ~«12v!2Q~«12v!

«1
2 21G .

~15!

For smallv the integrand varies effectively asv2Ss(v) be-
cause the term linear inv switches sign at the origin. There-
fore, to lowest order we may substituteSs(v)→Ss

brems(v),
provided we interpret the remaining integral by its principal
part.

This result becomes more transparent if we consider the
reduction of an average cross section rather than one for a
fixed initial-state neutrino energy. To this end we use a
Maxwell-Boltzmann distribution of neutrino energies at the
same temperatureT which characterizes the ambient neutron
medium. The thermally averaged free cross section is found
to be ^sA,free&5(3/2h)(9/p)CA

2GF
2T2. Because Eq.~15! is

fully analogous to the corresponding result of Ref.@3# apart
from an overall factor 2h/3, we may conclude without fur-
ther calculations that

d^sA&

^sA,free&
52

2h

3 E
0

` dx

2p
S̃s~x!G~x!, ~16!

wherex5v/T,

G~x!512~11x1 1
6 x

2!e2x5 1
3 x

21O~x3!, ~17!

and S̃s(x)[TSs(xT).
As in Ref. @3# the x2 behavior ofG(x) at smallx allows

us to replaceS̃s(x) to lowest order with the perturbative
S̃s
brems(x). Therefore, with the representation equation~10!

and withgs[Gs /T, we find for the cross-section reduction

d^sA&

^sA,free&
52

2h

3

gs

2pE0
`

dxx22G~x!s~x!. ~18!

The integral expression is 5/6 for the classical approximation
s(x)51. In general, the integral will be a numerical expres-
sion of order unity. Its precise value for a variety of assump-
tions concerning the cause for the neutron spin fluctuations
will be studied elsewhere@10#.

Equation~18! shows that the expansion parameter which
defines the perturbative regime is 2hgs/3, as opposed to the
nondegenerate case where it was found to begs . In both
cases,gs is defined to be the spin-fluctuation rate averaged
over all neutrons of the medium. However, in the degenerate
case only the neutrons near the Fermi surface participate in
collisions; it is their spin-fluctuation rate which reduces the
nn scattering cross section. The quantity 2hgs/3 corrects for
this effect. It is to be interpreted as an effective spin-
fluctuation rate for the neutrons near the Fermi surface, in
agreement with our estimates of Sec. II D.

We conclude that a ‘‘naive’’ perturbative calculation of
neutrino interaction rates in a degenerate neutron medium is
possible ifhGs!T while a significant correction arises if
hGs*T. This latter case corresponds to a situation where
the collision rate of neutrons near the Fermi surface is not
small relative toT, in violation of Landau’s condition for the
applicability of a Fermi-liquid treatment.

In the nondegenerate case it was reasonable to extrapolate
the behavior of the cross section^sA& into the nonperturba-
tive regime by virtue of an explicit ansatz for the low-v
behavior ofSs(v) which incorporated the equivalent of the
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sum rule equation~8!. In the present case such an extrapola-
tion is far more problematic because the derivation of the
sum rule itself was based on the assumption that neutrons
can be treated as quasiparticles which follow a thermal
Fermi-Dirac distribution. In the nonperturbative regime this
assumption is not justified so that in the present case the sum
rule has a weaker standing than it did in the nondegenerate
case where we did not need to invoke the anticommutation
relations for the nucleon fields.

B. Numerical result for OPE potential

If neutron-neutron collisions are the primary cause for
neutron spin fluctuations, and if one models the interaction
by an OPE potential, we may use Eq.~11! to estimateGs . In
this case we find

2h

3

Gs,OPE

T
5
4p

3
ap
2 T

m
51.00

T

MeV
, ~19!

where we have used the vacuum neutron mass for the nu-
merical estimate. This result does not depend on the density
~or Fermi momentum! which fortuitously cancels as ex-
plained by the physical arguments in Sec. II D. If the neutron
spin fluctuations were caused by the interaction with a dis-
tribution of external scattering centers,Gs would depend on
their density as well as on the neutron Fermi momentum.

Of course, if neutron-neutron interactions are the primary
cause for neutron spin fluctuations one would also expect
significant spin-spin correlations which we have ignored.
However, in order to study spin-spin correlations in the
framework of a Fermi liquid theory one would need to as-
sume that Landau’s condition is satisfied which is not the
case in any obvious sense whenhGs*T. Therefore, we be-
lieve that the usual calculations of neutrino opacities in hot
degenerate neutron-star matter are applicable only for
T&1 MeV.

IV. SUMMARY

We have derived an expression for thenn scattering
cross-section reduction in degenerate neutron matter caused
by neutron spin fluctuations. We have used the linear-
response theory approach of Ref.@3#, but undoubtedly one
would reach the same result by the direct perturbative
method of Ref.@4#.

In a neutron star, these spin fluctuations will be caused by
a spin-dependentnn interaction potential. Therefore, in gen-
eral, spin-spin correlations will also be important which may
cause further modifications of the scattering cross section.
Many of the previous papers which deal with weak interac-
tion rates in neutron stars@5#, were dedicated to an analysis
of these latter effects. We stress, however, that these calcu-
lations were based on the assumption that Landau’s condi-
tion is satisfied which is roughly equivalent to the require-
ment that the autocorrelation function of a single nucleon
spin near the Fermi surface is narrow on a scale set by the
ambient temperatureT.

If neutron-neutron interactions are modeled by a one-pion
exchange potential we estimate that the usual perturbative
calculations are justified forT&1 MeV, a temperature which
is reached very quickly in a neutron star after formation.
Therefore, the long-term cooling history remains unaffected.
Of course, a calculation of the long-term cooling history
does not require knowledge of the neutrino opacity anyway
as at late times neutrinos are no longer trapped. Roughly
speaking, then, the neutrino opacities matter only for a short
period after formation of a neutron star. However, precisely
for this period thenn scattering rate cannot be calculated by
straightforward perturbative techniques on the basis of first
principles.
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