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Analytical wormhole solutions in Brans-Dicke theory in the presence of matter are presented. It is shown
that the wormhole throat must not be necessarily threaded with exotic matter.@S0556-2821~97!00408-6#
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The field equations of general relativity, being local in
character, admit solutions with nontrivial topology. Among
these, wormholes have been extensively studied@1#. Their
most salient feature is that an embedding of one of their
spacelike sections in Euclidean space displays two asymp-
totically flat regions joined by a throat.

The interest on wormholes is twofold. From the point of
view of the Euclidean path integral formulation of quantum
gravity, Coleman@2# and Giddings and Strominger@3#,
among others, have shown that the effect of wormholes is to
modify low energy coupling constants and to provide prob-
ability distributions for them. In particular, Coleman@4#
showed that, in the dilute wormhole approximation, the
probability distribution for universes is infinitely peaked at
L50, rendering all other values of the cosmological con-
stant improbable.

On the purely gravitational side, the interest has been re-
cently focused on traversable wormhole@1,5–8#. Most of the
efforts are directed to study static configurations@9# that
must have a number of specific properties in order to be
traversable. The most striking of these properties is the vio-
lation of the energy conditions@10#. It implies that the matter
that generates the wormhole is exotic@1#, viz., its energy
density is negative, as seen by static observers. Geometri-
cally, this is a direct consequence of the singularity theorems
of Hawking and Penrose@11#. Although we do not know of
any such exotic material to date, quantum field theory might
come to the rescue@12#.

Finally, we should mention yet another proposal related to
wormholes. It has been shown@5,13# that a nonstatic worm-
hole’s throat can be transformed into a time tunnel. Physical
effects in this type of spacetimes have been studied in@14#.

Wormhole solutions have also been discussed in alterna-
tive theories of gravity, such asR1R2 theories@15#, Mof-
fat’s nonsymmetric theory@16#, Einstein-Gauss-Bonnet
theory @17#, and Brans-Dicke~BD! theory @18#. In the last
case, static wormhole solutions were found in vacuum, the
source of gravity being the scalar field. Dynamical solutions
are discussed in@19#. The aim of this paper is to look for
static wormhole solutions of Brans-Dicke theory in a general
setting, i.e., in the presence of matter that obeys a generic
equation of state@20#. We shall also discuss whether the BD
scalar can be the ‘‘carrier’’ of exoticity, as was shown in@18#
for the vacuum case.

Following the conventions of@21#, the field equations of
Brans-Dicke theory are
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The assumption of a static spacetime entails that it is pos-
sible to choose a metric and a scalar field such that

gmn,t50, F ,t50, gti50 ~3!

( i5r ,u,f). We further require spherical symmetry, so that
the line element can be written in Schwarzschild form:
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For the stress-energy tensor of matter we choose
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and zero otherwise. Finally, we adopt the following equation
of state for matter:
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where e is a constant. Now, the trace of the stress-energy
tensor can be written asT52t12p2r5r(e21). The
field equations take the form
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To solve the system made up of Eqs.~7! we shall follow the
philosophy sketched in@22#. We shall look for a differential
equation relatingc and l, starting from the equations of
motion and the equation of state. The equation we shall ob-
tain is second order and nonlinear inc but, after a change of
variables, first order and linear inl. We shall then make a
specific choice forc consistent with asymptotic flatness and
nonexistence of horizons and singularities. We shall finally
substitute thisc into the linear equation and solve forl.

As explained in@21#, from Eqs.~6!, ~7c!, and~7d!, it can
be shown that F5F0 e

c c where c5(e21)/@2v
131(v11)(e21)], andF0 is related to the value of the
gravitational coupling constant whenr→`. In the case
v→` or e→1, we get general relativity back~although in
the latter case, other solutions different fromF5 const
might exist!.

After a bit of algebra, we get the equation
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In the spirit of @22#, we make the ansatzc52a/r , where
a is a positive constant. With this election, which guarantees
that the gravitational constant takes the correct value at
r→`, Eq. ~8! takes the form
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A suitable change of variables transforms Eq.~9! into a Ber-
noulli equation, and afterwards into a linear equation. Its
general solution is given by
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and K is a constant. It is not valid whenA→0, i.e., for
v5212e/2. The binomial (11R/w)8l is related to the hy-
pergeometric function2F1 @23#. Using the relation@23#
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the integralI can be written
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Integrating out the terms corresponding ton50 andn51,
we finally get
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It is easily seen thate2l→1 whenw→`.
In order to fix the constantK, we must select a value for

the dimensionless radius (w
th
) such that the ‘‘flaring out’’

condition

limw→w
th

1e22l501 ~14!

is satisfied. In the caseR<0, w
th
must necessarily be greater

thanuRu, so that the flaring out condition holds for all values
of v ande except, obviously, those whereR diverges, which
are given byv52(21e)/(11e). Nevertheless, the abso-
lute size of the throat also depends ona.1 The aforemen-
tioned properties ofl, together with the definition ofc, bear
out that the metric tensor describes two asymptotically flat
spacetimes joined by a throat.

Let us now study the issue of weak energy condition
~WEC! violation. Using the field equations and the expres-
sion for the trace, we easily obtain
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At the throat,e2l→`, and then

1This situation is analogous to what Kar and Sahdev have found
for wormholes in general relativity@22#.

55 5227BRIEF REPORTS



t
th
'

F
th

8pr
th

2 . ~16!

To calculater
th
, we use the nontrivial component of the
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Using Eqs.~16! and ~17!, and the derivative of Eq.~15!,
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And finally, from Eq.~6!,
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We shall show now that WEC may be violated~at least near
the throat! with nonexotic matter. This means that we shall
present the parameters for which a wormhole solution exists
whenever the matter content of the theory satisfying the in-
equalities
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In addition, a necessary condition for the violation of the
weak energy condition for matter plus Brans-Dicke field at
the throat is given by
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As an example, let us study the casee52. From Eqs.~16!,
~18!, and~19!, the inequalities~20! will be satisfied if
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Inequality~23! will be satisfied forvP(22,23/2). Finally,
we have to impose thatw

th
>uA/4u, which implies that
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These inequalities constrainw
th
to an interval in which a

nonexotic wormhole can be constructed, for instance, in the
casev521.75. We should recall that a definite interval for
w
th
does not determine the radius of the throat, because of the

dependence ofw on a.
Summing up, we showed that Brans-Dicke theory in the

presence of matter with a fairly general equation of state
admits analytical wormhole solutions. They generalize the
vacuum ones presented by Agnese and La Camera@18#. It
should be noted that there exists some regions of the param-
eter space in which the Brans-Dicke field may play the role
of exotic matter, implying that it might be possible to build a
wormholelikespacetime with the presence of ordinary matter
at the throat.
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