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Consistency of dust solutions with divH=0
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One of the necessary covariant conditions for gravitational radiation is the vanishing of the divergence of the
magnetic Weyl tensoH,,, while H,, itself is nonzero. We complete a recent analysis by showing that in
irrotational dust spacetimes the condition ¢Hw=0 evolves consistently in the exact nonlinear theory.
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Irrotational dust spacetimes, typically considered as mod- . 2
els for the late universe or for gravitational collapse, are Tapt 30 0ap+ Eab=—0c(a0n)” (©))
covariantly characterized by the dust four-velocit§, en-
ergy densityp, expansior®, and shearr,;,, and by the free _ 1
gravitational field, described by the electric and magnetic Eapt OE,,— curlH,,+ Epaab:3ffc<aEb>° , (4)
parts of the Weyl tensoC ¢4

Hap+ OH g+ CUI’lEab=30'C<aHb>C . (5)
Eap=CacodiU!,  Hap= zsaCdC beUl® Constraint equations
2
where h,p=g,p+UyU, is the spatial projectorg,;, is the DbUab_gDa®=Oa (6)
metric tensor, an@ .= 7.5c4U° is the spatial projection of
the spacetime permutation tensgy,.q[1]. Gravitational ra- curloa—H-r=0 @
diation is covariantly described by the nonlocal fiels,, ab- TTab
the tidal part of the curvature which generalizes the Newton- 1
ian tidal tensor, antH,;,, which has no Newtonian analogue DPE, p— = Dap=¢eap0gH , 8
[2]. As suchH 4, may be considered as the true gravity wave 3
tensor, since there is no gravitational radiation in Newtonian
theor : i i DPHap= — £apc0"dE®? 9
y. However, as in electromagnetic theory, gravity ab abcl d

waves are characterized Wy,, and E,,, where both are

divergence-free but neither is curl-frEg 4. where  Siap=ha"hp?Scq— 5 Seah®hap s the  pro-
In [1], it was shown that in the generic case, i.e., withoutjected, symmetric and trace-free part &, the co-

imposing any divergence-free conditions, the covariant convarlant spatlal derlvat|ve is defined byD,S>

straint equations evolve consistently with the covariant=h,"h°;---hV,S% ", the covariant spatial dlvergence
propagation equations. These equations are as follows. is DbSab, and the covanant spatial curl is ci8)
Propagation equations =g,,.D"S® for vectors and curB,,= &cdaD® Sb) for ten-

sors. (Further details are given ifl,5].) In the linearized

theory of covariant perturbations about a Friedman-

p+Op=0, () Robertson-WalkefFRW) background, the right-hand sides
of these equations are all zero.
1 1 It was previously claimed that in the exact nonlinear
O+ = @2+ 5p= — a0 (2)  theory, the gravity wave condition
DPH,p=0 (10)
*Electronic address: maartens@sms.port.ac.uk impliesH,,=0 [6]. As shown in[1], this claim arises from

"Electronic address: lesame@ufhcc.ufh.ac.za a sign error and is incorrect, Bianchi-type V spacetimes pro-
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[1] by showing that consistency is maintained if Ef0) is At all points where the shear is nondegenerate, i.e., where

imposed, withouH,, being zero. o 0aa% opp, Whena#b, Eqgs.(15) and (13) show thato,, is
The fact that consistency is not automatic is illustrated bygiagonal, and thu&,, is also diagonal, by Eq3). In fact,
the case of silent universes, in whidh,,=0. For these djagonality still holds at points of degeneracy, as follows

solutions, consistent evolution of the conditibl,=0 im-  from the tetrad form of the covariant derivative:
poses a series of nontrivial integrability conditions, which

are identically satisfied in the linearized case, but not in the iTab: 300 an— T Con0ac— T 0a0ch»

nonlinear cas¢7,8]. Thus, there is a linearization instability

in silent universes. By contrast, when E@.0) holds but where the Ricci rotation coefficients ame,,.=e,-Vpe.
H.p is not forced to vanish, which includes gravity wave = —I'.,, Using Eqs.(14) and(3), we get

solutions, there is no linearization instability following from )

the evolution of Eq(10). An example of consistency condi- a+b=0,,=(032— 0pp)'boa= —Eap (NOSUM ,
tions arising already at the linearized level is given by purely (16)
magnetic spacetimeg,,,=0, for which®o4,=0 [7]. .

The proof that Eq(10) evolves consistently is based on a S0 thata,, is diagonal also where,,= o, (2#b). Thus,
combination of tetrad method$,9] and the covariant meth- the shear eigenframe simultaneously diagonalizgs o ,p,
ods of[1]. The only direct effect of Eq(10) on the covariant and E,,. This regains a result given {i1].
propagation and constraint equations is an algebraic modifi- It also follows from Eqs(13), (15), and(16) that
cation of the constraint9), which does not change the con-
sistent evolution of the constraints. We have to check only Ia0b=0 (17
consistent evolution of the new conditidd0) itself. It is ) )
more convenient to replace E€LO) by the equivalent con- holds at all points where the shear is nondegenefalete

dition that follows from Eq.9), that Eq.(17) is an identity fora=b.] At points of degen-
eracy, i.e., wherer{;= 0,,, We can use the remaining tetrad
[0,E]=0, (11  freedom of a rotation in thée, ,e,} plane to sel’;,=0, so

that Eq.(17) still holds. Specifically, such a rotation through

where we are using index-free notation for the covariantyn anglea preserves Eq(14) and the degeneracy, while
commutator. In the linearized case, EQJ) is identically

satisfied since the left-hand side is second order of smallness, IMgr—T 100~ dpcx .
and consistency is automatic.

In the exact nonlinear case, using only the shear propagd-hus, we can ensure that EQ7) holds throughout space-
tion equation(3) and its covariant time derivative, we find time, by specializing the eigenframe where necessary. Then,
that Eq. (17) shows thatr,;, is also diagonal in this frame, since

[(T,E]Z—[O',O']-f—g@[U,E]—U[U'E] a#b:ﬂrab:(aaa—(rbb)l—‘wa:O (nosum y

where we have used the fact thca;irab is diagonal. The
and covariant(frame-independeptconsequence of the simulta-
neous diagonalizability of,, and o, is

[0,E]=— §®[U,E]+a[a,E] .

[o,0]=0,
Adding these equations gives which shows that the right-hand side of E#j2) does indeed
) vanish identically, consistent with and independent of the
[o.E] =—[0,0]. (12 derivative of Eq.(11). Thus, the first covariant time deriva-

) . L ) tive of the condition(11) imposes no consistency conditions.
Now, the right-hand side may be shown to vanish identicallyj¢ is clear from the above argument that all the subsequent

without differentiating Eq(11), i.e., using only the algebraic .\ ariant time derivatives ofr,,, are also diagonal in the
content of Eq(11), as follows. _ , eigenframe, so that these higher derivatives all commute

From the shear propagation equati®, Eq. (11) IS jth the shear and among themselves. It follows that the
equivalent to second and higher covariant time derivatives of the condition
(11) also vanish without further conditions.

This establishes thahe covariant conditiondiv H=0
evolves consistently in the exact nonlinear thedilye ques-
tion whether such consistency extends to the further covari-
ant gravity wave condition diE=0 is more difficult, and

=0= =0= i under investigation.
70a=0=doT0a, 0, =0=000,, 1 ptv, (14 Finally, we note that, by virtue of Eq17) and the propa-
where d, denotes the directional derivative alorsg=u. gation equatior(4), curl H, is also diagonal in the eigen-
Then, we have frame that diagonalizes,, and E,, i.e., there is a shear
_ _ eigenframe such that,, E,,, curl H,p, and all their cova-
[0,0])ap=(0aa— Opp)0ap (NOSUN) . (150  riant time derivatives are diagonal and, therefore commute.

[0,0]=0. (13

We choose an orthonormal tetrddO] {e,=u ,e,}, with
{e,} a shear eigenframe, so that
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