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One of the necessary covariant conditions for gravitational radiation is the vanishing of the divergence of the
magnetic Weyl tensorHab , while Hab itself is nonzero. We complete a recent analysis by showing that in
irrotational dust spacetimes the condition divH50 evolves consistently in the exact nonlinear theory.
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PACS number~s!: 04.30.Nk, 04.20.Jb, 95.30.Lz, 98.65.Dx

Irrotational dust spacetimes, typically considered as mod-
els for the late universe or for gravitational collapse, are
covariantly characterized by the dust four-velocityua, en-
ergy densityr, expansionQ, and shearsab, and by the free
gravitational field, described by the electric and magnetic
parts of the Weyl tensorCabcd:
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where hab5gab1uaub is the spatial projector,gab is the
metric tensor, and«abc5habcdu

d is the spatial projection of
the spacetime permutation tensorhabcd @1#. Gravitational ra-
diation is covariantly described by the nonlocal fieldsEab,
the tidal part of the curvature which generalizes the Newton-
ian tidal tensor, andHab, which has no Newtonian analogue
@2#. As such,Habmay be considered as the true gravity wave
tensor, since there is no gravitational radiation in Newtonian
theory. However, as in electromagnetic theory, gravity
waves are characterized byHab and Eab, where both are
divergence-free but neither is curl-free@3,4#.

In @1#, it was shown that in the generic case, i.e., without
imposing any divergence-free conditions, the covariant con-
straint equations evolve consistently with the covariant
propagation equations. These equations are as follows.

Propagation equations:
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Constraint equations:
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cdhab is the pro-
jected, symmetric and trace-free part ofSab, the co-
variant spatial derivative is defined byDaS
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•••r , the covariant spatial divergence
is DbSab, and the covariant spatial curl is curlSa
5«abcD

bSc for vectors and curlSab5«cd(aD
cSb)

d for ten-
sors. ~Further details are given in@1,5#.! In the linearized
theory of covariant perturbations about a Friedman-
Robertson-Walker~FRW! background, the right-hand sides
of these equations are all zero.

It was previously claimed that in the exact nonlinear
theory, the gravity wave condition

DbHab50 ~10!

impliesHab50 @6#. As shown in@1#, this claim arises from
a sign error and is incorrect, Bianchi-type V spacetimes pro-
viding a counterexample. Here, we complete the analysis of
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@1# by showing that consistency is maintained if Eq.~10! is
imposed, withoutHab being zero.

The fact that consistency is not automatic is illustrated by
the case of silent universes, in whichHab50 . For these
solutions, consistent evolution of the conditionHab50 im-
poses a series of nontrivial integrability conditions, which
are identically satisfied in the linearized case, but not in the
nonlinear case@7,8#. Thus, there is a linearization instability
in silent universes. By contrast, when Eq.~10! holds but
Hab is not forced to vanish, which includes gravity wave
solutions, there is no linearization instability following from
the evolution of Eq.~10!. An example of consistency condi-
tions arising already at the linearized level is given by purely
magnetic spacetimes,Eab50, for whichQsab50 @7#.

The proof that Eq.~10! evolves consistently is based on a
combination of tetrad methods@6,9# and the covariant meth-
ods of@1#. The only direct effect of Eq.~10! on the covariant
propagation and constraint equations is an algebraic modifi-
cation of the constraint~9!, which does not change the con-
sistent evolution of the constraints. We have to check only
consistent evolution of the new condition~10! itself. It is
more convenient to replace Eq.~10! by the equivalent con-
dition that follows from Eq.~9!,

@s,E#50 , ~11!

where we are using index-free notation for the covariant
commutator. In the linearized case, Eq.~11! is identically
satisfied since the left-hand side is second order of smallness,
and consistency is automatic.

In the exact nonlinear case, using only the shear propaga-
tion equation~3! and its covariant time derivative, we find
that
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Adding these equations gives

@s,E#•52@s,s̈# . ~12!

Now, the right-hand side may be shown to vanish identically
without differentiating Eq.~11!, i.e., using only the algebraic
content of Eq.~11!, as follows.

From the shear propagation equation~3!, Eq. ~11! is
equivalent to

@s,ṡ#50 . ~13!

We choose an orthonormal tetrad@10# $e05u ,em%, with
$em% a shear eigenframe, so that

s0a505]0s0a , smn505]0smn if m5” n , ~14!

where ]0 denotes the directional derivative alonge05u.
Then, we have

@s,ṡ#ab5~saa2sbb!ṡab ~no sum! . ~15!

At all points where the shear is nondegenerate, i.e., where
saaÞsbb whenaÞb, Eqs. ~15! and ~13! show thatṡab is
diagonal, and thusEab is also diagonal, by Eq.~3!. In fact,
diagonality still holds at points of degeneracy, as follows
from the tetrad form of the covariant derivative:

ṡab5]0sab2Gc
0bsac2Gc
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where the Ricci rotation coefficients areGabc5ea•¹bec
52Gcba. Using Eqs.~14! and ~3!, we get

a5” b⇒ṡab5~saa2sbb!Gb0a52Eab ~no sum! ,
~16!

so thatṡab is diagonal also wheresaa5sbb (aÞb). Thus,
the shear eigenframe simultaneously diagonalizessab, ṡab,
and Eab. This regains a result given in@11#.

It also follows from Eqs.~13!, ~15!, and~16! that

Ga0b50 ~17!

holds at all points where the shear is nondegenerate.@Note
that Eq. ~17! is an identity fora5b.# At points of degen-
eracy, i.e., wheres115s22, we can use the remaining tetrad
freedom of a rotation in the$e1 ,e2% plane to setG10250, so
that Eq.~17! still holds. Specifically, such a rotation through
an anglea preserves Eq.~14! and the degeneracy, while

G102→G1022]0a .

Thus, we can ensure that Eq.~17! holds throughout space-
time, by specializing the eigenframe where necessary. Then,
Eq. ~17! shows thats̈ab is also diagonal in this frame, since

a5” b⇒s̈ab5~ ṡaa2ṡbb!Gb0a50 ~no sum! ,

where we have used the fact that]0ṡab is diagonal. The
covariant ~frame-independent! consequence of the simulta-
neous diagonalizability ofsab and s̈ab is

@s,s̈#50 ,

which shows that the right-hand side of Eq.~12! does indeed
vanish identically, consistent with and independent of the
derivative of Eq.~11!. Thus, the first covariant time deriva-
tive of the condition~11! imposes no consistency conditions.
It is clear from the above argument that all the subsequent
covariant time derivatives ofsab are also diagonal in the
eigenframe, so that these higher derivatives all commute
with the shear and among themselves. It follows that the
second and higher covariant time derivatives of the condition
~11! also vanish without further conditions.

This establishes thatthe covariant conditiondiv H50
evolves consistently in the exact nonlinear theory.The ques-
tion whether such consistency extends to the further covari-
ant gravity wave condition divE50 is more difficult, and
under investigation.

Finally, we note that, by virtue of Eq.~17! and the propa-
gation equation~4!, curl Hab is also diagonal in the eigen-
frame that diagonalizessab andEab, i.e., there is a shear
eigenframe such thatsab, Eab, curl Hab, and all their cova-
riant time derivatives are diagonal and, therefore commute.
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