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In this Brief Report I introduce yet another class of geometries for which semiclassical chronology protec-
tion theorems are of dubious physical reliability. I consider a‘‘Roman ring’’ of traversable wormholes,
wherein a number of wormholes are arranged in a ring in such a manner that no subset of wormholes is near
chronology violation, though the combined system can be arbitrarily close to chronology violation. I show that
~with enough wormholes in the ring! the gravitational vacuum polarization~the expectation value of the
quantum stress-energy tensor! can be made arbitrarily small. In particular, the back reaction can be kept
arbitrarily small all the way to the ‘‘reliability horizon,’’ so that semiclassical quantum gravity becomes
unreliable before the gravitational back reaction becomes large.@S0556-2821~97!04808-X#

PACS number~s!: 04.20.Gz, 04.60.2m, 04.62.1v

I. INTRODUCTION

Working within the context of semiclassical quantum
gravity, Krasnikov@1# and Sushkov@2# have recently pro-
vided examples of two classes of spacetimes containing time
machines for which the gravitational vacuum polarization is
arbitrarily small all the way to the chronology horizon. In
related developments Kay, Radzikowski, and Wald@3#, and
Cramer and Kay@4# have shown that these geometries suffer
from diseases on the chronology horizon itself. More re-
cently, I have argued@5# that we should not physically trust
semiclassical quantum gravity once we reach the chronology
horizon.

In this Brief Report I wish to present yet another class of
spacetimes for which the gravitational vacuum polarization
can be made arbitrarily small. Implications for chronology
protection@6,7# are briefly discussed.

II. THE ROMAN RING

Given one wormhole, it appears~classically! to be ab-
surdly easy to turn it into a time machine@8–11#, though
quantum effects vitiate this particular approach@6,7,10–12#.

Given two wormholes, it appears~even including quan-
tum effects! to be relatively easy to turn the compound sys-
tem into a time machine without each individual wormhole
itself being a time machine@13,14#.

Givenmanywormholes, I shall now show that it appears
to be even easier to turn the conglomeration into a time
machine~with no subcollection of wormholes itself being a
time machine!.

The key technical result is that, for any spacetime of non-
trivial topology, the gravitational vacuum polarization may
be estimated by adiabatic techniques to be

^Tmn~x!&'Dg

\

sg~x,x!4
tmn. ~1!

Here,sg(x,x) is the length of the shortest spacelike geodesic
connecting the pointx to itself, while tmn is a dimensionless
tensor built out of the metric and tangent vectors to this
geodesic.Dg is the Van Vleck determinant associated with
this geodesic.

For the one-wormhole system this Van Vleck determinant
can be estimated~insofar as the throat of the wormhole is
reasonably thin! to be close to 1. For the two-wormhole sys-
tem the Van Vleck determinant is a complicated function of
relative positions and velocities. I will now provide a simple
class of multiple wormhole configurations in which the Van
Vleck determinant is calculable, and thereby show that there
exists a class of geometries for which the Van Vleck deter-
minant can be made arbitrarily small all the way down to the
chronology horizon.

Start by takingN identical wormholes in otherwise flat
Minkowski spacetime.~These may be taken to be simple
cut-and-paste wormholes of the type discussed in
@12,16,17#.! For simplicity, assume that all wormhole mouths
are at rest with respect to one another; so each wormhole is
characterized by a spatial jumpL and time-shiftT with
T!L ~see Fig. 1!.

If we look at a geodesic that wraps once through a single
wormhole, the invariant interval is simplys1

25L22T2@0.
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FIG. 1. Schematic representation of a single~chronology-
respecting! wormhole. We identify two timelike lines that are sepa-
rated by a spatial jumpL and time-shiftT, with T!L.
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Now, arrange theN wormholes in a big symmetric poly-
gon, so that the exit mouth of one wormhole is a normal-
space distancel from the entrance mouth of the next worm-
hole ~see Fig. 2!. ~We will want l !L, so that the normal-
space distance traveled to get from one wormhole to the next
is less than the distance then ‘‘jumped’’ by going through the
wormhole.!

This ‘‘Roman ring’’ is a generalization of the two-
wormhole ‘‘Roman configuration’’@8,12–14#. ~The realiza-
tion that wormholes generically seem to imply time travel
can be traced back to an observation by Roman@11#. The
‘‘Roman configuration’’ was the first two-wormhole time
machine constructed by Morris and Thorne@8#.! The
N-wormhole ‘‘Roman ring’’ can holistically be close to
forming a time machine even if its individual components
are perfectly well behaved.

Consider a closed geodesic that wraps once around the
entire compound system: this consists ofN segments of
length l in normal space, plusN time shifts of magnitude
T from going through theN wormholes. The invariant inter-
val of this once-through-the-system geodesic is

sg
25~Nl !22~NT!25N2~ l 22T2!. ~2!

Because it is the normal-space distance between the worm-
hole mouths that enters here (l ; not the spatial jumpL), we
can easily make this geodesic timelike.

For a conformally coupled massless field the symmetries
enforce

tmn5hmn24tmtn. ~3!

Here,hmn is the spacetime metric, which is flat except at the
wormholes themselves;tm is the tangent vector to the geo-
desic and is given~up to rotations! by

tm5
~T,0,0,l !

Al 22T2
5
N~T,0,0,l !

sg
. ~4!

So, anywhere along the geodesicg we can estimate

^Tmn&'Dg

\

sg
4Fhmn24

N2~T,0,0,l !m~T,0,0,l !n

sg
2 G . ~5!

Of course, the only reason we are bothering with this
Roman ring geometry is because the extreme symmetry
makes it relatively easy to calculate the Van Vleck determi-
nant. Using the thin-throat approximation, plus the tidal re-
formulation of the Van Vleck evolution equation presented
in @15#, we may calculate the Van Vleck determinant at the
surface of any of the wormhole throats to be@13#

Dg5F N

UN21~11l /R!G
2

. ~6!

Here,UN(x) is a Chebyshev polynomial of the second kind,
and R is the radius of each wormhole mouth~assumed
spherical!. The time-shiftT, and spatial jumpL quietly can-
cel out of the calculation for the Van Vleck determinant.

Proving the above result is a combinatoric agony that is
presented in excruciating detail in@13#. That calculation was
carried out for a slightly different configuration: a geodesic
that wrapsN times through a single wormhole, but that cal-
culation can just as easily be adapted to the present case; a
geodesic that wraps once throughN wormholes, note that the
high degree of symmetry in the Roman ring configuration is
essential for this purpose.

If we are satisfied with the situationl @R ~a perfectly
sensible constraint, manipulating wormholes is likely to be
quite difficult enough without having them bump into each
other!, then we can approximate

Dg'N2S R

2l D 2~N21!

. ~7!

As a consistency check, compare this with the results quoted
by Kim and Thorne@10#, Lyutikov @14#, and Visser@13#.

The physical interpretation for this result is simple: the
Van Vleck determinant measures geometrically induced de-
viations from the inverse-square law@12#. By assumption,
we are sitting right on top of one wormhole mouth, and the
above result can be thought of as due toN21 defocusing
events which occur as we move through theN21 other
wormholes in the system to get back to our starting point.

The Van Vleck determinant may now be made as small as
desired, simply by adding more wormholes to the system.

At the throat of any one of the wormholes, for any
l .T, we have

^Tmn&'\
N2

sg
4 S R

2l D 2~N21!

3Fhmn24N2
~T,0,0,l !m~T,0,0,l !n

sg
2 G . ~8!

So, at fixedT and l , we have

FIG. 2. Schematic representation of a Roman ring. This example
contains four wormholes. In each wormhole the two mouths are
separated by a spatial jumpL. The normal-space distance from the
exit mouth of one wormhole to the entrance mouth of the next is
l .
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^Tmn&'\
1

N2~ l 22T2!2S R

2l D 2~N21!

3Fhmn24
~T,0,0,l !m~T,0,0,l !n

l 22T2 G . ~9!

In particular,^Tmn&→0 asN→`.
Now, suppose the whole system is adiabatically shrunk,

keepingT fixed but letting l →T1. The ‘‘reliability hori-
zon’’ @5#, the location at which we should cease to believe
the applicability of semiclassical quantum gravity, will be
located atAl 22T25l Planck.

@General arguments supporting this designation are pro-
vided in@5#. In the present more specific context it suffices to
realize that onceAl 22T2,l Planck, any quantum field~in-
cluding gravitons! propagating on this background will be
subject to Planck scale physics.#

At the throat of any one wormhole, when the system is at
the reliability horizon, we have

^Tmn&'\
1

N2l Planck
4 S R

2l D 2~N21!

3Fhmn24
~ l ,0,0,l !m~ l ,0,0,l !n

l Planck
2 G . ~10!

Again, ^Tmn&→0 asN→`.
Thus, with enough wormholes, we can arrange the gravi-

tational vacuum polarization and, therefore, the back reac-
tion, to be arbitrarily small all the way down to the reliability
horizon.

III. IMPLICATIONS

This counterexample is enough to show that it is impos-
sible to come up with a chronology protection theorem that
makes reference only to the ‘‘reliable region,’’ and so it is
impossible to come up with a chronology protection theorem
that isphysically reliablewithin the context of semiclassical
quantum gravity.

In this regard I am completely in agreement with Krasni-
kov @1# and Sushkov@2#, though the current class of models
is obtained in a radically different~and perhaps more physi-
cally transparent! manner.

My interpretation is perhaps a little different: I view this
not as a vindication for time travel enthusiasts but rather as
an indication that resolving issues of chronology protection
requires a fully developed theory of quantum gravity@5#.
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