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Electromagnetic waves in a strong Schwarzschild plasma
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The physics of high-frequency electromagnetic waves in a general relativistic plasma with the Schwarzschild
metric is studied. Based on theta formalism, we conformalize Maxwell’'s equations. The derived dispersion
relations for waves in the plasma contain the lapse function in the plasma parameters such as in the plasma
frequency and cyclotron frequency, but otherwise look “flat.” Because of this property this formulation is
ideal for nonlinear self-consistent partidlparticle-in-cell (PIC)] simulation. Some of the physical conse-
guences arising from the general relativistic lapse function as well as from the effects specific to the plasma
background distributiofisuch as density and magnetic fielfive rise to nonuniform wave equations and their
associated phenomena, such as wave resonance, cutoff, and mode conversion. These phenomena are expected
to characterize the spectroscopy of radiation emitted by the plasma around the black hole. PIC simulation
results of electron-positron plasma are also preseh&@b56-282(97)07108-1

PACS numbegps): 52.60+h, 52.65-y, 52.65.Rr

I. INTRODUCTION Price, and McDonaldi10] have given the 31 solution for

There is ample evidence that a black hole is involved in aMaxweII S equations in the Schwarzschild metric:

variety of astrophysical phenomena suchyasy burstg1]

and active galactic nucléAGN) jets[2]. Yet plasma physics V- |§:477p, )

in a fully general relativistic framework is in its infancy,

mainly in a cosmological metri€3,4] and quite recently a

magnetohydrodynamic stud$,6]. Here we are interested to V-B=0, 2)

start looking into the spectroscopic signatures of radiation

emitted from a plasma around a black hole. It has been

known [7] that corpuscular orbits are unstable within three 10

Schwarzschild radii Rs). Because of this, it has been gen- cat

erally believed that no plasma is present withiRg3 Re-

cently, however, we have demonstraf&d that the (colli-

siona) gas dynamics is different from the corpuscular orbital 19

dynamics and thus that magnetohydrodynamic equilibria that cat

hold plasma between the horizonKJ) and Rg (as well as

beyond do exist. It is here that strong general relativistic

plasma effects are particularly severe and that perturbative d . (E vXB
+

E=V><(a|§)—477aj, 3

B=-VX(aE), (4)

: ®)

post-Newtonian approachg8] are inadequate. ar pP=q
MacDonald and Thornd9,10] have introduced Max-
well’'s equations in 3- 1 coordinates, which provides a foun- ; P I
dation f?)r formulation of a general reIativiF;t(GR) set of where the lapse function S|gn|f|es the general relativistic
plasma physics equations. In Sec. Il, we conformalize thiseffeCt around a Schwarzschild black hole,
3+1 set of equations, so that they can be transformed into

terms completely analogous to Maxwell’s equations. In Sec. Rs

[1l, the transformations which compose the conformalization a=1\/1- e (6)

are used to write the dispersion relation for positron-electron

plasma in new terms. Section IV discusses resonance aqu time derivative in Eq(5) is defined as

cutoff points, applying the results of Secs. Il and Il to show a

the effect of a strong gravitational field on the plasma prop-

erties. A 13-dimensional particle simulation is also employed d 10 .

to demonstrate the model, and offers unforeseen results when EE(; ot tu- V) ' @)
applied to mode conversion. A discussion and summary are

given in Sec. V. andRg is the Schwarzschild radius. All quantities are mea-

sured by a local fiducial observéFIDO). Thus the vector
guantities given are neither covariant nor contravariant. The
A. Derivation of the conformalism four-metric of our coordinates is

Il. CONFORMALIZING MAXWELL'S EQUATIONS

The following summarizes how to conformalize Max-
well’s equations from a 3 1 Schwarzschild metric. Thorne, ds?’=— a?c?dt?+ a 2dr?+r2(d@?+sirfd d¢?). (8)
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We shall consider wave propagation in tié direction.  either a slab or spherical metric and obtain the same qualita-
The ¢ component ofV X E is tive results, since the background magnetic field and density
decrease exponentially, overshadowing the effect of spheri-

cal symmetry on the conformalized versions of these fields.

A a J - A .
VX (aE’9)=—— (raE% . (9) Also, the only waves that reach a distant observer are
ror vacuum-propagating light wave&emitted from near the
black holg, and the effects of the plasma and the strong
gravitational field have already left their signature before a
signal is very far from the hole.

We can combine this with the wave equation

1 92 e VX VX (o 4rra 9 i a0 By making the substitutions
22 E= [aVX(aB)]- —— — (10)
. QEr_Rs<Rs, (16)
and, for the moment, allow=0. The resulting wave equa-
tion is 0= 60— 0y<bg, (17)
SN PPy 11 18
2B =T oo g (arED L (11) Ip=d— bo<do, (18)
Let us make the substitution dy?=Rad¢?, (19
E{=arE’ (12 dZ2=REsir? 6pd ¢?, (20
and change the coordinate variable¢tovhere we have chosen a local set of nearly Cartes@mept foro)
coordinates, which has the metric
J o J 13
o ¢ o (13 ds?=a 2dp2+dy2+dZ. (21)
This allows us to rewrite the wave equation as From the definition in Eq(16), do=dr, and so the differ-
ential equation betweep and ¢ is the same as that between
10 5 & randé&
. , a %(0)de=d¢, (22
The 3+ 1 equations derived Hyd] already account for the . o
universalt coordinates, leaving only the three-metric the solution to which is
ds?’=a 2dr?+r?d6?+r3sirf 9 d¢?. (15 £=p+Rgn(g)+const. (23
The curl and divergence operators in the B set of equa- This changes the wave equatigii) to
tions are covariant and can be derived from the three-metric.
Instead of the spherical Scharzchild three-metric, we will 1 2 - a o P .
employ a “slab” version, which eliminates spherically sym- 22 E"=R— % 2 % (aRsE?) |, (24)
S

metric artifacts of having chosen to consider propagation

along the radial direction. The purpose of choosing such &nd instead of the substitution E42), we use the substitu-

metric is to isolate the effect of the gravitational field from tion

the choice of spherical coordinates. In the absence of a gravi-

tational field, Eqg.(12) would read asEfgf:rE", and the - «

spherical boundary conditions would impose effects on the E{=aE’ (25
propagation of the waves, such as cutoffs not unlike those ) _

discussed in Sec. IV C. The slab approximation instead del® arrive at Eq(14), since theRs cancels out. Note that the
fines a plane wave which happens to be traveling in a radigthange in coordinates as stated in Ei®) remains the same.
direction and does not “feel” the spherical boundary condi- The only alteration is in the change in amplitude of the
tions. Far from the event horizon, the approximation breakgvaves, which will now only occur in the presence of a gravi-
down, since any initial disturbance will propagate accordingtational field, and not because of a particutarO choice in

to Huygen’s principle. This does not significantly weakencoordinates. o . _

our approach, however, because there is a qualitative differ- The three-metric in the conformalized space is

ence in our results only with respect to the idealized cases

near the hole discussed in Secs. IVB and IV C, where we ds?=a?d&?+dy?+dZ. (26)
wish to demonstrate the part of gravity in creating new cut-

offs and resonances. In Sec. IV D and IV E, we can employVith the substitutions
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pe= a?p, (27 comes important when there are physically known frequen-
cies, such as that of electron-positron annihilation, which
. - must be translated into universal time.
Es=aE, (28
ll. DISPERSION RELATION
B;=aB, (29) The properties of wave propagation are characterized by
and the dispersion relation. The dispersion relation may be de-
rived by linearizing the Maxwell equatior&gs.(31)—(34)]
R ) and the equation of motidiEq. (35)] along with the confor-
J§=a2J, (30 malized charge density and currdiigs. (27) and (30)]. In
_ such a treatment, the dispersion relation is a function of two
Maxwell's equation become parameters that can change with respect to position. The con-
formalized local plasma frequency depends on the local
V. E§=47Tp§, (31) number densny of electrons and also upon the local value of
the lapse function:
V-Be=0, (32 4w (§)Indr (£)]e?
wp= o . (36)

19 - - -

c ot Ee VXBe—amd,, (33 Similarly, the conformalized local cyclotron frequency de-
pends upon both the local magnetic field and the lapse func-
tion:

i B,=—-VXE (34)
C oot PE T &
¢ at ealr(¢)1Bolr ()]
_ _ _ Q= : (37)
with the equation of motion mc
. wherer (£) is the inverse of(r)=r —Rgs+ Rg In(r).
d . [ vXB; In the conformalized coordinates and variables, therefore,
dt P=a| Egt c (35 we have a variation in the cyclotron and plasma frequencies

entirely due to the presence of the Schwarzschild metric.
Momentum and velocity remain unchanged by the conforEven if the background density and magnetic field were con-
malism. stant with respect to position, the metric would still cause the

These equations are entirely “flat”: There are no cova-conformalized cyclotron and plasma frequencies to vary with

riant derivatives, and time flows at the same rate regardlegsosition. New resonances and cutoffs can appear in the
of location. The substitutions of EqR7)—(30) map the local plasma by introducing a strong gravitational field.
guantity to the conformalized &space” quantity, and Eq. High frequency electromagnetic waves in a nonuniform
(23) maps the radial coordinate to the conformaliZzecbor-  plasma(i.e., &-dependeniw, and().) can be characterized
dinate. Given a plasma in a Schwarzschild metric, propertieby a local dispersion relation in the WKB sense. The wave

can be mapped to the conformalized space, solved withowjector is chosen to ble=ké, and the background magnetic
general relativistic equations, and mapped back into “real”ﬁeld is éoz Boc039%+ B, sinég, whereg s the angle between

space. > - . . .
the By andk. The dispersion relation for the transverse EM

. . wave in an electron-ion plasma is given locallydispace as
B. Frequency in the conformalism and observable phenomena P 9 yéisp

One concern of using the conformalized set of equations c2k2 w2 02co0
is keeping track of how they relate to the real physics that 2_ - —1— PI |4 _ 20
might be observed far from the hole. As»o, a—1, and so " w? ellom)=1 Z o (1 @
the local physics far from the hole is “flat” and the time far 5 . _1
from the hole is universal time. The conformalizégpace _ stmze (39)
physics is the same far from the hole as the local physics far a)z—czjk2
from the hole. If we model, for example, some phenomena
occurring near the hole from which is emitted some observfor E,=E,y, B,=B,Z polarity and
able electromagnetic wave that propagates far from the hole,
the frequency in the model is the same as that which would w2 02co2g) L
be observed. The main concern is dealing with the proper n2=1-> — (1_ L ) (39)
time 7 of the phenomenon near the hole, where the effects of i w w

time dilation are significant. Sincelr=adt, then w, . R

=a lw,, wherew, is the locally measured frequency and for E;=E;z, B;=B,y polarity, wheren is the index of
w, is the frequency measured fspace as well as the fre- refraction, e(k,w) is the dialectric function for transverse
quency measured far from the hole. The proper time beelectromagnetic waves); is the local cyclotron frequency
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for each specieg, andw,; is the plasma frequency of each

. . ! Di ion Relation for Bk
species defined in Eq$36) and (37). All of these frequen- 4 iSpersion eta 1?11‘ or B ()
cies are conformalized quantities derived from the confor- w (k) —
malized density and magnetic field. For exampl, ») is a : wIEk;
function of £ through eachw,;, (1;, andcg;. Thusk is a
function of ¢ through Eqs(38) and(39). We shall deal with -
a positron-electron plasm@n,=m,, two species near the w 2 - ]
event horizon, which has the dispersion relations Bgitk '
(for both polarities,
02\ -1 0 L
2_~212_o, 2 q_""€ 0 1 2
"= CKT=2wy (1 wz) ’ (40 k (wave number)
and forl§0L K,
Dispersion Relation for B L & (b)
4
2 -1 : ' w_(k
2_ 21205 2 e : - -
w”—ckK _zwp(l_m) (41) : wik}
for the E, ,B, polarity and w 2 | 4
w?—cKP= 20} (42)
for the E,,By polarity. The angle-dependent relation is 0 0 :
5 10
k (wave number)
Q2cog0 Q2sirte | 7?
w?— k=203 1—- (43 ispersi -
p w2 w2— c2K2 FIG. l., Upper and lower branches of the dispersion relation for
s shear Alfven waves in an electron-positron plasma appear&jn
. The graph ofb) is the same, but for compressiorialagnetosonic
for the E, polarity and waves. The range df in this second graph has been extended to
show the effect of the compressional relation.
2 -1
W2 Czkzzzwg( 1- Qez)_(;§9> (44) IV. CUTOFF AND RESONANCE

There are two major types of waves we shall consider,

for the E, polarity. Of these equations, only tiig,,B, po- which are the two branches of the electron-positron plasma.
larity conzcerns the work of this paper.' T The upper branch describes the electromagnetic waves,

First, we elucidate the properties of the dispersion relatiof’hich are capable of ﬁ[;;opagating in vacuumf\.mThe lower
for a uniform plasmauniform in the¢ space so thab, and ~ 2ranch is the set of Afire waves, the shear Alivewaves
Q. are constant ir¢ space, which is not equivalent to the @nd compressional Al V\;aves. . her. |
uniformity in real space Equation(40) for a uniform plasma As a wave prppaga_tes Irom one region to another, it may
is graphed in Fig. @) for the case ofv,=1, 0,=0.5, and enter a region in which it is dlsal!owed, as, becomes
c=4 in the code unittime is normalized by, *, space by larger thanw for the electromagnetic waves or & be-
the grid sizeA,, and all other quantities by the combination comes t0o small _f(_)r a given of the shear Alfva waves. At_
of w-® andA,). The upper branch represents the electro-the point of transition from an allowed to a precluded region,
p & cutoff or resonance occurs. A cutoff occurs when the index

ma_lgnetlc Waves, V_Vh'Ch can propagate in vacuum, _bUt Canne refraction Ck/w) goes to zero. A resonance occurs when
exist for frequencies lower thag2wp,+ g, which is the  yhe jndex of refraction goes to infinity. The presence of a

cutoff frequency for this plasma. The lower branch repre-giong  Schwarzschild background affects, through the
sents the shear Alfvewaves, which cannot exist for a fre- spatial-coordinate-dependent lapse function, how and

quency greater thafl,, the resonant frequency for shear hether or not a cutoff or resonance occurs for the plasma
Alfven waves. The graph of E¢41) is shown in Fig. ).  \aves near the event horizon.

The upper branch remains the same as in(&g). The sound
speed eliminate$), as a resonant frequency, though reso-
nance is closely approached. For compressional “Alfve
waves, resonance technically does not exist, though similar We developed a § particle-in-cell PIC codé¢11] appro-
effects to resonance will be seercif<c. Figure 2 shows the priate for simulating self-consistently electromagnetic
complete dispersion relation as a function of angle, wherglasma phenomena near the event horizon. In Réi, gen-
0=5° is very close to the shear case. eral discussion of the PIC code in a general metric is given.

A. Particle simulation code
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6 =5° (a) 9 = 60° ©)
3 T 3 T
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FIG. 2. Dispersion relation for an electron-positron plasma,(&8), for four cases of the angle betweﬁa andk. The upper branch is
the same in each case. The lower two branches are the magnetosonic and the sound waves. The temperature of the plasma for these grapt
is higher than for those in Fig. 1, increasing the sound speed and making the qualitative behavior of the lower two branches more obvious.

We also employ the absorbing boundary conditions at either There are four major sets of results to be presented
end of the box{12]. The PIC code is used instead of a fluid here: (i) a demonstration of the resonant behavior of
code to study the high-frequency phenomena in a plasma anslfvén waves approaching the event horiz@in), the cutoff

to be able to model some of the instabilities which can occurand reflection of an electromagnetic wave initially propagat-
The main feature of a fluid model is that there is one particuing away from the hole(jii ) an analysis of the mode conver-
lar velocity associated with any given point. While this is asjon of Alfven waves into EM waves in a rapidly varying
useful model that allows modeling of slow large-scale pheyackground plasma, an(i) particle acceleration associated
nomena, it excludes the possibility that there can be severglith this mode conversion. In all of these cases. we are
different p_articles assoc_lated with a given point, each with 'tsgraphing parameters versgswhich is the grip spacing of
own yelocny. Thus a fluid mpdel cannot be used_to $tUdy th he cells. Refer to E(23) to recall the relation between the
physics OT part|clt_a acceleration, for gxample, which is one Oljistance to the event horizon arid The numerical value
the most interesting expected physics around the event horé'ssigned to the Schwarzschild radiugis= 16 096(in a unit

zon. One of the main ObJeCt'VeS. of th's paper Is to St.Udyof the grid sizeA,) for the first two sets of results arfRg
high-frequency EM spectroscopy in which mode conversions

between different modes of the plasma, such as between AF 220 for the mode conversion example. These va_lues.ar.e
fvén waves and electromagnetic waves’ and their interactio hosen such that the phenomena to be obsgrved fits within
with particles. the frame_work of the code and do not readily translate to
That the code is § dimensional means that quantities can astronomical scales.
be functions of only one spatial parameter. There is only the
one spatial degree of freedom in which particles and waves
can propagate. It also means that the electromagnetic field The presence of the strong Schwarzschild background can
vectors can exist in any direction and that the momentum ofake a resonance appear when it otherwise would not have.
the particles can exist in any directidice., particles are said In the type of plasma we are considering, a resonance will
to be planar. Typical runs are done with about 20 000 par- only occur for a shear Alfve wave, when the conformalized
ticles, half electrons and half positrons, in 2048 cells in thecyclotron frequency decreases below the frequency of the
one-dimensional grid, and the size of a cell is about twowave. Let us assume thB= const with respect to position.
thirds of a Debye length. The electron plasma frequency iThen the local conformalized cyclotron frequency varies as
defined as 1, and time is measured in inverse plasma fréd .= a(£)eBy/mc. Any shear Alfve wave that is ap-
guencies. The time step is typically Qx;)[l, wherew, is the  proaching the black hole under these conditions will reach a
averageg(in &-space plasma frequency. resonance point, since the conformalized cyclotron fre-

B. Resonance
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Conformalized Density 72.(£)

(a)

4 |

sity would likely exist in the environment being discussed
near the event horizon. In this case, the plasma frequency
varies asw,;= a(§) \/47rn0e2/m. The lapse functionx in-

creases monotonically with respect to botland ¢, varying
from zero to one. There can be an electromagnetic wave
close to the black hole in this scenario of some frequency
less thany4n,e?/m, which is propagating away from the
hole. At the point whenw,.> » becomes true, the wave hits

a cutoff point, and reflects back towards the hole. A different
way of looking at this phenomenon is that the wave heading
away from the hole is getting redshifted to a lower and lower
frequency, until its frequency is less than the local plasma
frequency as measured in nonconformalized coordinates.
This phenomenon can occur regardless of the state of the
background magnetic field.

Figure 5 shows a wave of the upper branch traveling from
abouté=400 to a cutoff point af=1100 and reflecting. The
conditions for this run are the same as for the previous one,
except that we have generated an electromagnetic pulse trav-
eling outward rather than an Alfwepulse traveling inward.
We have graphed,, vs ¢ the conformalized transverse
electric field. In this conformalized space, the pulse sees the
density contour graphed in Fi¢Ba), which quickly raises the
effective plasma frequency starting at arouxed1000, until
the effective plasma frequency is too high to allow the wave
to propagate farther in that direction. The time interval be-
tween successive frames is 1&};01

0 1000 2000
3

Conformalized Magnetic Field By(€) (b)
T T

By (&)

0 1600 2000

FIG. 3. Conformalized density profiléa) and conformalized D. Mode conversion

magnetic fieldb) of a plasma measured §space. The profiles are In the more generalized case, a magnetic field of any

cqnstant inr space. The Schwarzschild radius is 16 096 units. Theshape will have a conformalized counterpart which ap-
grid has been rescaled by a factor of 100, so thalRs COITe- 4 heg zero at the event horizon, and any density profile
spondsl tof;l?_OO,rzRS? 1000hmaps tcf:l.loo' andg=400 'Z _will have the same. If we are looking at a background of
2c2:;ey units away from the event horizon as measured In oo of these variables that is very high close to the event
pace. horizon and decreases with the distance fromagsuming
that « approaches zero faster than the magnetic field goes to
ﬁﬁinity and thata? approaches zero faster than the density
approaches infinily we will see a region in which these
conformalized background quantities have a maximum and
approach zero at the event horizon and at infinity. For elec-
tromagnetic waves, this means a region in the atmosphere
which reflects low-frequency waves both back toward the
horizon and back away from the hole. For Alfvesaves, this
means there is a region near the horizon, but not touching it,
where such waves dominate. Beyond this region, no signifi-
cant Alfven waves could propagate.

In this section, we will consider a varying background
. . : magnetic field and a varying background density. These
progressing from a position gt=1600 to a resonant point at 5y arounds are the nonconformalized fields, whose relation
¢=1084. The graphs are taken at time intervals 1@9-30 to the conformalized fields is expressed in E¢®6) and
apart. If we plot(physica) magnetic fieldsB, in (physica) (37). The densityny(r) is assumed to vary as(r)
r coordinate, Fig. 4 would show a larger amplitude with a, ¢~ (r-R9/h gnd the background magnetic field varies as
larger wave number toward the ld¢the event horizon

guency approaches zero at the event horizon. This resonan
point would not occur without the presence of the back-
ground Schwarzschild metric.

The graph of Fig(3a) is a graph of the effective density
Neog(€) Vs & This is a conformalized quantity, and the par-
ticle density as measured versuss a constant. Similarly,
Fig. 3(b), is a graph ofB.(£) vs & This, too, is a confor-
malized quantity: The physical value &, is a constant
with respect to position. In order to obtain physidak.,
nonconformalized quantities, we should convert these con-
formalized quantities over through Eq27)—(30) and (23).

In this background, we look at a shear Alfveiave in Fig. 4,

Bo(r)xe "R \whereh is an arbitrary scale height. In
the particular cases considerd®s=220 andh=150. The
exponential decay of these parameters as one gets far from
Another test case considers an electromagnetic wave dhe hole means that there is qoalitativedifference between
the upper branch propagating in a region where the backhe “slab” metric approximation we introduced in Sec. Il A
ground number densityyy(r) =const. This is intended to be and the original spherical metric.: Mode conversion and
purely hypothetical case to aid theoretical discussion and iparticle acceleration would still occur with the spherical
not intended to suggest that such a constant background delmeundary conditions, but the specific locations of resonance

C. Cutoff
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t =100 w,™? (a) t =300 w,™! (c)
| T 1
0.005 =
0.005 -
B . 0 V.AVAM Vﬁyhv.v v,\vl\vﬂvnvn B . 0
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0 1000 2000
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t =200 w,™ (b)
I T
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0.005 -
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1 |
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FIG. 4. An Alfven pulse travels inward towards the black hole, starting from the right side of the grid. There is a resonance point at
£~1084, beyond which the pulse does not propagate. The resonance point exists only because of the strong Schwarzschild metric.

t =100 w,™? (a) t =300 w,™? ()
T T | T

0.003

0.003

Ey 0 = A f\!\ o . Ey

- i —

0 A

\

0 1020 2000 0 1000 2000

-0.003

T
i

-0.003

T
1

t =200 w,™? (b) t =400 w,™? (d)

0.005 - h 0.003

0 Py dpnib
\j V -0.003

0 1000 2000 0 1020 2000

FIG. 5. Progress of an electromagnetic wave propagating away from a black hole in a region of constant background particle density. The
wave starts on the left side of the grid, where the conformalized density is low, propagates to the right, away from the hole, hits a cutoff point
at £~1100 in(b), and is reflected back towards the hole. The cutoff point would not exist without the general relativistic effect of the hole.



5200 JAMES DANIEL AND TOSHIKI TAJIMA 55

. . ' k% vs &
Conformalized Density n.(§) (a) 0.2 : :
T T
| | )
k? 0
ne(£)
0.5 _
! | -0.2 1 1
0 .
0 1000 2000 0 1020 2000
¢
FIG. 7. k? vs & This plot determines where resonance and cutoff
Conformalized Magnetic Field Bo(g) (b) occur for the mode conversion case of Sec. IV B is propor-
T T tional to the square of the index of refraction: A%—o, reso-
6 n nance is approached. Cutoff occurs whifechanges sign. At
~1020, there is a resonance-cutoff pérBudden turning point
with a separation small enough to allow transmission from the
B Alfvén region ¢<1020) to the EM region4>1049).
0(5) 3k -
andk?(¢) can be approximated as
B B
0 ' ' KA(&)=Z+—, (46)
0 1020 2000 & 7

where g%/ °=k2, n=|Axk.|, Ax is the distance between

FIG. 6. Background number densit@) and background mag- the resonance and cutoff of the turning point, dndis the
netic field (b) for the mode conversion simulation. The scale heightWave number far from the turning point. For the Alfve
(in r) is 150 units, and the Schwarzschild radius is 220 units. Wwave near the event horizon to leak out of this plasma and
=400 is about 40 units from the event horizon, af©d1000 is ~mode convert itself into a vacuuror low-density plasma
about 700 units from the horizon. EM wave, n=|k,,Ax| should not be much greater than unity.
When 7 is much greater than unity, Budden turning point
acts as a perfect wave absorbing point, an important property
of the Budden turning point. For a sufficient amount of EM
waves to propagate out of the hole, it is necessary to rapidly
change the stratification of the atmosphere near the hole.
From this information, Budden predicts that the transmission
coefficient will be

and cutoff points would be different. The properties of EM
wave propagation are characterized by= e(k,w),
shown in Eq.(38). In our present formulation, the frequency
w is constan{see Sec. Il B Thus, when the dielectric func-
tion € is nonuniform iné through the lapse function (or
through background plasma parameXetise dispersion rela-
tion makes the wave numbdér (i.e., k) nonuniform in¢.
Figures 6a) and &b) show the conformalized density profile
and background magnetic field. There is an Afiyrilse that
will start at£=416 and propagate outwaf¢ih the positiveé
direction. The graph in Fig. 7 is a plot & vs &, for a given
constant frequency, assuming th&@=0 shear Alfve wave
dispersion relation witm>1. It is used to analyzéwithin
the limits of WKB) the behavior of the pulse. There is a
predicted resonance of the pulse gt 1019 for the shgar =416. Figures 8 and 9 show the progress of the pulse at
case. The compressional Alivecase would be very similar 100,00, 1o " X
intervals. The condition for an Alfve pulse is
to this, except that full resonance is not quite reached. Be-
yond this point is a regiong~1020—-1049) where no wave Uph<C, Wh'Ch can also be writien as
of this frequency should propagate. At=1050, there is a

|T|=e" """, (47)

where|T]| is the coefficient of the absolute value of the am-
plitude (not the square of the amplitudeThe reflection co-
efficient in this case i$R|=0

The run in which this is modeled starts with a shear
Alfvén pulse on the left side of the grid, centered ét

cutoff point, beyond which the upper branch mode may El o 202 -2
propagate withn<1, at the same frequency as the Alfve 1B kc 1- wz(l—Qz/wz) <1 (48)

mode. An analysis of wave propagation through this mixed
resonance or cutoff point has been done by Budd8hand At t=0. 0w, 1 |E|<|B|, confirming that the code is model-
is known as a “Budden turning point.” ing an Alfven wave in this regime. The condition for the
The WKB wave equation here is upper branch electromagnetic wave is the conve(&é:
>|B|. Measuring the relative magnitudes BfandB of the
V" +Kk3(§)W=0, (45  pulse r;1tt=3’>00.(?tugl that has passed the turning point, the
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t =100 w,™! (a)
' ' 0.0003
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FIG. 8. An Alfven pulse starts at the left side of the grid(@ and hits the resonance pointé&t 1019 in(b). An electromagnetic pulse
is visible até~ 1600 in(c), having been transmitted past the turning point(dn the last vestiges of the transmitted pulse are visible at the
far right of the grid, and the rest of the initial pulse remains at the resonance point. These graphs sBpwaimponent of the waves.

t =100 w,™ (a) t =300 w,™* ()
' ‘ 0.001
0.003 n .
Bz 0 WM’II.' VI\V vﬁvh B zZ 0
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-0.001
1 1
0 1000 2000 0 1000 2000
¢
1 =200 w,™! (b)
0.003 F Y 0.0005

-0.003 -

0 102_0 2000 0 102_0 2000

FIG. 9. As in Fig. 8, except showing i, component of the waves. The pulse starts in the shear Aifvede in(a), hits resonance at
£~1019 in(b), and an EM pulse is transmitted past the turning point and is visikje-a600 in(c), while the rest of the wave remains and
is absorbed at the turning point {d).
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FIG. 10. Background number densit®) and background mag- '
netic field (b) for the particle acceleration simulation. The initial 0.3
pulse starts ag=416 and progresses to the right, away from the
event horizon. The scale of the grid is the same as for the mode
conversion simulation, but it has been doubled in size to show B,
progress still further from the horizon.

T

result is|E|/|B|~1. Sincew,<w andQ.<w in this region

of £>1100, the /[ w*(1- Q% w?)] term of the disper-

sion relation is very small, which implies thEE|/|B|~Q,

<w also implies that the Alfe branch does not exist here 2000 ¢ 2500

at this frequency. Therefore this run indeed models mode

conversion from an Alfve near the hole to an electromag-

netic wave away form the hole. . FIG.. 11. Erogress of the magneti(l: figld for the parti.cle accelera-
In this particular case, Budden predicts thigt~0.0159  fion simulation, graphed in 204, " intervals, starting att

and that the rest of the wave is absorbed by the resoriance =100w,". The solitary wave splits into shear Affeeand EM

reflection coefficient The run shows no reflection, as ex- Mdes in(b) at£~1600. The right peak is in the EM mode, and the

pected, and a necessarily rough comparison between the affilt Peak is in the Alfve mode.

plitude of the incoming wave and the outgoing wave indi-

cates a measurable transmissior Bf~0.01, very close to this computational model. Without going into specifijts be

the predicted value. published elsewheyewe can imagine a situation where ac-
This mechanism for mode conversion allows the observaereting mattef14] interacts with the magnetic field of the

tion of possible signatures of Alfvemode events near a plack hole magnetosphef&5] and this accreting mass mo-

black hole, by permitting the emission of a correspondingtion can trigger Alfve wave pulsés). This situation is a bit

electromagnetic pulse, which may propagate into a vacuumyimilar to that considered foicompressionalAlfvén wave

i.e., interstellar space, and eventually to our eye. Behaviogcceleration around a neutron sfa6]. The initial setup is

near a suspected black hole can be modeled via our confogmjjar to the mode conversion discussed in the previous

malism, and the model can make a prediction about possiblg,psection. The main difference is that the Ativaulse is a

observable behavior far from the hole. solitary wave, with the typical seb—vgt) profile. (It is

imperfectly generated, and so part of the initial pulse travels

toward the horizon on the left side of the grid and bounces of
Particle acceleration possibly triggered from a violent mo-the reflective boundary condition there. This is because the

tion of matter near the event horizon may be simulated witifrequency of this “wave” is broadbanded and instantaneous

E. Bursty acceleration out of a black hole atmosphere
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ticle acceleration. Figure 11 graphs the transverse magnetic
field and shows the pulse propagating to the right, to even-
tually encounter a broadband resonance near the middle of
the grid, from &~1500 to £~2500 (the pulse has a large
bandwidth, and individual frequencies of the pulse hit reso-
nance over a large range of position¥o the left of this
resonance, the solitary wave is a shear Atfweave. To the
right, the pulse penetrates the resonance and becomes an
electromagnetic pulse, the wake of which has trapped some
particles and has accelerated them to relativistic velocities. In

! Fig. 11(b), the pulse can be seen splittifg distinctive
2000 4000 double peak at~1500, the left half of the peak is the

¢ Alfvén mode, wheréB|>|E|, and the right half is the EM
mode, whergE|~|B|. Figure 12 shows th®; vs ¢ phase
space. As the pulse propagates away from the hole, the mo-
mentum of the particles trapped with it increase significantly,
reaching relativistic speeds. The mechanism for such solitary
wave acceleration is discussed by Raal. [17].

t =100 w,™* (a)

V. CONCLUSION

We have developed a conformalism for general relativis-
tic plasma physics that greatly simplifies the dynamical study
in a strong Schwarzschild background and a simulation
model based on this formalism. A simple transformation
turns the Maxwell’s equations of Thorne, Price, and Mc-
Donald into “flat” equations. Our results indicate that a
strong gravitational field effect introduces stratified “nonuni-
formity” effects in plasma parameters and that, in the plasma
near the event horizon, induce cutoff and resonant effects
independently of any contour of density and magnetic field.
In addition, we demonstrated that internal magnetic modes
can be conceivably converted into observable electromag-
netic emissions. As the plasma and its motion are expected to
be quite violent near the event horizon, such violent plasma
dynamics is expected to give rise to large amplitude. Aifve
waves and magneto hydrodynam{84HD) instabilities. The
large amount of energy contained in this low-frequency
branch of the plasma wave dispersion relation, however, can-
not by itself be convected out of the event horizon, barring
the usual thermal processes, unless the above-mentioned
mode-conversion process occurs. Thus this mode-conversion

FIG. 12. Theé component of the momentum of the electrons is process constitutes an important path of the energy as well as
graphed in 208, * intervals, starting at=100w; *. The accelera- the observational window into signatures important to the
tion of a significant fraction of the plasma is evident. The “loop- spectroscopy of a black hole. The investigation into mode
ing” of the phase space in the later graphs indicates particle trapaonyersion will continue, as there is good reason to believe
ping, as the particles oscillate within their accelerating potentiak 4+ i,ch behavior can lead to visible emissions and cosmic
well. ray bursts that would be observable evidence of the behavior
of a black hole near the event horizon.

2000 4000

S

wave turn-on is difficult. The physics of interest is elsewhere
on the grid, and the secondary pulse does not change the
qualitative result3.Figure 10 shows the scaling of the con-
formalized background parameters, and Figs. 11 and 12 This work was supported in part by the U.S. DOE and
show the progress of the initial pulse and the attendant pafNSF.
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