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The physics of high-frequency electromagnetic waves in a general relativistic plasma with the Schwarzschild
metric is studied. Based on the 311 formalism, we conformalize Maxwell’s equations. The derived dispersion
relations for waves in the plasma contain the lapse function in the plasma parameters such as in the plasma
frequency and cyclotron frequency, but otherwise look ‘‘flat.’’ Because of this property this formulation is
ideal for nonlinear self-consistent particle@particle-in-cell ~PIC!# simulation. Some of the physical conse-
quences arising from the general relativistic lapse function as well as from the effects specific to the plasma
background distribution~such as density and magnetic field! give rise to nonuniform wave equations and their
associated phenomena, such as wave resonance, cutoff, and mode conversion. These phenomena are expected
to characterize the spectroscopy of radiation emitted by the plasma around the black hole. PIC simulation
results of electron-positron plasma are also presented.@S0556-2821~97!07108-7#

PACS number~s!: 52.60.1h, 52.65.2y, 52.65.Rr

I. INTRODUCTION

There is ample evidence that a black hole is involved in a
variety of astrophysical phenomena such asg-ray bursts@1#
and active galactic nuclei~AGN! jets@2#. Yet plasma physics
in a fully general relativistic framework is in its infancy,
mainly in a cosmological metric@3,4# and quite recently a
magnetohydrodynamic study@5,6#. Here we are interested to
start looking into the spectroscopic signatures of radiation
emitted from a plasma around a black hole. It has been
known @7# that corpuscular orbits are unstable within three
Schwarzschild radii (RS). Because of this, it has been gen-
erally believed that no plasma is present within 3RS . Re-
cently, however, we have demonstrated@6# that the~colli-
sional! gas dynamics is different from the corpuscular orbital
dynamics and thus that magnetohydrodynamic equilibria that
hold plasma between the horizon (1RS) and 3RS ~as well as
beyond! do exist. It is here that strong general relativistic
plasma effects are particularly severe and that perturbative
post-Newtonian approaches@8# are inadequate.

MacDonald and Thorne@9,10# have introduced Max-
well’s equations in 311 coordinates, which provides a foun-
dation for formulation of a general relativistic~GR! set of
plasma physics equations. In Sec. II, we conformalize this
311 set of equations, so that they can be transformed into
terms completely analogous to Maxwell’s equations. In Sec.
III, the transformations which compose the conformalization
are used to write the dispersion relation for positron-electron
plasma in new terms. Section IV discusses resonance and
cutoff points, applying the results of Secs. II and III to show
the effect of a strong gravitational field on the plasma prop-
erties. A 122-dimensional particle simulation is also employed
to demonstrate the model, and offers unforeseen results when
applied to mode conversion. A discussion and summary are
given in Sec. V.

II. CONFORMALIZING MAXWELL’S EQUATIONS

A. Derivation of the conformalism

The following summarizes how to conformalize Max-
well’s equations from a 311 Schwarzschild metric. Thorne,

Price, and McDonald@10# have given the 311 solution for
Maxwell’s equations in the Schwarzschild metric:
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where the lapse functiona signifies the general relativistic
effect around a Schwarzschild black hole,

a5A12
RS

r
, ~6!

the time derivative in Eq.~5! is defined as

d
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andRS is the Schwarzschild radius. All quantities are mea-
sured by a local fiducial observer~FIDO!. Thus the vector
quantities given are neither covariant nor contravariant. The
four-metric of our coordinates is

ds252a2c2dt21a22dr21r 2~du21sin2u df2!. ~8!
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We shall consider wave propagation in the6 r̂ direction.

Thef component of“3EW is
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We can combine this with the wave equation
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and, for the moment, allowJW50. The resulting wave equa-
tion is

1

c2
]2

]t2
Eû5
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~arE û !G . ~11!

Let us make the substitution
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and change the coordinate variable toj, where
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This allows us to rewrite the wave equation as
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The 311 equations derived by@9# already account for the
universalt coordinates, leaving only the three-metric

ds25a22dr21r 2du21r 2sin2u df2. ~15!

The curl and divergence operators in the 311 set of equa-
tions are covariant and can be derived from the three-metric.
Instead of the spherical Scharzchild three-metric, we will
employ a ‘‘slab’’ version, which eliminates spherically sym-
metric artifacts of having chosen to consider propagation
along the radial direction. The purpose of choosing such a
metric is to isolate the effect of the gravitational field from
the choice of spherical coordinates. In the absence of a gravi-

tational field, Eq.~12! would read asEj
û5rE û, and the

spherical boundary conditions would impose effects on the
propagation of the waves, such as cutoffs not unlike those
discussed in Sec. IV C. The slab approximation instead de-
fines a plane wave which happens to be traveling in a radial
direction and does not ‘‘feel’’ the spherical boundary condi-
tions. Far from the event horizon, the approximation breaks
down, since any initial disturbance will propagate according
to Huygen’s principle. This does not significantly weaken
our approach, however, because there is a qualitative differ-
ence in our results only with respect to the idealized cases
near the hole discussed in Secs. IV B and IV C, where we
wish to demonstrate the part of gravity in creating new cut-
offs and resonances. In Sec. IV D and IV E, we can employ

either a slab or spherical metric and obtain the same qualita-
tive results, since the background magnetic field and density
decrease exponentially, overshadowing the effect of spheri-
cal symmetry on the conformalized versions of these fields.
Also, the only waves that reach a distant observer are
vacuum-propagating light waves~emitted from near the
black hole!, and the effects of the plasma and the strong
gravitational field have already left their signature before a
signal is very far from the hole.

By making the substitutions

%[r2RS!RS , ~16!

]u5u2u0!u0 , ~17!

]f5f2f0!f0 , ~18!

dy25RS
2du2, ~19!

dz25RS
2sin2u0df2, ~20!

we have chosen a local set of nearly Cartesian~except for%!
coordinates, which has the metric

ds25a22d%21dy21dz2. ~21!

From the definition in Eq.~16!, d%5dr, and so the differ-
ential equation between% andj is the same as that between
r andj:

a22~% !d%5dj, ~22!

the solution to which is
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This changes the wave equation~11! to
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and instead of the substitution Eq.~12!, we use the substitu-
tion

Ej
û5aEû ~25!

to arrive at Eq.~14!, since theRS cancels out. Note that the
change in coordinates as stated in Eq.~13! remains the same.
The only alteration is in the change in amplitude of the
waves, which will now only occur in the presence of a gravi-
tational field, and not because of a particularr50 choice in
coordinates.

The three-metric in the conformalized space is

ds25a2dj21dy21dz2. ~26!

With the substitutions
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rj5a2r, ~27!

EW j5aEW , ~28!

BW j5aBW , ~29!

and

JW j5a2JW , ~30!

Maxwell’s equation become
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with the equation of motion

d

dt
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c
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Momentum and velocity remain unchanged by the confor-
malism.

These equations are entirely ‘‘flat’’: There are no cova-
riant derivatives, and time flows at the same rate regardless
of location. The substitutions of Eqs.~27!–~30! map the local
quantity to the conformalized ‘‘j-space’’ quantity, and Eq.
~23! maps the radial coordinate to the conformalizedj coor-
dinate. Given a plasma in a Schwarzschild metric, properties
can be mapped to the conformalized space, solved without
general relativistic equations, and mapped back into ‘‘real’’
space.

B. Frequency in the conformalism and observable phenomena

One concern of using the conformalized set of equations
is keeping track of how they relate to the real physics that
might be observed far from the hole. Asr→`, a→1, and so
the local physics far from the hole is ‘‘flat’’ and the time far
from the hole is universal time. The conformalizedj-space
physics is the same far from the hole as the local physics far
from the hole. If we model, for example, some phenomena
occurring near the hole from which is emitted some observ-
able electromagnetic wave that propagates far from the hole,
the frequency in the model is the same as that which would
be observed. The main concern is dealing with the proper
time t of the phenomenon near the hole, where the effects of
time dilation are significant. Sincedt5adt, then vt
5a21v t , wherevt is the locally measured frequency and
v t is the frequency measured inj space as well as the fre-
quency measured far from the hole. The proper time be-

comes important when there are physically known frequen-
cies, such as that of electron-positron annihilation, which
must be translated into universal time.

III. DISPERSION RELATION

The properties of wave propagation are characterized by
the dispersion relation. The dispersion relation may be de-
rived by linearizing the Maxwell equations@Eqs.~31!–~34!#
and the equation of motion@Eq. ~35!# along with the confor-
malized charge density and current@Eqs. ~27! and ~30!#. In
such a treatment, the dispersion relation is a function of two
parameters that can change with respect to position. The con-
formalized local plasma frequency depends on the local
number density of electrons and also upon the local value of
the lapse functiona:

vp5A4pa2@r ~j!#n0@r ~j!#e2

m
. ~36!

Similarly, the conformalized local cyclotron frequency de-
pends upon both the local magnetic field and the lapse func-
tion:

Ve5
ea@r ~j!#B0@r ~j!#

mc
, ~37!

wherer (j) is the inverse ofj(r )5r2RS1RS ln(r).
In the conformalized coordinates and variables, therefore,

we have a variation in the cyclotron and plasma frequencies
entirely due to the presence of the Schwarzschild metric.
Even if the background density and magnetic field were con-
stant with respect to position, the metric would still cause the
conformalized cyclotron and plasma frequencies to vary with
position. New resonances and cutoffs can appear in the
plasma by introducing a strong gravitational field.

High frequency electromagnetic waves in a nonuniform
plasma~i.e., j-dependentvp andVe! can be characterized
by a local dispersion relation in the WKB sense. The wave

vector is chosen to bekW5kĵ, and the background magnetic

field isBW 05B0cosuĵ1B0 sinuẑ, whereu is the angle between

theBW 0 andkW . The dispersion relation for the transverse EM
wave in an electron-ion plasma is given locally inj space as

n25
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v2 5e~k,v!512(
j

vp j
2

v2 S 12
V j

2cos2u

v2

2
V j

2sin2u

v22cs j
2 k2D

21

~38!

for EW 15E1ŷ, BW 15B1ẑ polarity and

n2512(
j

vp j
2

v2 S 12
V j

2cos2u

v2 D 21

~39!

for EW 15E1ẑ, BW 15B1ŷ polarity, wheren is the index of
refraction, e(k,v) is the dialectric function for transverse
electromagnetic waves,V j is the local cyclotron frequency
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for each speciesj , andvp j is the plasma frequency of each
species defined in Eqs.~36! and ~37!. All of these frequen-
cies are conformalized quantities derived from the confor-
malized density and magnetic field. For example,e(k,v) is a
function of j through eachvp j , V j , andcs j . Thusk is a
function of j through Eqs.~38! and~39!. We shall deal with
a positron-electron plasma~mi5me , two species! near the

event horizon, which has the dispersion relations forBW 0ikW

~for both polarities!,

v22c2k252vp
2 S 12

Ve
2

v2 D 21

, ~40!

and forBW 0'kW ,

v22c2k252vp
2S 12
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2

v22cs
2k2D

21

~41!

for theEy ,Bz polarity and

v22c2k252vp
2 ~42!

for theEz ,By polarity. The angle-dependent relation is

v22c2k252vp
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2sin2u
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21

~43!

for theEy polarity and

v22c2k252vp
2S 12

Ve
2cos2u

v2 D 21

~44!

for the Ez polarity. Of these equations, only theEy ,Bz po-
larity concerns the work of this paper.

First, we elucidate the properties of the dispersion relation
for a uniform plasma~uniform in thej space so thatvp and
Ve are constant inj space, which is not equivalent to the
uniformity in real space!. Equation~40! for a uniform plasma
is graphed in Fig. 1~a! for the case ofvp51, Ve50.5, and
c54 in the code unit~time is normalized byvp

21, space by
the grid sizeDj , and all other quantities by the combination
of vp

21 and Dj!. The upper branch represents the electro-
magnetic waves, which can propagate in vacuum, but cannot
exist for frequencies lower thanA2vp

21Ve
2, which is the

cutoff frequency for this plasma. The lower branch repre-
sents the shear Alfve´n waves, which cannot exist for a fre-
quency greater thanVe , the resonant frequency for shear
Alfvén waves. The graph of Eq.~41! is shown in Fig. 1~b!.
The upper branch remains the same as in Eq.~40!. The sound
speed eliminatesVe as a resonant frequency, though reso-
nance is closely approached. For compressional Alfve´n
waves, resonance technically does not exist, though similar
effects to resonance will be seen ifcs!c. Figure 2 shows the
complete dispersion relation as a function of angle, where
u55° is very close to the shear case.

IV. CUTOFF AND RESONANCE

There are two major types of waves we shall consider,
which are the two branches of the electron-positron plasma.
The upper branch describes the electromagnetic waves,
which are capable of propagating in vacuum. The lower
branch is the set of Alfve´n waves, the shear Alfve´n waves
and compressional Alfve´n waves.

As a wave propagates from one region to another, it may
enter a region in which it is disallowed, asvp becomes
larger thanv for the electromagnetic waves or asVe be-
comes too small for a givenv of the shear Alfve´n waves. At
the point of transition from an allowed to a precluded region,
a cutoff or resonance occurs. A cutoff occurs when the index
of refraction (ck/v) goes to zero. A resonance occurs when
the index of refraction goes to infinity. The presence of a
strong Schwarzschild background affects, through the
spatial-coordinate-dependent lapse function, how and
whether or not a cutoff or resonance occurs for the plasma
waves near the event horizon.

A. Particle simulation code

We developed a 122 particle-in-cell PIC code@11# appro-
priate for simulating self-consistently electromagnetic
plasma phenomena near the event horizon. In Ref.@11#, gen-
eral discussion of the PIC code in a general metric is given.

FIG. 1. Upper and lower branches of the dispersion relation for
shear Alfvén waves in an electron-positron plasma appears in~a!.
The graph of~b! is the same, but for compressional~magnetosonic!
waves. The range ofk in this second graph has been extended to
show the effect of the compressional relation.
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We also employ the absorbing boundary conditions at either
end of the box@12#. The PIC code is used instead of a fluid
code to study the high-frequency phenomena in a plasma and
to be able to model some of the instabilities which can occur.
The main feature of a fluid model is that there is one particu-
lar velocity associated with any given point. While this is a
useful model that allows modeling of slow large-scale phe-
nomena, it excludes the possibility that there can be several
different particles associated with a given point, each with its
own velocity. Thus a fluid model cannot be used to study the
physics of particle acceleration, for example, which is one of
the most interesting expected physics around the event hori-
zon. One of the main objectives of this paper is to study
high-frequency EM spectroscopy in which mode conversions
between different modes of the plasma, such as between Al-
fvén waves and electromagnetic waves and their interaction
with particles.

That the code is 122 dimensional means that quantities can
be functions of only one spatial parameter. There is only the
one spatial degree of freedom in which particles and waves
can propagate. It also means that the electromagnetic field
vectors can exist in any direction and that the momentum of
the particles can exist in any direction~i.e., particles are said
to be planar!. Typical runs are done with about 20 000 par-
ticles, half electrons and half positrons, in 2048 cells in the
one-dimensional grid, and the size of a cell is about two-
thirds of a Debye length. The electron plasma frequency is
defined as 1, and time is measured in inverse plasma fre-
quencies. The time step is typically 0.1vp

21, wherevp is the
average~in j-space! plasma frequency.

There are four major sets of results to be presented
here: ~i! a demonstration of the resonant behavior of
Alfvén waves approaching the event horizon,~ii ! the cutoff
and reflection of an electromagnetic wave initially propagat-
ing away from the hole,~iii ! an analysis of the mode conver-
sion of Alfvén waves into EM waves in a rapidly varying
background plasma, and~iv! particle acceleration associated
with this mode conversion. In all of these cases, we are
graphing parameters versusj, which is the grip spacing of
the cells. Refer to Eq.~23! to recall the relation between the
distance to the event horizon andj. The numerical value
assigned to the Schwarzschild radius isRS516 096~in a unit
of the grid sizeDj! for the first two sets of results andRS
5220 for the mode conversion example. These values are
chosen such that the phenomena to be observed fits within
the framework of the code and do not readily translate to
astronomical scales.

B. Resonance

The presence of the strong Schwarzschild background can
make a resonance appear when it otherwise would not have.
In the type of plasma we are considering, a resonance will
only occur for a shear Alfve´n wave, when the conformalized
cyclotron frequency decreases below the frequency of the
wave. Let us assume thatB05const with respect to position.
Then the local conformalized cyclotron frequency varies as
Vej5a(j)eB0 /mc. Any shear Alfvén wave that is ap-
proaching the black hole under these conditions will reach a
resonance point, since the conformalized cyclotron fre-

FIG. 2. Dispersion relation for an electron-positron plasma, Eq.~43!, for four cases of the angle betweenBW 0 andkW . The upper branch is
the same in each case. The lower two branches are the magnetosonic and the sound waves. The temperature of the plasma for these graphs
is higher than for those in Fig. 1, increasing the sound speed and making the qualitative behavior of the lower two branches more obvious.
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quency approaches zero at the event horizon. This resonance
point would not occur without the presence of the back-
ground Schwarzschild metric.

The graph of Fig.~3a! is a graph of the effective density
ne0j(j) vs j. This is a conformalized quantity, and the par-
ticle density as measured versusr is a constant. Similarly,
Fig. 3~b!, is a graph ofB0j(j) vs j. This, too, is a confor-
malized quantity: The physical value ofB0 is a constant
with respect to position. In order to obtain physical~i.e.,
nonconformalized! quantities, we should convert these con-
formalized quantities over through Eqs.~27!–~30! and ~23!.
In this background, we look at a shear Alfve´n wave in Fig. 4,
progressing from a position atj51600 to a resonant point at
j51084. The graphs are taken at time intervals 100.0vp

21

apart. If we plot~physical! magnetic fieldsBz in ~physical!
r coordinate, Fig. 4 would show a larger amplitude with a
larger wave number toward the left~the event horizon!.

C. Cutoff

Another test case considers an electromagnetic wave of
the upper branch propagating in a region where the back-
ground number density,n0(r )5const. This is intended to be
purely hypothetical case to aid theoretical discussion and is
not intended to suggest that such a constant background den-

sity would likely exist in the environment being discussed
near the event horizon. In this case, the plasma frequency
varies asvpj5a(j)A4pn0e

2/m. The lapse functiona in-
creases monotonically with respect to bothr andj, varying
from zero to one. There can be an electromagnetic wave
close to the black hole in this scenario of some frequency
less thanA4pn0e

2/m, which is propagating away from the
hole. At the point whenvpj.v becomes true, the wave hits
a cutoff point, and reflects back towards the hole. A different
way of looking at this phenomenon is that the wave heading
away from the hole is getting redshifted to a lower and lower
frequency, until its frequency is less than the local plasma
frequency as measured in nonconformalized coordinates.
This phenomenon can occur regardless of the state of the
background magnetic field.

Figure 5 shows a wave of the upper branch traveling from
aboutj5400 to a cutoff point atj51100 and reflecting. The
conditions for this run are the same as for the previous one,
except that we have generated an electromagnetic pulse trav-
eling outward rather than an Alfve´n pulse traveling inward.
We have graphedEyj vs j, the conformalized transverse
electric field. In this conformalized space, the pulse sees the
density contour graphed in Fig.~3a!, which quickly raises the
effective plasma frequency starting at aroundj51000, until
the effective plasma frequency is too high to allow the wave
to propagate farther in that direction. The time interval be-
tween successive frames is 100vp

21.

D. Mode conversion

In the more generalized case, a magnetic field of any
shape will have a conformalized counterpart which ap-
proaches zero at the event horizon, and any density profile
will have the same. If we are looking at a background of
either of these variables that is very high close to the event
horizon and decreases with the distance from it~assuming
thata approaches zero faster than the magnetic field goes to
infinity and thata2 approaches zero faster than the density
approaches infinity!, we will see a region in which these
conformalized background quantities have a maximum and
approach zero at the event horizon and at infinity. For elec-
tromagnetic waves, this means a region in the atmosphere
which reflects low-frequency waves both back toward the
horizon and back away from the hole. For Alfve´n waves, this
means there is a region near the horizon, but not touching it,
where such waves dominate. Beyond this region, no signifi-
cant Alfvén waves could propagate.

In this section, we will consider a varying background
magnetic field and a varying background density. These
backgrounds are the nonconformalized fields, whose relation
to the conformalized fields is expressed in Eqs.~36! and
~37!. The density ne(r ) is assumed to vary asne(r )
}e2(r2RS)/h and the background magnetic field varies as

BW 0(r )}e
2(r2RS)/2h, whereh is an arbitrary scale height. In

the particular cases considered,RS5220 andh5150. The
exponential decay of these parameters as one gets far from
the hole means that there is noqualitativedifference between
the ‘‘slab’’ metric approximation we introduced in Sec. II A
and the original spherical metric: Mode conversion and
particle acceleration would still occur with the spherical
boundary conditions, but the specific locations of resonance

FIG. 3. Conformalized density profile~a! and conformalized
magnetic field~b! of a plasma measured inj space. The profiles are
constant inr space. The Schwarzschild radius is 16 096 units. The
grid has been rescaled by a factor of 100, so thatr52RS corre-
sponds toj'1700,r5RS11000 maps toj'1100, andj5400 is
scarcely 12 units away from the event horizon as measured inr
space.
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FIG. 4. An Alfvén pulse travels inward towards the black hole, starting from the right side of the grid. There is a resonance point at
j'1084, beyond which the pulse does not propagate. The resonance point exists only because of the strong Schwarzschild metric.

FIG. 5. Progress of an electromagnetic wave propagating away from a black hole in a region of constant background particle density. The
wave starts on the left side of the grid, where the conformalized density is low, propagates to the right, away from the hole, hits a cutoff point
at j'1100 in~b!, and is reflected back towards the hole. The cutoff point would not exist without the general relativistic effect of the hole.
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and cutoff points would be different. The properties of EM
wave propagation are characterized byn25e(k,v), as
shown in Eq.~38!. In our present formulation, the frequency
v is constant~see Sec. II B!. Thus, when the dielectric func-
tion e is nonuniform inj through the lapse functiona ~or
through background plasma parameters!, the dispersion rela-
tion makes the wave numberk ~i.e., kj! nonuniform in j.
Figures 6~a! and 6~b! show the conformalized density profile
and background magnetic field. There is an Aflve´n pulse that
will start at j5416 and propagate outward~in the positivej
direction!. The graph in Fig. 7 is a plot ofk2 vs j, for a given
constant frequencyv, assuming theu50 shear Alfvén wave
dispersion relation withn.1. It is used to analyze~within
the limits of WKB! the behavior of the pulse. There is a
predicted resonance of the pulse atj'1019 for the shear
case. The compressional Alfve´n case would be very similar
to this, except that full resonance is not quite reached. Be-
yond this point is a region (j'1020–1049) where no wave
of this frequency should propagate. Atj'1050, there is a
cutoff point, beyond which the upper branch mode may
propagate withn,1, at the same frequency as the Alfve´n
mode. An analysis of wave propagation through this mixed
resonance or cutoff point has been done by Budden@13# and
is known as a ‘‘Budden turning point.’’

The WKB wave equation here is

C91k2~j!C50, ~45!

andk2(j) can be approximated as

k2~j!5
b

j
1

b2

h2 , ~46!

whereb2/h25k`
2 , h5uDxk`u, Dx is the distance between

the resonance and cutoff of the turning point, andk` is the
wave number far from the turning point. For the Alfve´n
wave near the event horizon to leak out of this plasma and
mode convert itself into a vacuum~or low-density plasma!
EM wave,h5uk`Dxu should not be much greater than unity.
When h is much greater than unity, Budden turning point
acts as a perfect wave absorbing point, an important property
of the Budden turning point. For a sufficient amount of EM
waves to propagate out of the hole, it is necessary to rapidly
change the stratification of the atmosphere near the hole.
From this information, Budden predicts that the transmission
coefficient will be

uTu5e2ph/2, ~47!

whereuTu is the coefficient of the absolute value of the am-
plitude ~not the square of the amplitude!. The reflection co-
efficient in this case isuRu50.

The run in which this is modeled starts with a shear
Alfvén pulse on the left side of the grid, centered atj
5416. Figures 8 and 9 show the progress of the pulse at
100.0vp

21 intervals. The condition for an Alfve´n pulse is
vph,c, which can also be written as

uEu
uBu

5
v

kc
5S 12

2vp
2

v2~12Ve
2/v2!

D 21/2

,1. ~48!

At t50.0vp
21, uEu,uBu, confirming that the code is model-

ing an Alfvén wave in this regime. The condition for the
upper branch electromagnetic wave is the converse:uEu
.uBu. Measuring the relative magnitudes ofE andB of the
pulse att5300.0vp

21 that has passed the turning point, the

FIG. 6. Background number density~a! and background mag-
netic field~b! for the mode conversion simulation. The scale height
~in r ! is 150 units, and the Schwarzschild radius is 220 units.j
5400 is about 40 units from the event horizon, andj51000 is
about 700 units from the horizon.

FIG. 7. k2 vs j. This plot determines where resonance and cutoff
occur for the mode conversion case of Sec. IV D.k2 is propor-
tional to the square of the index of refraction: Ask2→`, reso-
nance is approached. Cutoff occurs wherek2 changes sign. Atj
'1020, there is a resonance-cutoff pair~a Budden turning point!
with a separation small enough to allow transmission from the
Alfvén region (j,1020) to the EM region (j.1049).
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FIG. 8. An Alfvén pulse starts at the left side of the grid in~a! and hits the resonance point atj'1019 in~b!. An electromagnetic pulse
is visible atj'1600 in~c!, having been transmitted past the turning point. In~d!, the last vestiges of the transmitted pulse are visible at the
far right of the grid, and the rest of the initial pulse remains at the resonance point. These graphs show theEy component of the waves.

FIG. 9. As in Fig. 8, except showing theBz component of the waves. The pulse starts in the shear Alfve´n mode in~a!, hits resonance at
j'1019 in~b!, and an EM pulse is transmitted past the turning point and is visible atj'1600 in~c!, while the rest of the wave remains and
is absorbed at the turning point in~d!.
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result isuEu/uBu'1. Sincevp!v andVe!v in this region
of j.1100, the 2vp

2/@v2(12Ve
2/v2)# term of the disper-

sion relation is very small, which implies thatuEu/uBu'Ve
!v also implies that the Alfve´n branch does not exist here
at this frequency. Therefore this run indeed models mode
conversion from an Alfve´n near the hole to an electromag-
netic wave away form the hole.

In this particular case, Budden predicts thatuTu'0.0159
and that the rest of the wave is absorbed by the resonance~no
reflection coefficient!. The run shows no reflection, as ex-
pected, and a necessarily rough comparison between the am-
plitude of the incoming wave and the outgoing wave indi-
cates a measurable transmission ofuTu'0.01, very close to
the predicted value.

This mechanism for mode conversion allows the observa-
tion of possible signatures of Alfve´n mode events near a
black hole, by permitting the emission of a corresponding
electromagnetic pulse, which may propagate into a vacuum,
i.e., interstellar space, and eventually to our eye. Behavior
near a suspected black hole can be modeled via our confor-
malism, and the model can make a prediction about possible
observable behavior far from the hole.

E. Bursty acceleration out of a black hole atmosphere

Particle acceleration possibly triggered from a violent mo-
tion of matter near the event horizon may be simulated with

this computational model. Without going into specifics~to be
published elsewhere!, we can imagine a situation where ac-
creting matter@14# interacts with the magnetic field of the
black hole magnetosphere@15# and this accreting mass mo-
tion can trigger Alfvén wave pulse~s!. This situation is a bit
similar to that considered for~compressional! Alfvén wave
acceleration around a neutron star@16#. The initial setup is
similar to the mode conversion discussed in the previous
subsection. The main difference is that the Alfve´n pulse is a
solitary wave, with the typical sech2(j2vgrt) profile. ~It is
imperfectly generated, and so part of the initial pulse travels
toward the horizon on the left side of the grid and bounces of
the reflective boundary condition there. This is because the
frequency of this ‘‘wave’’ is broadbanded and instantaneous

FIG. 10. Background number density~a! and background mag-
netic field ~b! for the particle acceleration simulation. The initial
pulse starts asj5416 and progresses to the right, away from the
event horizon. The scale of the grid is the same as for the mode
conversion simulation, but it has been doubled in size to show
progress still further from the horizon.

FIG. 11. Progress of the magnetic field for the particle accelera-
tion simulation, graphed in 200vp

21 intervals, starting att
5100vp

21. The solitary wave splits into shear Alfve´n and EM
modes in~b! at j'1600. The right peak is in the EM mode, and the
left peak is in the Alfve´n mode.
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wave turn-on is difficult. The physics of interest is elsewhere
on the grid, and the secondary pulse does not change the
qualitative results.! Figure 10 shows the scaling of the con-
formalized background parameters, and Figs. 11 and 12
show the progress of the initial pulse and the attendant par-

ticle acceleration. Figure 11 graphs the transverse magnetic
field and shows the pulse propagating to the right, to even-
tually encounter a broadband resonance near the middle of
the grid, from j'1500 to j'2500 ~the pulse has a large
bandwidth, and individual frequencies of the pulse hit reso-
nance over a large range of positions!. To the left of this
resonance, the solitary wave is a shear Alfve´n wave. To the
right, the pulse penetrates the resonance and becomes an
electromagnetic pulse, the wake of which has trapped some
particles and has accelerated them to relativistic velocities. In
Fig. 11~b!, the pulse can be seen splitting~a distinctive
double peak atj'1500, the left half of the peak is the
Alfvén mode, whereuBu.uEu, and the right half is the EM
mode, whereuEu'uBu. Figure 12 shows thePj vs j phase
space. As the pulse propagates away from the hole, the mo-
mentum of the particles trapped with it increase significantly,
reaching relativistic speeds. The mechanism for such solitary
wave acceleration is discussed by Rauet al. @17#.

V. CONCLUSION

We have developed a conformalism for general relativis-
tic plasma physics that greatly simplifies the dynamical study
in a strong Schwarzschild background and a simulation
model based on this formalism. A simple transformation
turns the Maxwell’s equations of Thorne, Price, and Mc-
Donald into ‘‘flat’’ equations. Our results indicate that a
strong gravitational field effect introduces stratified ‘‘nonuni-
formity’’ effects in plasma parameters and that, in the plasma
near the event horizon, induce cutoff and resonant effects
independently of any contour of density and magnetic field.
In addition, we demonstrated that internal magnetic modes
can be conceivably converted into observable electromag-
netic emissions. As the plasma and its motion are expected to
be quite violent near the event horizon, such violent plasma
dynamics is expected to give rise to large amplitude. Alfve´n
waves and magneto hydrodynamics~MHD! instabilities. The
large amount of energy contained in this low-frequency
branch of the plasma wave dispersion relation, however, can-
not by itself be convected out of the event horizon, barring
the usual thermal processes, unless the above-mentioned
mode-conversion process occurs. Thus this mode-conversion
process constitutes an important path of the energy as well as
the observational window into signatures important to the
spectroscopy of a black hole. The investigation into mode
conversion will continue, as there is good reason to believe
that such behavior can lead to visible emissions and cosmic
ray bursts that would be observable evidence of the behavior
of a black hole near the event horizon.
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