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Studies of neutrino asymmetries generated by ordinary-sterile neutrino oscillations
in the early Universe and implications for big bang nucleosynthesis bounds
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Ordinary-sterile neutrino oscillations can generate a significant lepton number asymmetry in the early Uni-
verse. We study this phenomenon in detail. We show that the dynamics of ordinary-sterile neutrino oscillations
in the early Universe can be approximately described by a single integrodifferential equation which we derive
from both the density matrix and Hamiltonian formalisms. This equation reduces to a relatively simple ordi-
nary first-order differential equation if the system is sufficiently smdstatic limit). We study the conditions
for which the static limit is an acceptable approximation. We also study the effect of the thermal distribution
of neutrino momenta on the generation of lepton number. We apply these results to show that it is possible to
evade(by many orders of magnitugi¢he big bang nucleosynthesiBBN) bounds on the mixing parameters
sm? and sirf26, describing ordinary-sterile neutrino oscillations. We show that the large angle or maximal
vacuum oscillation solution to the solar neutrino problem does not significantly modify BBN for most of the
parameter space of interest, provided thatir@nd/oru neutrinos have masses greater than about 1 eV. We
also show that the large angle or maximal ordinary-sterile neutrino oscillation solution to the atmospheric
neutrino anomaly does not significantly modify BBN for a range of paramdt®@556-282197)05908-0

PACS numbds): 14.60.Pq, 98.80.Ft

. INTRODUCTION mation suggestdl®=2.1+0.3, while other authors dispute

_ ) o this conclusion. For example, in Refsl4—16, the upper
There are three main experimental indications that neutrifmits Nef<3.9 4.5 4.0 are respectively derived. Thus, it

nos have mass and oscillate. They are the solar neutri
problem[1], the atmospheric neutrino anomdB)], and the
Los Alamos Liquid Scintillation Neutrino Detectgt. SND)

experiment[3]. It is also possible that dark matter may be h i hat the bound he ef
connected to neutrino massp$l. The three experimental the present paper we will assume that the bound on the ef-

anomalies may not all be explained with the three knowrf€ctive number of neutrinos is less than 4. This is useful even
neutrinos so it is possible that sterile neutrinos exist. if it turns out thatN$">4 is allowed. For example, the large
A potential problem with any model which contains ster- angle (or maxima) ordinary-sterile neutrino solutions to the
ile neutrinos is that these extra states can contribute to thatmospheric and solar neutrino problems may require
energy density of the early Universe and spoil the reasonabl){:'~5 if they are to be solved simultaneously. Also note
successful big bang nucleosynthed8N) predictions. For that in the special case of mirror neutrinds7], the mirror
maximally mixed v, and v, neutrinos andv, and v, (or interactions can potentially bring all three mirror neutrinos
v, and v’) neutrinos(where the primes denote sterile spe- (@s Well as the mirror photon and electron-positron pabo
cies, the following rather stringent BBN bounds have beenequilibrium (equivalent to about six additional neutrino spe-

obtained[5—8] assuming that the lepton number asymmetryc_ie$ if any one of the mirror neutrinos is brought into equi-
of the early Universe could be neglected librium above the neutrino kinetic decoupling temperature.

The purpose of this paper is twofold. First, we will study
the phenomenon of lepton number creation due to ordinary-
sterile neutrino oscillations in more detail than in the previ-

D ous studie$12,18. For example, we will study the effect of
the thermal distribution of neutrino momenta. Using these
Observe that if valid these bounds would rule out the larggesults we will then study the issue of whether or not the
anglev ,-v, oscillation solution to the atmospheric neutrino generation of lepton number due to ordinary-sterile neutrino
anomaly and would restrict much of the parameter space fagscillations can reconcile the large angle ordinary-sterile
the maximal oscillation solution of the solar neutrino prob-neutrino oscillation solutions to the solar neutrino problem
lem[9,10]. However, these bounds do not hold if there is anand atmospheric neutrino anomaly with BBN.
appreciable lepton asymmetry in the early Universe for tem- The outline of this paper is as follows. In Sec. Il, we
peratures between-130 MeV [11]. Remarkably, it turns out discuss lepton number generation in the early Universe by
that ordinary-sterile neutrino oscillations can by themselvesrdinary-sterile neutrino oscillations and derive a simple

r‘\‘Play be possible tthiﬁ=4 is allowed. In this case note that
many of the BBN bounds derived in Ref&—8], including
the bounds quoted in E@l), need not apply. However, for

2
ee’

m_,|=10" " eV~ m- |, |[om_,|=10 " eV~
8 1078 eV2,  |om? |, |6mZ,|<107° eV?

create an appreciable lepton number asymmet#y. equation describing the evolution of lepton number. We ex-
The bound on the effective number of neutrintﬂﬁff pand the analysis dfl2] and discuss in detail the approxi-
present during nucleosynthesis is the subject of some discugiations behind this analysis. In Sec. Ill, we will use the

sion recently. In Ref[13], it is argued that the current infor- density matrix formalism to derive a more exact equation
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describing the rate of change of lepton number which is apwhich affect the lepton number of the Universe because neu-
plicable even when the system is changing rapi@yg., at trinos and antineutrinos oscillate with different matter oscil-
the resonange In the Appendix, we show how the same lation lengths and matter mixing angles in {6® asymmet-
equation can be derived from the Hamiltonian formalism.ric background. Second, there are the collisions themselves
Using this equation we derive the region of parameter spacehich depleter, and v, at different rates. This is because
where the much simpler equation derived in Sec. Il is apthe rates depend on the oscillation probability. The oscilla-
proximately valid. In Sec. IV the thermal distribution of the tion probability for ordinary-sterile neutrino oscillations is
neutrino momenta is considered. In Sec. V we study thelifferent to the oscillation probability for ordinary-sterile an-
effect of non-negligible sterile neutrino number densities tineutrino oscillationgwhich is again due to th€ P asym-

We then apply these results to obtain the region of parametenetric background Generally, the rate of change of lepton
space where large neutrino asymmetries are generated. WWlember is dominated by collisions in the region where the
also determine the region of parameter space for whicleollision rate is larger than the expansion rgt&]. (A pos-
ordinary-sterile neutrino oscillationavith §m?<0 and for  sible exception to this is in the resonance region where the
|6m?|=10* eV?) are consistent with BBN. Our work im- matter mixing angle changes rapidlyFor the case of
proves on previous studi¢5—8], because these studies were v - v, oscillations(where a=e, u,7), the rate of change of
obtained without taking into account either the neutrino mo-L, due to collisions is governed by the rate equation
mentum distribution or the result that ordinary-sterile neu-

trino oscillations create lepton number. In Sec. VI we first dL, -n, n-

briefly review the large angle ordinary-sterile neutrino oscil- dta — “I'(v,— VS)+n_aF(Va~> V)

lation solution to the solar neutrino problem. We then show Y Y

that the generation of lepton number due to ordinary-sterile n, —ny-

neutrino oscillations can significantly relax the BBN bounds + —T(ve—v,)+ T(ve—v,), 3)
for this solution to the solar neutrino problem. We also show Ny n,

:Eat tthe Iar%e qngle ?T ma);]'mrzl‘;"si osc:Ia}t|;)nnts,\cl>\lliltth]|cl)3nBtlg f rwhere the n's are number densites and
€ almospheric neutnino anomaly IS consiste 0 L, =(n, —n3-)/n, is the lepton number. Using

a range of parameters. In Sec. VIl we conclude. a a ol Y T o

IN'vy,—vsy)=I'(ve—v,) and I'(v,—v)=T(vs—r,) (we

will justify this in a moment, Eq. (3) simplifies to
Il. LEPTON NUMBER CREATION FROM NEUTRINO

OSCILLATIONS: STATIC APPROXIMATION dL, n, —n, Ny — Ny
a@ a S a S — i
. . . =— r + r .
Together with Thomson, we showed[it2] that ordinary- dt n, (va—vo) y (V=)
sterile neutrino oscillations can create a large lepton asym- (4)

metry in the early Universgl9]. A simple differential equa- _ _ _ )
tion describing the evolution of the lepton number was 'S equation can be rewritten in the form
derived which seemed to work very well. We also checked
our results with the more exact density matrix formalism TV E VRSN —
[21]. Further numerical work, and analyt)i/cal work based on dt =WV TN T (v # T (=]
the density matrix formalism, has subsequently been done in
[18] which confirms our results.

For ordinary-sterile neutrino two-state mixing, the weak
eigenstatesi(, , v5) will be linear combinations of two mass Where
eigenstatesi, , vp):

— (N, ~NIT (v, 1)+ T (v— 791, (5)

n s s
Ny == N, =——. (6)

V,=C0Hgv,+SiNdory, ve=—SiNfyvy+ Ccobyvy, . @ 2n, s 2n,

)

Observe that ordinary-sterile neutrino oscillations do not
Note we will always defined, in such a way so that change the total particle number, from which it follows that

cos¥,=0 (this can always be doneWe also take the con- N~ +N =0 @
vention thatém:,=m;—m;. Hence with this convention Va Vs
5m§s is positive (negative provided that my>m,
(my,<my).

In this section we will for simplicity neglect the effects of
the thermal distribution of momentum, and assume that all of
the neutrino momenta are the same and equal to the average _”az(g_N + )[—F(va—> 1)+ T (v 9]
momentum(i.e., p={p)=3.15T). In Sec. IV we will con- dt 8 Us
sider the realistic case where the neutrino spread is given by
the Fermi-Dirac distribution. Followingl2], we can derive a
simple equation for the rate of change of lepton number due 5
to collisions and oscillations. Note that it is possible to iden-Where we have also used, +n;-=3n,/4+0O(L; ). We
tify two distinct contributions to the rate of change of lepton will assume for the present that negligible sterile neutrinos
number. First, there are the oscillations between collisionsre produced, i.en, ,n;_<n, ,n5-, and henceV js<1.

Using Egs.(5)—(7), the rate of change df, due to colli-
sions is given by

—L, [T (va= v +T(r,—v)]+O(L7 ), (8
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In order to work out the reaction rates, we can invoke arhe quantitiesd,, and L, are the matter mixing angle and
simple physical picturg22—24. The oscillations of the neu- matter oscillation length, respectively. They are related to the
trino between collisions produce a superposition of statesracuum parameterg, andL, by [25,26]

The collisions are assumed to collapse the wave function into

either a pure weak eigenstate neutrino or a pure sterile eigen- sin’2 6,

state neutrino. In other words, we assume that the collisions S|n226m21—220052n90+ 22 (12
are measurementén the quantum mechanical sehsef

whether the state is a sterile or weak eigenstate. The rate énd

the measurements is expected to be the collision frequency L

r,, L= : (13

Actually it happens that the above picture is not com- J1—2zc0s20,+ 7° '
pletely correct. It turns out that it does lead to an accurate

description only if the rate of measurement is taken th&ilé ~ Where 1L,=Af§=sm?2p. In this equationz=2pV,/5m?

of the collision frequency that a pute, state would experi- WhereV,, is the effective potential due to the interactions of
ence[23]. This applies to both sterile neutrinos and ordinarythe neutrinos with matter anpl is the neutrino momentum.
neutrinos. Thus using this result the reaction rateThe effective potential is given bi25]

I'(v,—vs) is given byhalf the interaction rate of the neu-
trino due to collisions with the background particles multi-
plied by the probabilityaveraged over the neutrinos in the

ensemblgthat the neutrino collapses to the sterile elgenstate

V,=(—aP+bP)AD (14

where the dimensionless variabl@% andbP are given by

that is

r

5Py, ) ©

T(v,—ve)= .

The thermally averaged collision frequenclé% are

T, =y,GET®, (10)
where y.~4.0y, ,=2.9 [6], Gg is the Fermi constant
(Gg=1.17x10" 1 MeV 2), andT is the temperature of the
Universe[equations analogous to Eq9) and (10) hold for

antineutrino The quanutyPV v is the probability that a

o V2Gen, L@ - V2Gen A, T2 P
- 1 - # H
Af AfMy, (p)

(15

where(p)=3.15T is the average neutrino momentukhy, is
the W-boson mass and.=55.0, A, ;=15.3(note that the
“p” superscript serves as a reminder that these quantities
are neutrino momentum dependerithe functionL(® is
given by

L=, +L,+L, +L, +, (16)

where 7 is a small asymmetry term which arises from the

neutrino which started off belng a pure weak eigenstate@Symmetries of baryons and electrons. It is giver{ 25/

v, , as a result of a measurement at tittie collapses to the

sterile statevg when the next measurement is made at time t.
The angular brackets denote the average over the interval

time between measurements,(7=t—t* is the time be-
tween measurementdNote thatP =P so it fol-

Va**VS VS*?VQ’

lows thatI'(v,—vg)=I(vs—v,) (given that the rate of

1 1
- ELNziLN ,
17

where sié,, is the weak mixing angle and we have used
Le=Lp=Ly. Thusz is expected to be of order 1¢°. Note

1
2

1
77:(§+25inzt9w Lo+ ——25in20W) Lp

measurement is the same for ordinary and sterile neutrinagat the matter mixing anglé,, and oscillation length. , for
[23]) and similarly for the antineutrino rates. In the adiabaticantineutrino oscillations are obtained from E62)—(15) by

limit,
(P, _,)= ~sirf26 <sir12TTm>. (11)

_ (a) 2
6.3V2TGen, L o @ eV
sm?

a:
sm?

performing the transformatioh(®)— — L () [27].

We denote the thermal average of the varialalg®P by
a=(aP), b=(bP). From Eg.(15), they are given approxi-
mately by

T 4

MeV

_-6. 32T Gen A T2 ( T
Sm2M, B

13 MeV,

eV? o
Sz for ve-vg oscillations,

—63\/_TG,:n7AMTT2 ( T
om2My, B

6 evz
16 Mev) (5m2) for vy,

v oscillations, (18
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where we have used,=2{(3)T3/7?=T3%4.1[{(3)=1.202 is the Riemann zeta function of. Ihe matter mixing angles

0., 0, expressed in terms of the parametarb are given by

S2

S 2 0n = 7+ (b—a— 7]

Sirt2

o 2

B s
m [s’+(b+a—c)?]’

(19

where s=sin26,, c=cos2,. A resonance occurs for neutrinos whépn= /4 and for antineutrinos whe#,,= m/4, which
from Eq. (19) implies thatb—a=cos2, andb+a=cosZ),, respectively. In our analysis we will often need to consider the
two distinct cases of very small mixing and very large mixing. For small mixing, &gs2 and the resonance conditions
becomeb—a=1 andb+a=1. For large mixing, cos?=0 and the resonance conditions beccemeb and —a=b.

Using the above analysis, we can derive a simple equation for the rate of chahgg of

dL, .
=2, —sin220m< sinz(i > +sin220m< sinz(i) >
A -n2( 4 26y Sir?| —
5 |S 20\ si Tm) +sin° 20, si m . (20
|
The function,(sir?(7/2L,)) is given by T 1f|em?\ ¥4
W1 g ] M_e\/s§< evz) - (29)
H _ — 1l wgej -
<S|¥(Tm)>—w—of0e sir? T dr, (21

wherewo=27,=2", is twice the mean time between col-
lisions (of a pure weak eigenstatandt is the age of the
Universe(note thatt=o is a good approximation because
wo<t). Evaluating Eq(21) we find

2/ 2
B Y 22)
M2, "2\ 1r i)

where we have assumed thay andL ., are approximately
constant over the time scale, (static approximation[28].
Thus, using Eqs22), (13), and(19), we can rewrite E¢(20)
in the form

dL,,
dt

szl“yaa(c—b)
[x+(c—b+a)?][x+(c—b—a)?]

3
8

+A, (29

whereA is a small correction term

1 L, 8T, [x+(c—b)’+a’]
= 2 xtc—brafixt(c—b-a? ¥
andx is given by
1 2p 2 12 ev2 2
_2 2| AP ) 2 —19 -
X=5 +4FVH<5m2) s°+2X10 (MeV smz)
(25)

where we have assumend=(p)=23.15T in deriving the last

part of the above equation. Note that the correction term Eq.

(24) is smaller than the main terfiEq. (23)] provided that

IL, |<]al. In the region where the correction term is larger

than the main term, its effect is to redufle, | such that
L, —0. From Eq(18), the conditioriL,, |>|a| only occurs
for quite low temperatures:

From the above equation, we see that in the main region of
interest T=3 MeV), the correction term is much smaller
than the main term provided thatm?|<10* eV?. Note that

for very large| sm?|=10" eV?, the correction term may be
important.

Observe that Eq(23) differs slightly from the equation
derived in[12]. The difference is that, ip12], we assumed
that w2/L2>1 (so that(sirfr/2L,,)=1/2) which is always
true except at the very center of the resonaltd. Also
note that in[12] we neglected a factor of 2 which arises
because we negligently assumed that the rate of measure-
ment was equal to the rate of collision.

We now pause to review and comment on the assump-
tions made in deriving Eq23). There are five main simpli-
fying assumptions.

(1) We have neglected the thermal spread of the neutrino
momenta, and have replaced all momenta by their thermal
average(p)=3.15T.

(2) We have assumed that,_,n-<n, ,n5-. If the num-
ber densities1,,n5_ are non-negligible, then we must mul-
tiply the first term on the right-hand side of E@3) by the
factor[n, —n, ]/n, .

(3) We have assumed that the transformation from the
vacuum parameters to matter parameters, i.efysHsing,,
and Ly—L, diagonalizes the Hamiltonian. This is only
strictly true in the adiabatic limit|@6,,/dt|<|A|). In the
general casg26],

A, .dé,

d Vrln _7 _IW Vrln

Ia(’/zm): idgm An (Vrzn) @0
dt 2

with
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A6

dt

sin26, d(b—a)
(b—a—cos24p)’+sirF26, dt

1
5 (28)

where Vrln’z are the instantaneous matter eigenstates/gpet 1/L,,. Expanding outy=|(d#,,/dt)/A,| we find (neglecting
da/dt)

Sirnf2 00) 1’2( eV?

1/2
— away from resonance,
10°° |5m2|> y

y=<2(4)X 108(

10*5 ev2 1/2
)/22(4)(Si 50 )(W) at the initial resonance wherb=cos2f,,a=0,
0

1075 \/ eV?
y=6(9)x 107 4T3 at the resonance wher¢b—a|=cos2dy, (29

Sinf26y/ \ | sm?|

for ve-vs (v, ~vs) Oscillations. However at the initial reso- expectation value of the state being a weak eigenstate is
nance whereéo=cos2,, a=0, L., is created rapidly. The 1—sir?26,(sir?7/2L ) for neutrinos. This probability is gen-
contribution toy from a rapidly changind., at this reso- erally unequal to the analogous quantity for antineutrinos,
nance is ¢ which is 1—sir?26,(sirf#/2L,). It is possible to show12]
that for temperatures greater than a few MeV, the change in
lepton number due to the oscillations between collisions is
generally smaller than the change due to collisions except
possibly at the resonance where?8ifi, is changing rapidly.
The effect of the thermal spread of the neutrino momenta

for ve-vg (v, -ve) oscillations(and we have assumed that should be to make the creation a_nd de_structlon of lepton
cosH,~1) Thus away from the resonance the adiabatic apnumber much smoother. At any given time, only a small

0 . r . . .
proximation is valid for the parameter space of intefest, fraction of the neutrinos will be at resonan@eecause the

for |sm2/=10"4 eV2). However at the resonance the adia- resonance width is much less than the spread of neutrino
batic app?oximation rr'1ay not be valid momenta. Thus, the regions away from resonance may also
(4) Equation(23) neglects flavor conversion of neutrinos be important. We will study the effect of the thermal distri-

' : : bution of momenta in Sec. IV.
assing through the resonang¢the Mikheyev-Smirnov- . . .
\F;VOIfen%tein(M%W) effect]. Obsgrve that th):are is not ex- '_I'he second assumpti(2) abovd will be apprommately .
pected to be significant flavor conversion at the initial reso-vaIId for much of the parameter space of Interest, This is
nance(whereb= cos,) due to the MSW effecteven if the because we are essentially interested in the region of param-

system is adiabatic at this resonanbecause the frequenc eter space where the sterile neutrinos do not come into equi-
o¥the collisions is such thasirer/2L,)<1 at the cer?ter ofy librium with the ordinary neutrinos. We will study the effect
L m ._of the sterile neutrino number density being nonzero in Sec.
the initial resonance, for most of the parameter space of ing, Assumptions(3) and (5) may not be valid in the reso-
terest. Indeed, at the center of the resonance, nance region. Note that we will denote assumpti8)sand

(5) collectively as the static approximation because in limit
wg _ Sin26, om? where the system is sufficiently smooth they will be valid.
2L, _yaGETS 2p Clearly a more exact treatment of the resonance is desir-
able, since assumptiori3) and(5) may not be valid there. In
Sec. Il we will develop a more exact treatment of the reso-

23 dL,

dTvevy: 39

eV?
| om?|

N (0.5(3)x 107
Y= T sirP2e,

_ MeV\ ésm?
=4x 10%sin26, | qyz = 90tan,

nance region by examining the appropriate equations from
the density matrix. As we will show in Sec. lll, this treat-
if b=cos2,. (3D ment leads to the following equation for the rate of change of
lepton number:

Thus, for sif26,<10 4, (sir*#/2L,)<1. Note however that
for temperatures below the initial resonance, the MSW effectdl‘vaw 3B% [t —rtoocid |1 v tarr lan |1y = qgn
may be important if there are neutrinos passing through theT_TLe S! J;,T)‘ dt’)si jt,f)‘ dt’jdr,
resonance. (32

(5) We have assumed that the rate of change of lepton
number is dominated by collisions. There is also a contribuwhere
tion from oscillations between collisions. Oscillations be- )
tween collisions affect lepton number because the oscilla- _ 5£ ;
. - B= Sin26,, (33
tions produce a superposition of states, where the averaged 2p
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thus a large numbeunless sif26, is very small. Note that

N :E(COSZ‘?O_ b), the critical pointb=cos2, occurs when
| 6m?|cos2d, | /6
sm2 Te=1316)| —— 7 —| MeV, (34)
N =——a.
2p

for the ve-vs (v, ,-vs) Oscillations we have been focusing

on.
This equation is valid given assumptiofis, (2), and(4) but As the system passes through this critical temperature,
does not require assumptiot® and(S) (above. This equa-  |enton number is rapidly created unti=cos®,—b. The
tion is an integrodifferential equation and although compactagonance ah=cosX,—b acts like a barrier which keeps
cannot be solved analytically except in various limits. NOtea>cosZ90—b as the temperature falls beloW. Since the
that the static limit corresponds to taking as constant over parameten is proportional toL, T*, it follows that the lep-
the time scalew,. In this limit Eq. (32) reduces approxi- . Yo T 4
mately to Eq.(23) as expected. In the Appendix we show ton number continues to grow approximately like® after
how Eg. (32) can also be obtained using the Hamiltonianthe resonance as the temperature falls. I

As the temperature drops, eventually the oscillations can-

formalism. ) : .

Qualitatively, it turns out that the simplified equation, Eq. not keep up with the expansion of the Universe. Fpr tempera-
(23), gives a reasonable description of the creation of Ieptorliures well be'_OW the reson_ancascos% (assuming that
number as the Universe evolves. Assuming that @8) is L, >0 for definitenesks In this region, the rate of change of
valid, we now analyze the behavior d]J‘Va as driven by @ due to the oscillations is balanced by the rate of change of

v~ v, oscillations in isolation. Suppose that all initial asym- & due to the expansion of the Universe. That s,

metries other than L, can be neglected so that L
L(®¥=2L, . Notice first of all that forom?>0 it follows da_ da L., ‘7_320 (35)

= +
from Eq. (18) thatb is negative and: has the opposite sign dt 4L, ot ot
tol, . Thus from Eq.(23) it is easy to see that the point

L, =0 is always a stable fixed point. That is, when Eventually, the rate of change afdue to the expansion of

L, >0 the rate of changdL, /dt is negative, while when the Universe becomes larger in m_agnitude than_ the_maxi—
L “<0 the rate of chanael. 7dt' it 4 al mum rate of change od due to oscillations. At this point,

Va € rate ot chang Vo IS Posilive, Sd.,, aWayS 3 falls below the resonance poifite.,a<<cos,—b) and the
tends to zero[In the realistic case, W?;)r? the baryon andygjye ofL, will be approximately frozen. The point in time
electron e}symme;czl)es are not neglegﬂe + 1S given _by A \when this occurs is thus governed by the equation
(16). In this casd-'*’~0 is an approximate fixed point. Note
that even if all of the lepton numbers where initially zero,

lepton number would be generated such th&=0, i.e. dga Ly, __9a (36)
2L, =—n [see Eq.(16)]. Note that 2, is only approxi- aL, at | . at’

mately — » because of tha term proportional td v, in Eq.

(23)]. The maximum rate of change bfua occurs at the resonance

Now consider neutrino oscillations withm?<0. In this wherea=cos¥,—b. Using Eq.(23), we can easily evaluate
caseb is positive anda has the same sign s, . From Eq.  dL, /dt at this point. Assuming that cogg=1, we find, at
(23), LvazO is a stable fixed point only wheb>cos2,,. the resonance,

When b<cos2),, the pointLvazO is unstable(That is, if
L, >0, then dL, /dt>0, while if L, <O then dL, 3

dL, /dt<0) Sinceb~ T8, at some point during the evolu- dt 32
tion of the Universeb becomes less than ca%2and

L, =0 becomes unstable. [5m?|=10"* eV?, then this where we have assumed thetsir’26, which should be
point (whereb= cos2,) occurs for temperatures greater thanvalid since we are in the region of low temperatures 3
about three MeV(assuming cos=1). In this region the MeV [recall thatx is defined in Eq(25)]. Also note that
rate of change of lepton number is dominated by collisions

and Eq.(23) is approximately valid. When the critical point da dadT 4a 5.5T3

where b=cos2), is reached, the lepton asymmetries are ot oT dt T Mp (38)
small and hencéa|<cos2,=1. Equation(23) then implies

thatdL, /dt is approximately proportional th, , which \\here we have used the result that the paranmetisr pro-
leads to a brief but extremely rapid period of exponentialportional toT#, anddT/dt=—5.5T%3/Mp (which is approxi-
growth of L, [12]. Furthermore, note that the constant of mately valid for 1 Me\W=T=<100 MeV, and Mp=1.2
proportionality is enhanced by resonances for both neutrinox 10?2 MeV is the Planck magsThus, using Eqs(37) and
and antineutrinos at this critical poina€0, b=cos%). (38), the condition, Eq(36), can be solved fof. Doing this
The exponent governing the exponential increase,jp is  exercise, and denoting this value Dby T;, we find

r,a (37
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1/7
MeV, (39

| sm?|
eV?

f

Sq 5m2| 1/7
M PyaGle-l B

where we have used Eql0), Eqg. (18). Thus, we expect
L, toevolve likeT~* until quite low temperatures of order
1 MeV. Note however that when the momentum distribution
is taken into account, the situation is somewhat different.
This is because only a small fraction of neutribgically

of order 1% or lesswill be at the resonance, so that the
magnitude of the maximum value oﬁﬂ_ya/at will be re-

duced by a few orders of magnitude. Because of the 1/7  10°¢ 3

Lepton number

power in Eq.(39), the temperature where, is approxi- 10" ]
mately frozen Ty, increases by only a relatively small factor L Y LI T N T YT

of 2 or 3. Finally recall that for temperatures below the initial Temperature (MeV)

resonance, the MSW effect can also contribute significantly. _ o

This is because for low temperatures n&ay there will be a FIG. 1. The evolution of the .- v5(or v,-v;) oscillation gener-

significant number of neutrinos which will be passing ated lepton number asymmetry, (orL,). We have taken by
through the resonance. For low temperatures, the adiabati¥dy of example, the parameter choicesm’=—1 eV,
condition is expected to holffor most of the parameter Sin26,=10"° (sir’26,=10"*) for the bottom two curvegtop two
space of interest, see EQ9)]. Also, recall that the oscilla- curv_es). The solid Ii_nes represent t_he results of th_e numerical inte-
tions will not be damped by collisions for low temperaturesgration of the density matrix equatiofq. (46)], while the dashed
[see Eq(31)] and thus ordinary neutrinos can be converted"es result from the numerical integration of Hg3).
into sterile neutrino states simply by passing through the
resonancg26]. This effect will help keepa=1 for even
lower temperatures.

Clearly these factor&he momentum distribution and the

In the examples in Figs. 1 and 2 the initial lepton asym-
metry was taken as zero. The generation of lepton number is
independent of the initial lepton number asymmetry provided

that it is less than about 16 [20,11. This is because, for

MSW flavor conversion of the neutrinos passing through th
. . . ! emperatures greater than the resonance temperature, the os-
resonancewill be important if one wants to know the final "~ " ) )
cillations destroy or create lepton number umfif)~0 in-

\2?3?::;1?2;”# anoer \?v);irtr;ptls,ct:lilj:zz ;?]Zgr:;:gs (k:ft?) :ram dependently of the initial value df, (which we denote as
eter space where thle, is large enough to affect big bang Ling), provided that|Liy/ is less than about 10. For

) i Lint/ =10, the oscillations at temperatures above the reso-
nucleosynthesis through nuclear reaction rates. However, fQfyce temperature are not strong enough to destroy the initial
the application in this paper, the precise valud gf at low

) ' ) a _asymmetry. Consequentlywa remains large, and it will be-
temperatures is not required, so we will leave a study of thig.gme jarger due to the oscillations which create lepton num-
issue to the future.

. _ ber at temperatures below the resonance temperature.
In order to illustrate the evolution dIVa we take some

examples. It is illuminating to compare the evolution ex-
pected from the simple Eq23) [based on the assumptions
(1)—(5) discussed aboygewith the evolution governed by the
more complicated density matrix equatiofisgs. (46), see
next section for some discussion of the density matrix for-
malism]. The evolution ofLya as governed by the density

matrix equations hold more generally than E2@3). This is
because they do not require assumpti®@)s (3), (4), or (5)
(discussed aboydo hold. They do still incorporate assump-
tion (1), that is the thermal distribution of the neutrino mo-
mentum is neglected.

In Figs. 1 and 2 we plot the evolution dn‘ya for some

typical parameters. We consider, for examplg,- v oscil- ‘ ‘ ‘ , ‘
lations. In Fig. 1 we take Sm?’=—1 eV?, and 10 e ey 50
sirf26,=10"4,10 8. Figure 2 is the same as Fig. 1 except

2_ H —1 6 — 9 H
that 6m*= —1000 eV and S”fzeo—lp ;10" The solid [ 2. The evolution of the,- v (or v,-v4) oscillation gen-
lines are the result of numerically integrating the densityerated lepton number asymmetty, (orL,). In this example we
matrix equations, while the dashed lines are the results ofaye taken the parameter  choicessm?=—1000 e\?,
numerically integrating Eq(23). We stress that in both the gj229,=107° (sir?26,=10°) for the bottom two curvegtop two

density matrix equations and in E€3), the momentum cuyrves. As in Fig. 1, the solid lines represent the results of the
distribution of the neutrino has been neglected. The effect ofiumerical integration of the density matrix equatidigsy. (46)],

the momentum distribution will be considered in detail in while the dashed lines result from the numerical integration of Eq.
Secs. IV and V. (23).

Lepton number
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As the figures show, the behavior expected from ®8) 7. This means thatva should change sign at the resonance.

occurs. The main difference arises at the resonance where thgyte however that becaugedepends on the initial values of
magnitude of the lepton number is somewhat larger thamne |epton asymmetries which are unknown at the moment, it
expected from Eq23). This occurs because assumptié®s  seems that the sign &f, cannot yet be predicted. However
anql (5 (dl_scussed aboygwhich Igad fco Eq.(23) are not the above calculation shows that the signLgf should not
valid at this resonance. Actually, in Figs. 1 and 2 we have o i @

pIottedlLyM|. Integration of the density matrix equation re- ﬁsglen[dlz(])n statistical fluctuations, as we initially thought
veals that in examlple Tbut not in example 2, although F)i/nally .We would like to comment on the region of pa-
Lva does change signthe generated.lepton number oscil- rameter space where significant generation of lepton number
lates at the resonance and changes sign a few tiseeb18],  occurs. First, we require thabm?<0 and that|sm?

for a figure illustrating this Note that this effect can be =194 g2 5o thatTe®=3 MeV. For |sm?|<10"* eV?,

understood from Eq(32). To see this, observe that when jeht0n number can still be generated but it is dominated by
L,, is initially created at the resonance, the paramater he oscillations between collisions and is oscillatfi,29.
grows very rapidly because it is proportional g . The  Note that in the realistic case where the spread of momenta is
creation Oﬂ-va may be so rapid tha’fLT)\*dt' is approxi- taken into account, oscillations of lepton number would be

mately independent of when the initial rapid growth of smoothed ou_t and ma_yllnot °§C“r- ZA T}émerical StudyLis]
L, occurs. If this happens then, at this instant, &) can  Shows that sif2,=10"" (eV?/|sm?|)'® s also necessary
b @ lified to th imate f (see alsd12] for an approximate analytical derivatiprFi-

€ simpiified to the approximate torm nally, we must require that sifd, be small enough so that

the sterile neutrinos do not come into equilibriufRror ex-

dL, 2 . s .
@ 38 sin Jt A dt’ ftef"”t)sir{ ft Atdt’ ldr ample, in the case of,-v oscillations, if there are equal
dt 8 t—wg 0 t—7 numbers ofv, and v4 states then the ratesyal“(va% V)

40 —n T(ve—v,), Ns-T(v,—ve)=n>T(ve—»,) and from
s a S . .
The oscillations occur because of the factorf&igo)\‘dt’ Eg. (3) L, cannot be generatddWe will reexamine the

which oscillates between 1. Note, however, that this oscil- €gion of parameter space where significant generation of
lation of lepton number would not be expected to occur inlepton number occurs in Sec. Where the effects of the
the realistic case where the thermal spread of neutrino md=ermi-Dirac momentum distribution of the neutrino will be
menta is considered. taken into accouit

Note that it may be possible to predict the sign of the Note thatin[18], it is argued that lepton number genera-
asymmetry in principle. Assuming that the resonance idion only occurs provided thasm?(<=100 eV’. We have
smooth enough so that E€R3) is valid, the equation gov- Not been able to verify this result, either analytically or nu-
erning the evolution of., has the approximate forrfor me_rically. In fact, we have not been able to obtain any sig-
L, small enough so that < 1), nificant upper bound of¥m?|.

dL, I1l. LEPTON NUMBER GENERATION
5 “=A(2L, +7)—BL, =(2A-B)L, +A%, (41 DUE TO NEUTRINO OSCILLATIONS:
t : ‘ : A MORE EXACT TREATMENT
wherez=75+L, +L, +L, —L, (we have defined such In this section we derive a more general equation describ-

that it is independent df,, ). Note thatA andB [which can ing lepton number generation in the early Universe which

be obtained from Eq(23), with the B term arising from the ~ ¢an be applied when the system is changing rapidly, as oc-
A term)] are complicated functions of time. Observe howevercurs, for instance, at the resonance. The only assumptions
thatB>0 andA is initially less than zero, and at the reso- that we will make are the assumptiofis, (2), and(4) (dis-
nanceA changes sign and becomes positive after that. In th§ussed in the previous sectiorThat is we will neglect the

region where A< B, the lepton number evolves such that SPread of neutrino momenta and pet(p)=3.15T, and we
will also assume that there are negligible numbers of sterile

(2A—-B)L, +A7—0. (42)  neutrinos generated. In the Appendix an alternative deriva-
“ tion (with the same end reslilbased on the Hamiltonian

ThusLVa will evolve such that it has a sign oppositeziqust ~ formalism is presented. Although not yet realistic because of
before the resonance. Whem2B, L, will become un- assumptiongl) and(2), this derivation turns out to be par-

stable and grow rapidly. Note that at the pokit B/2, ticularly useful because it aIIovys us to quk out the_ region of
parameter space where the simple E2B) is approximately

dL valid. As we will show, it turns out that E¢23) has a wider
i =A7%. (43) applicability than might be expected from the adiabatic con-
dt dition, Egs.(29) and(30).

. - . . The system of an active neutrino oscillating with a sterile
Hence, at the point where the initial rapid creaﬂonLq,E neutrinoycan be described by a density matrgi]x. See, for ex-
occurs, the rate of change bf, will be proportional t07.  ample,[21] for details. Below we very briefly outline this
Thus, we might expect that after the initial resonance thdormalism and show how it leads to an integrodifferential
sign of L., will be the same as the sign of the asymmetryequation which reduces to E@®3) in the static limit.
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The density matrices for the neutrino system are given byhere wo=1[DE+ D'+ (d/dt)InPy]=1/D (where
_ D=DE+D'). If we make the approximation of setting all of
1+P-o —(1+P-o the number densities to their equilibrium values, and also
Pv=Po| =  Pv=Po|l =5 ' (44 assume that the number of sterile species is small, then

o P,=1 and Eq.(49) simplifies to
where Py and Py are the relative number densities of the

mixed neutrino and antineutrino species, &andP are the ﬂ:lgpy,
polarization vectors that describe the internal quantum state dt
of the mixed neutrinos in terms of an expansion in the Pauli
matriceso. The number densities of, and v are given by dpy
WZKPX_B_ Py/wo,
nva 1+P, nVS 1-P, (45)
= P ' dP
Po 2 7 Po 2 o=~ APy—Py/wy. (50)

with analogous equations for the antineutrinos. The evolu-
tion of Py,P are governed by the equatiofixl] Strictly  speaking, the approximation of setting
P,=1=const can only be valid whe@P, is small enough,

5 so that MSW flavor conversion cannot occur, i.e., when

d d
aP=VXP+(1—PZ)(aInPO

1
|B|=<|\| or v (52)

d - ~
DE+D'+ EInPO)(PXer Py),

It is useful to introduce the complex variatit) defined by

iPo: 2 <F(Vay_a—>ii_)>()\ininT_nv N, BEPXHPy. It is easy t(f)vsee that the resulting equation
dt i=evgf*a 46 describing the evolution oP(t) is given by
indi dPp P
where\,=1 and\,=1/4, and(- - -) indicates the average i —=—-\P—i —+8. (52)
over the momentum distributions. The quantitys given by dt ®Wo
V=BX+AZ, 47) Ihe solgtion to this equation with initial condition
P(0)=0is
whereB,\ are defined by : .
S ’F‘>(t)=—ifﬁ(t')e“’—“/woexp(ij )\dt”)dt', (53)
LI 0 t/
B= Esmzeo,
(48) where wg has been assumed to be approximately constant
over the time scalé—t’ (~wg) which is approximately
Sm? valid for temperatures above a few MeV where the expan-
A= z—p(COSZHO—bi a), sion rate is less than the collision rd8]. One can easily

verify that Eq.(53) is indeed the solution of Eq52) by
where the + (—) sign corresponds to neutringan- direct substitution. Thus, taking the imaginary part of both
tineutring oscillations. The quantitieBE andD' are quan- Sides of Eq(53), we find that
tum damping parameters resulting from elastic and inelastic . ,
processes, respectively. According {@1,23, DE+D!' =) :_f ﬁe(t'—w/wo(;o{ Jt Adt”}dt’. (54)
=I', 2. The function{T' (pyp— ¢’ ")) is the collision rate Y 0 t
for the processpiy— ¢’ ' averaged over the distribution of . _ 3
collision parameters at the temperatdreassuming that all From E_q' (45) (with Po_nva’ans_gn
species are in equilibrium. <n, ), it follows that

Expanding out Eq(46), we have

, assuming n,

dL, 3 d

a

dP, d —t= (P, Py, (55
—z_ — — dt 16dt
g APy (1 PZ)<dtInP0>,

whereP_Z denotes the component of the polarization vector

dP f i i i -
arFy _ _ _ or antineutrinos. Thus using Eq50) the above equation
ar P AP Pylwo, becomes

dPy by, 38 0 o

o —\Py—P,/wy, (49 o E(Py_ Py). (56)
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Note thatP, is given by Eq.(54) andP_y is defined similarly
to P, except that we must replage—~ —a. Thus, we obtain

_ 3B2 t , t!
e(t —t)/wg co j Adt”
16 Jo t

t—
— cos{ J )\dt”} ) dt’,
t

where A= ém?(c—b+a)/2p, A\=m?(c—b—a)/2p. Note
that we have take outside the integral, which is valid for
T=2 MeV, becauses is approximately constant over the
interaction time scalé—t’ [30]. Changing variables from
t’ to the variabler wherer=t—t’, this equation reduces to

_332 ! -1l ! '
T foe O(Co{ﬁfkdt
t —
—cos{f \dt’ )dr,
t—7

dL, —332 t t
«_ “3Fwo <cosf )\dt’>—<cosj Adt’”.
t—7 t—7

dt 16
(59

dL,
dat

(57)

dL,,
dt

(58

or, equivalently,

Note that the above equation can be rewritten using a trigo-

nometric identity, so that

dL, 3,32 t t
@ _ —1lwgaj + A+
TR foe sw{ jtﬂ)\ dt

whereh == (A i)\_)lz.

dr,
(60)

sin

t
[ v
t—7

The phenomenon of neutrino oscillations can also be de-
scribed by the Hamiltonian formalism. We show in the Ap-

pendix that this formalism also leads to EO) under the
same assumptions. L

In the static limit where\,\ are approximately constant
(over a typical interaction time scade,) it is straightforward
to show that Eq(58) reduces to Eq(23) with x given by

I? 2_p ’
v, 5m2 '

rather than by Eg25) [note that Eq(61) reduces to E(.25)

X= (61

1
4
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Using this Taylor series, the integraf$_ Adt’ can be ex-
panded agwith a similar expansion fof}_ \dt’),

Jt dt’ /[ d
1—7—)\ t _)\t7_7 W)\

The static approximation will be valid provided that

+on
t

(63

t t — J—
<cosJ )\dt’> —<cosJ )\dt’>z<cosﬂ\t)—<cosﬁ\t>.
t—7 t—7

(64)

Using the expansion E{63), observe that
f "t ) = N 65
COSFT t —cos;-tEth . (65

The above equation can be used to determine the region of
validity of the static approximation Eq64). The region of
validity of Eq. (64) depends on the values of the parameters
N\,\. There are essentially four regions to consider.
(@ wo|\i|, wg|\|=1. In this region, Eq(64) is approxi-

mately valid provided that

o d)\_

2 \dt,

a)od)\
2 \dt).

(b) wo|N\|=0, wo|)\_t|zl. In this region, Eq(64) is ap-
proximately valid provided that E466) holds and

<IN (66)

=[N\, ‘

t
<cosf )\dt’>:1. (67)
t—7
From Eq.(65) this equation implies that
() | 68
_ — <
2 \dt)|™ ™ 69

() wo|7\_t|=0, wo|\{|=1. In this region, Eq(64) is ap-
proximately valid provided that E466) holds and

wgd
2 |,

=<1. (69

(d) wg|N\{|=0, wo|?\_t|=0- In this region, Eq.(64) can
never be a strictly valid approximation because the right-

for most of the parameter space of interest except for quitqzland side of Eq(64) is zero at this point. Note however that

low temperaturels This difference is due to the fact that in
deriving Eq.(58) we have made the assumption E§1).
Because Eq(23) is much simpler than Ed60), it is particu-

the static approximation will be acceptable provided that the
left-hand side of Eq(64) is small at this point, which is true
if Eq. (68) and Eq.(69) are valid.

larly useful to determine the region of parameter space where qpcerve that Eq€(68) and (69) are more stringent than
the static limit{Eq. (23)] is an acceptable approximation. We Eq. (66). Evaluating Eq(68) at the resonance, we find

now study this issue.

Expand\;, (note that we are here using the notation that

Ay denotes\ evaluated at the point) in a Taylor series
around the point’ =t, that is

+oe. .
t

av A (62

d
)\t,=}\t+[t’—t](

Sm?
——(c0s20,—b+a)

7p (70

w%d{

For Eg.(69) we only need to replace— —a in the above
equation. Assuming that there is no accidental cancellation
between the various independent terms, &q) implies
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sm26bdT| T3 |6m?[=9x 102 (5x10°3%) eV? (76)
S — S -,
2p T dt 2 (71) for ve-vs (v, ~vs) Oscillations. The creation dtva must
I2 also satisfy Eq(75) at the resonance. This condition should
da I 2p dt be checked when using E(R3) for self-consistency.
dT7|~| 2 sm?dT|’ Perhaps surprisingly, there is a significant region of pa-

rameter space where the oscillations are not adiabatic at the
where we have useddb/dT=6b/T and recall that resonancéi.e.,y=1 in Eqgs.(29) and(30)] but Egs.(71) are
w0=2/1"ya. In deriving Eg.(71) we have also neglected a nevertheless satisfied. This is possible because (Edjsare
term proportional to (cog®—b+a) which is less stringent ot equivalent to the adiabatic conditions, E@$9) and(30).
than Eq.(71) because (cos@—b+a)~0 is just the reso- This is because Eqérl) arise from demanding that the total
nance condition. The first condition in E(71) is satisfied ~contribution todL, /dt reduce approximately to the simple
provided that Eq. (23). Recall that the total contribution td)LVa/dt can be

19 separated into two distinct contributions: from oscillations
) MeV, (72) due to _collis_ions anql from oscillations betwe_en collisions.
The adiabatic condition, on the other hand, is a necessary
. ~condition for the contribution ol Lya/dt from collisions to
where we have sdt=cos2, (which leads to thesmost strin- reduce to Eq(23). Thus it turns out that in the region when
gent condition and we have usedT/dt=—5.5T"/Mp. In {he system is both nonadiabatic and EG&L) are satisfied,

?hrdter to evaluate the second condition in E¢fl), observe e modification to the equation foiL, /dt from collisions
a [23

_ 11| 5m?|cos2d, | 1 | 5m?| cos2d,
1 Mpy?Gt B eV?

which arises from the nonadiabaticity cancels with the extra
contribution todL, /dt from oscillations between collisions.

(73)  This type of cancellation is more transparent in the Hamil-
tonian formalism(see the Appendijx

_ _ ) _ Finally, to illustrate the analysis of this section, consider
Assuming that there is no accidental cancellation betweeghe examples given in Figs. 1 and 2. Recall that the solid and

the two terms on the right-hand side of the above equatiorgashed lines correspond to the density matrix @6) and

the second term in Eq71) implies the following conditions g (23), respectively. Observe that for the example in Fig. 1
at the resonance: (which hasém?=—1 eV?), Eq. (23) is not a very good
approximation at the resonance where the lepton number is

da oda 9L, osa
dT dL, 4T T’

Ja ria 2p dt initially created(although it is a reasonable approximation
aT =5 2 aTl’ for small sirf26,). This is because the lepton number is cre-
ated so rapidly that E(.75) is not valid. However, for the
sa L r2 o0 dt example shown in Fig. 2, wherém?=—1000 eV, the
o4 T = e <P Ot (74) ~ temperature where the lepton number is created is much
oL, T 2 om*dT|’ higher. Observe that Eq75) is not as stringent for high

temperatures and it is therefore not surprising that the static
Usingda/dT=4a/T, anda=1, then the first equation above approximation is approximately valid for this cag®&ote
gives approximately the same condition as the first equatiothat the result that the static approximation tends to be a
in Eq. (71). The second condition in E¢74) gives a condi- good approximation at high temperatures can also be seen by
tion on the rate of change of lepton number at the resonancebserving that for high temperaturesg—0, and in this
Expanding this equation out we find that limit, Eq. (64) will be satisfied]

oL,

2
I dt 1
— =<

aT

2 dT 2\/§GFny

y2MpG24.1T4

IV. THE THERMAL MOMENTUM DISTRIBUTION
OF THE NEUTRINO

Hitherto we have made the assumption that the neutrinos
are monochromatic. This assumption is not expected to hold

222 for the neutrinos in the early Universe. The momentum dis-

4 tribution of these neutrinos will be the usual Fermi-Dirac

24X1011( L) 1 (75  distribution. Note that the width of the initial resonance in
MeV/) MeV’ momentum space is much smaller than the spread of neutrino

momenta. This means that only a few of the neutrinos will be
where we have usetl,=2¢(3)T3/w?~T3/4.1. Note that we ~ at resonance at a given time. Also, not all of the neutrinos
have also used E@10) for the collision frequency. Thus, for will be creating lepton number. Neutrinos in the region de-
example, if we are interested in studying the region wherdined by bP>cos2), (which includes part of the resonance
the lepton number is initially created, then a necessary cordestroy lepton number, and those in the redifr<cos2),
dition for Eq.(23) to be approximately valid is that the reso- create lepton number. The point where net lepton number is
nance must occur for temperatures satisfying ). From  created only occurs when the lepton number creating neu-
Eq. (34) (with cos¥,=1), this implies that trino oscillations dominate over the lepton number destroy-
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ing oscillations. Recall that in the unphysical case where all p? p

of the neutrinos are assumed to be monochromatic, all of the bp=b< 12 a”:am,
neutrinos enter the resonance at the same time, where they P P

all destroy lepton number #>cos,, or all create lepton 2 2 5

number if b<cos2, Clearly, the effect of the thermal WP— g2+ ”a(i) (2_p) re-r P
spread of momentum will make the creation of lepton num- 4 \(p)) \om?] Yoo " Va(p)’
ber much smoother. An important consequence of this is that

there will be even larger regions of parameter space wher¢herea,b,I, are defined in Eqs(18) and (10). Equation
the system is smooth enough so that the static approximatiof79) reduces to Eg23), in the limit where all of the neutrino
is valid and hence Ed23) (modified to incorporate the mo- momenta are fixed tgp=(p). [Note that aP=a when
mentum dependengavill be a good approximation. p=(p)=3.15T and similarly forbP, xP, andFBa.]

In the static limit, we can simply rederive E(R3), 8- Npote that the chemical potential is related to the lepton
suming that the neutrino momenta form the usual Fermiy, mper by the equation

Dirac distribution. In this case, E45) becomes

(81)

3

dL, 1 o n. L =%
nywzzf [_F(Voz_> VS)_FF(VQ_> VS)]

yer, =N

Va

%) +O(u?). 82)

Using Eqgs.(78) and (82) we find
x(dn, —dn, +dng-—dn;) g Egs.(78) and(82)

1 p?dp
! — — dnf =— ——r+0(L2),
- EJ [F(Vag) VS)+F(VCV4} VS)] Va 7T2 1+ep T ( Va)
_ _ 6 pZep/po
X(dn, —dn, —dn;-+dny), 7 _ .
(dn,, s « ) (77 dn, =n,L, —=3 AT +O(L3 ). (83)
where o | | |
Thus substituting the above relations into E@9), we find
1 pdp 1 p2dp that
dn, = > ——p-wm A%, =5 o
« 27 1+elP™H o« 272 1+elPtr)
g b
dt  473)T°

anddnvs,dnv—S are the differential number densities for the

2

sterile and antisterile neutrinos, respectively. In &@&§) u is y f“ S F’jaap(c— b?)
the chemical potential. o [XP+(c—bP+aP)?][xP+(c—bP—aP)?]

The reaction rates can easily be obtained following a
similar derivation as beforgegs.(9)—(15)], but this time we
keep the momentum dependendeather than setting
p=(p)). Doing this, we find the following equation for the
rate of change of lepton number in the static limit:

+
p2 d nVs

x m(1+ePT)  dp

dp+A, (84

whereA is a small correction term
dLVa 2 2

I —Tr
dt  44(3)T° A

8{(3)T®
s2I'P aP(c—bP)(dn; —dn;)

Xf [XP1 (c—bP+aP)2][xP+ (c—bP—aP)7]

+A,

oc stﬁa[xp+(ap)2+(bp—c)2]
fo [XP+(c—bP+aP)?][xP+ (c—bP—aP)?]

(79 12§(3)L,,ap2ep” dn,_
whereA is a small correction term A(1+e"N?  dp dp. (85)
A — 7’ Equation(84) can be integrated numerically to obtajr,]a as

EHEE
$°T) [xP+(af)?+ (bP—c)?](dn, —dn,)
[XP+(c—bP+aP)?][xP+(c—bP—aP)?]
(80)

a function of time(or temperature We will give some ex-
amples in the next section after we discuss how to calculate
the sterile neutrino number distributions.

The main effect of the thermal spread of neutrino mo-
menta is to make the generation of lepton number much
smoother. From a computational point of view, this is very
fortunate. This is because E(B4), like Eq. (23), is only

anddn; =dn, *dn;-. Recall thatc=cosZ),s=sin26,. In
these equations note that the quantitgsaP,xP,T'P are all
functions of momentum of the form

valid provided the lepton number generation is sufficiently
smooth(see the previous section for a detailed discussion of
this poiny. In particular, Eq.(84) should be a much better
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approximation to reality at the resonance where significanEq. (90) has a strength comparable to the correction term

lepton number is initially generated.

A for ordinary-sterile neutrino oscillations, Eg85), al-

To complete this section, we comment on the rate ofthough note that the mixing angle between ordinary neutri-
change of lepton number due to ordinary-ordinary neutrinanos can be significantly larger than the mixing angle between

oscillations. For definiteness consideg-v, oscillations.
The rate of change dIVM—LVe is given by

=—f F(vﬂ—we)dn,,ﬂ-i-f I(v,—vodny,

+J F(veevﬂ)dnye—J F(V_e—>1/_#)dn7e.
(86)

Using I'(v,— ve) =T'(ve—v,) (and similarly for the an-
tineutrino ratel Eq. (86) becomes

&d(Lyﬂ—Lue)
2 dt
o dn, dn,
il 55 Sl
o dny-  dny-
v r(v_ﬁv_a(d—;— dpe)dp, ®7
where
nge 1 p2 dn,,—e 1 p2

dp 272 1+eP AT “dp 242 1+ePTADT

dnyﬂ_i p2 dnﬁ_i p2
dp 272 1+eP~#/T  dp 272 1+ePTH)/T
(88)

The chemical potentialg, , are related to the lepton num-
bersL,,EM by the equations

6n, mo 6N,

T e T (89

where we have assumed that/ T<1. Using these relations
and expanding out Eq87) (again assuming thai; /T<<1)
we find to leading order that
d(LV - LV )
" e
dt

G(Ly,u_ LVe) 0 pzep/T
A fo (1+ePM)?

X[[(v,—ve)+T(v,—ve)ldp. (90

From the above equation we see tha,t#—L,,e always
evolves such thatL(VM—LVe)—>O. Also note that Eq(90)

ordinary and sterile neutrinds.

For ordinary-ordinary neutrino oscillations, neutral cur-
rent interactions do not collapse the wave function because
they cannot distinguish different neutrino species. Only the
charged current interactions can distinguish the neutrino spe-
cies. For example, for temperatures 1 MeV=30 MeV,
there are near-equilibrium number densities of electrons and
positrons. The number of muons and antimuons will be
much less than the number of electrons and positrons, and
we will neglect them(actually these are important for
v,-v, oscillationg. The rate at which charged current inter-
actions occur is given approximately by
1“,,~|1“Ve—FVM|zng§T5, wherey.~y.—y, [=1.1 see Eq.
(10)]. Also note that antineutrino-neutrin@1] and neutrino-
neutrino[32] forward scattering amplitudes induce off diag-
onal contributions to the effective potentiéiNote that these
contributions do not occur for the effective potential govern-
ing ordinary-sterile neutrino oscillationdt would be neces-
sary to include these effects in order to evaluate the reaction
rates.

V. THE EFFECTS OF NON-NEGLIGIBLE STERILE
NEUTRINO NUMBER DENSITIES AND THE PARAMETER
SPACE FOR LARGE LEPTON NUMBER ASYMMETRY
GENERATION

In this section we will do three things. We will study the
effects of non-negligible sterile neutrino number densities,
which can arise for the case of relatively large, or even mod-
erate values of sfi26,. We will examine the parameter space
where significant generation of lepton number occurs. Fi-
nally, we will obtain the BBN bound on the parameter space
for wv,-vs oscillations with ém?<0, and with
|om?|=10"% eV?, sirf26,<10 2.

There are several ways in which the creation of lepton
numbe(s) can prevent the sterile neutrinos from coming into
equilibrium. One way is that one set of oscillationg- v
created., . The lepton numbel v, €an then suppress other,

independent oscillations such ag- v, oscillations(with 8

# a) for example. A more direct, but less dramatic way in
which the creation of lepton number can help prevent the
sterile neutrinos from coming into equilibrium, is that the
lepton number generated from say- v oscillations itself
suppresses the,- v, oscillations[33]. We will examine the
latter effect herdsome examples of the former effect will be
studied in the next sectipnPrevious work[5—8] obtained
the BBN bound for largeésm?|=10"* eV? (with sm?<0)
and small sif2g,=<102? which can be approximately param-
etrized as followg8]:

|sm?|sint26,<10° eV2. (91

This bound arises by assuming that the v oscillations do

shows that the rate of change of lepton number due tmot bring the sterilevg state into equilibrium. Note that this
ordinary-ordinary neutrino oscillations is generally smallerbound neglected the creation of lepton number and it also did
than the rate of change of lepton number due to ordinarynot include the effects of the distribution of neutrino momen-
sterile neutrino oscillations(assumingLVa« 1). [Actually  tum. However, in the realistic case, the creatiorh.;;m)yc (after
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it occurg will suppress thev,,- v oscillations and the actual
bound would be expected to be somewhat less stringent than
Eqg. (92).

To proceed we will need to examine the effects of non-
negligible sterile neutrino number densities. The evolution of
the number distribution of sterile neutrinos is governed ap-

3 ;’-’:tFigure 3 i

proximately by the rate equation
dnva/d p— ngS/d p
d nya/ dp

d

dt

dn,,S/dp
dn, /dp|

I'v,—vy).

92

A similar equation holds for the number distribution of
sterile antineutrinos. Introducing  the notation,
z=(d nys/d p)/(d nva/d p) [for antineutrinos we use the cor-

responding notationz_z(ng—S/dp)/(ng—a/dp)], Eq. (92
becomes

P <2
1-z Fvas

4 xP+(c—bP+aP)?’
(93

dz_ 1 r B
== 2T (r— vy =

The corresponding equation for antineutrinos can be ob

tained by replacing—z andaP— —aP in the above equa-
tion. In solving the above differential equation, we will as-
sume the initial conditioz=0. We will also assume that the

number densities of the ordinary neutrinos are given by theiP

equilibrium values. Note that the quantitydepends only on

the reaction rates and is otherwise independent of the expa

sion.
From the definition ofz, it follows that ngS=znga,

dnv_szﬁnv—a. Thus, from Eq(84),

dL,,a 1
Tdt  43)Te
© sZFﬁaap(c—bp)
% fo [XP+ (c—bP+aP) Z][xP+ (c—bP—aP)7]

(1-z")p%dp

whereA is a small correction term

1 » $7T) [xP+(aP)?+(bP—c)?]
A= 8§(3)T3f0 [XP+(c—bP+aP)Z][xP+ (c—bP—aP)2]
z p?dp
XTr e -

with z*=(z*z)/2 and we have neglected a small correction

term which is proportional tb., . Note that Eq(93) and Eq.

(94) must be solved simultaneously.

For the numerical work, the continuous varialgér is
replaced by a finite set of momentg,/T (with
n=0,1,...,N) and the integral over momentum in E§4)

is replaced by the sum of a finite number of terms. Corre-

spondingly, the variable(t,p/T) is replaced by the set of
variablesz,(t), where the evolution of each varialdg(t) is

Lepton number

5 10 15
Temperature (MeV)
FIG. 3. The evolution of thes,-vs (or v,-v,) oscillation gen-
erated lepton number asymmetLyV# (orL,). In this example we
have taken the parameter choicés?’=—1 e\? sirf26,=10*
(dashed ling sirf26,=10"% (dash-dotted lineand sif26,=10"8
(solid line). These curves result from integrating the coupled differ-
ential equations, Eq$94) and(93), which in contrast to Figs. 1 and
2, incorporate the momentum distribution of the neutrino. They also
incorporate the effect of the nonzero number density of the sterile
neutrinos which are produced by the oscillations.

governed by the differential equation, E¢93) [with
IT=p,/T for z=2z,(t), n=0,1,... N]. Thus, the single
differential equation, Eq(93) is replaced by a set dfl dif-
b@rential equations, one for each momentum step. These dif-
erential equations, together with E4), are coupled dif-
ferential equations which must be integrated simultaneously.
We now illustrate the creation of lepton number as gov-
erned by Eqgs(94) and (93) with some examples. We have
numerically integrated Eq$94) and (93) for the following
parameter choices. In Fig. 3 we have considergd- v, 0s-
cillations with the parameter choicesm?=—1 e\?,
Sirf26,=10"* (dashed ling sirf26,=10"° (dash-dotted
line), and sik26,=10"8 (solid line). Figure 4 is the same as
Fig. 3, except thabm?= — 1000 e\#, sirf26,=10° (dashed
line), sirf26,=10" 7 (dash-dotted ling and sif26,=10 °
(solid ling). In both examples we have assumed that the ini-

10" F ** Figure 4 ~
10°
10°F
. 10°L
2
E 10l
=
=
i% 107L
10°L
10°F
10" -
10"E ,:’
. . ‘ i .
10 20 30 40 50 60 70
Temperature (MeV)
FIG. 4. Same as Fig. 3 except that

Sm?=—1000 eV\f,sirf26,=10"% (dashed ling sirf26,=10""
(dash-dotted ling and sif26,=10"° (solid line).
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tial lepton asymmetry is zero. Recall that the generation ofyith momenta in the region whelt#® < cos¥, will be much
lepton number is essentially independent of the initial leptorgreater than for sterile neutrinos with momenta in the region
number asymmetry provided that it is less than about°10 wherebP>cos¥,. Thus, from Eq.(94), the lepton number
(for more discussion about this point see Seg.Mote that  creating oscillationgwith bP<cos2),) are suppressed if the
for convenience we have pIott¢UVa|. The lepton asymme- number density of sterile neutrinos is non-negligible, as oc-

try L, changes sign at the point where it is created. Befor&Urs for large sif26,. The lepton number destroying oscilla-

. . . L tions (with bP>cos2,), on the other hand, are not sup-
this pointL, evolves such that it has the opposite sign topressed because the number of sterile neutrinos with

7 while for evolution subsequent to the point whérg is  pP>cos, are negligible.

initially created,L, has the same sign as Recall that this (3) The creation of lepton number is considerably

behavior is expectetsee the earlier discussion in Seo. I smootherzin the realistic case. Fgg instance, in the example
In these examples, the generation of lepton number i¥/here sm*=—1 eVe, sinf26,=10"°, |r10the re%I|§t|c case

considerably smoother than in the earlier case where the méShown in Fig. 3, |L,,| ranges from 107 to 10" in about

mentum distribution was neglectésee Figs. 1 and)2For AT~1 MeV, whereas in the unrealistic case where the neu-

this reason, it turns out that throughout most of the evolutior{fino momentum distribution was neglectéshown in Fig.

of L, , the rate of change df, satisfies the condition Eq. 1), |L, | ranges from 10'° to 10°° in about AT~0.005

(75) and thus Eq(94) should be approximately valigxcept MevV. . .
at quite low temperatures where the MSW effect will be (4 Atlow temperatures, the lepton number gets “frozen
importan). at an earlier time. For example, in the case where

2_ i —10-8 i _
In order to gain insight into the effects of the neutrino om’=—1 eV* and sif26,=10"°, with momentum depen

momentum distribution, it is useful to compare Figs. 3 and 4dence (Fig. 3), the final value for the lepton number is

- 74 . . . . _
(which incorporate the neutrino momentum distribugion .4><10 ’ Wherea_s in thg unrealls_tlc case without the neu
with the Figs. 1 and Zwhere the momentum of all of the trino momentu_m dlstrlbuthn, thg final \izillue for.the lepton
neutrinos were set equal to the mean momentualita- number for this exampléFig. 1) is ~107". As discussed

tively, there is not a great deal of difference. However therepriefly in Sec. II, this effect is expected because the tempera-

are several very important effects, which we summarize pelure where the lepton number gets frozen occurs when the

low rate of change of the variabke due to the expansion of the

(1) For the examples with relatively small 4#,, lepton U_nlverse_ do_mmates over th_e rate of change alue to neu-
number creation generally begins somewhat earias. trino oscillations. In the realistic case where the momentum

at a higher temperaturéhan in the case where momentum distribution is taken into account, the maximum value of the
distribution is neglected. For the examples shown'ate of change oé due to neutrino oscillations is suppressed

in Figs. 3 and 4 withom?=—1 e\ sir12200:10*8 because only a small fraction of the neutrinos will be at the

_ i —-10-9 : resonance.
\(/vhég'?i 2682 M es\llnz.?_f 63?\/I e)\}) I?ﬁ}ggagubn;i%rmlsagg aﬁﬁ This last point suggests that the momentum distribution

the simplistic case where the neutrino momentum distribuaN"ot be ignored if one is interested in finding out the pre-

tion was neglected. In this case, we see from Figs. 1 and crz;lg'[ee IE‘;{I gaégi) (()jf thenleip?tnon rnuT?ezclg\?nregatﬁ\fi.rls-:oxv(ejver,
that lepton number creation beginsTat16.0 MeV (T=50 q 0€s not incorporate or conversion due

MeV) for sm2=—1 eV2 (—1000 eV?). The fact that the to the MSW effec{see assumptiofd) in Sec. Il for some

critical temperature increases can be explained rather simpalgr'scuss'on about this pointThe effect of the MSW flavor

Note that the neutrino number density distribution peaks onversion should be_ to keap=1 for lower temperatures.
aboutp=2.2T, which should be compared with the average his means that the final value bf_should be significantly
momentum of about 3.T5used in Figs. 1 and 2. Using the Iarger_than sugges?ed by Figs. 3 and 4. This effect yvill need
former approximation instead of the latter leads the criticalf® P& incorporated if one wants to calculate the precise value
temperature to increase by about 12%. This explains qual@f the final lepton number generatddhe precise value of
tatively why the critical temperature increases. Note, howihe final lepton number can be obtained by numerically inte-
ever, that the accurate numerical calculations displayed i§rating the density matrix equations E¢#6) suitably modi-
Figs. 3 and 4 actually show that the temperature increases Hid to incorporate the neutrino momentum distribujdn.
more than thigfor the examples with small §26,) and also particular, if one is interested in working out the region of
that the temperature increase depends on the mixing angld’@rameter space where the electron lepton number is large

(2) For the examples with large €B¥,, the point where enough to affect BBN through nuclear reaction rates, then
significant generation of lepton number is created occurdh® final value of the electron lepton number is very impor-
much later than in the examples with small %, The t@nt[34,39.

reason for this is that for large SB¥,, the number density of _ NOte that we can check E(1) by numerically integrat-
sterile neutrinos is larger. In the region before significantd Ed- (93 and Eq.(94) assuming for definiteness that

lepton number is generated=0 and all of the neutrino Pv/P»,=0.6 (where thep’s are the energy densitiesThis
oscillations withbP< cos, have already passed through the leads to the following constraint ofm?, sirf26y:
resonance while the neutrino oscillations with>cos2j,

have yet to pass through the resonance. Since the creation of
sterile neutrinos is dominated by the oscillations at the reso-
nance, it follows that the sterile neutrino number distribution

V2 112
} ; (96)

i -5
SiP260,<2(4)x 10 {|5m2|
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for ve-vs (v, ,-vs) Oscillations. Thus, we see that E@1) TABLE I. Summary of the predictions for the chlorine and gal-
turns out to be a good approximation after all. This is basidium experiments assumir(@) standard electroweak theofiye., no
cally due to the result that the creation of a non-negligiblenew physics (2) that the electron neutrino oscillates maximally
number of sterile neutrinos has the effect of delaying thdnto a sterile statemaximal mixing model and(3) the experimen-
point where significant lepton number is creafege point tal measurements. All numbers are in units of SNU.

(2) abovd.

Finally, the region of parameter space where significan
neutrino asymmetries are generated by ordinary sterile nelsandard electroweak theory 485 1238
trino oscillations can be obtained by integrating E¥fl) and
Eq. (93). The result of this numerical work is that significant
neutrino asymmetry|(_yu|210*5) is generated by ordinary-
sterile neutrino oscillations for the following region of pa-
rameter space: mally) with a sterile neutrindwhich we here denote as,
rather than ag, in order to remind the reader that this sterile

Frediction/Expt. Chlorine Gallium

Maximal mixing model 3.20.4 65",
Experiment 2.780.35 7

2 11/6 2 11/2
6(5 Xlo—lo[ } < si20.<2(4 ><10‘5[ } neutrino is approximately maximally mixed with,) [9,36].
(%) |om?| 0=2(4) |om?| We will denote thesm? for v-v, oscillations bysm?,,. As
and is well known, for a large range of parametggs]
_ 2 _
|5m2|=10°% e\?, 97) 3x10710 eV?< |om = 107° eV?, (99

for ve-vs (v,.,-vs) oscillations. Note that we have assumed maximal vacuum oscillat.ions imply that the flux of electron
that p, /p, =0.6 [Eq. (96)]. In the general case where no Neutrinos from the sun will be reduced by a factor of 2 for all
S neutrino energies relevant to the solar neutrino experiments.

) T ) We will call this scenario the “maximal vacuum oscillation
con25|derably ;/vea_ker. For ?ﬁampmﬁw”s oscillations with  go|ytion” to the solar neutrino problem. It is a very simple
sm?=—1 eV?, sinf26,=10"" violate the bound Eq(96)  and predictive scheme which can either be ruled out or tested
but stll_l generate a S|g_n|f|cam neutrino asymmetry, as illusygre stringently with thexisting experimentsmportantly,
trated in Fig. 3.(For this particular example, we found that jt g1s0 makes definite predictions for the new experiments,
p./p, ~0.86) Sudbury Neutrino ObservatorySNO), Superkamiokande,

The parameter space in E(®7) can be compared with and Borexino. Our interest in this scheme is also motivated
previous work where the momentum dependence was ndsy the exact parity symmetric modglee[ 17] for a review of
glected[18,12. As we have mentioned above, the upperthis mode). This model predicts that ordinary neutrinos will
bound on sif2d, which assumes a BBN bound of be maximally mixed with mirror neutrinoéwhich are ap-
p.!p, <0.6, is not modified much when the momentum proximately sterile as far as ordinary matter is conceyiied

distribution of the neutrino is incorporated. For the lowerneutrinos have ma$&7]. If we make the assumption that the
limit of sin®26,, the effect of the momentum dependence isMixing between the generations is sma it is in the quark

to reduce the region of parameter space by nearly two orde@ectoy then the exact parity symmetric model predicts that
of magnitude. the three known neutrinos will each f® a good approxi-

Finally, it may be possible for significant neutrino asym- Mmation maximal mixtures of two mass eigenstates. There
metries to be generated f6ém? <10"* eV?, however the are also other interesting models which predict that the elec-
mechanism of production of these asymmetries is dominateffon neutrino is approximately maximally mixed with a ster-
by oscillations between collisiongather than the mecha- il neutrino[38]. The maximal mixing of the electron neu-
nism of Co”ision3 and tend to be osci”atorﬁﬂ_8,29,33_ trino (Ve) and the sterile neutrino will reduce the solar

neutrino flux by an energy independent factor of 2 for the

VI. CONSISTENCY OF THE MAXIMAL VACUUM ?r?e. rang‘;.of pa;amf]ters given di” E(QB)' This '?lads t?c
OSCILLATION SOLUTIONS OF THE SOLAR AND e Inltepre Ictionsfor the eXpeCte solar neutrino fluxes for

ATMOSPHERIC NEUTRINO PROBLEMS WITH BBN the exi;ting expe_riments. I[r9]_, we compared thesg predic-
tions with the existing experiments. We summarize the re-

We now turn to another application of the phenomenon ofsults of that exercise in Table | which we have updated to
lepton number creation due to ordinary-sterile neutrino oscilinclude the most recent datag].
lations. First, in the context of a simple explanation of the Note that in Table I, the Kamiokande experiment has been
solar neutrino problem which involves large anglev; os-  used as a measurement of the Boron fld@8—42. This is a
cillations, we will determine the conditions under which the sensible way to analyze the dafaut not the only way of
lepton number produced from,- v, oscillations can sup- cours¢ because the flux of neutrinos coming from this reac-
press the oscillationsz-vs (where 8# «). This allows the tion chain is difficult to reliably calculate due primarily to
BBN bounds on ordinary-sterile neutrino oscillations to beuncertainties in nuclear cross sectiof®3]. Clearly, the
evaded by many orders of magnitude, as we will show. Wesimple energy independent flux reduction by a factor of 2
begin by briefly reviewing the maximal vacuum oscillation leads to predictions which are in quite reasonable agreement
solution to the solar neutrino problef,10]. with the data. If the minimal standard model had given such

One possible explanation of the solar neutrino problem iggood predictions, few would have claimed that there was a
that the electron neutrino oscillates maximally near maxi-  solar neutrino problem.

bound Onp,,s/p,,a is assumed, the upper bound or?&fy is
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Note that the maximal vacuum oscillation solution is dis- We will assume that the various oscillations can be ap-
tinct from the “just so” large angle vacuum oscillation so- proximately broken up into the pairwise oscillationg v,
lution [46]. In the “just so” solution, the electron neutrino v,-vs, and v-v,. We will denote the various oscillation
oscillation length is assumed to be about equal to the disparameters in a self-evident notation,
tance between the earth and the fwhich corresponds to
|6m?|=10"1° eV?). In this case the flux of neutrinos de- Dper @ger fOr v,— v} oscillations, (100
pends sensitively o@m? and it is possible to fit the data to
the free parameter8m?, sirf26, [46]. The advantage of do- where a=e,u,7. We will denote the mixing parameters,
ing this is that a good fit to the data can be obtaifilealv- ~ 6m?, sirf26, appropriate for v,-v, oscillations by

ever this is not so surprising since there are two free paramgs,2 sinzzage'. Note that lepton number cannot be cre-

eters to adjust The disadvantage is that fine-tuning is ae’” , _— . o
required and predictivity is lost because of the two free pa@t€d byva-ve oscillations untilb,e <cosp” . Recall that

rameters. The maximal mixing solution on the other handN€ b parameter is inversely proportional @m’ [see Eq.
assumes maximal mixing and tham? is in the range Eq. (18)]. Thus, the earliest point during the evolution of the
(98). For this parameter range there is an energy independehtniverse where lepton number can be created due to
flux reduction by a factor of 2. The advantage of this poSSi_ord_mary-sterlle neutrino ogcnlatlons occurs for os_cﬂlatlons
bility is that it does not require fine-tuning and it is predic- Which have the largestsm?|. Note that these oscillations
tive. A consequence of this is that it is testable with theMust satisfy the bound in Eq96) if we demand that the
existing experiments. The disadvantage of this scenario igterile neutrino energy density be small enough so that BBN
that it does not give a perfect fit to the data. However, in oufS Not significantly modified. Note that the- v, oscillations
opinion the predictions are in remarkably good agreemenhave very small 5m§e,|510‘3 eV? [37], and Cosfg,e'~0
with the data given the simplicity and predictivity of the (assuming maximal or near maximal mixingnd thus these
model. oscillations themselves cannot produce significant lepton
With the range of parameters in E98) there is a poten-  number. However, thém? for v,-v, or v,-v, oscillations
tial conflict with BBN [44,45. For maximally mixedve and  can have much largefdm?| (and they should also have
v¢ neutrinos, the following rather stringent BBN bound has sm2<0 if mv#’mvf> myé) [47]. We will assume for defi-
EESITd gzt?llgglc:(ftseu{jrgl—nsﬁ]: that the lepton number ¢asymme'[ryniteness tham, > m, >m,: so that|6mfe,|>|5mie,| and
the v - v} oscillations creaté », first (with LV,uLVe assumed
to be initially negligible. If mvﬂ> m,_ then we only need to

replacev, by v, in the following analysis.

Thus, we will consider the system comprising, v, and
This bound arises by requiring that the sterile neutrinos da,/ (and their antiparticlos Our analysis will be divided into
not significantly modify the successful BBN calculations. two parts. First, we will calculate the condition that the
For temperatures above the kinetic decoupling temperature(® created byv,-v.s oscillations survives without being
the requirement that the sterile neutrinos do not come int@ubsequently destroyed hy- v}, oscillations. We will then
equilibrium implies the boungism?,|<107° eV2. Smaller establish the conditions under whi¢H® is created early
values ofémie, in the range 1085|5m§e,|/evzs 10" %can  enough and is large enough to suppressthe, oscillations
be excluded because the oscillations deplete the number b that only a negligible number of, are produced.
electron neutrinogand antineutringsafter kinetic decou- For simplicity we will first analyze the system neglecting
pling (so that they cannot be replenishe@he depletion of the momentum distribution of the neutrino. This is useful
electron neutrinos increases the He/H primordial abundandeecause under this assumption it turns out that this system
ratio. This is because the temperature where the ratio of newan be approximately solved analytically as we will show.
trons to protons freezes out is increased if there are les#/e will then consider the realistic case where the spread of
electron neutrinos around. FpfmZ,|<10"% eV?, the os- momenta is taken into consideration.
cillation lengths are too long to have any significant effect on It is important to observe that the generationLof also
the number densities of electron neutrinos during the nucledeads to the generation &f® [through Eq.(16)]. If we as-
synthesis era. If the bound in E¢R9) were valid then it sume that negligiblel,_is generated, ther (9=L("/2.
would restrict m_uch of th.e parameter space for the max'maﬁoweverve- v., oscillations can potentially generdte such
vacuum oscillation solution of the solar neutrino problem. © ©_n i _ N
However, this bound does not hold if there is an appreciabl hatL fo‘ (Recall tha?‘ =0 is an approximately stable
lepton number asymmetry in the early Universe for temperalX€d point for theve-v, system for temperatures greater
tures between 1 and 100 Md¥1]. This is because the gen- than a few MeV) The effect of theve- v/, oscillations will be
eration of significant lepton number(® implies that the greatest when the,- v/ oscillations are at resonance. If neg-
quantityae [Which is thea parameter defined in Eq18)  ligible L, is generated, then|aee|=Rla.|/2 and
with sm?= 6m§e,] is very large thereby suppressing the 0s-|b.o|=R(Ac/A,)|b.o/| (Where RE|5m§e,/5m§e,|), Hence
cillations [note that forage>1, sirf26,,<sirf26, see Eq. the ve- v, resonance conditionaty =bee) will be satisfied
(19)]. We will now show in detail how the creation of lepton when
number can relax the BBN bound E§9) by many orders of
magnitude. |ae/|=2(Ac/A,) D] (101

2
ee'

|oms |<1078 eV2. (99
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Recall that thev - v, oscillations generate, such that

A = 1- b‘re’l (102)
where we have assumed that CQ7§'2vl and that, >0 for
definiteness. Observe that Eq401) and (102 imply that
the system inevitably passes through thev, resonance.
This event will occur when

A,

|bTe’|:AT+2Ae'

(103
Using the definition ob ., which can be obtained from Eg.
(18), the above equation can be solved for thev, reso-
nance temperature

2 1/6
el _ |omZ, IM34.1 A,
S 6.3V2GeA, AT2Ac
|5m2 | 1/6
=11 e\;f MeV. (104)
Thus, whenT=TE | the v,-v, oscillations have created

enoughL(® so that thev.- v, oscillations will be at the reso-
nance, assuming that negligibILeVe has been generated. In
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andL®—0. Thus, a sufficient condition that® survives
without being destroyed by,- v, oscillations is that

‘?T(reees 07L,,e ‘?Tsees aLV7>d_T (107}
gL, ot 4L, ot~ dt’
To evaluateﬂLVT/at, observe that
gL(” b, dL, -4l dT
A ot o T dt’ (108

where we have assumed that?~T~* for T=T¢ . Of
course, this latter assumption only holds provided that the

ve-v, resonance does not occur Whlle,T is still growing

exponentially. However, for s?ﬂege' sufficiently large, the
ve-vg, fesonance can occur during the rapid exponential
growth phase of_VT. If this happens then the rate at which

the v,-v, oscillations move the system away from the
ve-v, resonance is much more rapid. Consequently, the re-
gion of parameter space wheké® survives without being
destroyed byv.- v, oscillations is significantly larger in this
case(this effect will be illustrated later on when we study the
system numerically

Using Eq.(108), Eq. (107) can be written in the form

general theve-v, resonance temperature depends on both

L, andL, . The ve- ve resonance conditioBeey = by iM-
plies that the resonance temperatureifgry, oscillations is
related tol,_ andLVT by the equation

M Mg
\/AWL<e>2 \/—AW(ZLVB—}—LVT), (105
e e

Tee’ _

res

L) oTES

daT
T 4L, |dt
e

dt’

3dL, gTe¢
e res >|: (109)

4 9t aL,
e

res res
which is easily obtainable from E4105).
Note that the most stringent condition occurs at the

where we have used the relatimee'/aLVez 2¢9Tee//&LyT

where we have neglected the small baryon and electroe- Ve fesonance temperature, Eq04). We are primarily

asymmetries and a possible neutrino asymmetrywe will
discuss the effects of the neutrino latey. Thus the reso-
nance temperature will change whlepe andLvT change due

to oscillations.

. . . 2 —1 2
interested in relatively large values pfm’_,|=10"* eV*,

which means tha f"ees'zs MeV. Thus, from Sec. lll, we are

in a region of parameter space where we expect(£8). to

be valid.[In particular, note that sinc f"ees' is not at the point

Let us consider the rate of change of the quantityyhere the lepton number is initially created, Eg5) should

(Tres—T),
d(Tie=T) _ T PLve | Tie Mo, dT
dt 4L, at oL, ot dt’ (106
evaluated at the temperature- Tfei . Note that the first term

on the right-hand side of Eq106) represents the rate of

/ - . - - -
change off i, due tov,- v, oscillations(and its sign is nega-

tive), while the second term is the rate of changé’ﬁfﬁ due
to v,-v, oscillations(and the sign of this term is positive
The third term in Eq.(106) is the rate of change of

(Tfe‘i—T) due to the expansion of the Universe

(—dT/dt=5.5T3/M5p) (this term is also positive in sign
Observe that ifd(TSS —T)/dt>0, then the system passes

res

through the resonance without significant destruction of

L®. If on the other handd(TeE,

res

—T)/dt=<0, then the posi-

tion of the resonance moves to lower and lower temperatures

also be valid} Thus, from Eq{(23) we can obtain the rate of
change ofL, due tov,- v, oscillations, at theve-v, reso-

nance(whereb—a—c=0). We find

Mo s (ol
s 8 7T,T°| 63"

Note that from Eq(105), we have

i MG T a1

T e | (O

aL"e AeTfees L
Thus,

L gTeE L™

s 2 (112

red 7, L2
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Hence the sufficient condition that® survives without be- Hitherto we have examined the system neglecting the
ing destroyed by,-v, oscillations can be obtained by sub- thermal distribution of neutrino momenta. We now study the
stituting Eqs(110—(112) into Eq.(109). Doing this exercise realistic case where the thermal distribution of neutrino mo-
we find menta is taken into consideration. We first estimate approxi-
mately the effects of the momentum distribution analytically
|5)\|5m§e,|11/12, (113  and then we will perform a more accurate numerical study.
The previous calculation assumes that all of the neutrinos

have a common momentum and thus they all enter the reso-

nance at the same time. In the realistic case, only a small

2
ee'

|Sm

where\ is given by

2 e’ 11/2 fraction (less than about 1% as we will shpwf the neutri-
_ 12.65¢ 8YeAed-5 Tres nos are at resonance at any given time. Note thatthe,
/sinzzage'MW 3Mp (|5mfe,|)1’6 oscillations are not affected greatly by this consideration,
since as we showed in Sec. V, the momentum spread does
12.6G¢ 8YeA5.5 2 not preventl, from being createdand it still satisfies ap-
= JSr20° M 3Mp proximately L(7~T* after it is initially creategl On the
sin26," Mw other hand, the effect of the neutrino momentum distribution

11/12 on theve-v, oscillations is very important. This is because
, (114  the ve-v, oscillations cannot destrol(® as efficiently as
before. In fact, Eq(110 will be reduced by a factor which is
about equal to the fraction of neutrinos at the resonance. In
and we have used E@104). Thus, putting the numbers in, principle, one should solve E¢L09) at the point where elec-
we find tron neutrinos of momenturp= T are at resonance and
then calculate the minimum of the valueofsee Eqs(113)
and (114)] over the range of all possible values of For
, (119  simplicity we will make a rough approximation and assume
that the minimum ofA occcurs when neutrinos of average
where we have assumed maximal mixingdi.e., momenium are at' resonandee., assumeyzS.lS). (Note
_ o _ _ . _ that later on we will do a more accurate numerical calcula-
sirf268¢ =1). Thus provided this condition hold&(® will tion).
not be destroyed significantly by.-», oscillations(under To calculate the fraction of, neutrinos at these- v, reso-
the assumption that the neutrino thermal momentum distrinance we need to calculate the width of the resonance in
bution can be neglected; we will study the effects of they,omentum space. We will denote this width By. From
momentum distribution in a momerind the system moves gq (g4 it is easy to see that the width of the resonance is
quickly away from theve- v, resonance. While this condition governed approximately by the equation
was derived as a sufficient condition, it turns out to be a
necessary one as well. This is because if @§7) were not

!

valid, then v¢-v; oscillations would createl,_ rapidly

enough such tha&(Tij'—T)/aKO. This would mean that
the ve- v, resonance temperature would move to lower and
lower temperatures where the rate of change offrom Eq. ~ where we have assumed maximal mixifig., cosZg® =0).
(1107 would be even largefas it is proportional to 1) Note t.hat from the momentum dependencddiP [see Eq.
and the expansion rate slower. Thus if the condition Eq(8D]. it follows that

(107 were not satisfied initially, it could certainly not be

4.1M3, A,
X
6.3V2GrA, AT 2A,

| 5m§e,|

7 =6% 107(

e’
eV?

| 2 |)1l/12

a(bPy,—ably,)

ee’

p

=2 Xee', (116)

p

satisfied for lower temperatures. abb, 2b°, gal, ab,
In the above system consisting of ,v,, and », (and o p’ oo p (117
their antiparticles discussed above, observe that we have
neglected the effects of,- v, oscillations. As discussed in
the previous section, the effect of these oscillations is t#"d hence
make q_,,T— L,,e) tend to zero. Since these oscillations cannot
preventL, from being generated the effect of incorporating d(bhy—aly) _ZbEe, ab, N ag, (118
them should only increase the allowed region of parameter ap p p p’

spaceg48].

The effect of the muon neutrino can also only inc/rease the here we have used the result m@y:age/ at the reso-
a_llovyed re@_"on of parameter spat_:e. The effezct/gf Ve 0S- nance(note that we have assumed tha® >0 for definite-
cillations will be to creatd, provided thatbm ., <0.The  nesy Note that we are essentially interested in evaluating
effects ofv,, are completely analogous to the effects of thethe maximum value of the fraction of neutrinos at the reso-
v, neutrino, and we can replace, with v, in the above nance. This maximum fraction should occur approximately
analysis. This means that it is only necessary that eithewhen p~(p). Thus, from the previous analysis, the reso-
5mfe, or 5mie, (or both satisfy Eq.(115). nance for neutrinos of average momentum occurs when
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—. (119

Thus, from Egs(118 and (119 and Eq.(116) the width of
the resonance in momentum space becomes

2

2

[omZ, |
ol

Ap~4p\(Xee)

| m
Recall that(x.e ) is defined in Eq(25), and is given by

2 (p)?
Pe(SmLy)?

(120

Te’|

(Xeo ) =SiNP265°

YeG#(3.19°T*

~sir265¢ + (121)
0 (6mZy)?
Expanding ou{x.¢ ) at the temperaturéwae‘i [defined in
Eq. (104)], we find
2 2 2
_ . | YeGEMGAL AL omZ,,
(Xeo ) =SIMP205% +| = PMit =
22A.  AF2A| | am?,
2 72
~1.2}1075 —| , (122
ee
where the last part follows provided that

|5m§e,|510‘3|6mie,|. Thus, using the above equation, Eq.

(120 simplifies to

Ap 2y.GeM34l A,

=1.4x10"2,
p V2A,  AtAe

(123

Thus it is clear that only a small fraction of neutrinos will be
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Usingn,=$¢(3)T% =, and
e —/-p2 12
dp 272 1+e”™’ (125
we find
AnV 2yeGFM\2N41 AT <p/T>3
N e V2A,  AF2Ac LE(3)(1+ePT)
1.4x10°2 (pIT)®
= o) =1.0x102. (126)

T 1.5(3) 1+ePIT

The effect of the momentum spread is thus to reduce the
number of neutrinos at the resonance by the above factor.
Multiplying the right-hand side of Eq110) by this fraction

and repeating the same steps which lead to(EtH) we find

that Eq.(115) is weakened by the factafAn,/n,=10"1. In
other words the effect of the neutrino momentum distribution
is to increase the allowed region of parameter space for
which v,-v., oscillations do not destroy the® asymmetry
created by - v oscillations. This region of parameter space
is given approximately by

|5 2 |11/12’

A
2
m,|<———\6m~,
= \/Anylny| b

where\ is given in Eq.(114) andvAn,/n, is given in Eq.
(126). Putting the numbers in, the above condition can be
written in the form

(127

| m2 | | 2 | 11/12
Tve;—sexlo-ﬁ(T\;f—) (128

at the resonance. We denote the fraction of electron neutrinos

!

at the ve-v; resonance byAn,/n,. Note thatAn,/n, is
given approximately by the equation

We now check this result by doing a more accurate numeri-
cal study of this problem.
The rate of change of_,,e and L, due to thev v,

An, Apdn, (124 V€ v, oscillations can be obtained from E@4). This leads
n, n, dp’ to the following coupled differential equations:
|
db,, 1 fw sif265° I') ag,, (cos265° —bg,,) (1—2z+)p2dp
- 3 / / /T
dt 43T Jo [xP, +(cos205® —bP,, +al,)2][X0, + (cos205® —bl, —al, )] (1+e”))
. 1 Jw sinzzagell“,‘je[xge,+(age/)2+(bge,—cosZﬂSe,)z] z p%dp
8£(3)T°)o [xge,+(0032986'—bge,+age,)2][xge,+(cosZHSe'—bge,—age,)z] 1+e”™
dL,_ 1 fw siP265° ') &l (cos26g° —bf,, (1—2")p2dp
dt — 4LB3)T o [xP, +(cos2pg —bP,, +aP,,)2][xP,, +(cos2By —bP, —aP )2 1+ePT
SirP205° T [X0y, + (aly )2+ (bl — cos205*)?] 2~ p2dp

Te’

1 fw
+ ;
8L(3)T%Jo [xP,, + (cos26g®

)2I[x",, + (cos203°

Te!

. (129
—bP,—a’,)?] 1+e’T
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These equations are coupled differential equations becauseum. While this latter assumption is generally true for small
ab, and a’,, depend on bothL, and L, . Recall that values of siR26F , it is not true for larger values. In this

+

z*=(z+2)/2. From Eq.(93) the z parameter, which is re- case, the rate of change B}, due tov,- v, oscillations will
lated to the number of sterile neutrinos produced, is govhe much larger than our analytical estimate. Consequently,

erned by the allowed region of parameter space is increased. Thus the
result that the allowed region of parameter space for
, . 79’_ —6 : . apr
4z 1 Ffjesinzz pee S|.n22¢90 —.10 m[s S|gin;f!cantly larger than the allowed re-
azz(l—z) 5 s o P gion for sirf265 =108 is not unexpected.
Xee T(€OS25" — by +agy) Having established the condition that thg- v, oscilla-

tions do not destroy the(® which is created by the,- v,
oscillations(or v, v,, oscillations, we must also check that
the magnitude ok (¥ is large enough to invalidate the bound
in Eq. (99).

o For 6mZ,, in the range|sm’,|=10"°® eV?, the bound
and the eVO|uti0n Ot iS gOVerned by an equation Similar to Eq (99) arises by requiring that thee_ Vé osci"ations do not

the above(but witha’— —af). _ bring the v, sterile neutrino into equilibrium above the ki-
I The ?]bove equations can be integrated n'umerrll'c(étﬂy netic decoupling temperature~<@ MeV). The sterile neu-
owing the proceedure mentioned in Seg. oing this, we trino v, will not be brought into equilibrium provided that

cant find the; rggtl)ontcr)]f para,tmete.r”s?ace vgherel.tﬁiaas;;m(j— the rate ofv, production is approximately less than the ex-
metry created by thes,-v; oscillations does not get de- pansion rateH, i.e.,

stroyed by theve-v, oscillations. We will solve Eq(129

and Eq.(130 under the assumption that %31986(:1 (i.e., the . 1 ) e’
ve-v,, Oscillations are approximately maximaPerforming I'(ve— Ve)/H:ZFves'nzzem H= 1, (13D
the necessary numerical work, we find th&® is created by
v, v, oscillations and not subsequently destroyedvpyv,  where we have used E¢P) with (sirfr/2L,,)~1/2[51]. Re-
oscillations for the region of parameter space shown in Figeall that we are primarily interested in the region 1 MeV
5. For definiteness we have taken two illustrative choices foes T<100 MeV, whereH=5.5T?/Mp. Using Eq.(19) with
Sin26F , sirf26F =1078,107°. Note that in our numerical a=0, the above equation can be rewritten in the form
work, we have studied the region 1b<|sm’, |/eV2<1C". /
Of course, there will be parameter space outside this region YeGEMpsir?265¢ T2

© i snd ) <1, (132
where theL'® created byv,- v, oscillations is not destroyed 2202, +1]
by ve-v. oscillations. However, one should keep in mind ee

that there is a rather stringent cosmology bound - .
S 2 where we have assumed large mixing, i.e., a@é%l. Re-
m, =40 eV[49] (which implies that sm7,,[<1600 eVf). call thatb,y can be obtained from Eq18). Obtaining the

e’

This bound assumes that the neutrino is approximatelyhaximum of the left-hand side of E¢132) leads approxi-
stable, which is expected given the standard model interagnately to the boundism?|<10"¢ eV2.
tions. Of course, if there are new interactions beyond the |, the case wherk . is created by~ v, oscillations, the
standard model, then it is possible to evade this cosmologg.t L diff " The | Toe ber i q
bound[50]. ituation is very different. The lepton numbley_ IS- create

Observe that the region of parameter space wher8t the temperature whenb ~1 (assuming that
L® survives is somewhat larger than our analyticalcos] ~1). Denoting this temperature By , then as per
estimate Eq(128). This is partly because the point where Eq. (34
L, is created occurs at a significantly higher temperature
than the analytical estimatésee Sec. V for some dis- e’ | Ee’| v
cussion about this point Note that the quantity To ~16 —z—| Mev. (133
MAAN,n, = TEZT3 152 Thys, the result that the lepton

number is created at a higher temperature than our analytithe evolution of this system can be divided into two regions,

estimate can easily lead to a significant increase in the P3he region before lepton number creatie T>Tfe') and
. . / L] c 1
rameter space. More importantly, for large’aiéf” the mag- the region after the lepton number creat(d)e.,T<Tge'). In

nitude of L, created byv,-v, oscillations is considerably the region before the lepton number is created,~0 and
larger before the growth df, _is cut off by the nonlinearity ~ Eq. (132) holds. We will obviously be interested in the pa-

of the differential equation governing its evolutitompare  rameter space Wher@mie, is sufficiently large[recall that

the solid line with the dashed or dash-dotted lines in Figs. 3. _2 . e’ .
or 4). Recall that our analytical estimate assumed that theémfe’ is related toT¢" by Eq. (133 abovd so thatLVr IS

creation ofL(®) due tov,-»!, oscillations had already passed created at some point above the kinetic decogpling tempera-
the rapid exponential growth phase at the point where th&ir€ Taec=3 MeV, of v;. Let us assume thadm’,,| is large

destruction ofL(® due tov.-v, oscillations reached a maxi- enough so thdnge,>1 for temperature¥ > TgE’ (which cor-

I'P sint267¢

: (130

p e’ _ P P2
X o +(cos2y —b” ,+a’,,)
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responds approxmately tbom
b2 ,+1=b?

ee
ng(

where we have used E(L8) with nsz3/4.1. Observe that
the most stringent condition occurs fore= Tge' . Thus taking

T=T§e/ [Eq. (133)], we find that the sterile neutring, will
not come into equilibrium with the ordinary neutrinos for

temperatures abov Te provided that

2
_, |omZ, |
= eV?

Assuming maximalve- v,, oscillations(i.e., sinmge’zl) and
assuming om?,| <103 eV? [37], Eq. (135 implies that

2 |>[6mZ,]). In this case,
oo and Eq.(132 can be rewritten in the form

2
4.16m2, M2,

6.3\2GrA,

sm2200 YeGZMp
22

(134

4/3

[Sint265% 123,

| 5m7e’ |
eV?

(135

ee

|om?,|= 1073 (136)

Te’

Thus provided that this constraint is satisfied, the sterile neu-

trino, v, will not come into equilibrium for temperatures
greater than the temperature wher,e is c:reatedTTe

We now need to check that the Iepton number created i
sufficient to suppress,- v, oscillations for temperatures less

than Tge Demanding that the interactions do not bring the
sterile neutrino into equilibrium with the ordinary neutrinos,
that is again imposing the inequality E4.31), but this time

for T<TZ® where there is significant creation bf® [11],
we find that

YeGZM psint2 65
22[(bee’ * aee') + 1]

(137

where the— (+) signs correspond to.- v} (ve-vg) oscil-
lations. Note that Eq.137) is only required to be satisfied for
T>Tge=3 MeV (since we only need to require that the
sterile neutrinos do not come into equilibrium before kinetic
decoupling of the electron neutrinos ocour®ncelL(® is
created aﬂ'=T§e/ (whereb, . = cosYE ~1), its magnitude
will rise according to the constrair#,.,=1 (assuming for
definiteness thatt (¥ >0). Note that the quantitieéSey,ace

are related td®,./,a,. as follows:

bee’ _ Ae 5mie’ Aee’ 1 6mie (138)
bre’ a AT 5mee’ Qe B 2 6mee

After the initial resonancea,.,=1 while b_<1 (and
quickly becomes much less than gn&€hus very soon after
the resonancea,..>b.., and hence from Eq.(138),
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0.7 MeV=T=<Ty=3 MeV. (139
Electron neutrino oscillations in this temperature range can
affect BBN because they will deplete electron neutritersd
antineutrinog and thus modify the temperature when the
neutron/proton ratio freezes out. This effect is generally
small unless sit26,,=10 2 [6,8]. If we demand that
sinf26,,<10" 2 for this temperature range, then from E#9)

we require|a|= 10 (for the most stringent case of maximal

mixing) for this temperature range@r |6m?<10 8 eV?).
Thus, from Eq.(18), |a|= 10 implies
ILE|=2 oy (140
=~ evz 0

Recall that for temperaturés=T; [whereT; is the tempera-
ture where the change i due to the expansion is larger in
magnitude to the change ia due to oscillations, see the
earlier comments around E€B9) for some discussion about
this], L, is created such that,, =1, from this it follows

e

&ombining Eq(140 and Eq.(141), sufficient lepton number
will be generated to suppress the oscillations in the tempera-
ture range Eq(139 provided that
|\/|ev>4
— -

MeV

Ts

|5 Te’|

L<e>szrzz>< 10—2(W2— (142

|6m (142

ee’|<lo 2|5mfe,|(_|_—
Note that the temperaturg; is generally less than about 4
MeV [see EQ.(39) for a discussion about thisThus, Eq.
(142 will be easily satisfied given the condition E{.28).

In summary, a consequence of the creationLQI by
v,-v, oscillations is that the large angle or maxima} v,

Figure 5

MG

2

dm

3 ) s
Region where L( Survives
10

10° 10' 10°

0°
10" ) .
dm” . (eV7)

.o >bee. As before the most stringent bound occurs when

TzTée/, and Eq.(137) leads to approximately the same
bound as beforefi.e., Eg. (136)], since at the point
T:Té—e/, a,rer%b,rer.

Finally, we need to check that the oscillations of the

ve Neutrinos do not significantly deplete the number of elecsponds to sifegF =108

tron neutrinos for the temperature range,

FIG. 5. Region of parameter space in thesm’,, |6mZ,|,
plane (assuming sit26E€ ~1) where thel.(®) created byw,- v, os-
cillations does not get destroyed by-v, oscillations. The solid
line corresponds to s?aege’:10—6, while the dashed line corre-

. Note that similar results hold for

! - - .
v~ v Oscillations by replacing,—v,, .

n
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oscillations will not significantly modify BBN provided that
L(® does not get destroyed by- ., oscillations(see Fig. 5 Figure 6
for some of this region of parameter spaaad the condition 107} .
Eqg. (136) holds. Thus, it is clear that the oscillation gener-
ated neutrino asymmetry can weaken the rather stringent
BBN bound (émZ, . |
many orders of magnitude. A consequence of this is that the:-é g
maximal ordinary-sterile neutrino oscillation solution to the -
solar neutrino problem does not significantly modify BBN 2
for a large range of parameters. 10k Region where L’ survives 1
While we have focused on a particular scenario, our
analysis will be relevant to other models with sterile neutri-
nos. For example, assume that there is a sterile neutrino
which mixes with parameters corresponding to the large 10° w0 | 16; 10
angle MSW solution to the solar neutrino problem, that is oM V)
dm?~10"% eV? and sif26,~0.7 [52]. This scenario has
been “ruled out” (assuming negligible lepton number asym-
metry) in [6,8]. However, if the sterile neutrino also mixes ;
slightly with the . and/orr neutrino(and such mixing would ~ destroyed by,-v, oscillati9ns(assuming sifgg* ~1). The solid
be expected then these BBN bounds can be evaded profine corresponds to stagy* =105, while the dashed line corre-
vided that|6mfe,| and/or|5mie,|20_1—1 e\V2. Note that sponds to sif267*=10"8. Note that similar results hold for
the evidence fow,,- v,, oscillations found by the LSND col- ¥+ Ve oscillations if bothw), and v, exist.
laboration suggests thb&mfw| =0.3 e\?[3,47). If this is the )
case then the large angle MSW solution will not lead to aYe—Yu: Ae—A, have to be made. Thus, evaluating the
significant modification to BBN for a large range of values "€sulting expressions for andAn, /n,,, we find

|<10"8 eV? for maximal mixing by S

FIG. 6. Region of parameter space in thesm?,,, [om’, |
plane where thd () created byv,-v, oscillations does not get

for sinf264’. lsm? | sm? || 1112
We now discuss the possibility that the atmospheric neu- T”;SSX 106 e—\;; (144

trino anomaly is due to large angle or maximal muon

neutrino-sterile neutrino oscillations. Here, we will denote og pafore we have made a more accurate numerical study of
B . ’ . . . 1
the_sterlle neutrino by, (this neutrino is expected {0 be his problem. If we solve the system of equations Ei®9)
distinct from »,). Note that the possibility that the atmo- 44 Eq.(130), with the replacements,,v.— v, v/, then
. . . . . 1 1 I_L 1 1
spheric neutrino anomaly is due to large angle or maximalye can obtain the region of parameter spaceM where the
! H . .
v,-v, oscillations can be well motivated. For example, the| («) ¢reated byv,- v/, oscillations does not get destroyed by

exact parity modef17] predicts that all three ordinary neu- ,, _,/ ggcillations. We show some of this parameter space in
trinos mix maximally with mirror neutrinos if neutrinos have Ff’“ _ é’“

mass.(See also Refl38] for some other interesting models "¢ \ye assume the best fit of the atmospheric neutrino data,
which can solve the atmospheric neutrino anomaly through 2 | a2 g2 30’ — .
maximal ordinary-sterile neutrino oscillationghe deficit of €N |6, [=10"% eV and si 265" =1. Numerically
atmospheric muon neutrinos can be explained if there ar§°|V'f‘9 Egs.(129 ,and Eq.(130 (with the replacement of
v,V oscillations with siR26,=0.5 and Ve Ve With v, ,v,) assuming ,the best fit parameters,
10*3s|5mfm,|/evzs 107! [2,53]. The best fit occurs for |5mi#,|:10*2 eV? and sif265* =1, we again obtain the
|sm2 ,|=10"2 eV? and sif26,~1 [2]. However, this pa- region of parameter space where the) asymmetry is cre-
ramﬁéétber range is naively inconsistent with BBéée Eq(1)] ated byv - v; oscillations and does not get destroyed subse-
if the lepton number asymmetries are neglected. Can thauently byv,-v, oscillations. Our results are shown in Fig.
generation of lepton number by ordinary-sterile neutrino os7- As the figure shows, the asymmetiy*) created by
cillations reconcile this solution to the atmospheric neutrinov,-v,, oscillations will not be destroyed by,-», oscilla-

anomaly with BBN? tions provided thaﬁmfﬂ, is quite large, i.e.,
To study this issue, consider the system consisting of
v.,v,,v,. This system is similar to the,ve,v, system |5miM,|?,30 eV2. (145

that we have discussed above. Doing a similar analysis to the . )

above(i.e., replacing, and v, by v, andv'), we find that Recall that our analysis neglects the possible effects of
1 yr . . . 2

the L(*) asymmetry created by,- v/, oscillations will not be ¥+ ¥y oscillations. It may be possible that smal#m’ , are

destroyed byv,-v,, oscillations provided that allowed if thev -v, mixing parameters are large enough.
The requirement that - v,’L oscillations do not produce

2 |_ A 2 1112 too many sterile states implies an upper limit onZBH‘a’“'
|6mw,|~ m|5mm’| ' (143 [see Eq(96)]. This upper limit has been shown in the figure

(dash-dotted ling Also shown in Fig. 7/(dashed lingis the

wherex andAn,/n, are given by equations similar to Eq. cosmological energy density bounwmeJslGOO eV
(1149 and Eqg. (126) except that the replacements [49].
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10* e : : S the neutrinos are approximately stalglehich would be ex-
Figure 7 pected unless some new interactions epa§l)) then there is
. a stringent cosmology bound nf,,fs 40 eV[49]. Although

_________________________________________________________________________ this parameter space is not so big, it can be well motivated
] from the point of view of dark mattefsince stable tau neu-
trinos with masses in the range 6 €Vh, <40 eV could

provide a significant fraction of the matter in the Universe
If we add thev,, sterile neutrino to the’.,ve, v, System
we considered earliefin connection to the large angle
ordinary-sterile neutrino oscillation solution to the solar neu-
trino problen), then vT-v;L oscillations will also generate
L® in a similar manner to the way in which,- v, oscilla-

o ] . tions generated L(®. Consequently, the bounds on
10 " ¥ 0 sinzze’e', can alternatively be considered as bounds

sin® @ * 5m§e,,
FIG. 7. Region of parameter space faii, — s’ ) where on 5miM,, sir?zogu/. Of course, we only need to require that
. , T ! . 2 . / 2 . - .
the L™ created byv.-v,, oscillations does not get dﬂestroyed by either 5mre_” sz-z%e or 5mm’ ’szZ'g,OM S_atISfy t_he
v,-v,, oscillations. This region which in the figure is denoted by the bounds derived. Similarly, we can add thgsterile neutrino
“allowed region” is all of the parameter space above the solid line.to thev.,v,,, V;L system and analogous reasoning leads to the
We have assumed that &*'=1 and |sm’ |=10"2 eV*  conclusion that the bounds (ﬁmiﬂ,, sir267* can alterna-
(which is the best fit to the atmospheric neutrino glafdso shown 2 : e
(the dashed lineis the cosmology bounth, <40 eV (which im- i ) ] o ) e’ Sij’H.O - Observe
plies|§mfﬂ,|51600 e\?), which is required if the neutrino is suf- that with smc,, sinf26;° or om ., sirF26g" in the range
ficiently long lived. The dash-dotted line is the BBN bound, Eq. identified in Fig. 7(where the atmospheric neutrino anomaly
(96). is explained by large angle,,- v"t oscillations without sig-
nificantly modifying BBN the solar neutrino problem can
Recall that the differential equations, E329 are only  also be solved for the entire parameter sg&e (98)], with-
valid provided that Eq(75) holds.[We also require EQ(76)  out significantly modifying BBN. Alternatively one can ar-
to hold for sm?= 6mfe,, which is clearly valid for the region gue that the present data may allow the to come into
of parameter space studi¢tlote that in our numerical work equilibrium with the ordinary neutrinos and still be consis-
we found that the condition Eq.75) was approximately tent with BBN[15] and thus we only require the less strin-
valid for the points in the allowed region of the figures ex- gent bounds given in Fig. 5. Clearly this is a possibility at the
cept for the region with relatively large values of moment. Note however, that for the case of the exact parity
sinf26,=107°. It would be a useful exercise to check our symmetric mode[17], where the mirror neutrinos interact
analysis by performing a more accurate study using the derwith themselves, this way out is not possible. This is because
sity matrix equations, Eq46), modified to incorporate the if the mirror muon neutrino is brought into equilibrium
neutrino momentum distribution. above the kinetic decoupling temperatuveéhich is about 5
The Siﬁz%ﬂ' dependence shown in Figs. 6 and 7 can beMeV f_or muon neutr_ino)sthen t_he mirror weak_ interactipns
understood qualitatively as follows. For small ?ﬁ%“' W;}” bring ad” th_ree m||rror neutrinos tqgether v_\ll!éh_thehmuror
(=109, the creation oL is sluggish which has the ef- photon and mirror electron-positron into equili riumhic
i ) \ would lead to about nine effective neutrino degrees of free-
fect of delaying the point where the destructionldf) by

, ilati hes it ) te. A " dom during nucleosynthesgisFor the case of mirror neutri-
v~ v, oscillations reaches its maximum rate. As mentioned, s it seems to be necessary to ensure that the mirror muon

earlier, for lower temperatures the rate at whightv,, 0s-  neytrino is not brought into equilibrium in the first place.
cillations destroyl(#) increases, which has the effect of re-  Note that in our previous analysis, we have assumed that
ducing the allowed parameter space. For larger values ghe sterile neutrino is truly sterile and does not interact with
sirf267* (=10 8), the maximum rate at which the,-»,  the background. In the special case of mirror neutrinos, the
oscillations destroy.(*) occurs during the time wheln®) is ~ mirror neutrinos are expected to interact with the background
still growing exponentially. In this case the system movesbecause they interact with themselj&gl]. In general the
rapidly away from theylu-yl; resonance region. Conse- €ffective pgtentialldescribing coherent forward scattering of
quently, the allowed region of parameter space is signifiihe neutrino with the background has the form
cantly increased. V=V,—V{. For truly sterile neutrinosy,=0 (as has been
Observe that from Eq135), this lepton number will eas- assumed hitherjo For mirror neutrinosV{ is nonzero. De-
ily be sufficiently large and created early enough to preventoting the mirror neutrinos by};;, then for the case of
the v; sterile neutrino from coming into equilibrium given v - u;; oscillations we will denote the effective potential by
Eq. (145. Thus, the large angle or maximal muon-sterile
neutrino oscillation solution to the atmospheric neutrino V=Va—V’B, (146
anomaly is in fact consistent with BBN for a significant
range of parameters. Note that the condition Bet5 im-  whereV,, is given by Eq.(14) andv’ﬁ is the effective poten-
plies quite larger neutrino massesn, =6 eV. Note that if tial due to the interactions of the mirror neutrinos with the

Allowed Region

W €V5)

-om’

tively be considered as bounds 6m
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background. The mirror effective potentisl, can be ex- itron. [However, the temperature of the mirror particles will
pressed in an analogous way ¥g,, that is there is a part generally be less than the temperature of the ordinary par-
which is proportional to mirror lepton number and a partticles if the oscillations satisfy Eq96).] Detailed studies

which is independent of mirror lepton number, involving mirror neutrinos will need to incorporate this. We
leave a more detailed study of mirror neutrinos to the future
Vip=(—a'P+b'P)Af. (147 [56].

If the number of mirror neutrinos is much less than the num-
ber of ordinary neutrinos thes' = 0. [Note that theb part of VIl. CONCLUSION

the effective potential is proportional to the number densities |, summary, we have studied the phenomenon of neutrino

of the background particles. This dependence is not given igciliation generated lepton number asymmetries in the early
Eq. (19 since for this equation the number densities were sefniyerse in detail. This extended study clarifies the origin of

equal to their equilibrium valuesThe parametea’ has the ihe approximations adopted in the earlier wgae]. We

form have also studied the effects of the thermal distribution of the
—2G.n.L/® neutrino momenta and non-negligible sterile neutrino num-

a'P= Fy , (148  ber densities.
Af In the unrealistic case where the neutrino momentum dis-

tribution is neglected, the evolution &f, can be approxi-

mately described by seven coupled differential equations
LB =L, +L,+L, +L,+7’ (149 [Egs.(46)], which can be obtained from the density matrix.
Yoo Ve TVw Vs ' We showed in Sec. Il that these equations can be reduced to
a single integrodifferential equatidwe show in the Appen-
) ~ 7 dix that the same equation can be obtained from the Hamil-
by LV'BE(nV;;— nvﬁ)/”y (note thatn, is the number density tonjan formalism. In general, the density matrix equations
of ordinary photong and 7’ is a function of the mirror cannot be solved analytically, and must be solved numeri-
baryon-electron number asymmetrigwhich is defined cally. However, if the system is sufficiently smootthe
analogous to Eq.17)]. We will assume thay’ is small and  static limit), then the integrodifferential equation reduces to a
can be approximately neglected. Since ordinarymirror relatively simple first-order ordinary differential equation
lepton number is conserve@nd we will assume that it is [EQ.(23)]. This equation gives quite a reasonable description
zero, it follows that of the evolution ofLVa, except possibly at the initial reso-

nance where significant generationlof occurs. We show
that when the thermal distribution of the neutrino momenta is
incorporated several important effects occur. One of these
effects is that the creation of lepton number is much
smoother. This allows a considerable computational simpli-

whereL’(® is given

whereLV; are the mirror lepton numbers, which are defined

L, +L, +L, +L,+L, +L,=0. (150
e M T e " T

From the above equation, it follows that is expected to be
of the same order of magnitude as In the case of the

V.,V ”;,L system, the effect of the mirror-neutrino effective

wr ) g fication, because it means that the static approximation can
potential can be accounted for by simply replacid§” in g 5 reasonably good approximation, even at the resonance
Vv, by for a much larger range of parameters. This meansl.tl;)gt
LW LW /W=2 +L —2L ,~4L. +3L can be accurately described by the relatively simple first-
Yuo TPr i Y e order differential equatiofmodified to incorporate the neu-

LD LI W2l 4L —9L =4l +3L trino momentum distributio)_n This equation is gi\{en_ by .Eq.
Bt Mt v, -, vy (84), expressed as a function of the number distribution of
(15D  sterile states. In Sec. V, we showed that the number distri-
bution of sterile neutrino states approximately satisfied a first
where we have used, =L, =0 and Eq(150. Thus, from  ,.ye; gifferential equatiofiEq. (Qg)p] which rrzlust be inte-
the above equation, assuming that negligiblg is pro- grated for each momentum step.
duced, we see thde,,.|=3Ra,,/| (where R;|5m2 y We first applied our analysis to obtain the rggion of pa-
2 e T T rameter space where large neutrino asymmetries are gener-
5mw,|)._ The factor of 3/4 repléces tr,1e factor of_ 1/2 that_weated. This region of parameter space is given in &3).
had earlier(for the case where,, or v, were sterile neutri-  Thjs analysis included the effects of the neutrino momentum
nos. This difference will increase thelreglon of allowed pa- gistribution which was neglected in earlier stud[d®,18.
rameter space, because it will makgs closer to the point We also examined the implications of lepton number genera-
wherel,_is initially created. At this pointL, /dt can be tion for the BBN bounds fobm?, sirf26, for ordinary-sterile
significantly enhanced because it is very close to the resdleutrino mixing. There are two ways in which the creation of
nance(also note thatL, /dt will be suppressed because it 1€pton number can modify the BBN bounds. One way is
is proportional to TI7). where thgva— v¢ oscillations them§elves pr.odut:ea thereby
Finally, observe that another important feature of mirrorSuppressing the number of sterile neutrinos produced from
neutrinos is that the mirror interactions can potentially bringthe same oscillations. The other way is where #ev; 0s-
all three of the mirror neutrinos into equilibrium with them- Cillations creatd, - which thereby suppresseg production
selves as well as the mirror photon and mirror electron posfrom v -v¢ oscillations. The bound for the former case is
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given in Eq.(96), while the latter case is studied in Sec. VI,  The expectation value that an initial weak eigenstate neu-
in the context of the maximal vacuum oscillation solutions totrino v, has oscillated into a sterile statg after - seconds

the solar and atmospheric neutrino problems. The maximakill be denoted by|.(t,7)|? (wheret is the age of the
vacuum oscillation solution of the solar neutrino problemuUniversg. The average probability that an initial weak
assumes that the electron neutrino is approximately maxieigenstate has oscillated into a sterile state can be obtained
mally mixed with a sterile neutrino. For a large range ofby averaging the quantitwg(t,rﬂz over all possible times
parameter space, the maximal mixing leads to an energy in; (weighted by the probability that the neutrino has survived

dependent factor of 2 reduction in the solar neutrino fluxes; seconds since its last “measurementThis average has
This leads to a reasonably simple predictive solution to thghe form
solar neutrino problem which is supported by the experi-
ments. However, most of the parameter space for this solu- 1 [t
tion is inconsistent with standard big bang nucleosynthesis <|¢é(t)|2>=w—J e 70l y(t,7)|?d, (A1)
(BBN) if the lepton numbers are assumed to be negligible 070
[5-8]. Wﬁ sh?r\:ved thlrlaltt_there s a Ia;rgdel regt:jion of %ara'mete herew, is the mean time between measurements. Accord-
space where the oscillations generated lepton number in suc 1
a way so as to allow the maximal vacuum oscillation solu-? g to [23] wO_llD_ZIFVa' If~we denote the analogous
tion to the solar neutrino problem to be solved without sig-quantity for antineutrinos by(|#¢(t)|%), then the rate of
nificantly modifying BBN. The allowed parameter space ischange of lepton number can be expressed as
given in Fig. 5. We also showed that there is a range of
parameters where the lepton number is generated so that the d'-va 3 Fva 3 Q(1))
large angle muon-sterile neutrino oscillation solution to the at §<Q(t)> 2 8 g (A2)
atmospheric neutrino anomaly does not lead to any signifi-
cant modification of BBN. This parameter space is illustratedyhere
in Figs. 6 and 7.

We finish with a speculation. One of the mysteries of (QY=( LD = FLD)]P. (A3)
cosmology is the origin of the observed baryon asymmetry
of the early Universe. In principle, it may be possible that theNote that the first term in EqA2) represents the rate of
baryon asymmetry arises from a lepton number asymmetryjshange of lepton number due to collisiofshich produce
The lepton number asymmetry can be converted into &terile neutrino stat¢sThe second term represents the rate of

baryon number asymmetry through sphaleron transitions ahange of lepton number due to the oscillations between col-
or above the weak phase transition. It may be possible that gjons.

small lepton number asymmetry arises from the mechanism |n the adiabatic limit, the transformatiofi,— 6,, and

of ordinary-sterile neutrino oscillations, which is seeded by| ;| . diagonalizes the Hamiltonian. In this limit, the mean
statistical fluctuations of the background. One interes“”%robabilityq¢;(t)|2> is given by

feature of this possibility is that the baryon number asymme-

try would not be related to th€ P asymmetry of the La- e

grangian. Instead the origin of matter over antimatter would <|¢é(t)|2>23in220m< sin2T>. (A4)

be due to a statistical fluctuation which is then amplified by m

neutrino oscillations. However before this speculation can b&ote that in the static limitg(Q(t))/at=0 and hence Eq.

checked, it would be necessary to work out the effective o) results. However, in the expanding Universe which is
potential at high temperature3 {250 GeV) and study the gnstatic, the above equation is not generally védithough

phase transition region. it turns out that it is a good approximation for oscillations
away from resonance where the system changes sufficiently
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dt wS 2p ¢S
APPENDIX where

The purpose of this appendix is to show that E&f) can 1 —5m? : (V) 0
be derived from the Hamiltonian formalism. In applying this M2=§ Ry 0 Sm?2 Ry+4p o I (A6)
formalism, we will assume that the rate at which collisions m
collapse the wave functiofi.e., the rate of measurement of nd
whether the state is a weak or sterile eigenstatgiven by
the damping frequency which is half of the collision fre- : 2
qguency. For further discussion of this point see Sec. Il and R(,—< CO_SGO sinflo , )= m, (A7)
[23]. —sind, coYy 2p
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where the — (+) sign corresponds to neutrindan- B[t [t ty
tineutring oscillations. Expanding out EGA5), we find | (t)]>= —J f COS{ Jt Adt |dtdty,  (A16)
2
dy, B, dyl B , . .
|T—az//a+5¢3, IW_ Ez/;aJr yo, (A8)  where we have_assm_Jmed thatis approxmately constant
over the interaction time scate-t*, so that it can be taken
where outside the integral. This step is a good approximation pro-
vided T=2 MeV [30]. Again defining the quantity
Sm? 7=t—t* (recall thatr is the time between measurements
a= E(Zbi 2a—Ccos2y), and averaging¥ (t,7)| over r, with the appropriate weight-
ing factor, we find that
2
= —gj 2 rt t [t t
B 2p sin2o. (A9) <|\P(t)|2):'g—f e*f/wof f coa“lxdt’}dtldtzdr.
dwolo t—rJt—7 ty
Sm? (A7)
y= ap ——C0S2,.

Integrating this equation by part&ith respect to ther inte-
If we divide the equationgA8) by i, and . respectively, ~gration, we find
then they can be combined into the single differential equa-

. ty
tion (¥ ()] 2)~—ff e T’“’Oco{f At/ }dtldr
t—71
d

v
iﬁ=w+§(1—w2), (A10) (A18)
where we have used the fact theat’“o=0 [55]. The analo-

whereW = y/y, and gous quantity for antineutrinog| ¥ (t)|?), can similarly be

Sm? defined. Recall that the functior$¥ (t)|2), (| ¥ (t)|?) are
A=y—a= E(COSZBO—bia). (A11) related to the rate of change of lepton number through Eq.
(A2):
The + (=) sign in the above equation corresponds to q ) )
ve-vs (ve-vy)  oscillations. Note that |[¢l]? LVa~_ (W[5 3w (VT
=|\If|2/(1+|\lf|2) If the nonlinear term ¥2) can be ne- dt 8 wg 8 ot '
glected, then the solution for constamis, v is (A19)
llf(t)——[l eIVt (A1) Evaluatingd(| W (t)|*)/dt we find
| N . . A¥ I
with boundary conditionV (t*)=0. Introducing the variable g
r=t—t*, and evaluating¥ (t, 7)|? we find ,
t t
B NT =B—f ef"”O(cos{f )\dt’}—l)dr
W (t,7)[?= 7S] . (A13) 2 Jo t-7
B? [t t ty
which is approximately sf26,sirf7/2L,, provided that + 7[ e_T/“’O)\(t_T)f Slr{f kdt’}dtldr,
|q,|2<1 0 t—7 t—7
In the general case whetg 8, andy are not constant, the (A20)
general solution iswhere we have again neglected the non-
linear 2 term) where we use the notation thef  denotes\ evaluated at
- the point ¢— 7). Dividing Eq. (A18) by w, and integrating
—i . . : : :
W(t)= 7J et g(tydt, (A14) Eq. (A18) by parts(with respect to the integration, we find
t*
1
where —(|w(1)[?)
@o
- t’ 2
)‘(t/)zj At (A19) B e o[ 1on o [ sin [" nat|dty|ar
t 2 0 (t=7) t—7 t—7 ! .
and the boundary conditiodf (t*) =0 has again been taken. (A21)

One may easily verify that EqA14) is indeed the solution

by directly substituting it into EQUA10). The probability that  Adding the above two equations and subtracting the analo-
a weak eigenstate at tim& has oscillated into a sterile gous term for antineutrinos, we obtain the following rather
eigenstate at time is thus compact expression for the rate of change of lepton number:
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dL, —3p2 [t tween collisions. EquatiofA22) can be rewritter(using a
X f e~ Two trigonometric identity
dt 16 Jo
t t — dL, 382t t t
X co f Adt'|—co f At | |dr, (A22) “:—J e‘T’wosinj ATdt |[si j N—dt”|dT,
t—7 t—7 dt 8 0 t—r t—7r

. (A23)
where\ is defined similarly tox except thata— —a. Note _
that the total contribution to the rate of change of leptonwhere A\==(\+\)/2. Note that this is exactly the same
number is in fact simpler than either of the two separateequation that we derived in Sec. [Eq. (60)] from the den-
contributions coming from collisions and oscillations be- sity matrix equations.
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