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Ordinary-sterile neutrino oscillations can generate a significant lepton number asymmetry in the early Uni-
verse. We study this phenomenon in detail. We show that the dynamics of ordinary-sterile neutrino oscillations
in the early Universe can be approximately described by a single integrodifferential equation which we derive
from both the density matrix and Hamiltonian formalisms. This equation reduces to a relatively simple ordi-
nary first-order differential equation if the system is sufficiently smooth~static limit!. We study the conditions
for which the static limit is an acceptable approximation. We also study the effect of the thermal distribution
of neutrino momenta on the generation of lepton number. We apply these results to show that it is possible to
evade~by many orders of magnitude! the big bang nucleosynthesis~BBN! bounds on the mixing parameters
dm2 and sin22u0 describing ordinary-sterile neutrino oscillations. We show that the large angle or maximal
vacuum oscillation solution to the solar neutrino problem does not significantly modify BBN for most of the
parameter space of interest, provided that thet and/orm neutrinos have masses greater than about 1 eV. We
also show that the large angle or maximal ordinary-sterile neutrino oscillation solution to the atmospheric
neutrino anomaly does not significantly modify BBN for a range of parameters.@S0556-2821~97!05908-0#

PACS number~s!: 14.60.Pq, 98.80.Ft

I. INTRODUCTION

There are three main experimental indications that neutri-
nos have mass and oscillate. They are the solar neutrino
problem@1#, the atmospheric neutrino anomaly@2#, and the
Los Alamos Liquid Scintillation Neutrino Detector~LSND!
experiment@3#. It is also possible that dark matter may be
connected to neutrino masses@4#. The three experimental
anomalies may not all be explained with the three known
neutrinos so it is possible that sterile neutrinos exist.

A potential problem with any model which contains ster-
ile neutrinos is that these extra states can contribute to the
energy density of the early Universe and spoil the reasonably
successful big bang nucleosynthesis~BBN! predictions. For
maximally mixedne and ne8 neutrinos andnm and nm8 ~or
nt and nt8) neutrinos~where the primes denote sterile spe-
cies!, the following rather stringent BBN bounds have been
obtained@5–8# assuming that the lepton number asymmetry
of the early Universe could be neglected:

udmee8
2 u&1028 eV2, udmmm8

2 u, udmtt8
2 u&1026 eV2.

~1!

Observe that if valid these bounds would rule out the large
anglenm-nm8 oscillation solution to the atmospheric neutrino
anomaly and would restrict much of the parameter space for
the maximal oscillation solution of the solar neutrino prob-
lem @9,10#. However, these bounds do not hold if there is an
appreciable lepton asymmetry in the early Universe for tem-
peratures between 1230 MeV @11#. Remarkably, it turns out
that ordinary-sterile neutrino oscillations can by themselves
create an appreciable lepton number asymmetry@12#.

The bound on the effective number of neutrinosNn
eff

present during nucleosynthesis is the subject of some discus-
sion recently. In Ref.@13#, it is argued that the current infor-

mation suggestsNn
eff.2.160.3, while other authors dispute

this conclusion. For example, in Refs.@14–16#, the upper
limits Nn

eff,3.9, 4.5, 4.0 are respectively derived. Thus, it
may be possible thatNn

eff54 is allowed. In this case note that
many of the BBN bounds derived in Refs.@5–8#, including
the bounds quoted in Eq.~1!, need not apply. However, for
the present paper we will assume that the bound on the ef-
fective number of neutrinos is less than 4. This is useful even
if it turns out thatNn

eff.4 is allowed. For example, the large
angle~or maximal! ordinary-sterile neutrino solutions to the
atmospheric and solar neutrino problems may require
Nn
eff;5 if they are to be solved simultaneously. Also note

that in the special case of mirror neutrinos@17#, the mirror
interactions can potentially bring all three mirror neutrinos
~as well as the mirror photon and electron-positron pair! into
equilibrium ~equivalent to about six additional neutrino spe-
cies! if any one of the mirror neutrinos is brought into equi-
librium above the neutrino kinetic decoupling temperature.

The purpose of this paper is twofold. First, we will study
the phenomenon of lepton number creation due to ordinary-
sterile neutrino oscillations in more detail than in the previ-
ous studies@12,18#. For example, we will study the effect of
the thermal distribution of neutrino momenta. Using these
results we will then study the issue of whether or not the
generation of lepton number due to ordinary-sterile neutrino
oscillations can reconcile the large angle ordinary-sterile
neutrino oscillation solutions to the solar neutrino problem
and atmospheric neutrino anomaly with BBN.

The outline of this paper is as follows. In Sec. II, we
discuss lepton number generation in the early Universe by
ordinary-sterile neutrino oscillations and derive a simple
equation describing the evolution of lepton number. We ex-
pand the analysis of@12# and discuss in detail the approxi-
mations behind this analysis. In Sec. III, we will use the
density matrix formalism to derive a more exact equation
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describing the rate of change of lepton number which is ap-
plicable even when the system is changing rapidly~e.g., at
the resonance!. In the Appendix, we show how the same
equation can be derived from the Hamiltonian formalism.
Using this equation we derive the region of parameter space
where the much simpler equation derived in Sec. II is ap-
proximately valid. In Sec. IV the thermal distribution of the
neutrino momenta is considered. In Sec. V we study the
effect of non-negligible sterile neutrino number densities.
We then apply these results to obtain the region of parameter
space where large neutrino asymmetries are generated. We
also determine the region of parameter space for which
ordinary-sterile neutrino oscillations~with dm2,0 and for
udm2u*1024 eV2) are consistent with BBN. Our work im-
proves on previous studies@5–8#, because these studies were
obtained without taking into account either the neutrino mo-
mentum distribution or the result that ordinary-sterile neu-
trino oscillations create lepton number. In Sec. VI we first
briefly review the large angle ordinary-sterile neutrino oscil-
lation solution to the solar neutrino problem. We then show
that the generation of lepton number due to ordinary-sterile
neutrino oscillations can significantly relax the BBN bounds
for this solution to the solar neutrino problem. We also show
that the large angle or maximalnm-ns oscillation solution to
the atmospheric neutrino anomaly is consistent with BBN for
a range of parameters. In Sec. VII we conclude.

II. LEPTON NUMBER CREATION FROM NEUTRINO
OSCILLATIONS: STATIC APPROXIMATION

Together with Thomson, we showed in@12# that ordinary-
sterile neutrino oscillations can create a large lepton asym-
metry in the early Universe@19#. A simple differential equa-
tion describing the evolution of the lepton number was
derived which seemed to work very well. We also checked
our results with the more exact density matrix formalism
@21#. Further numerical work, and analytical work based on
the density matrix formalism, has subsequently been done in
@18# which confirms our results.

For ordinary-sterile neutrino two-state mixing, the weak
eigenstates (na ,ns) will be linear combinations of two mass
eigenstates (na ,nb):

na5cosu0na1sinu0nb , ns52sinu0na1cosu0nb .
~2!

Note we will always defineu0 in such a way so that
cos2u0>0 ~this can always be done!. We also take the con-
vention thatdmas

2 [mb
22ma

2 . Hence with this convention
dmas

2 is positive ~negative! provided that mb.ma

(mb,ma).
In this section we will for simplicity neglect the effects of

the thermal distribution of momentum, and assume that all of
the neutrino momenta are the same and equal to the average
momentum~i.e., p5^p&.3.15T). In Sec. IV we will con-
sider the realistic case where the neutrino spread is given by
the Fermi-Dirac distribution. Following@12#, we can derive a
simple equation for the rate of change of lepton number due
to collisions and oscillations. Note that it is possible to iden-
tify two distinct contributions to the rate of change of lepton
number. First, there are the oscillations between collisions

which affect the lepton number of the Universe because neu-
trinos and antineutrinos oscillate with different matter oscil-
lation lengths and matter mixing angles in theCP asymmet-
ric background. Second, there are the collisions themselves
which depletena and n̄a at different rates. This is because
the rates depend on the oscillation probability. The oscilla-
tion probability for ordinary-sterile neutrino oscillations is
different to the oscillation probability for ordinary-sterile an-
tineutrino oscillations~which is again due to theCP asym-
metric background!. Generally, the rate of change of lepton
number is dominated by collisions in the region where the
collision rate is larger than the expansion rate@12#. ~A pos-
sible exception to this is in the resonance region where the
matter mixing angle changes rapidly.! For the case of
na-ns oscillations~wherea5e,m,t), the rate of change of
Lna

due to collisions is governed by the rate equation

dLna

dt
5

2nna

ng
G~na→ns!1

n n̄ a

ng
G~n̄a→ n̄s!

1
nns

ng
G~ns→na!1

2n n̄ s

ng
G~n̄s→ n̄a!, ~3!

where the n’s are number densities and
Lna

[(nna
2n n̄ a

)/ng is the lepton number. Using

G(na→ns)5G(ns→na) and G( n̄a→ n̄s)5G( n̄s→ n̄a) ~we
will justify this in a moment!, Eq. ~3! simplifies to

dLna

dt
52Fnna

2nns

ng
GG~na→ns!1Fn n̄ a

2n n̄ s

ng
GG~n̄a→ n̄s!.

~4!

This equation can be rewritten in the form

dLna

dt
.~N na

1 2N ns

1 !@2G~na→ns!1G~n̄a→ n̄s!#

2~Nna

2 2Nns

2 !@G~na→ns!1G~n̄a→ n̄s!#, ~5!

where

N na

6 [
nna

6n n̄ a

2ng
, N ns

6[
nns

6n n̄ s

2ng
. ~6!

Observe that ordinary-sterile neutrino oscillations do not
change the total particle number, from which it follows that

N na

2 1N ns

250. ~7!

Using Eqs.~5!–~7!, the rate of change ofLna
due to colli-

sions is given by

dLna

dt
.S 382N ns

1 D @2G~na→ns!1G~n̄a→ n̄s!#

2Lna
@G~na→ns!1G~n̄a→ n̄s!#1O~Lna

2 !, ~8!

where we have also usednna
1n n̄ a

.3ng/41O(Lna

2 ). We

will assume for the present that negligible sterile neutrinos
are produced, i.e.,nns

,n n̄ s
!nna

,n n̄ a
, and henceN ns

1!1.
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In order to work out the reaction rates, we can invoke a
simple physical picture@22–24#. The oscillations of the neu-
trino between collisions produce a superposition of states.
The collisions are assumed to collapse the wave function into
either a pure weak eigenstate neutrino or a pure sterile eigen-
state neutrino. In other words, we assume that the collisions
are measurements~in the quantum mechanical sense! of
whether the state is a sterile or weak eigenstate. The rate of
the measurements is expected to be the collision frequency
Gna

.
Actually it happens that the above picture is not com-

pletely correct. It turns out that it does lead to an accurate
description only if the rate of measurement is taken to behalf
of the collision frequency that a purena state would experi-
ence@23#. This applies to both sterile neutrinos and ordinary
neutrinos. Thus using this result the reaction rate
G(na→ns) is given byhalf the interaction rate of the neu-
trino due to collisions with the background particles multi-
plied by the probability~averaged over the neutrinos in the
ensemble! that the neutrino collapses to the sterile eigenstate,
that is

G~na→ns!5
Gna

2
^Pna→ns

&. ~9!

The thermally averaged collision frequenciesGna
are

Gna
.yaGF

2T5, ~10!

where ye;4.0,ym,t.2.9 @6#, GF is the Fermi constant
(GF.1.17310211 MeV22), andT is the temperature of the
Universe@equations analogous to Eqs.~9! and ~10! hold for
antineutrinos#. The quantityPna→ns

is the probability that a
neutrino which started off being a pure weak eigenstate,
na , as a result of a measurement at timet* , collapses to the
sterile statens when the next measurement is made at time t.
The angular brackets denote the average over the interval
time between measurements,t (t[t2t* is the time be-
tween measurements!. Note thatPna→ns

5Pns→na
, so it fol-

lows that G(na→ns)5G(ns→na) ~given that the rate of
measurement is the same for ordinary and sterile neutrinos
@23#! and similarly for the antineutrino rates. In the adiabatic
limit,

^Pna→ns
&.sin22umK sin2 t

2Lm
L . ~11!

The quantitiesum and Lm are the matter mixing angle and
matter oscillation length, respectively. They are related to the
vacuum parametersu0 andL0 by @25,26#

sin22um5
sin22u0

122zcos2u01z2
~12!

and

Lm5
L0

A122zcos2u01z2
, ~13!

where 1/L0[D0
p[dm2/2p. In this equation,z52pVa /dm

2

whereVa is the effective potential due to the interactions of
the neutrinos with matter andp is the neutrino momentum.
The effective potential is given by@25#

Va5~2ap1bp!D0
p , ~14!

where the dimensionless variablesap andbp are given by

ap[
2A2GFngL

~a!

D0
p , bp[

2A2GFngAaT
2

D0
pMW

2

p

^p&
,

~15!

where^p&.3.15T is the average neutrino momentum,MW is
theW-boson mass andAe.55.0, Am,t.15.3 ~note that the
‘‘ p’’ superscript serves as a reminder that these quantities
are neutrino momentum dependent!. The functionL (a) is
given by

L ~a!5Lna
1Lne

1Lnm
1Lnt

1h, ~16!

whereh is a small asymmetry term which arises from the
asymmetries of baryons and electrons. It is given by@25#

h5S 1212sin2uwDLe1S 1222sin2uwDLP2
1

2
LN.

1

2
LN ,

~17!

where sin2uw is the weak mixing angle and we have used
Le5LP.LN . Thush is expected to be of order 10210. Note
that the matter mixing angleūm and oscillation lengthL̄m for
antineutrino oscillations are obtained from Eqs.~12!–~15! by
performing the transformationL (a)→2L (a) @27#.

We denote the thermal average of the variablesap,bp by
a[^ap&, b[^bp&. From Eq.~15!, they are given approxi-
mately by

a.
26.3A2TGFngL

~a!

dm2 .225L ~a!S eV2dm2D S T

MeVD 4,

b.
26.3A2TGFngAeT

2

dm2MW
2 .2S T

13 MeVD
6S eV2dm2D for ne-ns oscillations,

b.
26.3A2TGFngAm,tT

2

dm2MW
2 .2S T

16 MeVD
6S eV2dm2D for nm,t-ns oscillations, ~18!
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where we have usedng52z(3)T3/p2.T3/4.1 @z(3).1.202 is the Riemann zeta function of 3#. The matter mixing angles
um , ūm expressed in terms of the parametersa,b are given by

sin22um5
s2

@s21~b2a2c!2#
, sin22ūm5

s2

@s21~b1a2c!2#
, ~19!

wheres[sin2u0, c[cos2u0. A resonance occurs for neutrinos whenum5p/4 and for antineutrinos whenūm5p/4, which
from Eq. ~19! implies thatb2a5cos2u0 andb1a5cos2u0, respectively. In our analysis we will often need to consider the
two distinct cases of very small mixing and very large mixing. For small mixing, cos2u0.1 and the resonance conditions
becomeb2a.1 andb1a.1. For large mixing, cos2u0.0 and the resonance conditions becomea.b and2a.b.

Using the above analysis, we can derive a simple equation for the rate of change ofLna
:

dLna

dt
5

3

16
GnaF2sin22umK sin2S t

2Lm
D L 1sin22ūmK sin2S t

2L̄m
D L G

2
Lna

Gna

2 Fsin22umK sin2S t

2Lm
D L 1sin22ūmK sin2S t

2L̄m
D L G . ~20!

The function,^sin2(t/2Lm)& is given by

K sin2S t

2Lm
D L 5

1

v0
E
0

t

e2t/v0sin2S t

2Lm
Ddt, ~21!

wherev0[2t052/Gna
is twice the mean time between col-

lisions ~of a pure weak eigenstate! and t is the age of the
Universe~note thatt.` is a good approximation because
v0!t). Evaluating Eq.~21! we find

K sin2S t

2Lm
D L 5

1

2 S v0
2/Lm

2

11v0
2/Lm

2 D , ~22!

where we have assumed thatv0 andLm are approximately
constant over the time scalev0 ~static approximation! @28#.
Thus, using Eqs.~22!, ~13!, and~19!, we can rewrite Eq.~20!
in the form

dLna

dt
5
3

8

s2Gna
a~c2b!

@x1~c2b1a!2#@x1~c2b2a!2#
1D, ~23!

whereD is a small correction term

D52
1

2

Lna
s2Gna

@x1~c2b!21a2#

@x1~c2b1a!2#@x1~c2b2a!2#
, ~24!

andx is given by

x5s21
1

4
Gna

2 S 2p

dm2D 2.s212310219S T

MeVD 12S eV2dm2D 2,
~25!

where we have assumedp5^p&.3.15T in deriving the last
part of the above equation. Note that the correction term Eq.
~24! is smaller than the main term@Eq. ~23!# provided that
uLna

u!uau. In the region where the correction term is larger

than the main term, its effect is to reduceuLna
u such that

Lna
→0. From Eq.~18!, the conditionuLna

u.uau only occurs
for quite low temperatures:

T

MeV
&
1

3S udm2u
eV2 D 1/4. ~26!

From the above equation, we see that in the main region of
interest (T*3 MeV), the correction term is much smaller
than the main term provided thatudm2u&104 eV2. Note that
for very largeudm2u*104 eV2, the correction term may be
important.

Observe that Eq.~23! differs slightly from the equation
derived in@12#. The difference is that, in@12#, we assumed
that v0

2/Lm
2 @1 ~so that^sin2t/2Lm&.1/2) which is always

true except at the very center of the resonance@12#. Also
note that in@12# we neglected a factor of 2 which arises
because we negligently assumed that the rate of measure-
ment was equal to the rate of collision.

We now pause to review and comment on the assump-
tions made in deriving Eq.~23!. There are five main simpli-
fying assumptions.

~1! We have neglected the thermal spread of the neutrino
momenta, and have replaced all momenta by their thermal
averagê p&.3.15T.

~2! We have assumed thatnns
,n n̄ s

!nna
,n n̄ a

. If the num-

ber densitiesnns
,n n̄ s

are non-negligible, then we must mul-
tiply the first term on the right-hand side of Eq.~23! by the
factor @nna

2nns
#/nna

.
~3! We have assumed that the transformation from the

vacuum parameters to matter parameters, i.e., sinu0→sinum
and L0→Lm diagonalizes the Hamiltonian. This is only
strictly true in the adiabatic limit (udum /dtu!uDmu). In the
general case@26#,

i
d

dt S nm
1

nm
2 D 5S 2

Dm

2
2 i

dum
dt

i
dum
dt

Dm

2

D S nm
1

nm
2 D , ~27!

with
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dum
dt

5
1

2

sin2u0
~b2a2cos2u0!

21sin22u0

d~b2a!

dt
, ~28!

wherenm
1,2 are the instantaneous matter eigenstates andDm[1/Lm . Expanding outg[u(dum /dt)/Dmu we find ~neglecting

da/dt)

g<2~4!31028S sin22u0
1026 D 1/2S eV2

udm2u D
1/2

away from resonance,

g.2~4!S 1025

sin22u0
D S eV2

udm2u D
1/2

at the initial resonance whereb5cos2u0 ,a.0,

g.6~9!31024T3S 1025

sin22u0
D S eV2

udm2u D at the resonance whereub2au5cos2u0 , ~29!

for ne-ns (nm,t-ns) oscillations. However at the initial reso-
nance whereb5cos2u0, a.0, Lna

is created rapidly. The

contribution tog from a rapidly changingLna
at this reso-

nance is

g.
~0.5!~3!3102

sin22u0
S eV2

udm2u D
2/3 dLna

d~T/MeV!
, ~30!

for ne-ns (nm,t-ns) oscillations~and we have assumed that
cos2u0;1). Thus away from the resonance the adiabatic ap-
proximation is valid for the parameter space of interest~i.e.,
for udm2u*1024 eV2). However at the resonance the adia-
batic approximation may not be valid.

~4! Equation~23! neglects flavor conversion of neutrinos
passing through the resonance@the Mikheyev-Smirnov-
Wolfenstein ~MSW! effect#. Observe that there is not ex-
pected to be significant flavor conversion at the initial reso-
nance~whereb.cos2u0) due to the MSW effect~even if the
system is adiabatic at this resonance! because the frequency
of the collisions is such that̂sin2t/2Lm&!1 at the center of
the initial resonance, for most of the parameter space of in-
terest. Indeed, at the center of the resonance,

v0

2Lm
5

sin2u0
yaGF

2T5
dm2

2p

.43108sin2u0SMeVT D 6dm2

eV2
,.90tan2u0

if b5cos2u0 . ~31!

Thus, for sin22u0&1024, ^sin2t/2Lm&!1. Note however that
for temperatures below the initial resonance, the MSW effect
may be important if there are neutrinos passing through the
resonance.

~5! We have assumed that the rate of change of lepton
number is dominated by collisions. There is also a contribu-
tion from oscillations between collisions. Oscillations be-
tween collisions affect lepton number because the oscilla-
tions produce a superposition of states, where the averaged

expectation value of the state being a weak eigenstate is
12sin22um^sin2t/2Lm& for neutrinos. This probability is gen-
erally unequal to the analogous quantity for antineutrinos,
which is 12sin22ūm^sin2t/2L̄m&. It is possible to show@12#
that for temperatures greater than a few MeV, the change in
lepton number due to the oscillations between collisions is
generally smaller than the change due to collisions except
possibly at the resonance where sin22um is changing rapidly.

The effect of the thermal spread of the neutrino momenta
should be to make the creation and destruction of lepton
number much smoother. At any given time, only a small
fraction of the neutrinos will be at resonance~because the
resonance width is much less than the spread of neutrino
momenta!. Thus, the regions away from resonance may also
be important. We will study the effect of the thermal distri-
bution of momenta in Sec. IV.

The second assumption@~2! above# will be approximately
valid for much of the parameter space of interest. This is
because we are essentially interested in the region of param-
eter space where the sterile neutrinos do not come into equi-
librium with the ordinary neutrinos. We will study the effect
of the sterile neutrino number density being nonzero in Sec.
V. Assumptions~3! and ~5! may not be valid in the reso-
nance region. Note that we will denote assumptions~3! and
~5! collectively as the static approximation because in limit
where the system is sufficiently smooth they will be valid.

Clearly a more exact treatment of the resonance is desir-
able, since assumptions~3! and~5! may not be valid there. In
Sec. III we will develop a more exact treatment of the reso-
nance region by examining the appropriate equations from
the density matrix. As we will show in Sec. III, this treat-
ment leads to the following equation for the rate of change of
lepton number:

dLna

dt
.
3b2

8 E
0

t

e2t/v0sinF E
t2t

t

l1dt8GsinF E
t2t

t

l2dt9Gdt,

~32!

where

b5
dm2

2p
sin2u0 , ~33!
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l15
dm2

2p
~cos2u02b!,

l25
dm2

2p
a.

This equation is valid given assumptions~1!, ~2!, and~4! but
does not require assumptions~3! and~5! ~above!. This equa-
tion is an integrodifferential equation and although compact
cannot be solved analytically except in various limits. Note
that the static limit corresponds to takingl6 as constant over
the time scalev0. In this limit Eq. ~32! reduces approxi-
mately to Eq.~23! as expected. In the Appendix we show
how Eq. ~32! can also be obtained using the Hamiltonian
formalism.

Qualitatively, it turns out that the simplified equation, Eq.
~23!, gives a reasonable description of the creation of lepton
number as the Universe evolves. Assuming that Eq.~23! is
valid, we now analyze the behavior ofLna

as driven by

na-ns oscillations in isolation. Suppose that all initial asym-
metries other than Lna

can be neglected so that

L (a).2Lna
. Notice first of all that fordm2.0 it follows

from Eq. ~18! thatb is negative anda has the opposite sign
to Lna

. Thus from Eq.~23! it is easy to see that the point

Lna
50 is always a stable fixed point. That is, when

Lna
.0 the rate of changedLna

/dt is negative, while when

Lna
,0 the rate of changedLna

/dt is positive, soLna
always

tends to zero.@In the realistic case, where the baryon and
electron asymmetries are not neglected,L (a) is given by Eq.
~16!. In this caseL (a);0 is an approximate fixed point. Note
that even if all of the lepton numbers where initially zero,
lepton number would be generated such thatL (a).0, i.e.
2Lna

.2h @see Eq.~16!#. Note that 2Lna
is only approxi-

mately2h because of theD term proportional toLna
in Eq.

~23!#.
Now consider neutrino oscillations withdm2,0. In this

caseb is positive anda has the same sign asLna
. From Eq.

~23!, Lna
.0 is a stable fixed point only whenb.cos2u0.

When b,cos2u0, the pointLna
.0 is unstable.~That is, if

Lna
.0, then dLna

/dt.0, while if Lna
,0 then

dLna
/dt,0.! Sinceb;T6, at some point during the evolu-

tion of the Universeb becomes less than cos2u0 and
Lna

50 becomes unstable. Ifudm2u*1024 eV2, then this

point ~whereb5cos2u0) occurs for temperatures greater than
about three MeV~assuming cos2u0.1). In this region the
rate of change of lepton number is dominated by collisions
and Eq.~23! is approximately valid. When the critical point
where b5cos2u0 is reached, the lepton asymmetries are
small and henceuau!cos2u0.1. Equation~23! then implies
that dLna

/dt is approximately proportional toLna
, which

leads to a brief but extremely rapid period of exponential
growth of Lna

@12#. Furthermore, note that the constant of
proportionality is enhanced by resonances for both neutrinos
and antineutrinos at this critical point (a.0, b5cos2u0).
The exponent governing the exponential increase inLna

is

thus a large number~unless sin22u0 is very small!. Note that
the critical pointb5cos2u0 occurs when

Tc.13~16!S udm2ucos2u0
eV2 D 1/6 MeV, ~34!

for the ne-ns (nm,t-ns) oscillations we have been focusing
on.

As the system passes through this critical temperature,
lepton number is rapidly created untila*cos2u02b. The
resonance ata5cos2u02b acts like a barrier which keeps
a.cos2u02b as the temperature falls belowTc . Since the
parametera is proportional toLna

T4, it follows that the lep-

ton number continues to grow approximately likeT24 after
the resonance as the temperature falls.

As the temperature drops, eventually the oscillations can-
not keep up with the expansion of the Universe. For tempera-
tures well below the resonance,a.cos2u0 ~assuming that
Lna

.0 for definiteness!. In this region, the rate of change of

a due to the oscillations is balanced by the rate of change of
a due to the expansion of the Universe. That is,

da

dt
5

]a

]Lna

]Lna

]t
1

]a

]t
.0. ~35!

Eventually, the rate of change ofa due to the expansion of
the Universe becomes larger in magnitude than the maxi-
mum rate of change ofa due to oscillations. At this point,
a falls below the resonance point~i.e.,a,cos2u02b) and the
value ofLna

will be approximately frozen. The point in time
when this occurs is thus governed by the equation

]a

]Lna

]Lna

]t
U
max

52
]a

]t
. ~36!

The maximum rate of change ofLna
occurs at the resonance

wherea5cos2u02b. Using Eq.~23!, we can easily evaluate
dLna

/dt at this point. Assuming that cos2u0.1, we find, at
the resonance,

dLna

dt
5
3

32
Gna

a, ~37!

where we have assumed thatx.sin22u0, which should be
valid since we are in the region of low temperaturesT;3
MeV @recall thatx is defined in Eq.~25!#. Also note that

]a

]t
5

]a

]T

dT

dt
.2

4a

T

5.5T3

MP
, ~38!

where we have used the result that the parametera is pro-
portional toT4, anddT/dt.25.5T3/MP ~which is approxi-
mately valid for 1 MeV&T&100 MeV, and MP.1.2
31022 MeV is the Planck mass!. Thus, using Eqs.~37! and
~38!, the condition, Eq.~36!, can be solved forT. Doing this
exercise, and denoting this value ofT by Tf , we find
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Tf.F 50udm2u
MPyaGF

3 G1/7.Fudm2u
eV2 G1/7 MeV, ~39!

where we have used Eq.~10!, Eq. ~18!. Thus, we expect
Lna

to evolve likeT24 until quite low temperatures of order

1 MeV. Note however that when the momentum distribution
is taken into account, the situation is somewhat different.
This is because only a small fraction of neutrinos~typically
of order 1% or less! will be at the resonance, so that the
magnitude of the maximum value of]Lna

/]t will be re-

duced by a few orders of magnitude. Because of the 1/7
power in Eq.~39!, the temperature whereLna

is approxi-

mately frozen,Tf , increases by only a relatively small factor
of 2 or 3. Finally recall that for temperatures below the initial
resonance, the MSW effect can also contribute significantly.
This is because for low temperatures nearTf , there will be a
significant number of neutrinos which will be passing
through the resonance. For low temperatures, the adiabatic
condition is expected to hold@for most of the parameter
space of interest, see Eq.~29!#. Also, recall that the oscilla-
tions will not be damped by collisions for low temperatures
@see Eq.~31!# and thus ordinary neutrinos can be converted
into sterile neutrino states simply by passing through the
resonance@26#. This effect will help keepa.1 for even
lower temperatures.

Clearly these factors~the momentum distribution and the
MSW flavor conversion of the neutrinos passing through the
resonance! will be important if one wants to know the final
magnitude ofLna

. For example, the final magnitude ofLne
is

very important if one wants to calculate the region of param-
eter space where theLne

is large enough to affect big bang
nucleosynthesis through nuclear reaction rates. However, for
the application in this paper, the precise value ofLna

at low
temperatures is not required, so we will leave a study of this
issue to the future.

In order to illustrate the evolution ofLna
we take some

examples. It is illuminating to compare the evolution ex-
pected from the simple Eq.~23! @based on the assumptions
~1!–~5! discussed above#, with the evolution governed by the
more complicated density matrix equations@Eqs. ~46!, see
next section for some discussion of the density matrix for-
malism#. The evolution ofLna

as governed by the density
matrix equations hold more generally than Eq.~23!. This is
because they do not require assumptions~2!, ~3!, ~4!, or ~5!
~discussed above! to hold. They do still incorporate assump-
tion ~1!, that is the thermal distribution of the neutrino mo-
mentum is neglected.

In Figs. 1 and 2 we plot the evolution ofLna
for some

typical parameters. We consider, for example,nm,t-ns oscil-
lations. In Fig. 1 we take dm2521 eV2, and
sin22u051024,1028. Figure 2 is the same as Fig. 1 except
that dm2521000 eV2 and sin22u051026,1029. The solid
lines are the result of numerically integrating the density
matrix equations, while the dashed lines are the results of
numerically integrating Eq.~23!. We stress that in both the
density matrix equations and in Eq.~23!, the momentum
distribution of the neutrino has been neglected. The effect of
the momentum distribution will be considered in detail in
Secs. IV and V.

In the examples in Figs. 1 and 2 the initial lepton asym-
metry was taken as zero. The generation of lepton number is
independent of the initial lepton number asymmetry provided
that it is less than about 1025 @20,11#. This is because, for
temperatures greater than the resonance temperature, the os-
cillations destroy or create lepton number untilL (a)'0 in-
dependently of the initial value ofLna

~which we denote as

L init), provided that uL initu is less than about 1025. For
uL initu*1025, the oscillations at temperatures above the reso-
nance temperature are not strong enough to destroy the initial
asymmetry. Consequently,Lna

remains large, and it will be-
come larger due to the oscillations which create lepton num-
ber at temperatures below the resonance temperature.

FIG. 1. The evolution of thenm-ns~or nt-ns) oscillation gener-
ated lepton number asymmetry,Lnm

~or Lnt
). We have taken by

way of example, the parameter choicesdm2521 eV2,
sin22u051028 (sin22u051024) for the bottom two curves~top two
curves!. The solid lines represent the results of the numerical inte-
gration of the density matrix equations@Eq. ~46!#, while the dashed
lines result from the numerical integration of Eq.~23!.

FIG. 2. The evolution of thenm-ns ~or nt-ns) oscillation gen-
erated lepton number asymmetry,Lnm

~or Lnt
). In this example we

have taken the parameter choices,dm2521000 eV2,
sin22u051029 (sin22u051026) for the bottom two curves~top two
curves!. As in Fig. 1, the solid lines represent the results of the
numerical integration of the density matrix equations@Eq. ~46!#,
while the dashed lines result from the numerical integration of Eq.
~23!.
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As the figures show, the behavior expected from Eq.~23!
occurs. The main difference arises at the resonance where the
magnitude of the lepton number is somewhat larger than
expected from Eq.~23!. This occurs because assumptions~3!
and ~5! ~discussed above!, which lead to Eq.~23! are not
valid at this resonance. Actually, in Figs. 1 and 2 we have
plotted uLnm

u. Integration of the density matrix equation re-
veals that in example 1~but not in example 2, although
Lna

does change sign!, the generated lepton number oscil-
lates at the resonance and changes sign a few times~see@18#,
for a figure illustrating this!. Note that this effect can be
understood from Eq.~32!. To see this, observe that when
Lna

is initially created at the resonance, the parameterl2

grows very rapidly because it is proportional toLna
. The

creation ofLna
may be so rapid that* t2t

t l2dt8 is approxi-

mately independent oft when the initial rapid growth of
Lna

occurs. If this happens then, at this instant, Eq.~32! can
be simplified to the approximate form

dLna

dt
;
3b2

8
sinF E

t2v0

t

l2dt8G E
0

t

e2t/v0sinF E
t2t

t

l1dt9Gdt.

~40!

The oscillations occur because of the factor sin*t2v0

t l2dt8

which oscillates between61. Note, however, that this oscil-
lation of lepton number would not be expected to occur in
the realistic case where the thermal spread of neutrino mo-
menta is considered.

Note that it may be possible to predict the sign of the
asymmetry in principle. Assuming that the resonance is
smooth enough so that Eq.~23! is valid, the equation gov-
erning the evolution ofLna

has the approximate form~for

Lna
small enough so thata!1),

dLna

dt
5A~2Lna

1h̃ !2BLna
5~2A2B!Lna

1Ah̃ , ~41!

whereh̃[h1Lne
1Lnm

1Lnt
2Lna

~we have definedh̃ such

that it is independent ofLna
). Note thatA andB @which can

be obtained from Eq.~23!, with theB term arising from the
D term# are complicated functions of time. Observe however
thatB.0 andA is initially less than zero, and at the reso-
nanceA changes sign and becomes positive after that. In the
region where 2A,B, the lepton number evolves such that

~2A2B!Lna
1Ah̃→0. ~42!

ThusLna
will evolve such that it has a sign opposite toh̃ just

before the resonance. When 2A.B, Lna
will become un-

stable and grow rapidly. Note that at the pointA5B/2,

dLna

dt
5Ah̃ . ~43!

Hence, at the point where the initial rapid creation ofLna

occurs, the rate of change ofLna
will be proportional toh̃ .

Thus, we might expect that after the initial resonance the
sign of Lna

will be the same as the sign of the asymmetry

h̃ . This means thatLna
should change sign at the resonance.

Note however that becauseh̃ depends on the initial values of
the lepton asymmetries which are unknown at the moment, it
seems that the sign ofLna

cannot yet be predicted. However

the above calculation shows that the sign ofLna
should not

depend on statistical fluctuations, as we initially thought
likely @12#.

Finally we would like to comment on the region of pa-
rameter space where significant generation of lepton number
occurs. First, we require thatdm2,0 and that udm2u
*1024 eV2, so thatTc

as*3 MeV. For udm2u&1024 eV2,
lepton number can still be generated but it is dominated by
the oscillations between collisions and is oscillatory@18,29#.
Note that in the realistic case where the spread of momenta is
taken into account, oscillations of lepton number would be
smoothed out and may not occur. A numerical study in@18#
shows that sin22u0*10211 (eV2/udm2u)1/6 is also necessary
~see also@12# for an approximate analytical derivation!. Fi-
nally, we must require that sin22u0 be small enough so that
the sterile neutrinos do not come into equilibrium.@For ex-
ample, in the case ofna-ns oscillations, if there are equal
numbers ofna and ns states then the ratesnna

G(na→ns)

5nns
G(ns→na), n n̄ a

G( n̄a→ n̄s)5n n̄ s
G( n̄s→ n̄a) and from

Eq. ~3! Lna
cannot be generated.# We will reexamine the

region of parameter space where significant generation of
lepton number occurs in Sec. V~where the effects of the
Fermi-Dirac momentum distribution of the neutrino will be
taken into account!.

Note that in@18#, it is argued that lepton number genera-
tion only occurs provided thatudm2u&100 eV2. We have
not been able to verify this result, either analytically or nu-
merically. In fact, we have not been able to obtain any sig-
nificant upper bound onudm2u.

III. LEPTON NUMBER GENERATION
DUE TO NEUTRINO OSCILLATIONS:

A MORE EXACT TREATMENT

In this section we derive a more general equation describ-
ing lepton number generation in the early Universe which
can be applied when the system is changing rapidly, as oc-
curs, for instance, at the resonance. The only assumptions
that we will make are the assumptions~1!, ~2!, and~4! ~dis-
cussed in the previous section!. That is we will neglect the
spread of neutrino momenta and setp5^p&.3.15T, and we
will also assume that there are negligible numbers of sterile
neutrinos generated. In the Appendix an alternative deriva-
tion ~with the same end result! based on the Hamiltonian
formalism is presented. Although not yet realistic because of
assumptions~1! and ~2!, this derivation turns out to be par-
ticularly useful because it allows us to work out the region of
parameter space where the simple Eq.~23! is approximately
valid. As we will show, it turns out that Eq.~23! has a wider
applicability than might be expected from the adiabatic con-
dition, Eqs.~29! and ~30!.

The system of an active neutrino oscillating with a sterile
neutrino can be described by a density matrix. See, for ex-
ample, @21# for details. Below we very briefly outline this
formalism and show how it leads to an integrodifferential
equation which reduces to Eq.~23! in the static limit.
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The density matrices for the neutrino system are given by

rn5P0S 11P•s

2 D , r n̄ 5 P̄0S 11P̄•s

2 D , ~44!

whereP0 and P̄0 are the relative number densities of the
mixed neutrino and antineutrino species, andP andP̄ are the
polarization vectors that describe the internal quantum state
of the mixed neutrinos in terms of an expansion in the Pauli
matricess. The number densities ofna andns are given by

nna

P0
5
11Pz

2
,

nns

P0
5
12Pz

2
, ~45!

with analogous equations for the antineutrinos. The evolu-
tion of P0 ,P are governed by the equations@21#

d

dt
P5V3P1~12Pz!S ddt lnP0D ẑ

2SDE1DI1
d

dt
lnP0D ~Pxx̂1Pyŷ!,

d

dt
P05 (

i5e,nb ;bÞa
^G~nan̄a→ i ī !&~l inin ī 2nna

n n̄ a
!,

~46!

whereln51 andle51/4, and^•••& indicates the average
over the momentum distributions. The quantityV is given by

V5b x̂1l ẑ, ~47!

whereb,l are defined by

b5
dm2

2p
sin2u0 ,

~48!

l5
dm2

2p
~cos2u02b6a!,

where the 1 (2) sign corresponds to neutrino~an-
tineutrino! oscillations. The quantitiesDE andDI are quan-
tum damping parameters resulting from elastic and inelastic
processes, respectively. According to@21,23#, DE1DI

5Gna
/2. The function̂ G(fc→f8c8)& is the collision rate

for the processfc→f8c8 averaged over the distribution of
collision parameters at the temperatureT assuming that all
species are in equilibrium.

Expanding out Eq.~46!, we have

dPz
dt

5bPy1~12Pz!S ddtlnP0D ,
dPy
dt

5lPx2bPz2Py /v0 ,

dPx
dt

52lPy2Px /v0 , ~49!

where v0[1/@DE1DI1(d/dt)lnP0#.1/D ~where
D[DE1DI). If we make the approximation of setting all of
the number densities to their equilibrium values, and also
assume that the number of sterile species is small, then
Pz.1 and Eq.~49! simplifies to

dPz
dt

.bPy ,

dPy
dt

.lPx2b2Py /v0 ,

dPx
dt

.2lPy2Px /v0 . ~50!

Strictly speaking, the approximation of setting
Pz515const can only be valid whenbPz is small enough,
so that MSW flavor conversion cannot occur, i.e., when

ubu&ulu or
1

v0
. ~51!

It is useful to introduce the complex variableP̃(t) defined by
P̃[Px1 iPy . It is easy to see that the resulting equation
describing the evolution ofP̃(t) is given by

i
dP̃

dt
52l P̃2 i

P̃

v0
1b. ~52!

The solution to this equation with initial condition
P̃(0)50 is

P̃~ t !52 i E
0

t

b~ t8!e~ t82t !/v0expS i E
t8

t

ldt9D dt8, ~53!

wherev0 has been assumed to be approximately constant
over the time scalet2t8 (;v0) which is approximately
valid for temperatures above a few MeV where the expan-
sion rate is less than the collision rate@28#. One can easily
verify that Eq. ~53! is indeed the solution of Eq.~52! by
direct substitution. Thus, taking the imaginary part of both
sides of Eq.~53!, we find that

Py52E
0

t

be~ t82t !/v0cosF E
t

t8
ldt9Gdt8. ~54!

From Eq. ~45! ~with P05nna
1nns

. 3
8ng assuming nns

!nna
), it follows that

dLna

dt
.

3

16

d

dt
~Pz2 P̄z!, ~55!

whereP̄z denotes thez component of the polarization vector
for antineutrinos. Thus using Eq.~50! the above equation
becomes

dLna

dt
5
3b

16
~Py2 P̄y!. ~56!
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Note thatPy is given by Eq.~54! andP̄y is defined similarly
to Py except that we must replacea→2a. Thus, we obtain

dLna

dt
.

23b2

16 E
0

t

e~ t82t !/v0S cosF E
t

t8
ldt9G

2cosF E
t

t8
l̄dt9G D dt8, ~57!

where l5dm2(c2b1a)/2p, l̄5dm2(c2b2a)/2p. Note
that we have takenb outside the integral, which is valid for
T*2 MeV, becauseb is approximately constant over the
interaction time scalet2t8 @30#. Changing variables from
t8 to the variablet wheret[t2t8, this equation reduces to

dLna

dt
5

23b2

16 E
0

t

e2t/v0S cosF E
t2t

t

ldt8G
2cosF E

t2t

t

l̄dt8G D dt, ~58!

or, equivalently,

dLna

dt
5

23b2v0

16 F K cosE
t2t

t

ldt8L 2K cosE
t2t

t

l̄dt8L G .
~59!

Note that the above equation can be rewritten using a trigo-
nometric identity, so that

dLna

dt
5
3b2

8 E
0

t

e2t/v0sinF E
t2t

t

l1dt8GsinF E
t2t

t

l2dt9Gdt,

~60!

wherel65(l6l̄)/2.
The phenomenon of neutrino oscillations can also be de-

scribed by the Hamiltonian formalism. We show in the Ap-
pendix that this formalism also leads to Eq.~60! under the
same assumptions.

In the static limit wherel,l̄ are approximately constant
~over a typical interaction time scalev0) it is straightforward
to show that Eq.~58! reduces to Eq.~23! with x given by

x5
1

4
Gna

2 S 2p

dm2D 2, ~61!

rather than by Eq.~25! @note that Eq.~61! reduces to Eq.~25!
for most of the parameter space of interest except for quite
low temperatures#. This difference is due to the fact that in
deriving Eq. ~58! we have made the assumption Eq.~51!.
Because Eq.~23! is much simpler than Eq.~60!, it is particu-
larly useful to determine the region of parameter space where
the static limit@Eq. ~23!# is an acceptable approximation. We
now study this issue.

Expandl t8 ~note that we are here using the notation that
lx denotesl evaluated at the pointx) in a Taylor series
around the pointt85t, that is

l t85l t1@ t82t#S d

dt8
l D

t

1••• . ~62!

Using this Taylor series, the integrals* t2t
t ldt8 can be ex-

panded as~with a similar expansion for* t2t
t l̄dt8),

E
t2t

t

ldt85l tt2
t2

2 S d

dt8
l D

t

1••• . ~63!

The static approximation will be valid provided that

K cosE
t2t

t

ldt8L 2K cosE
t2t

t

l̄dt8L .^costl t&2^costl̄t&.

~64!

Using the expansion Eq.~63!, observe that

K cosE
t2t

t

ldt8L 5K costFl t2
t

2S dl

dt8D
t

1•••G L . ~65!

The above equation can be used to determine the region of
validity of the static approximation Eq.~64!. The region of
validity of Eq. ~64! depends on the values of the parameters
l,l̄. There are essentially four regions to consider.

~a! v0ul tu, v0ul̄tu*1. In this region, Eq.~64! is approxi-
mately valid provided that

U v0

2 S dl

dt D
t
U&ul tu, U v0

2 S dl̄

dt D
t
U&ul̄tu. ~66!

~b! v0ul tu.0, v0ul̄tu*1. In this region, Eq.~64! is ap-
proximately valid provided that Eq.~66! holds and

K cosE
t2t

t

ldt8L .1. ~67!

From Eq.~65! this equation implies that

U v0
2

2 S dl

dt D
t
U&1. ~68!

~c! v0ul̄tu.0, v0ul tu*1. In this region, Eq.~64! is ap-
proximately valid provided that Eq.~66! holds and

U v0
2

2 S dl̄

dt D
t
U&1. ~69!

~d! v0ul tu.0, v0ul̄tu.0. In this region, Eq.~64! can
never be a strictly valid approximation because the right-
hand side of Eq.~64! is zero at this point. Note however that
the static approximation will be acceptable provided that the
left-hand side of Eq.~64! is small at this point, which is true
if Eq. ~68! and Eq.~69! are valid.

Observe that Eqs.~68! and ~69! are more stringent than
Eq. ~66!. Evaluating Eq.~68! at the resonance, we find

U v0
2

2

d

dt8 Fdm2

2p
~cos2u02b1a!GU&1. ~70!

For Eq. ~69! we only need to replacea→2a in the above
equation. Assuming that there is no accidental cancellation
between the various independent terms, Eq.~70! implies

5156 55R. FOOT AND R. R. VOLKAS



U dm2

2p

6b

T

dT

dt U& Gna

2

2
,

~71!

U dadTU&U Gna

2

2

2p

dm2

dt

dT
U,

where we have used]b/]T56b/T and recall that
v052/Gna

. In deriving Eq.~71! we have also neglected a

term proportional to (cos2u02b1a) which is less stringent
than Eq. ~71! because (cos2u02b1a)'0 is just the reso-
nance condition. The first condition in Eq.~71! is satisfied
provided that

T*S 11udm2ucos2u0
MPya

2GF
4 D 1/9.11S udm2ucos2u0

eV2 D 1/9 MeV, ~72!

where we have setb5cos2u0 ~which leads to the most strin-
gent condition! and we have useddT/dt.25.5T3/MP . In
order to evaluate the second condition in Eq.~71!, observe
that

da

dT
5

]a

]Lna

]Lna

]T
1

]a

]T
. ~73!

Assuming that there is no accidental cancellation between
the two terms on the right-hand side of the above equation,
the second term in Eq.~71! implies the following conditions
at the resonance:

U ]a

]T U&U Gna

2

2

2p

dm2

dt

dT
U,

U ]a

]Lna

]Lna

]T U&U Gna

2

2

2p

dm2

dt

dT
U. ~74!

Using]a/]T.4a/T, anda.1, then the first equation above
gives approximately the same condition as the first equation
in Eq. ~71!. The second condition in Eq.~74! gives a condi-
tion on the rate of change of lepton number at the resonance.
Expanding this equation out we find that

U ]Lna

]T
U&U Gna

2

2

dt

dT

1

2A2GFng
U

.
ya
2MPGF

34.1T4

22A2

.4310211S T

MeVD 4 1

MeV
, ~75!

where we have usedng52z(3)T3/p2.T3/4.1. Note that we
have also used Eq.~10! for the collision frequency. Thus, for
example, if we are interested in studying the region where
the lepton number is initially created, then a necessary con-
dition for Eq.~23! to be approximately valid is that the reso-
nance must occur for temperatures satisfying Eq.~72!. From
Eq. ~34! ~with cos2u0.1), this implies that

udm2u*931022 ~531023! eV2, ~76!

for ne-ns (nm,t-ns) oscillations. The creation ofLna
must

also satisfy Eq.~75! at the resonance. This condition should
be checked when using Eq.~23! for self-consistency.

Perhaps surprisingly, there is a significant region of pa-
rameter space where the oscillations are not adiabatic at the
resonance@i.e.,g*1 in Eqs.~29! and~30!# but Eqs.~71! are
nevertheless satisfied. This is possible because Eqs.~71! are
not equivalent to the adiabatic conditions, Eqs.~29! and~30!.
This is because Eqs.~71! arise from demanding that the total
contribution todLna

/dt reduce approximately to the simple

Eq. ~23!. Recall that the total contribution todLna
/dt can be

separated into two distinct contributions: from oscillations
due to collisions and from oscillations between collisions.
The adiabatic condition, on the other hand, is a necessary
condition for the contribution ofdLna

/dt from collisions to
reduce to Eq.~23!. Thus it turns out that in the region when
the system is both nonadiabatic and Eqs.~71! are satisfied,
the modification to the equation fordLna

/dt from collisions
which arises from the nonadiabaticity cancels with the extra
contribution todLna

/dt from oscillations between collisions.
This type of cancellation is more transparent in the Hamil-
tonian formalism~see the Appendix!.

Finally, to illustrate the analysis of this section, consider
the examples given in Figs. 1 and 2. Recall that the solid and
dashed lines correspond to the density matrix Eq.~46! and
Eq. ~23!, respectively. Observe that for the example in Fig. 1
~which hasdm2521 eV2), Eq. ~23! is not a very good
approximation at the resonance where the lepton number is
initially created~although it is a reasonable approximation
for small sin22u0). This is because the lepton number is cre-
ated so rapidly that Eq.~75! is not valid. However, for the
example shown in Fig. 2, wheredm2521000 eV2, the
temperature where the lepton number is created is much
higher. Observe that Eq.~75! is not as stringent for high
temperatures and it is therefore not surprising that the static
approximation is approximately valid for this case.@Note
that the result that the static approximation tends to be a
good approximation at high temperatures can also be seen by
observing that for high temperatures,v0→0, and in this
limit, Eq. ~64! will be satisfied.#

IV. THE THERMAL MOMENTUM DISTRIBUTION
OF THE NEUTRINO

Hitherto we have made the assumption that the neutrinos
are monochromatic. This assumption is not expected to hold
for the neutrinos in the early Universe. The momentum dis-
tribution of these neutrinos will be the usual Fermi-Dirac
distribution. Note that the width of the initial resonance in
momentum space is much smaller than the spread of neutrino
momenta. This means that only a few of the neutrinos will be
at resonance at a given time. Also, not all of the neutrinos
will be creating lepton number. Neutrinos in the region de-
fined bybp.cos2u0 ~which includes part of the resonance!
destroy lepton number, and those in the regionbp,cos2u0
create lepton number. The point where net lepton number is
created only occurs when the lepton number creating neu-
trino oscillations dominate over the lepton number destroy-
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ing oscillations. Recall that in the unphysical case where all
of the neutrinos are assumed to be monochromatic, all of the
neutrinos enter the resonance at the same time, where they
all destroy lepton number ifb.cos2u0, or all create lepton
number if b,cos2u0. Clearly, the effect of the thermal
spread of momentum will make the creation of lepton num-
ber much smoother. An important consequence of this is that
there will be even larger regions of parameter space where
the system is smooth enough so that the static approximation
is valid and hence Eq.~23! ~modified to incorporate the mo-
mentum dependence! will be a good approximation.

In the static limit, we can simply rederive Eq.~23!, as-
suming that the neutrino momenta form the usual Fermi-
Dirac distribution. In this case, Eq.~5! becomes

ng

dLna

dt
.
1

2E @2G~na→ns!1G~n̄a→ n̄s!#

3~dnna
2dnns

1dnn̄ a
2dnn̄ s

!

2
1

2E @G~na→ns!1G~n̄a→ n̄s!#

3~dnna
2dnns

2dnn̄ a
1dnn̄ s

!, ~77!

where

dnna
5

1

2p2

p2dp

11e~p2m!/T , dnn̄ a
5

1

2p2

p2dp

11e~p1m!/T ,

~78!

and dnns
,dnn̄ s

are the differential number densities for the

sterile and antisterile neutrinos, respectively. In Eq.~78! m is
the chemical potential.

The reaction rates can easily be obtained following a
similar derivation as before@Eqs.~9!–~15!#, but this time we
keep the momentum dependence~rather than setting
p5^p&). Doing this, we find the following equation for the
rate of change of lepton number in the static limit:

dLna

dt
5

p2

4z~3!T3

3E s2Gna

p ap~c2bp!~dnna

1 2dnns

1 !

@xp1~c2bp1ap!2#@xp1~c2bp2ap!2#
1D,

~79!

whereD is a small correction term

D.
2p2

8z~3!T3

3E s2Gna

p @xp1~ap!21~bp2c!2#~dnna

2 2dnns

2 !

@xp1~c2bp1ap!2#@xp1~c2bp2ap!2#
,

~80!

anddnna

6 [dnna
6dnn̄ a

. Recall thatc[cos2u0,s[sin2u0. In

these equations note that the quantities,bp,ap,xp,Gna

p are all

functions of momentum of the form

bp5b
p2

^p&2
, ap5a

p

^p&
,

xp5s21
Gna

2

4 S p

^p& D
2S 2p

dm2D 2, Gna

p 5Gna

p

^p&
, ~81!

wherea,b,Gna
are defined in Eqs.~18! and ~10!. Equation

~79! reduces to Eq.~23!, in the limit where all of the neutrino
momenta are fixed top5^p&. @Note that ap5a when
p5^p&.3.15T and similarly forbp, xp, andGna

p .#

Note that the chemical potential is related to the lepton
number by the equation

ngLna
[nna

2n n̄ a
5
T3

6 S m

T D1O~m3!. ~82!

Using Eqs.~78! and ~82! we find

dnna

1 5
1

p2

p2dp

11ep/T
1O~Lna

2 !,

dnna

2 5ngLna

6

p2T3
p2ep/Tdp

~11ep/T!2
1O~Lna

3 !. ~83!

Thus substituting the above relations into Eq.~79!, we find
that

dLna

dt
5

p2

4z~3!T3

3E
0

` s2Gna

p ap~c2bp!

@xp1~c2bp1ap!2#@xp1~c2bp2ap!2#

3F p2

p2~11ep/T!
2
dnns

1

dp
Gdp1D, ~84!

whereD is a small correction term

D.
2p2

8z~3!T3

3E
0

` s2Gna

p @xp1~ap!21~bp2c!2#

@xp1~c2bp1ap!2#@xp1~c2bp2ap!2#

3F12z~3!Lna
p2ep/T

p4~11ep/T!2
2
dnns

2

dp
Gdp. ~85!

Equation~84! can be integrated numerically to obtainLna
as

a function of time~or temperature!. We will give some ex-
amples in the next section after we discuss how to calculate
the sterile neutrino number distributions.

The main effect of the thermal spread of neutrino mo-
menta is to make the generation of lepton number much
smoother. From a computational point of view, this is very
fortunate. This is because Eq.~84!, like Eq. ~23!, is only
valid provided the lepton number generation is sufficiently
smooth~see the previous section for a detailed discussion of
this point!. In particular, Eq.~84! should be a much better
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approximation to reality at the resonance where significant
lepton number is initially generated.

To complete this section, we comment on the rate of
change of lepton number due to ordinary-ordinary neutrino
oscillations. For definiteness considerne-nm oscillations.
The rate of change ofLnm

2Lne
is given by

ng

2

d~Lnm
2Lne

!

dt

52E G~nm→ne!dnnm
1E G~n̄m→ n̄e!dnn̄ m

1E G~ne→nm!dnne
2E G~n̄e→ n̄m!dnn̄ e

.

~86!

Using G(nm→ne)5G(ne→nm) ~and similarly for the an-
tineutrino rates!, Eq. ~86! becomes

ng

2

d~Lnm
2Lne

!

dt

52E
0

`

G~nm→ne!S dnnm

dp
2
dnne

dp
D dp

1E
0

`

G~n̄m→ n̄e!S dnn̄ m

dp
2
dnn̄ e

dp
D dp, ~87!

where

dnne

dp
5

1

2p2

p2

11e~p2m1!/T ,
dnn̄ e

dp
5

1

2p2

p2

11e~p1m1!/T ,

dnnm

dp
5

1

2p2

p2

11e~p2m2!/T ,
dnn̄ m

dp
5

1

2p2

p2

11e~p1m2!/T .

~88!

The chemical potentialsm1,2 are related to the lepton num-
bersLne,m

by the equations

m1

T
5
6ng

T3
Lne

,
m2

T
5
6ng

T3
Lnm

, ~89!

where we have assumed thatm i /T!1. Using these relations
and expanding out Eq.~87! ~again assuming thatm i /T!1)
we find to leading order that

d~Lnm
2Lne

!

dt
.2

6~Lnm
2Lne

!

p2T3 E
0

` p2ep/T

~11ep/T!2

3@G~nm→ne!1G~n̄m→ n̄e!#dp. ~90!

From the above equation we see thatLnm
2Lne

always

evolves such that (Lnm
2Lne

)→0. Also note that Eq.~90!
shows that the rate of change of lepton number due to
ordinary-ordinary neutrino oscillations is generally smaller
than the rate of change of lepton number due to ordinary-
sterile neutrino oscillations,~assumingLna

!1). @Actually

Eq. ~90! has a strength comparable to the correction term
D for ordinary-sterile neutrino oscillations, Eq.~85!, al-
though note that the mixing angle between ordinary neutri-
nos can be significantly larger than the mixing angle between
ordinary and sterile neutrinos.#

For ordinary-ordinary neutrino oscillations, neutral cur-
rent interactions do not collapse the wave function because
they cannot distinguish different neutrino species. Only the
charged current interactions can distinguish the neutrino spe-
cies. For example, for temperatures 1 MeV&T&30 MeV,
there are near-equilibrium number densities of electrons and
positrons. The number of muons and antimuons will be
much less than the number of electrons and positrons, and
we will neglect them ~actually these are important for
nt-nm oscillations!. The rate at which charged current inter-
actions occur is given approximately by
Gn;uGne

2Gnm
u.ye8GF

2T5, whereye8;ye2ym @.1.1 see Eq.
~10!#. Also note that antineutrino-neutrino@31# and neutrino-
neutrino@32# forward scattering amplitudes induce off diag-
onal contributions to the effective potential.~Note that these
contributions do not occur for the effective potential govern-
ing ordinary-sterile neutrino oscillations!. It would be neces-
sary to include these effects in order to evaluate the reaction
rates.

V. THE EFFECTS OF NON-NEGLIGIBLE STERILE
NEUTRINO NUMBER DENSITIES AND THE PARAMETER
SPACE FOR LARGE LEPTON NUMBER ASYMMETRY

GENERATION

In this section we will do three things. We will study the
effects of non-negligible sterile neutrino number densities,
which can arise for the case of relatively large, or even mod-
erate values of sin22u0. We will examine the parameter space
where significant generation of lepton number occurs. Fi-
nally, we will obtain the BBN bound on the parameter space
for na-ns oscillations with dm2,0, and with
udm2u*1024 eV2, sin22u0&1022.

There are several ways in which the creation of lepton
number~s! can prevent the sterile neutrinos from coming into
equilibrium. One way is that one set of oscillationsna-ns
createsLna

. The lepton numberLna
can then suppress other,

independent oscillations such asnb-ns oscillations~with b
Þa) for example. A more direct, but less dramatic way in
which the creation of lepton number can help prevent the
sterile neutrinos from coming into equilibrium, is that the
lepton number generated from sayna-ns oscillations itself
suppresses thena-ns oscillations@33#. We will examine the
latter effect here~some examples of the former effect will be
studied in the next section!. Previous work@5–8# obtained
the BBN bound for largeudm2u*1024 eV2 ~with dm2,0)
and small sin22u0&1022 which can be approximately param-
etrized as follows@8#:

udm2usin42u0&1029 eV2. ~91!

This bound arises by assuming that thena-ns oscillations do
not bring the sterilens state into equilibrium. Note that this
bound neglected the creation of lepton number and it also did
not include the effects of the distribution of neutrino momen-
tum. However, in the realistic case, the creation ofLna

~after
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it occurs! will suppress thena-ns oscillations and the actual
bound would be expected to be somewhat less stringent than
Eq. ~91!.

To proceed we will need to examine the effects of non-
negligible sterile neutrino number densities. The evolution of
the number distribution of sterile neutrinos is governed ap-
proximately by the rate equation

d

dt F dnns
/dp

dnna
/dpG5Fdnna

/dp2dnns
/dp

dnna
/dp GG~na→ns!.

~92!

A similar equation holds for the number distribution of
sterile antineutrinos. Introducing the notation,
z[(dnns

/dp)/(dnna
/dp) @for antineutrinos we use the cor-

responding notation,z̄[(dnn̄ s
/dp)/(dnn̄ a

/dp)#, Eq. ~92!
becomes

dz

dt
5~12z!G~na→ns!5

12z

4

Gna

p s2

xp1~c2bp1ap!2
.

~93!

The corresponding equation for antineutrinos can be ob-
tained by replacingz→ z̄ andap→2ap in the above equa-
tion. In solving the above differential equation, we will as-
sume the initial conditionz50. We will also assume that the
number densities of the ordinary neutrinos are given by their
equilibrium values. Note that the quantityz depends only on
the reaction rates and is otherwise independent of the expan-
sion.

From the definition ofz, it follows that dnns
5zdnna

,

dnn̄ s
5 z̄dnn̄ a

. Thus, from Eq.~84!,

dLna

dt
.

1

4z~3!T3

3E
0

` s2Gna

p ap~c2bp!

@xp1~c2bp1ap!2#@xp1~c2bp2ap!2#

3
~12z1!p2dp

11ep/T
1D, ~94!

whereD is a small correction term

D.
1

8z~3!T3E0
` s2Gna

p @xp1~ap!21~bp2c!2#

@xp1~c2bp1ap!2#@xp1~c2bp2ap!2#

3
z2p2dp

11ep/T
, ~95!

with z6[(z6 z̄)/2 and we have neglected a small correction
term which is proportional toLna

. Note that Eq.~93! and Eq.
~94! must be solved simultaneously.

For the numerical work, the continuous variablep/T is
replaced by a finite set of momentapn /T ~with
n50,1,. . . ,N) and the integral over momentum in Eq.~94!
is replaced by the sum of a finite number of terms. Corre-
spondingly, the variablez(t,p/T) is replaced by the set of
variables,zn(t), where the evolution of each variablezn(t) is

governed by the differential equation, Eq.~93! @with
p/T5pn /T for z5zn(t), n50,1, . . . ,N#. Thus, the single
differential equation, Eq.~93! is replaced by a set ofN dif-
ferential equations, one for each momentum step. These dif-
ferential equations, together with Eq.~94!, are coupled dif-
ferential equations which must be integrated simultaneously.

We now illustrate the creation of lepton number as gov-
erned by Eqs.~94! and ~93! with some examples. We have
numerically integrated Eqs.~94! and ~93! for the following
parameter choices. In Fig. 3 we have considerednm,t-ns os-
cillations with the parameter choicedm2521 eV2,
sin22u051024 ~dashed line!, sin22u051026 ~dash-dotted
line!, and sin22u051028 ~solid line!. Figure 4 is the same as
Fig. 3, except thatdm2521000 eV2, sin22u051026 ~dashed
line!, sin22u051027 ~dash-dotted line!, and sin22u051029

~solid line!. In both examples we have assumed that the ini-

FIG. 3. The evolution of thenm-ns ~or nt-ns) oscillation gen-
erated lepton number asymmetry,Lnm

~or Lnt
). In this example we

have taken the parameter choicesdm2521 eV2,sin22u051024

~dashed line!, sin22u051026 ~dash-dotted line! and sin22u051028

~solid line!. These curves result from integrating the coupled differ-
ential equations, Eqs.~94! and~93!, which in contrast to Figs. 1 and
2, incorporate the momentum distribution of the neutrino. They also
incorporate the effect of the nonzero number density of the sterile
neutrinos which are produced by the oscillations.

FIG. 4. Same as Fig. 3 except that
dm2521000 eV2,sin22u051026 ~dashed line!, sin22u051027

~dash-dotted line!, and sin22u051029 ~solid line!.
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tial lepton asymmetry is zero. Recall that the generation of
lepton number is essentially independent of the initial lepton
number asymmetry provided that it is less than about 1025

~for more discussion about this point see Sec. II!. Note that
for convenience we have plotteduLna

u. The lepton asymme-

try Lna
changes sign at the point where it is created. Before

this point Lna
evolves such that it has the opposite sign to

h while for evolution subsequent to the point whereLna
is

initially created,Lna
has the same sign ash. Recall that this

behavior is expected~see the earlier discussion in Sec. II!.
In these examples, the generation of lepton number is

considerably smoother than in the earlier case where the mo-
mentum distribution was neglected~see Figs. 1 and 2!. For
this reason, it turns out that throughout most of the evolution
of Lna

, the rate of change ofLna
satisfies the condition Eq.

~75! and thus Eq.~94! should be approximately valid~except
at quite low temperatures where the MSW effect will be
important!.

In order to gain insight into the effects of the neutrino
momentum distribution, it is useful to compare Figs. 3 and 4
~which incorporate the neutrino momentum distribution!
with the Figs. 1 and 2~where the momentum of all of the
neutrinos were set equal to the mean momentum!. Qualita-
tively, there is not a great deal of difference. However there
are several very important effects, which we summarize be-
low.

~1! For the examples with relatively small sin22u0, lepton
number creation generally begins somewhat earlier~i.e.,
at a higher temperature! than in the case where momentum
distribution is neglected. For the examples shown
in Figs. 3 and 4 with dm2521 eV2, sin22u051028

(21000 eV2, sin22u051029), lepton number is created
whenT.20 MeV (T.60 MeV!. This can be compared with
the simplistic case where the neutrino momentum distribu-
tion was neglected. In this case, we see from Figs. 1 and 2
that lepton number creation begins atT.16.0 MeV (T.50
MeV! for dm2521 eV2 (21000 eV2). The fact that the
critical temperature increases can be explained rather simply.
Note that the neutrino number density distribution peaks at
aboutp.2.2T, which should be compared with the average
momentum of about 3.15T used in Figs. 1 and 2. Using the
former approximation instead of the latter leads the critical
temperature to increase by about 12%. This explains quali-
tatively why the critical temperature increases. Note, how-
ever, that the accurate numerical calculations displayed in
Figs. 3 and 4 actually show that the temperature increases by
more than this~for the examples with small sin22u0) and also
that the temperature increase depends on the mixing angle.

~2! For the examples with large sin22u0, the point where
significant generation of lepton number is created occurs
much later than in the examples with small sin22u0. The
reason for this is that for large sin22u0, the number density of
sterile neutrinos is larger. In the region before significant
lepton number is generated,a.0 and all of the neutrino
oscillations withbp,cos2u0 have already passed through the
resonance while the neutrino oscillations withbp.cos2u0
have yet to pass through the resonance. Since the creation of
sterile neutrinos is dominated by the oscillations at the reso-
nance, it follows that the sterile neutrino number distribution

with momenta in the region wherebp,cos2u0 will be much
greater than for sterile neutrinos with momenta in the region
wherebp.cos2u0. Thus, from Eq.~94!, the lepton number
creating oscillations~with bp,cos2u0) are suppressed if the
number density of sterile neutrinos is non-negligible, as oc-
curs for large sin22u0. The lepton number destroying oscilla-
tions ~with bp.cos2u0), on the other hand, are not sup-
pressed because the number of sterile neutrinos with
bp.cos2u0 are negligible.

~3! The creation of lepton number is considerably
smoother in the realistic case. For instance, in the example
where dm2521 eV2, sin22u051028, in the realistic case
~shown in Fig. 3!, uLnm

u ranges from 10210 to 1026 in about

DT'1 MeV, whereas in the unrealistic case where the neu-
trino momentum distribution was neglected~shown in Fig.
1!, uLnm

u ranges from 10210 to 1026 in aboutDT'0.005
MeV.

~4! At low temperatures, the lepton number gets ‘‘frozen’’
at an earlier time. For example, in the case where
dm2521 eV2 and sin22u051028, with momentum depen-
dence ~Fig. 3!, the final value for the lepton number is
;431024, whereas in the unrealistic case without the neu-
trino momentum distribution, the final value for the lepton
number for this example~Fig. 1! is ;1021. As discussed
briefly in Sec. II, this effect is expected because the tempera-
ture where the lepton number gets frozen occurs when the
rate of change of the variablea due to the expansion of the
Universe dominates over the rate of change ofa due to neu-
trino oscillations. In the realistic case where the momentum
distribution is taken into account, the maximum value of the
rate of change ofa due to neutrino oscillations is suppressed
because only a small fraction of the neutrinos will be at the
resonance.

This last point suggests that the momentum distribution
cannot be ignored if one is interested in finding out the pre-
cise final value of the lepton number generated. However,
note that Eq.~94! does not incorporate flavor conversion due
to the MSW effect@see assumption~4! in Sec. II for some
discussion about this point#. The effect of the MSW flavor
conversion should be to keepa.1 for lower temperatures.
This means that the final value ofLna

should be significantly
larger than suggested by Figs. 3 and 4. This effect will need
to be incorporated if one wants to calculate the precise value
of the final lepton number generated.@The precise value of
the final lepton number can be obtained by numerically inte-
grating the density matrix equations Eqs.~46! suitably modi-
fied to incorporate the neutrino momentum distribution.# In
particular, if one is interested in working out the region of
parameter space where the electron lepton number is large
enough to affect BBN through nuclear reaction rates, then
the final value of the electron lepton number is very impor-
tant @34,35#.

Note that we can check Eq.~91! by numerically integrat-
ing Eq. ~93! and Eq. ~94! assuming for definiteness that
rns

/rna
&0.6 ~where ther ’s are the energy densities!. This

leads to the following constraint ondm2,sin22u0:

sin22u0&2~4!31025F eV2

udm2uG
1/2

, ~96!
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for ne-ns (nm,t-ns) oscillations. Thus, we see that Eq.~91!
turns out to be a good approximation after all. This is basi-
cally due to the result that the creation of a non-negligible
number of sterile neutrinos has the effect of delaying the
point where significant lepton number is created@see point
~2! above#.

Finally, the region of parameter space where significant
neutrino asymmetries are generated by ordinary sterile neu-
trino oscillations can be obtained by integrating Eq.~94! and
Eq. ~93!. The result of this numerical work is that significant
neutrino asymmetry (uLna

u*1025) is generated by ordinary-
sterile neutrino oscillations for the following region of pa-
rameter space:

6~5!310210F eV2

udm2uG
1/6

& sin22u0&2~4!31025F eV2

udm2uG
1/2

and

udm2u*1024 eV2, ~97!

for ne-ns (nm,t-ns) oscillations. Note that we have assumed
that rns

/rna
&0.6 @Eq. ~96!#. In the general case where no

bound onrns
/rna

is assumed, the upper bound on sin22u0 is

considerably weaker. For example,nm,tns oscillations with
dm2521 eV2, sin22u051024 violate the bound Eq.~96!
but still generate a significant neutrino asymmetry, as illus-
trated in Fig. 3.~For this particular example, we found that
rns

/rna
.0.86.!

The parameter space in Eq.~97! can be compared with
previous work where the momentum dependence was ne-
glected @18,12#. As we have mentioned above, the upper
bound on sin22u0 which assumes a BBN bound of
rns

/rna
&0.6, is not modified much when the momentum

distribution of the neutrino is incorporated. For the lower
limit of sin22u0, the effect of the momentum dependence is
to reduce the region of parameter space by nearly two orders
of magnitude.

Finally, it may be possible for significant neutrino asym-
metries to be generated forudm2u&1024 eV2, however the
mechanism of production of these asymmetries is dominated
by oscillations between collisions~rather than the mecha-
nism of collisions! and tend to be oscillatory@18,29,33#.

VI. CONSISTENCY OF THE MAXIMAL VACUUM
OSCILLATION SOLUTIONS OF THE SOLAR AND
ATMOSPHERIC NEUTRINO PROBLEMS WITH BBN

We now turn to another application of the phenomenon of
lepton number creation due to ordinary-sterile neutrino oscil-
lations. First, in the context of a simple explanation of the
solar neutrino problem which involves large anglene-ns os-
cillations, we will determine the conditions under which the
lepton number produced fromna-ns oscillations can sup-
press the oscillationsnb-ns ~wherebÞa). This allows the
BBN bounds on ordinary-sterile neutrino oscillations to be
evaded by many orders of magnitude, as we will show. We
begin by briefly reviewing the maximal vacuum oscillation
solution to the solar neutrino problem@9,10#.

One possible explanation of the solar neutrino problem is
that the electron neutrino oscillates maximally~or near maxi-

mally! with a sterile neutrino~which we here denote asne8
rather than asns in order to remind the reader that this sterile
neutrino is approximately maximally mixed withne) @9,36#.
We will denote thedm2 for ne-ne8 oscillations bydmee8

2 . As
is well known, for a large range of parameters@37#

3310210 eV2& udmee8
2 u& 1023 eV2, ~98!

maximal vacuum oscillations imply that the flux of electron
neutrinos from the sun will be reduced by a factor of 2 for all
neutrino energies relevant to the solar neutrino experiments.
We will call this scenario the ‘‘maximal vacuum oscillation
solution’’ to the solar neutrino problem. It is a very simple
and predictive scheme which can either be ruled out or tested
more stringently with theexisting experiments. Importantly,
it also makes definite predictions for the new experiments,
Sudbury Neutrino Observatory~SNO!, Superkamiokande,
and Borexino. Our interest in this scheme is also motivated
by the exact parity symmetric model~see@17# for a review of
this model!. This model predicts that ordinary neutrinos will
be maximally mixed with mirror neutrinos~which are ap-
proximately sterile as far as ordinary matter is concerned! if
neutrinos have mass@17#. If we make the assumption that the
mixing between the generations is small~as it is in the quark
sector! then the exact parity symmetric model predicts that
the three known neutrinos will each be~to a good approxi-
mation! maximal mixtures of two mass eigenstates. There
are also other interesting models which predict that the elec-
tron neutrino is approximately maximally mixed with a ster-
ile neutrino@38#. The maximal mixing of the electron neu-
trino (ne) and the sterile neutrino will reduce the solar
neutrino flux by an energy independent factor of 2 for the
large range of parameters given in Eq.~98!. This leads to
definitepredictionsfor the expected solar neutrino fluxes for
the existing experiments. In@9#, we compared these predic-
tions with the existing experiments. We summarize the re-
sults of that exercise in Table I which we have updated to
include the most recent data@39#.

Note that in Table I, the Kamiokande experiment has been
used as a measurement of the Boron flux@40–42#. This is a
sensible way to analyze the data~but not the only way of
course! because the flux of neutrinos coming from this reac-
tion chain is difficult to reliably calculate due primarily to
uncertainties in nuclear cross sections@43#. Clearly, the
simple energy independent flux reduction by a factor of 2
leads to predictions which are in quite reasonable agreement
with the data. If the minimal standard model had given such
good predictions, few would have claimed that there was a
solar neutrino problem.

TABLE I. Summary of the predictions for the chlorine and gal-
lium experiments assuming~1! standard electroweak theory~i.e., no
new physics!, ~2! that the electron neutrino oscillates maximally
into a sterile state~maximal mixing model!, and~3! the experimen-
tal measurements. All numbers are in units of SNU.

Prediction/Expt. Chlorine Gallium

Standard electroweak theory 4.560.5 12326
18

Maximal mixing model 3.760.4 6524
17

Experiment 2.7860.35 7167
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Note that the maximal vacuum oscillation solution is dis-
tinct from the ‘‘just so’’ large angle vacuum oscillation so-
lution @46#. In the ‘‘just so’’ solution, the electron neutrino
oscillation length is assumed to be about equal to the dis-
tance between the earth and the sun~which corresponds to
udm2u.10210 eV2). In this case the flux of neutrinos de-
pends sensitively ondm2 and it is possible to fit the data to
the free parametersdm2, sin22u0 @46#. The advantage of do-
ing this is that a good fit to the data can be obtained~how-
ever this is not so surprising since there are two free param-
eters to adjust!. The disadvantage is that fine-tuning is
required and predictivity is lost because of the two free pa-
rameters. The maximal mixing solution on the other hand
assumes maximal mixing and thatdm2 is in the range Eq.
~98!. For this parameter range there is an energy independent
flux reduction by a factor of 2. The advantage of this possi-
bility is that it does not require fine-tuning and it is predic-
tive. A consequence of this is that it is testable with the
existing experiments. The disadvantage of this scenario is
that it does not give a perfect fit to the data. However, in our
opinion the predictions are in remarkably good agreement
with the data given the simplicity and predictivity of the
model.

With the range of parameters in Eq.~98! there is a poten-
tial conflict with BBN @44,45#. For maximally mixedne and
ne8 neutrinos, the following rather stringent BBN bound has
been obtainedassuming that the lepton number asymmetry
could be neglected@5–8#:

udmee8
2 u&1028 eV2. ~99!

This bound arises by requiring that the sterile neutrinos do
not significantly modify the successful BBN calculations.
For temperatures above the kinetic decoupling temperature
the requirement that the sterile neutrinos do not come into
equilibrium implies the boundudmee8

2 u&1026 eV2. Smaller
values ofdmee8

2 in the range 1028&udmee8
2 u/eV2&1026 can

be excluded because the oscillations deplete the number of
electron neutrinos~and antineutrinos! after kinetic decou-
pling ~so that they cannot be replenished!. The depletion of
electron neutrinos increases the He/H primordial abundance
ratio. This is because the temperature where the ratio of neu-
trons to protons freezes out is increased if there are less
electron neutrinos around. Forudmee8

2 u&1028 eV2, the os-
cillation lengths are too long to have any significant effect on
the number densities of electron neutrinos during the nucleo-
synthesis era. If the bound in Eq.~99! were valid then it
would restrict much of the parameter space for the maximal
vacuum oscillation solution of the solar neutrino problem.
However, this bound does not hold if there is an appreciable
lepton number asymmetry in the early Universe for tempera-
tures between 1 and 100 MeV@11#. This is because the gen-
eration of significant lepton numberL (e) implies that the
quantityaee8 @which is thea parameter defined in Eq.~18!
with dm25dmee8

2 # is very large thereby suppressing the os-
cillations @note that foraee8@1, sin22um!sin22u0, see Eq.
~19!#. We will now show in detail how the creation of lepton
number can relax the BBN bound Eq.~99! by many orders of
magnitude.

We will assume that the various oscillations can be ap-
proximately broken up into the pairwise oscillationsne-ne8 ,
nm-ne8, and nt-ne8 . We will denote the various oscillation
parameters in a self-evident notation,

bae8,aae8 for na2ne8 oscillations, ~100!

where a5e,m,t. We will denote the mixing parameters,
dm2, sin22u0 appropriate for na-ne8 oscillations by

dmae8
2 , sin22u0

ae8. Note that lepton number cannot be cre-

ated byna-ne8 oscillations untilbae8,cos2u0
ae8. Recall that

the b parameter is inversely proportional todm2 @see Eq.
~18!#. Thus, the earliest point during the evolution of the
Universe where lepton number can be created due to
ordinary-sterile neutrino oscillations occurs for oscillations
which have the largestudm2u. Note that these oscillations
must satisfy the bound in Eq.~96! if we demand that the
sterile neutrino energy density be small enough so that BBN
is not significantly modified. Note that thene-ne8 oscillations

have very smalludmee8
2 u&1023 eV2 @37#, and cos2u0

ee8;0
~assuming maximal or near maximal mixing!, and thus these
oscillations themselves cannot produce significant lepton
number. However, thedm2 for nt-ne8 or nm-ne8 oscillations
can have much largerudm2u ~and they should also have
dm2,0 if mnm

,mnt
.mn

e8
) @47#. We will assume for defi-

niteness thatmnt
.mnm

.mn
e8
so thatudmte8

2 u.udmme8
2 u and

thent-ne8 oscillations createLnt
first ~with Lnm

,Lne
assumed

to be initially negligible!. If mnm
.mnt

then we only need to

replacent by nm in the following analysis.
Thus, we will consider the system comprisingnt ,ne , and

ne8 ~and their antiparticles!. Our analysis will be divided into
two parts. First, we will calculate the condition that the
L (e) created bynt-ne8 oscillations survives without being
subsequently destroyed byne-ne8 oscillations. We will then
establish the conditions under whichL (e) is created early
enough and is large enough to suppress thene-ne8 oscillations
so that only a negligible number ofne8 are produced.

For simplicity we will first analyze the system neglecting
the momentum distribution of the neutrino. This is useful
because under this assumption it turns out that this system
can be approximately solved analytically as we will show.
We will then consider the realistic case where the spread of
momenta is taken into consideration.

It is important to observe that the generation ofLnt
also

leads to the generation ofL (e) @through Eq.~16!#. If we as-
sume that negligibleLne

is generated, thenL (e).L (t)/2.

Howeverne-ne8 oscillations can potentially generateLne
such

thatL (e)→0. ~Recall thatL (e).0 is an approximately stable
fixed point for thene-ne8 system for temperatures greater
than a few MeV.! The effect of thene-ne8 oscillations will be
greatest when thene-ne8 oscillations are at resonance. If neg-
ligible Lne

is generated, thenuaee8u.Ruate8u/2 and

ubee8u.R(Ae /At)ubte8u ~where R[udmte8
2 /dmee8

2 u). Hence
the ne-ne8 resonance condition (aee85bee8) will be satisfied
when

uate8u52~Ae /At!ubte8u. ~101!
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Recall that thent-ne8 oscillations generateLnt
such that

ate8.12bte8, ~102!

where we have assumed that cos2u0
te8;1 and thatLnt

.0 for
definiteness. Observe that Eqs.~101! and ~102! imply that
the system inevitably passes through thene-ne8 resonance.
This event will occur when

ubte8u.
At

At12Ae
. ~103!

Using the definition ofbte8 which can be obtained from Eq.
~18!, the above equation can be solved for thene-ne8 reso-
nance temperature

Tres
ee8.F udmte8

2 uMW
2 4.1

6.3A2GFAt

At

At12Ae
G 1/6

.11S udmte8
2 u

eV2 D 1/6 MeV. ~104!

Thus, whenT5Tres
ee8 , the nt-ne8 oscillations have created

enoughL (e) so that thene-ne8 oscillations will be at the reso-
nance, assuming that negligibleLne

has been generated. In

general thene-ne8 resonance temperature depends on both
Lne

andLnt
. The ne-ne8 resonance conditionaee85bee8 im-

plies that the resonance temperature forne-ne8 oscillations is
related toLne

andLnt
by the equation

Tres
ee85AMW

2

Ae
L ~e!.AMW

2

Ae
~2Lne

1Lnt
!, ~105!

where we have neglected the small baryon and electron
asymmetries and a possiblem neutrino asymmetry~we will
discuss the effects of them neutrino later!. Thus the reso-
nance temperature will change whenLne

andLnt
change due

to oscillations.
Let us consider the rate of change of the quantity

(Tres
ee82T),

d~Tres
ee82T!

dt
5

]Tres
ee8

]Lne

]Lne

]t
1

]Tres
ee8

]Lnt

]Lnt

]t
2
dT

dt
, ~106!

evaluated at the temperatureT5Tres
ee8 . Note that the first term

on the right-hand side of Eq.~106! represents the rate of

change ofTres
ee8 due tone-ne8 oscillations~and its sign is nega-

tive!, while the second term is the rate of change ofTres
ee8 due

to nt-ne8 oscillations~and the sign of this term is positive!.
The third term in Eq. ~106! is the rate of change of

(Tres
ee82T) due to the expansion of the Universe

(2dT/dt.5.5T3/MP) ~this term is also positive in sign!.

Observe that ifd(Tres
ee82T)/dt.0, then the system passes

through the resonance without significant destruction of

L (e). If on the other hand,d(Tres
ee82T)/dt&0, then the posi-

tion of the resonance moves to lower and lower temperatures

andL (e)→0. Thus, a sufficient condition thatL (e) survives
without being destroyed byne-ne8 oscillations is that

]Tres
ee8

]Lne

]Lne

]t
1

]Tres
ee8

]Lnt

]Lnt

]t
.
dT

dt
. ~107!

To evaluate]Lnt
/]t, observe that

]L ~t!

]t
52

]Lnt

]t
1

]Lne

]t
.

24L ~t!

T

dT

dt
, ~108!

where we have assumed thatL (t);T24 for T5Tres
ee8 . Of

course, this latter assumption only holds provided that the
ne-ne8 resonance does not occur whileLnt

is still growing

exponentially. However, for sin22u0
te8 sufficiently large, the

ne-ne8 resonance can occur during the rapid exponential
growth phase ofLnt

. If this happens then the rate at which

the nt-ne8 oscillations move the system away from the
ne-ne8 resonance is much more rapid. Consequently, the re-
gion of parameter space whereL (e) survives without being
destroyed byne-ne8 oscillations is significantly larger in this
case~this effect will be illustrated later on when we study the
system numerically!.

Using Eq.~108!, Eq. ~107! can be written in the form

3

4

]Lne

]t

]Tres
ee8

]Lne

*F11
L ~t!

T

]Tres
ee8

]Lne
GdTdt , ~109!

where we have used the relation]Tres
ee8/]Lne

52]Tres
ee8/]Lnt

which is easily obtainable from Eq.~105!.
Note that the most stringent condition occurs at the

ne-ne8 resonance temperature, Eq.~104!. We are primarily
interested in relatively large values ofudmte8

2 u*1021 eV2,

which means thatTres
ee8*8 MeV. Thus, from Sec. III, we are

in a region of parameter space where we expect Eq.~23! to

be valid.@In particular, note that sinceTres
ee8 is not at the point

where the lepton number is initially created, Eq.~75! should
also be valid.# Thus, from Eq.~23! we can obtain the rate of
change ofLne

due tone-ne8 oscillations, at thene-ne8 reso-

nance~whereb2a2c50). We find

]Lne

]t
.2

3

8

sin2u0
ee8

Gne
T2

Fdmee8
2

6.3
G2. ~110!

Note that from Eq.~105!, we have

]Tres
ee8

]Lne

5
MW

2

AeTres
ee8

5
Tres
ee8

L ~e! . ~111!

Thus,

L ~t!

Tres
ee8

]Tres
ee8

]Lne

5
L ~t!

L ~e! .2. ~112!
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Hence the sufficient condition thatL (e) survives without be-
ing destroyed byne-ne8 oscillations can be obtained by sub-
stituting Eqs.~110!–~112! into Eq.~109!. Doing this exercise
we find

udmee8
2 u&ludmte8

2 u11/12, ~113!

wherel is given by

l.
12.6GF

Asin22u0
ee8MW

S 8yeAe5.5

3MP
D 1/2S Tres

ee8

~ udmte8
2 u!1/6D

11/2

.
12.6GF

Asin22u0
ee8MW

S 8yeAe5.5

3MP
D 1/2

3S 4.1MW
2

6.3A2GFAt

At

At12Ae
D 11/12, ~114!

and we have used Eq.~104!. Thus, putting the numbers in,
we find

udmee8
2 u

eV2
&631027S udmte8

2 u
eV2

D 11/12, ~115!

where we have assumed maximal mixing~i.e.,

sin22u0
ee8.1). Thus provided this condition holds,L (e) will

not be destroyed significantly byne-ne8 oscillations~under
the assumption that the neutrino thermal momentum distri-
bution can be neglected; we will study the effects of the
momentum distribution in a moment! and the system moves
quickly away from thene-ne8 resonance. While this condition
was derived as a sufficient condition, it turns out to be a
necessary one as well. This is because if Eq.~107! were not
valid, then ne-ne8 oscillations would createLne

rapidly

enough such that](Tres
ee82T)/]t,0. This would mean that

the ne-ne8 resonance temperature would move to lower and
lower temperatures where the rate of change ofLne

@from Eq.

~110!# would be even larger~as it is proportional to 1/T7)
and the expansion rate slower. Thus if the condition Eq.
~107! were not satisfied initially, it could certainly not be
satisfied for lower temperatures.

In the above system consisting ofnt ,ne , and ne8 ~and
their antiparticles! discussed above, observe that we have
neglected the effects ofnt-ne oscillations. As discussed in
the previous section, the effect of these oscillations is to
make (Lnt

2Lne
) tend to zero. Since these oscillations cannot

preventLnt
from being generated the effect of incorporating

them should only increase the allowed region of parameter
space@48#.

The effect of the muon neutrino can also only increase the
allowed region of parameter space. The effect ofnm-ne8 os-
cillations will be to createLnm

provided thatdmme8
2

,0. The

effects ofnm are completely analogous to the effects of the
nt neutrino, and we can replacent with nm in the above
analysis. This means that it is only necessary that either
dmte8

2 or dmme8
2 ~or both! satisfy Eq.~115!.

Hitherto we have examined the system neglecting the
thermal distribution of neutrino momenta. We now study the
realistic case where the thermal distribution of neutrino mo-
menta is taken into consideration. We first estimate approxi-
mately the effects of the momentum distribution analytically
and then we will perform a more accurate numerical study.

The previous calculation assumes that all of the neutrinos
have a common momentum and thus they all enter the reso-
nance at the same time. In the realistic case, only a small
fraction ~less than about 1% as we will show! of the neutri-
nos are at resonance at any given time. Note that thent-ne8
oscillations are not affected greatly by this consideration,
since as we showed in Sec. V, the momentum spread does
not preventLnt

from being created~and it still satisfies ap-

proximately L (t);T4 after it is initially created!. On the
other hand, the effect of the neutrino momentum distribution
on thene-ne8 oscillations is very important. This is because
the ne-ne8 oscillations cannot destroyL (e) as efficiently as
before. In fact, Eq.~110! will be reduced by a factor which is
about equal to the fraction of neutrinos at the resonance. In
principle, one should solve Eq.~109! at the point where elec-
tron neutrinos of momentump5gT are at resonance and
then calculate the minimum of the value ofl @see Eqs.~113!
and ~114!# over the range of all possible values ofg. For
simplicity we will make a rough approximation and assume
that the minimum ofl occcurs when neutrinos of average
momentum are at resonance~i.e., assumeg.3.15). ~Note
that later on we will do a more accurate numerical calcula-
tion!.

To calculate the fraction ofne neutrinos at thene-ne8 reso-
nance we need to calculate the width of the resonance in
momentum space. We will denote this width byDp. From
Eq. ~84! it is easy to see that the width of the resonance is
governed approximately by the equation

DpU ]~bee8
p

2aee8
p

!

]p
U.2Axee8, ~116!

where we have assumed maximal mixing~i.e., cos2u0
ee8.0).

Note that from the momentum dependence ofbp,ap @see Eq.
~81!#, it follows that

]bee8
p

]p
5
2bee8

p

p
,

]aee8
p

]p
5
aee8
p

p
, ~117!

and hence

]~bee8
p

2aee8
p

!

]p
5
2bee8

p

p
2
aee8
p

p
.
aee8
p

p
, ~118!

where we have used the result thatbee8
p .aee8

p at the reso-
nance~note that we have assumed thatL (e).0 for definite-
ness!. Note that we are essentially interested in evaluating
the maximum value of the fraction of neutrinos at the reso-
nance. This maximum fraction should occur approximately
when p;^p&. Thus, from the previous analysis, the reso-
nance for neutrinos of average momentum occurs when
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aee8.
ate8
2

dmte8
2

dmee8
2 .

1

2

dmte8
2

dmee8
2 . ~119!

Thus, from Eqs.~118! and ~119! and Eq.~116! the width of
the resonance in momentum space becomes

Dp'4pA^xee8&F udmee8
2 u

udmte8
2 uG . ~120!

Recall that̂ xee8& is defined in Eq.~25!, and is given by

^xee8&5sin22u0
ee81Gne

2 ^p&2

~dmee8
2

!2

.sin22u0
ee81

ye
2GF

4~3.15!2T12

~dmee8
2

!2
. ~121!

Expanding out̂ xee8& at the temperatureT'Tres
ee8 @defined in

Eq. ~104!#, we find

^xee8&5sin22u0
ee81F yeGFMW

2 4.1

2A2At

At

At12Ae
G 2F dmte8

2

dmee8
2 G 2

.1.231025F dmte8
2

dmee8
2 G 2, ~122!

where the last part follows provided that
udmee8

2 u&1023udmte8
2 u. Thus, using the above equation, Eq.

~120! simplifies to

Dp

p
.
2yeGFMW

2 4.1

A2At

At

At1Ae
.1.431022. ~123!

Thus it is clear that only a small fraction of neutrinos will be
at the resonance. We denote the fraction of electron neutrinos
at the ne-ne8 resonance byDnn /nn . Note thatDnn /nn is
given approximately by the equation

Dnn

nn
.

Dp

nn

dnn

dp
. ~124!

Usingnn5 3
4 z(3)T3/p2, and

dnn

dp
5

1

2p2

p2

11ep/T
, ~125!

we find

Dnn

nn
U
max

'
2yeGFMW

2 4.1

A2At

At

At12Ae

^p/T&3

1.5z~3!~11e^p&/T!

.
1.431022

1.5z~3!

^p/T&3

11e^p&/T .1.031022. ~126!

The effect of the momentum spread is thus to reduce the
number of neutrinos at the resonance by the above factor.
Multiplying the right-hand side of Eq.~110! by this fraction
and repeating the same steps which lead to Eq.~115! we find
that Eq.~115! is weakened by the factorADnn /nn.1021. In
other words the effect of the neutrino momentum distribution
is to increase the allowed region of parameter space for
which ne-ne8 oscillations do not destroy theL (e) asymmetry
created bynt-ne8 oscillations. This region of parameter space
is given approximately by

udmee8
2 u&

l

ADnn /nn

udmte8
2 u11/12, ~127!

wherel is given in Eq.~114! andADnn /nn is given in Eq.
~126!. Putting the numbers in, the above condition can be
written in the form

udmee8
2 u

eV2
&631026S udmte8

2 u
eV2

D 11/12. ~128!

We now check this result by doing a more accurate numeri-
cal study of this problem.

The rate of change ofLne
and Lnt

due to thent-ne8 ,

ne-ne8 oscillations can be obtained from Eq.~94!. This leads
to the following coupled differential equations:

dLne

dt
.

1

4z~3!T3E0
` sin22u0

ee8Gne

p aee8
p

~cos2u0
ee82bee8

p
!

@xee8
p

1~cos2u0
ee82bee8

p
1aee8

p
!2#@xee8

p
1~cos2u0

ee82bee8
p

2aee8
p

!2#

~12z1!p2dp

~11ep/T!

1
1

8z~3!T3E0
` sin22u0

ee8Gne

p @xee8
p

1~aee8
p

!21~bee8
p

2cos2u0
ee8!2#

@xee8
p

1~cos2u0
ee82bee8

p
1aee8

p
!2#@xee8

p
1~cos2u0

ee82bee8
p

2aee8
p

!2#

z2p2dp

11ep/T
,

dLnt

dt
.

1

4z~3!T3E0
` sin22u0

te8Gnt

p ate8
p

~cos2u0
te82bte8

p
!

@xte8
p

1~cos2u0
te82bte8

p
1ate8

p
!2#@xte8

p
1~cos2u0

te82bte8
p

2ate8
p

!2#

~12z1!p2dp

11ep/T

1
1

8z~3!T3E0
` sin22u0

te8Gnt

p @xte8
p

1~ate8
p

!21~bte8
p

2cos2u0
te8!2#

@xte8
p

1~cos2u0
te82bte8

p
1ate8

p
!2#@xte8

p
1~cos2u0

te82bte8
p

2ate8
p

!2#

z2p2dp

11ep/T
. ~129!
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These equations are coupled differential equations because
aee8
p and ate8

p depend on bothLne
and Lnt

. Recall that

z65(z6 z̄)/2. From Eq.~93! the z parameter, which is re-
lated to the number of sterile neutrinos produced, is gov-
erned by

dz

dt
5
1

4
~12z!F Gne

p sin22u0
ee8

xee8
p

1~cos2u0
ee82bee8

p
1aee8

p
!2

1
Gnt

p sin22u0
te8

xte8
p

1~cos2u0
te82bte8

p
1ate8

p
!2
G , ~130!

and the evolution ofz̄ is governed by an equation similar to
the above~but with ap→2ap).

The above equations can be integrated numerically~fol-
lowing the proceedure mentioned in Sec. V!. Doing this, we
can find the region of parameter space where theL (e) asym-
metry created by thent-ne8 oscillations does not get de-
stroyed by thene-ne8 oscillations. We will solve Eq.~129!

and Eq.~130! under the assumption that sin22u0
ee8.1 ~i.e., the

ne-ne8 oscillations are approximately maximal!. Performing
the necessary numerical work, we find thatL (e) is created by
nt-ne8 oscillations and not subsequently destroyed byne-ne8
oscillations for the region of parameter space shown in Fig.
5. For definiteness we have taken two illustrative choices for

sin22u0
te8, sin22u0

te851028,1026. Note that in our numerical
work, we have studied the region 1021&udmte8

2 u/eV2&103.
Of course, there will be parameter space outside this region
where theL (e) created bynt-ne8 oscillations is not destroyed
by ne-ne8 oscillations. However, one should keep in mind
that there is a rather stringent cosmology bound,
mnt

&40 eV @49# ~which implies thatudmte8
2 u&1600 eV2).

This bound assumes that the neutrino is approximately
stable, which is expected given the standard model interac-
tions. Of course, if there are new interactions beyond the
standard model, then it is possible to evade this cosmology
bound@50#.

Observe that the region of parameter space where
L (e) survives is somewhat larger than our analytical
estimate Eq.~128!. This is partly because the point where
Lnt

is created occurs at a significantly higher temperature
than the analytical estimate~see Sec. V for some dis-
cussion about this point!. Note that the quantity
l/ADnn /nn}Tres

11/2/Tres
3 ;Tres

5/2. Thus, the result that the lepton
number is created at a higher temperature than our analytic
estimate can easily lead to a significant increase in the pa-

rameter space. More importantly, for large sin22u0
te8 the mag-

nitude of Lnt
created bynt-ne8 oscillations is considerably

larger before the growth ofLnt
is cut off by the nonlinearity

of the differential equation governing its evolution~compare
the solid line with the dashed or dash-dotted lines in Figs. 3
or 4!. Recall that our analytical estimate assumed that the
creation ofL (e) due tont-ne8 oscillations had already passed
the rapid exponential growth phase at the point where the
destruction ofL (e) due tone-ne8 oscillations reached a maxi-

mum. While this latter assumption is generally true for small

values of sin22u0
te8, it is not true for larger values. In this

case, the rate of change ofTres
ee8 due tont-ne8 oscillations will

be much larger than our analytical estimate. Consequently,
the allowed region of parameter space is increased. Thus the
result that the allowed region of parameter space for

sin22u0
te851026 is significantly larger than the allowed re-

gion for sin22u0
te851028 is not unexpected.

Having established the condition that thene-ne8 oscilla-
tions do not destroy theL (e) which is created by thent-ne8
oscillations~or nm-ne8 oscillations!, we must also check that
the magnitude ofL (e) is large enough to invalidate the bound
in Eq. ~99!.

For dmee8
2 in the rangeudmee8

2 u*1026 eV2, the bound
Eq. ~99! arises by requiring that thene-ne8 oscillations do not
bring thene8 sterile neutrino into equilibrium above the ki-
netic decoupling temperature (;3 MeV!. The sterile neu-
trino ne8 will not be brought into equilibrium provided that
the rate ofne8 production is approximately less than the ex-
pansion rateH, i.e.,

G~ne→ne8!/H.
1

4
Gne

sin22um
ee8/H& 1, ~131!

where we have used Eq.~9! with ^sin2t/2Lm&.1/2 @51#. Re-
call that we are primarily interested in the region 1 MeV
&T&100 MeV, whereH.5.5T2/MP . Using Eq.~19! with
a.0, the above equation can be rewritten in the form

yeGF
2MPsin

22u0
ee8T3

22@bee8
2

11#
&1, ~132!

where we have assumed large mixing, i.e., cos2u0
ee8!1. Re-

call thatbee8 can be obtained from Eq.~18!. Obtaining the
maximum of the left-hand side of Eq.~132! leads approxi-
mately to the boundudm2u&1026 eV2.

In the case whereLnt
is created bynt-ne8 oscillations, the

situation is very different. The lepton numberLnt
is created

at the temperature whenbte8'1 ~assuming that

cos2u0
te8;1). Denoting this temperature byTc

te8 , then as per
Eq. ~34!

Tc
te8'16S udmte8

2 u
eV2

D 1/6 MeV. ~133!

The evolution of this system can be divided into two regions,

the region before lepton number creation~i.e.,T.Tc
te8), and

the region after the lepton number creation~i.e.,T,Tc
te8). In

the region before the lepton number is created,ate8.0 and
Eq. ~132! holds. We will obviously be interested in the pa-
rameter space wheredmte8

2 is sufficiently large@recall that

dmte8
2 is related toTc

te8 by Eq. ~133! above# so thatLnt
is

created at some point above the kinetic decoupling tempera-
tureTdec.3 MeV, of ne . Let us assume thatudmte8

2 u is large
enough so thatbee8

2
@1 for temperaturesT.Tc

te8 ~which cor-
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responds approximately to,udmte8
2 u.udmee8

2 u). In this case,
bee8
2

11.bee8
2 and Eq.~132! can be rewritten in the form

T9*S 4.1dmee8
2 MW

2

6.3A2GFAe
D 2sin22u0

ee8yeGF
2MP

22
, ~134!

where we have used Eq.~18! with ng.T3/4.1. Observe that

the most stringent condition occurs forT5Tc
te8 . Thus taking

T5Tc
te8 @Eq. ~133!#, we find that the sterile neutrinone8 will

not come into equilibrium with the ordinary neutrinos for

temperatures aboveTc
te8 provided that

udmte8
2 u

eV2
*15F udmee8

2 u
eV2

G4/3@sin22u0
ee8#2/3. ~135!

Assuming maximalne-ne8 oscillations~i.e., sin2u0
ee8.1) and

assumingudmee8
2 u&1023 eV2 @37#, Eq. ~135! implies that

udmte8
2 u* 1023 eV2. ~136!

Thus provided that this constraint is satisfied, the sterile neu-
trino, ne8 will not come into equilibrium for temperatures

greater than the temperature whereLnt
is created,Tc

te8 .
We now need to check that the lepton number created is

sufficient to suppressne-ne8 oscillations for temperatures less

thanTc
te8 . Demanding that the interactions do not bring the

sterile neutrino into equilibrium with the ordinary neutrinos,
that is again imposing the inequality Eq.~131!, but this time

for T,Tc
te8 where there is significant creation ofL (e) @11#,

we find that

yeGF
2MPsin

22u0
ee8T3

22@~bee86aee8!
211#

&1, ~137!

where the2 (1) signs correspond tone-ne8 ( n̄e- n̄e8) oscil-
lations. Note that Eq.~137! is only required to be satisfied for
T.Tdec.3 MeV ~since we only need to require that the
sterile neutrinos do not come into equilibrium before kinetic
decoupling of the electron neutrinos occurs!. OnceL (e) is

created atT5Tc
te8 ~ wherebte85cos2u0

te8.1), its magnitude
will rise according to the constraintate8*1 ~assuming for
definiteness thatL (e).0). Note that the quantitiesbee8,aee8
are related tobte8,ate8 as follows:

bee8
bte8

5
Ae

At

dmte8
2

dmee8
2 ,

aee8
ate8

.
1

2

dmte8
2

dmee8
2 . ~138!

After the initial resonanceate8*1 while bte8<1 ~and
quickly becomes much less than one!. Thus very soon after
the resonance,ate8@bte8 and hence from Eq.~138!,
aee8@bee8. As before the most stringent bound occurs when

T.Tc
te8 , and Eq. ~137! leads to approximately the same

bound as before@i.e., Eq. ~136!#, since at the point

T5Tc
te8 , ate8'bte8.

Finally, we need to check that the oscillations of thene ,
ne8 neutrinos do not significantly deplete the number of elec-
tron neutrinos for the temperature range,

0.7 MeV&T&Tdec.3 MeV. ~139!

Electron neutrino oscillations in this temperature range can
affect BBN because they will deplete electron neutrinos~and
antineutrinos! and thus modify the temperature when the
neutron/proton ratio freezes out. This effect is generally
small unless sin22um*1022 @6,8#. If we demand that
sin22um&1022 for this temperature range, then from Eq.~19!
we requireuau*10 ~for the most stringent case of maximal
mixing! for this temperature range~or udm2u&1028 eV2).
Thus, from Eq.~18!, uau*10 implies

uL ~e!u*2S udmee8
2 u

eV2
D . ~140!

Recall that for temperaturesT*Tf @whereTf is the tempera-
ture where the change ina due to the expansion is larger in
magnitude to the change ina due to oscillations, see the
earlier comments around Eq.~39! for some discussion about
this#, Lnt

is created such thatate8.1, from this it follows
that

L ~e!.Lnt
.231022S udmte8

2 u
eV2

D SMeV
Tf

D 4. ~141!

Combining Eq.~140! and Eq.~141!, sufficient lepton number
will be generated to suppress the oscillations in the tempera-
ture range Eq.~139! provided that

udmee8
2 u&1022udmte8

2 uSMeVTf
D 4. ~142!

Note that the temperatureTf is generally less than about 4
MeV @see Eq.~39! for a discussion about this#. Thus, Eq.
~142! will be easily satisfied given the condition Eq.~128!.

In summary, a consequence of the creation ofLnt
by

nt-ne8 oscillations is that the large angle or maximalne-ne8

FIG. 5. Region of parameter space in the2dmte8
2 , udmee8

2 u,
plane~assuming sin22u0

ee8.1) where theL (e) created bynt-ne8 os-
cillations does not get destroyed byne-ne8 oscillations. The solid

line corresponds to sin22u0
te851026, while the dashed line corre-

sponds to sin22u0
te851028. Note that similar results hold for

nm-ne8 oscillations by replacingnt→nm .
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oscillations will not significantly modify BBN provided that
L (e) does not get destroyed byne-ne8 oscillations~see Fig. 5
for some of this region of parameter space! and the condition
Eq. ~136! holds. Thus, it is clear that the oscillation gener-
ated neutrino asymmetry can weaken the rather stringent
BBN bound (udmee8

2 u&1028 eV2 for maximal mixing! by
many orders of magnitude. A consequence of this is that the
maximal ordinary-sterile neutrino oscillation solution to the
solar neutrino problem does not significantly modify BBN
for a large range of parameters.

While we have focused on a particular scenario, our
analysis will be relevant to other models with sterile neutri-
nos. For example, assume that there is a sterile neutrino
which mixes with parameters corresponding to the large
angle MSW solution to the solar neutrino problem, that is
dm2;1025 eV2 and sin22u0;0.7 @52#. This scenario has
been ‘‘ruled out’’ ~assuming negligible lepton number asym-
metry! in @6,8#. However, if the sterile neutrino also mixes
slightly with them and/ort neutrino~and such mixing would
be expected!, then these BBN bounds can be evaded pro-
vided thatudmte8

2 u and/or udmme8
2 u*0.121 eV2. Note that

the evidence fornm-ne oscillations found by the LSND col-
laboration suggests thatudmme

2 u*0.3 eV2 @3,47#. If this is the
case then the large angle MSW solution will not lead to a
significant modification to BBN for a large range of values

for sin22u0
me8.

We now discuss the possibility that the atmospheric neu-
trino anomaly is due to large angle or maximal muon
neutrino-sterile neutrino oscillations. Here, we will denote
the sterile neutrino bynm8 ~this neutrino is expected to be
distinct from ne8). Note that the possibility that the atmo-
spheric neutrino anomaly is due to large angle or maximal
nm-nm8 oscillations can be well motivated. For example, the
exact parity model@17# predicts that all three ordinary neu-
trinos mix maximally with mirror neutrinos if neutrinos have
mass.~See also Ref.@38# for some other interesting models
which can solve the atmospheric neutrino anomaly through
maximal ordinary-sterile neutrino oscillations.! The deficit of
atmospheric muon neutrinos can be explained if there are
nm-nm8 oscillations with sin22u0*0.5 and
1023&udmmm8

2 u/eV2&1021 @2,53#. The best fit occurs for
udmmm8

2 u.1022 eV2 and sin22u0.1 @2#. However, this pa-
rameter range is naively inconsistent with BBN@see Eq.~1!#
if the lepton number asymmetries are neglected. Can the
generation of lepton number by ordinary-sterile neutrino os-
cillations reconcile this solution to the atmospheric neutrino
anomaly with BBN?

To study this issue, consider the system consisting of
nt ,nm ,nm8 . This system is similar to thent ,ne ,ne8 system
that we have discussed above. Doing a similar analysis to the
above~i.e., replacingne andne8 by nm andnm8 ), we find that
theL (m) asymmetry created bynt-nm8 oscillations will not be
destroyed bynm-nm8 oscillations provided that

udmmm8
2 u&

l

ADnn /nn

udmtm8
2 u11/12, ~143!

wherel andDnn /nn are given by equations similar to Eq.
~114! and Eq. ~126! except that the replacements

ye→ym , Ae→Am have to be made. Thus, evaluating the
resulting expressions forl andDnn /nn , we find

udmmm8
2 u

eV2
&531026S udmtm8

2 u
eV2

D 11/12. ~144!

As before, we have made a more accurate numerical study of
this problem. If we solve the system of equations Eq.~129!
and Eq.~130!, with the replacementsne ,ne8→nm ,nm8 , then
we can obtain the region of parameter space where the
L (m) created bynt-nm8 oscillations does not get destroyed by
nm-nm8 oscillations. We show some of this parameter space in
Fig. 6.

If we assume the best fit of the atmospheric neutrino data,

then udmmm8
2 u.1022 eV2 and sin22u0

mm8.1. Numerically
solving Eqs.~129! and Eq.~130! ~with the replacement of
ne ,ne8 with nm ,nm8 ) assuming the best fit parameters,

udmmm8
2 u.1022 eV2 and sin22u0

mm8.1, we again obtain the
region of parameter space where theL (m) asymmetry is cre-
ated bynt-nm8 oscillations and does not get destroyed subse-
quently bynm-nm8 oscillations. Our results are shown in Fig.
7. As the figure shows, the asymmetryL (m) created by
nt-nm8 oscillations will not be destroyed bynm-nm8 oscilla-
tions provided thatdmtm8

2 is quite large, i.e.,

udmtm8
2 u*30 eV2. ~145!

Recall that our analysis neglects the possible effects of
nt-nm oscillations. It may be possible that smallerdmtm8

2 are
allowed if thent-nm mixing parameters are large enough.

The requirement thatnt-nm8 oscillations do not produce

too many sterile states implies an upper limit on sin22u0
tm8

@see Eq.~96!#. This upper limit has been shown in the figure
~dash-dotted line!. Also shown in Fig. 7~dashed line! is the
cosmological energy density boundudmtm8

2 u&1600 eV2

@49#.

FIG. 6. Region of parameter space in the2dmtm8
2 , udmmm8

2 u
plane where theL (m) created bynt-nm8 oscillations does not get

destroyed bynm-nm8 oscillations~assuming sin22u0
mm8.1). The solid

line corresponds to sin22u0
tm851026, while the dashed line corre-

sponds to sin22u0
tm851028. Note that similar results hold for

nt-ne8 oscillations if bothnm8 andne8 exist.
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Recall that the differential equations, Eq.~129! are only
valid provided that Eq.~75! holds.@We also require Eq.~76!
to hold fordm25dmte8

2 , which is clearly valid for the region
of parameter space studied.# Note that in our numerical work
we found that the condition Eq.~75! was approximately
valid for the points in the allowed region of the figures ex-
cept for the region with relatively large values of
sin22u0*1026. It would be a useful exercise to check our
analysis by performing a more accurate study using the den-
sity matrix equations, Eq.~46!, modified to incorporate the
neutrino momentum distribution.

The sin22u0
tm8 dependence shown in Figs. 6 and 7 can be

understood qualitatively as follows. For small sin22u0
tm8

(&1028), the creation ofL (m) is sluggish which has the ef-
fect of delaying the point where the destruction ofL (m) by
nm-nm8 oscillations reaches its maximum rate. As mentioned
earlier, for lower temperatures the rate at whichnm-nm8 os-
cillations destroyL (m) increases, which has the effect of re-
ducing the allowed parameter space. For larger values of

sin22u0
tm8 (*1028), the maximum rate at which thenm-nm8

oscillations destroyL (m) occurs during the time whenL (m) is
still growing exponentially. In this case the system moves
rapidly away from thenm-nm8 resonance region. Conse-
quently, the allowed region of parameter space is signifi-
cantly increased.

Observe that from Eq.~135!, this lepton number will eas-
ily be sufficiently large and created early enough to prevent
the nm8 sterile neutrino from coming into equilibrium given
Eq. ~145!. Thus, the large angle or maximal muon-sterile
neutrino oscillation solution to the atmospheric neutrino
anomaly is in fact consistent with BBN for a significant
range of parameters. Note that the condition Eq.~145! im-
plies quite larget neutrino masses,mnt

*6 eV. Note that if

the neutrinos are approximately stable~which would be ex-
pected unless some new interactions exist@50#! then there is
a stringent cosmology bound ofmnt

&40 eV @49#. Although
this parameter space is not so big, it can be well motivated
from the point of view of dark matter~since stable tau neu-
trinos with masses in the range 6 eV&mnt

&40 eV could
provide a significant fraction of the matter in the Universe!.

If we add thenm8 sterile neutrino to thent ,ne ,ne8 system
we considered earlier~in connection to the large angle
ordinary-sterile neutrino oscillation solution to the solar neu-
trino problem!, then nt-nm8 oscillations will also generate
L (e) in a similar manner to the way in whichnt-ne8 oscilla-
tions generated L (e). Consequently, the bounds on

dmte8
2 , sin22u0

te8, can alternatively be considered as bounds

ondmtm8
2 , sin22u0

tm8. Of course, we only need to require that

either dmte8
2 , sin22u0

te8 or dmtm8
2 ,sin22u0

tm8 satisfy the
bounds derived. Similarly, we can add thene8 sterile neutrino
to thent ,nm ,nm8 system and analogous reasoning leads to the

conclusion that the bounds ondmtm8
2 , sin22u0

tm8 can alterna-

tively be considered as bounds ondmte8
2 , sin22u0

te8. Observe

that withdmte8
2 , sin22u0

te8 or dmtm8
2 , sin22u0

tm8 in the range
identified in Fig. 7~where the atmospheric neutrino anomaly
is explained by large anglenm-nm8 oscillations without sig-
nificantly modifying BBN! the solar neutrino problem can
also be solved for the entire parameter space@Eq. ~98!#, with-
out significantly modifying BBN. Alternatively one can ar-
gue that the present data may allow thenm8 to come into
equilibrium with the ordinary neutrinos and still be consis-
tent with BBN @15# and thus we only require the less strin-
gent bounds given in Fig. 5. Clearly this is a possibility at the
moment. Note however, that for the case of the exact parity
symmetric model@17#, where the mirror neutrinos interact
with themselves, this way out is not possible. This is because
if the mirror muon neutrino is brought into equilibrium
above the kinetic decoupling temperature~which is about 5
MeV for muon neutrinos! then the mirror weak interactions
will bring all three mirror neutrinos together with the mirror
photon and mirror electron-positron into equilibrium~which
would lead to about nine effective neutrino degrees of free-
dom during nucleosynthesis!. For the case of mirror neutri-
nos it seems to be necessary to ensure that the mirror muon
neutrino is not brought into equilibrium in the first place.

Note that in our previous analysis, we have assumed that
the sterile neutrino is truly sterile and does not interact with
the background. In the special case of mirror neutrinos, the
mirror neutrinos are expected to interact with the background
because they interact with themselves@54#. In general the
effective potential describing coherent forward scattering of
the neutrino with the background has the form
V5Va2Vs8 . For truly sterile neutrinos,Vs850 ~as has been
assumed hitherto!. For mirror neutrinosVs8 is nonzero. De-
noting the mirror neutrinos bynb8 , then for the case of
na-nb8 oscillations we will denote the effective potential by

V5Va2Vb8 , ~146!

whereVa is given by Eq.~14! andVb8 is the effective poten-
tial due to the interactions of the mirror neutrinos with the

FIG. 7. Region of parameter space (sin22u0
tm8, 2dmtm8

2 ) where
the L (m) created bynt-nm8 oscillations does not get destroyed by
nm-nm8 oscillations. This region which in the figure is denoted by the
‘‘allowed region’’ is all of the parameter space above the solid line.

We have assumed that sin22u0
mm8.1 and udmmm8

2 u51022 eV2

~which is the best fit to the atmospheric neutrino data!. Also shown
~the dashed line! is the cosmology boundmnt

&40 eV ~which im-

plies udmtm8
2 u&1600 eV2), which is required if the neutrino is suf-

ficiently long lived. The dash-dotted line is the BBN bound, Eq.
~96!.
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background. The mirror effective potentialVb8 can be ex-
pressed in an analogous way toVa , that is there is a part
which is proportional to mirror lepton number and a part
which is independent of mirror lepton number,

Vb85~2a8p1b8p!D0
p . ~147!

If the number of mirror neutrinos is much less than the num-
ber of ordinary neutrinos thenb8.0. @Note that theb part of
the effective potential is proportional to the number densities
of the background particles. This dependence is not given in
Eq. ~15! since for this equation the number densities were set
equal to their equilibrium values.# The parametera8 has the
form

a8p[
2A2GFngL8~b!

D0
p , ~148!

whereL8(b) is given

L8~b!5Ln
b8
1Ln

e8
1Ln

m8
1Ln

t8
1h8, ~149!

whereLn
b8
are the mirror lepton numbers, which are defined

by Ln
b8
[(nn

b8
2n n̄

b8
)/ng ~note thatng is the number density

of ordinary photons! and h8 is a function of the mirror
baryon-electron number asymmetries@which is defined
analogous to Eq.~17!#. We will assume thath8 is small and
can be approximately neglected. Since ordinary1 mirror
lepton number is conserved~and we will assume that it is
zero!, it follows that

Lne
1Lnm

1Lnt
1Ln

e8
1Ln

m8
1Ln

t8
50. ~150!

From the above equation, it follows thata8 is expected to be
of the same order of magnitude asa. In the case of the
nt ,nm ,nm8 system, the effect of the mirror-neutrino effective
potential can be accounted for by simply replacingL (m,t) in
Va by

L ~m!→L ~m!2L8~m!.2Lnm
1Lnt

22Ln
m8
.4Lnm

13Lnt
,

L ~t!→L ~t!2L8~m!.2Lnt
1Lnm

22Ln
m8
.4Lnt

13Lnm
,

~151!

where we have usedLne8
.Ln

t8
.0 and Eq.~150!. Thus, from

the above equation, assuming that negligibleLnm
is pro-

duced, we see thatuamm8u.
3
4Ruatm8u ~where R[udmtm8

2 /
dmmm8

2 u). The factor of 3/4 replaces the factor of 1/2 that we
had earlier~for the case wherenm8 or ne8 were sterile neutri-
nos!. This difference will increase the region of allowed pa-

rameter space, because it will makeTres
mm8 closer to the point

whereLnt
is initially created. At this point]Lnt

/]t can be
significantly enhanced because it is very close to the reso-
nance~also note that]Lnm

/]t will be suppressed because it

is proportional to 1/T7).
Finally, observe that another important feature of mirror

neutrinos is that the mirror interactions can potentially bring
all three of the mirror neutrinos into equilibrium with them-
selves as well as the mirror photon and mirror electron pos-

itron. @However, the temperature of the mirror particles will
generally be less than the temperature of the ordinary par-
ticles if the oscillations satisfy Eq.~96!.# Detailed studies
involving mirror neutrinos will need to incorporate this. We
leave a more detailed study of mirror neutrinos to the future
@56#.

VII. CONCLUSION

In summary, we have studied the phenomenon of neutrino
oscillation generated lepton number asymmetries in the early
Universe in detail. This extended study clarifies the origin of
the approximations adopted in the earlier work@12#. We
have also studied the effects of the thermal distribution of the
neutrino momenta and non-negligible sterile neutrino num-
ber densities.

In the unrealistic case where the neutrino momentum dis-
tribution is neglected, the evolution ofLna

can be approxi-
mately described by seven coupled differential equations
@Eqs.~46!#, which can be obtained from the density matrix.
We showed in Sec. III that these equations can be reduced to
a single integrodifferential equation~we show in the Appen-
dix that the same equation can be obtained from the Hamil-
tonian formalism!. In general, the density matrix equations
cannot be solved analytically, and must be solved numeri-
cally. However, if the system is sufficiently smooth~the
static limit!, then the integrodifferential equation reduces to a
relatively simple first-order ordinary differential equation
@Eq. ~23!#. This equation gives quite a reasonable description
of the evolution ofLna

, except possibly at the initial reso-

nance where significant generation ofLna
occurs. We show

that when the thermal distribution of the neutrino momenta is
incorporated several important effects occur. One of these
effects is that the creation of lepton number is much
smoother. This allows a considerable computational simpli-
fication, because it means that the static approximation can
be a reasonably good approximation, even at the resonance
for a much larger range of parameters. This means thatLna

can be accurately described by the relatively simple first-
order differential equation~modified to incorporate the neu-
trino momentum distribution!. This equation is given by Eq.
~84!, expressed as a function of the number distribution of
sterile states. In Sec. V, we showed that the number distri-
bution of sterile neutrino states approximately satisfied a first
order differential equation@Eq. ~93!# which must be inte-
grated for each momentum step.

We first applied our analysis to obtain the region of pa-
rameter space where large neutrino asymmetries are gener-
ated. This region of parameter space is given in Eq.~97!.
This analysis included the effects of the neutrino momentum
distribution which was neglected in earlier studies@12,18#.
We also examined the implications of lepton number genera-
tion for the BBN bounds fordm2,sin22u0 for ordinary-sterile
neutrino mixing. There are two ways in which the creation of
lepton number can modify the BBN bounds. One way is
where thena-ns oscillations themselves produceLna

thereby
suppressing the number of sterile neutrinos produced from
the same oscillations. The other way is where thenb-ns os-
cillations createLnb

which thereby suppressesns production

from na-ns oscillations. The bound for the former case is
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given in Eq.~96!, while the latter case is studied in Sec. VI,
in the context of the maximal vacuum oscillation solutions to
the solar and atmospheric neutrino problems. The maximal
vacuum oscillation solution of the solar neutrino problem
assumes that the electron neutrino is approximately maxi-
mally mixed with a sterile neutrino. For a large range of
parameter space, the maximal mixing leads to an energy in-
dependent factor of 2 reduction in the solar neutrino fluxes.
This leads to a reasonably simple predictive solution to the
solar neutrino problem which is supported by the experi-
ments. However, most of the parameter space for this solu-
tion is inconsistent with standard big bang nucleosynthesis
~BBN! if the lepton numbers are assumed to be negligible
@5–8#. We showed that there is a large region of parameter
space where the oscillations generated lepton number in such
a way so as to allow the maximal vacuum oscillation solu-
tion to the solar neutrino problem to be solved without sig-
nificantly modifying BBN. The allowed parameter space is
given in Fig. 5. We also showed that there is a range of
parameters where the lepton number is generated so that the
large angle muon-sterile neutrino oscillation solution to the
atmospheric neutrino anomaly does not lead to any signifi-
cant modification of BBN. This parameter space is illustrated
in Figs. 6 and 7.

We finish with a speculation. One of the mysteries of
cosmology is the origin of the observed baryon asymmetry
of the early Universe. In principle, it may be possible that the
baryon asymmetry arises from a lepton number asymmetry.
The lepton number asymmetry can be converted into a
baryon number asymmetry through sphaleron transitions at
or above the weak phase transition. It may be possible that a
small lepton number asymmetry arises from the mechanism
of ordinary-sterile neutrino oscillations, which is seeded by
statistical fluctuations of the background. One interesting
feature of this possibility is that the baryon number asymme-
try would not be related to theCP asymmetry of the La-
grangian. Instead the origin of matter over antimatter would
be due to a statistical fluctuation which is then amplified by
neutrino oscillations. However before this speculation can be
checked, it would be necessary to work out the effective
potential at high temperatures (T;250 GeV) and study the
phase transition region.
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APPENDIX

The purpose of this appendix is to show that Eq.~60! can
be derived from the Hamiltonian formalism. In applying this
formalism, we will assume that the rate at which collisions
collapse the wave function~i.e., the rate of measurement of
whether the state is a weak or sterile eigenstate! is given by
the damping frequency which is half of the collision fre-
quency. For further discussion of this point see Sec. II and
@23#.

The expectation value that an initial weak eigenstate neu-
trino na has oscillated into a sterile statens after t seconds
will be denoted byucs8(t,t)u

2 ~where t is the age of the
Universe!. The average probability that an initial weak
eigenstate has oscillated into a sterile state can be obtained
by averaging the quantityucs8(t,t)u

2 over all possible times
t ~weighted by the probability that the neutrino has survived
t seconds since its last ‘‘measurement’’!. This average has
the form

^ucs8~ t !u
2&5

1

v0
E
0

t

e2t/v0ucs8~ t,t!u2dt, ~A1!

wherev0 is the mean time between measurements. Accord-
ing to @23#, v051/D52/Gna

. If we denote the analogous

quantity for antineutrinos bŷ uc̃s8(t)u
2&, then the rate of

change of lepton number can be expressed as

dLna

dt
.2

3

8
^V~ t !&

Gna

2
2
3

8

]^V~ t !&
]t

, ~A2!

where

^V~ t !&5^ucs8~ t !u
2&2^uc̃s8~ t !u

2&. ~A3!

Note that the first term in Eq.~A2! represents the rate of
change of lepton number due to collisions~which produce
sterile neutrino states!. The second term represents the rate of
change of lepton number due to the oscillations between col-
lisions.

In the adiabatic limit, the transformationu0→um and
L0→Lm diagonalizes the Hamiltonian. In this limit, the mean
probability ^ucs8(t)u

2& is given by

^ucs8~ t !u
2&5sin22umK sin2 t

2Lm
L . ~A4!

Note that in the static limit,]^V(t)&/]t50 and hence Eq.
~20! results. However, in the expanding Universe which is
nonstatic, the above equation is not generally valid~although
it turns out that it is a good approximation for oscillations
away from resonance where the system changes sufficiently
slowly and even at some resonance regions which are suffi-
ciently smooth!. To calculate the probabilitŷucs8(t)u

2& in
the general case, we go back to the fundamental Hamiltonian
equations

i
d

dt S ca

cs8
D 5

1

2p
M2S ca

cs8
D , ~A5!

where

M25
1

2 FRuS 2dm2 0

0 dm2DRu
T14pS ^V& 0

0 0D G , ~A6!

and

Ru5S cosu0 sinu0

2sinu0 cosu0
D , ^H&5

~b6a!dm2

2p
, ~A7!
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where the 2 (1) sign corresponds to neutrino~an-
tineutrino! oscillations. Expanding out Eq.~A5!, we find

i
dca

dt
5aca1

b

2
cs8 , i

dcs8

dt
5

b

2
ca1gcs8 , ~A8!

where

a5
dm2

4p
~2b62a2cos2u0!,

b5
dm2

2p
sin2u0 , ~A9!

g5
dm2

4p
cos2u0 .

If we divide the equations~A8! by ca andcs8 respectively,
then they can be combined into the single differential equa-
tion

i
dC

dt
5lC1

b

2
~12C2!, ~A10!

whereC[cs8/ca and

l5g2a5
dm2

2p
~cos2u02b6a!. ~A11!

The 1 (2) sign in the above equation corresponds to
na-ns ( n̄a- n̄s) oscillations. Note that ucs8u

2

5uCu2/(11uCu2). If the nonlinear term (C2) can be ne-
glected, then the solution for constanta,b,g is

C~ t !5
2b

2l
@12e2 i ~l!~ t2t* !#, ~A12!

with boundary conditionC(t* )50. Introducing the variable
t[t2t* , and evaluatinguC(t,t)u2 we find

uC~ t,t!u25
b2

l2sin
2Flt

2 G , ~A13!

which is approximately sin22umsin
2t/2Lm provided that

uCu2!1.
In the general case wherea,b, andg are not constant, the

general solution is~where we have again neglected the non-
linearC2 term!

C~ t !5
2 i

2 E
t*

t

ei l̃ ~ t8!b~ t8!dt8, ~A14!

where

l̃ ~ t8![E
t

t8
ldt9, ~A15!

and the boundary conditionC(t* )50 has again been taken.
One may easily verify that Eq.~A14! is indeed the solution
by directly substituting it into Eq.~A10!. The probability that
a weak eigenstate at timet* has oscillated into a sterile
eigenstate at timet is thus

uC~ t !u2.
b2

4 Et*
t E

t*

t

cosF E
t2

t1
ldt8Gdt1dt2 , ~A16!

where we have assumed thatb is approximately constant
over the interaction time scalet2t* , so that it can be taken
outside the integral. This step is a good approximation pro-
vided T*2 MeV @30#. Again defining the quantity
t[t2t* ~recall thatt is the time between measurements!,
and averaginguC(t,t)u2 overt, with the appropriate weight-
ing factor, we find that

^uC~ t !u2&.
b2

4v0
E
0

t

e2t/v0E
t2t

t E
t2t

t

cosF E
t2

t1
ldt8Gdt1dt2dt.

~A17!

Integrating this equation by parts~with respect to thet inte-
gration!, we find

^uC~ t !u2&.
b2

2 E0
tE

t2t

t

e2t/v0cosF E
t2t

t1
ldt8Gdt1dt,

~A18!

where we have used the fact thate2t/v0.0 @55#. The analo-
gous quantity for antineutrinos,^uC̃(t)u2&, can similarly be
defined. Recall that the functions^uC(t)u2&, ^uC̃(t)u2& are
related to the rate of change of lepton number through Eq.
~A2!:

dLna

dt
.2

3

8

^uC~ t !u2&
v0

2
3

8

]^uC~ t !u2&
]t

2@C→C̃#.

~A19!

Evaluating]^uC(t)u2&/]t we find

]^uC~ t !u2&
]t

5
b2

2 E0
t

e2t/v0S cosF E
t2t

t

ldt8G21D dt

1
b2

2 E0
t

e2t/v0l~ t2t!E
t2t

t

sinF E
t2t

t1
ldt8Gdt1dt,

~A20!

where we use the notation thatl (t2t) denotesl evaluated at
the point (t2t). Dividing Eq. ~A18! by v0 and integrating
Eq. ~A18! by parts~with respect to thet integration!, we find

1

v0
^uC~ t !u2&

5
b2

2 E0
t

e2t/v0S 12l~ t2t!E
t2t

t

sinF E
t2t

t1
ldt8Gdt1D dt.

~A21!

Adding the above two equations and subtracting the analo-
gous term for antineutrinos, we obtain the following rather
compact expression for the rate of change of lepton number:
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dLna

dt
5

23b2

16 E
0

t

e2t/v0

3S cosF E
t2t

t

ldt8G2cosF E
t2t

t

l̄dt8G D dt, ~A22!

wherel̄ is defined similarly tol except thata→2a. Note
that the total contribution to the rate of change of lepton
number is in fact simpler than either of the two separate
contributions coming from collisions and oscillations be-

tween collisions. Equation~A22! can be rewritten~using a
trigonometric identity!

dLna

dt
5
3b2

8 E
0

t

e2t/v0sinF E
t2t

t

l1dt8GsinF E
t2t

t

l2dt9Gdt,

~A23!

where l65(l6l̄)/2. Note that this is exactly the same
equation that we derived in Sec. III@Eq. ~60!# from the den-
sity matrix equations.
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