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Finite quantum electrodynamics with a gravitationally smeared propagator
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On the basis of qualitative considerations of quantum fluctuations in the space-time geometry, a modification
of the Feynman propagator is proposed involving a smearing of the propagator over a space-time region of an
extent of about a Planck length, er10 3% cm, surrounding the light cone. The smeared propagator is a
weighted average of modified Bessel functions both in coordinate space and in momentum space. In coordinate
space, the smeared propagator has a milder singularity on the light cone than the Feynman propagator, and in
momentum space it provides an effective cutoff at the Planck mass. Radiative corrections in QED can be easily
calculated with this propagator, and the results are finite. The renormalizations of the electron charge and mass
are of the order of a few percefi50556-282197)03208-4
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[. INTRODUCTION He used the naive covariant quantum gravity theory to evalu-
ate gravitational self-energy effects for sgimparticles. Fol-
The methods for dealing with the ultraviolet divergenceslowing an earlier attempt by DeWitL0] for spin 0, Khriplo-
that afflict QED have not improved much since the introduc-vich summed ladder contributions involving 0,1,2., «
tion of the Dyson and the Pauli-Villars procedures fifty yearsgravitons. For a spig-particle of zero mass, this led him to
ago[1]. It is true that in modern calculations the crude am-a modified propagator
putations performed by Dyson and Pauli and Villars are of-
ten supplanted by the more subtle procedures of proper-time A(p)=pga(p) 1)
regularization, analytic regularization, dimensional regular-
ization, or ¢-function regularizatior2,3,4,9. But all these With
procedures are purely formal, that is, they are merely pre- .
scriptions for the segregation of infinite terms and finite re- g(p)=— 2 - 4 + 4 Ka(—2iLVp?), (2)
mainders. The infinite terms are peremptorily discarttsd L%p? L%°  L(p*»¥* '
means of countertermsand the finite remainders are saved ) )
for comparisons with experiments. Why the infinite termsWhereL=y3/4wL, andK, is a Bessel function of the sec-
appear in the first place, and why they should be discarded, @d kind. The modified gropagzator approximates the Feyn-
a question not addressed by these formal prescripfiéhs ~ Man propagator pF for [p?|<M3 but it vanishes as pf in
Seeking a physical, rather than formal, resolution to thehe upper half energy plane fhn2|>Mi, which is a signifi-
problem of infinities, Landay7] and others conjectured cant improvement over the Feynman propagator. The differ-
early on that such a resolution might be found in quanturrence is even more drastic in coordinate space, where the
gravity. Simple estimates of quantum fluctuations of the gefourier transform of Eq(2) gives
ometry suggest that at the scale of the Planck lengih,
=1M, = hG/c®=1.6x 103 cm, the fluctuations in the N
metric g,,, are of the order of magnitude of 1; that is, the 9(x%) = 222
geometry becomes highly uncertain and, consequently, the
light cone is smeared out. The ultraviolet divergences inThis has only a mild singularity a®=0, in contrast with the
quantum field theory arise from the singularities of thehighly singular behavior of the zero-mass Feynman propaga-
propagator functions on the light cone, and a smearing out abr,
the light cone is expected to lead to modifications of the
propagator functions at short distances and suppression of o i B
the divergences. Desé8] proposed to calculate the propa- De(x) = 4m3(x2—ie) \4mw
gator by a functional integralthat is, an averageover all
possible geometries and he gave qualitative arguments fd¥or a spins particle of nonzero mass, Khriplovich was not
how this results in a smearing of the light cone. But ourable to find a closed solution for the propagator. However, it
ignorance of the details of the quantum fluctuations in thds possible to verify from his equations that the singularities
geometry poses an obstacle to explicit calculation of thefor the massive case are no worse than those for the massless
modifications of the propagator functions. case.
Khriplovich [9] attempted to calculate the modifications  Khriplovich was aware of several shortcomings of his cal-
of the propagator functions by an entirely different approachculation. He included only ladder diagrams of gravitons and
excluded all other graviton diagrams. Furthermore, the form
(2) of the propagator hinges in a crucial way on his choice of
*Current address: P.O. Box 370, Charlotte, VT 05445. the gravitational gauge—only for a special, preferred choice
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of gauge does the propagator take the simple f@mTo  dee[11] with their “superpropagator” method. But there is
these criticisms we might add that any attempt at calculatingio direct relationship between the superpropagator and our
a propagator at the Planck scale via the covariant quantuigmeared propagatdinstead of a modification of the propa-
gravity theory is doomed to failure, since at this scale thegator per se the superpropagator also involves a gravita-

covariant theory is expected to fail. For all these reasongjonal modification of the photon-electron verjex
Khriplovich’s results cannot be taken very seriously. How-

ever, his results do _offer some tentative support fo_r th(_a view Il. THE SMEARED PROPAGATOR
that quantum gravity suppresses the singularities in the
propagator functions. The conventional Feynman propagator for a scalar field of

The earlier calculation by DeWiftl0] attempted to find massm is
the gravitational modifications in the propagator for a spin-0

particle. His result did not indicate any suppression of singu- m Ky(imyx2—ie)
larities (for |p?|>m?, DeWitt's gravity-modified propagator Gp(x?)=— g ? (5)
behaves like the ordinary Feynman propagat®he differ- X"—le

ence seems to arise from an unfortunate choice of génge _ )
fact, DeWitt's result is clearly pathological: far, —0, his ~ We want to smear out this propagator over a region of extent
gravity-modified propagator fails to reduce to the ordinaryAx?=L% surrounding the light cone. For this, we adopt the
Feynman propagator; instead, the mass in the propagator mptocedure familiar from the mathematics of smeared fields
tates into 2 times the free-particle massf the calcula- [12] in quantum field theory: we multiply the propagator
tion for the spin-0 case is performed with a choice of gaugdunction Ge(x*—\) by a weighting functiorf(\) and inte-
similar to that of Khriplovich, then results similar to those of grate over\. This yields the smeared propagator
Khriplovich can be obtaine@see the Appendijx

We are now at an impasse: we have good physical reasons
for supposing that the resolution of the problem of diver-
gences is to be found in the smearing out of the light cone

G_F<x2>=f AN F(V)GEOE— 1)

and in the consequent modifications of the propagator func- . m Ki(imyx2—\—ie)
tions at distances=L, (or momenta=M, ), but we do not T A2 dx F(n) Cr—ie (6)

have available any reliable calculation telling us the exact
form of these modifications. We can surmount this impass
by recognizing that, for most calculations in QEDe exact
form of the smeared propagator is unimportant: we can
adopt any of a wide variety of smeared propagator functions

and obtain finite resultsThe reason for this insensitivity to f d\ () =1 @)

the details of the propagator functions is that every accept- '

able smeared propagator coincides with the Feynman propa-

gator for distanceb<2|>Li and it has an effective cutoff in The weighting functiorf (\) represents the quantum fluctua-
momentum space ¢D2|:Mi to suppress the singularities tions of the geometry in a crude, phenomenological way. The
on the light cone. Since the experimentally accessible enegetails of the weighting function are unknown; they depend
gies are much less thav, , the main consequence of re- on the unknown details of the quantum fluctuations. As we
placing the conventional Feynman propagators by suchvill see below, causality arguments suggest fifaf) should
smeared propagators is to cut off all the infinite integrals avanish for negative values of, consequentlyf(\) is ex-
|p2|=M2. The details of these cutoffs will vary with the pected to be nonzero over a range from0 to A=L2
details of the smeared propagator, but such details are sub=0. We will assume that all kinds of particles have the same
sequently hidden in the renormalization procedure, and theyeighting function; this seems plausible, since the weighting
therefore become irrelevant. The central point of this paper i§unction represents an underlying, universal geometric ef-
the exploitation of this insensitivity to the details of the fect.

?Ne assume that the weighting functibf\) is non-negative
and normalized to 1:

smearing. The smearing in Eq6) is designed to preserve the Poin-
In Sec. Il we will discuss the general properties of careinvariance of the propagator. Actually, the exact propa-
smeared propagators and in Sec. Ill we will use suctgator that describes the propagation from a space-time point

smeared propagators to obtain finite results for the radiativ; to a space-time point, involves the detailed geometry of
corrections in QED. This is an attempt at a “realistic” ap- the intermedi}ate space-time regions, and since this geometry
proach to QED based on relevant physics, rather than a “foris not Poincarenvariant on the Plgnck scale, we expect that
malistic” approach based on improp@lthough unambigu- the exact propagator is not Poincaneariant. The smeared
ous mathematical manipulations. propagator is presumably related to thenknowr exact

A rough estimate indicates that the charge and masBropagator by some kind of averaging over all possible ge-
renormalizations produced by a typical smeared propagatdrmetries, and this averaging restores Poingavariance.
are of the order of 10%. This agrees with the mass renormal- The smeared propagators are not Green’s functions for the
ization found by Khriplovich; the agreement is not accidentalstandard free-particle wave equation. But all smeared propa-
since it turns out that the propagat@ is a special case of a gators approach the Feynman propagator asymptotically for
smeared propagator. Renormalizations of the same order 4)(2|>L§. In any case, we will assume that the smeared
magnitude were also obtained by Isham, Salam, and Stratipropagators can be identified with the time-ordered vacuum
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expectation values of field operators, to be used in the evalu- gl (Ept=p-x)
ation of S-matrix elements according to the usual Feynman [ap,afp]= 53(D‘D')J d3x 5E
rules. The smeared propagators have no spectral Lehmann- P
Symanzik-ZimmermanfLSZ) representation, and none is to X{Ep p(x,1),6(0)]
be expected since this representation fails in the presence of )
gravitational interaction§]. +2IiE [d(X,1)/dt,¢(0)]
The propagator of Khriplovich is an example of a —[P(x,1)]at2, $(0)]}. (12)

smeared propagator. It is easy to verify that E).with m

=0 leads to Eq(3) if the weighting function is taken as  This assumes tha, and at,, are independent of time, an

assumption that is valid foe,<M, , since the wave func-

tions for such modes approximately obey the standard wave

equation. The integrals on the right side involve the function

f(t>—x?), or f(t2—r?) in polar coordinates. For the evalu-

“ ] -ation, it is convenient to select a time such that<t

In contrast, the “regularized” propagator of Feynman, Paulia"on: i 5 oy

and Villars[1], and Bogoliubo[13], <1/E,, say,t=yL,/E,. Trzle fungtlonzf(t 2—r ) is the_zn
sharply peaked betweerd=t2 andr?=t>—LZ, and the in-
tegrals can be evaluated by saddle-point integration over the

m Ky (imJxZ—ie) d y P g

2y_ _ peak. For instance,
reﬁF(X ) 4772 \/m

. M Ki(iM{x?—ie)
47?2 Z—ie
xle With these approximations, Eql2) yields [a,,at]
=6%(p—p’). Likewise, [@y,8,]=0. The errors in these

is not a smeared propagator, since it does not approach ﬂ&_%mmutation relations are of order-2t2. or E.L. . Thus
Feynman propagator fgx?|>1/M?2. P Pk ’

' - i < -ti
For spacelikex, the global commutativity theoreifi4] for modes withE,<M, , the unequal-time commutat¢t0)

_ ) , 2 ) is sufficient to recover the usual interpretation aff, and
demands ¢(x), #(0)]=0, which require$s¢=0, and it fol- a, as creation and destruction operators. An incidental ad-
lows that\ in Eq. (6) must be positive. This means that the

) 2 . L vantage of relying on the unequal-time commutator is that
light conex“=0 is smeared toward the interior of the future \\o av0id the highly singular limit—0 anddt—0 implicit
and the past space-time regions; the smeazred 2I|ght CONR the conventional canonical equal-time commutator, which
forms a “light shell,” extending fromx“=0 to x“=L.

- A has long rendered this commutator suspect in the eyes of
For timelikex (andt>0), the commutator implied by the  mathematical field theorists. In contrast, the unequal-time

2 A
f()\):F(l—F) for O=<\<L2. (tS)

f:drr“f(tz—rz)z%t”‘l. (13
©)

smeared propagator is commutator(10) and its time derivative are quite nonsingu-
s lar.
[H(X),(0)]=2i ReGE(x?) In momentum space, the smeared propagator is
i 2 im 2 o 4y AiP-X (2
:_ﬂf(X)JFE dx f(N)O(x“—N\) Ge(p)= | d*x€P*Gg(x?)
XJl(m\/xz—)\) w0 f N WK [ =i\ (pP=m?+ie)]
_. =—i .
NN Vp?—m?+ie
(14
In contrast, the commutator for the conventional Feynman
propagator is The smeared propagators in coordinate space and in momen-
tum space exhibit a remarkable duality: both involve
i im J (mﬁ) weighted averages of modified Bessel functions of order 1
[(X),h(0)]=— =— S(x2)+ — a7 (1)  and, apart from an overall numerical factor, they are related
27 4m %2 by the simple exchanges—p, VA< —m.

The analytic properties of the smeared propagator are
From Eq.(10) we see that, if'(0) is finite, the equal-time similar to those described by Khriplovich for his propagator.
commutator [ 9¢(x,0)/at, $(0)] implied by the smeared In the complexp? plane, the smeared propagator has a
propagator equals zero, in contrast to the conventional cdranch cut along the real axis from? to c. In the complex
nonical commutator[ d¢(x,0)/dt,p(0)]=—i8%(x). This  Po plane, instead of the usual two isolated polespgt
looks like a fatal conflict with a basic postulate of quantum=*= Jp%+m?, the smeared propagator has two branch cuts ex-
mechanics. However, if we perform the Fourier decompositending frompy=* p?+m? to +%. Asymptotically, the
tion of ¢, we find that for modes of energi,<M, the smeared propagator vanishes exponentially in all directions
commutation relations of the operatoag and at, retain  in the complex plane except along the edges of the branch
their standard form. The Fourier decomposition ¢fx,t) cuts, where it is an oscillating function with a gradually de-
and of ¢(0) implies creasing amplitude.
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If |p?l<MZ2, the dominant term in K; is IT,, with the smeared propagator by following exactly the
i/ \N(pZ—mZ+ie) and the smeared propagator approacheSaMe steps as in conventional QEfe, e.g., Ref16]), but

the Feynman propagator with a finite result. As in conventional QED, the result for
' the polarization tensor separates into a gauge invariant part
_ 1 and noninvariant part. The gauge invariant part is
——. 1
GF(D)—>p2_m2+IE (15 o

n'Yq)=-— (9%g,,— Vdefdxfx f(\
This makes it obvious that probability amplitudes and wave (@) ™ (078, 8uh) ! 2l ()T (h2)

packets that contain only such “low” momentum compo- 1
nents propagate according to the conventional Feynman xf dz2z(1-2z)Ky(é), (20)
propagator, in the expected way. However, for momenta 0

|p?|=M2, G differs drastically fromG and the propaga- here

tor does not obey the standard wave equation. At the Planc\‘g

scale, it is impossible to regard the propagator as a Green’s M(1—2)+ N,z
function of any kind of wave equation, since in the absence =\ ——7—
of a well-defined background geometry, differential opera- 2(1=2)

2 .
tors, such af1°, are meaningless or, at the least, they aré-qr any momentum in the range of experimental interest,
meaningless as numbers. Thus, at the Planck scale, the|q2|<1/|-,2< and the Bessel functio, is then approximately

conventional initial-value problem is meaningless. Ko(£)=— y—In &2, so Eq.(20) reduces to the familiar re-

sult of conventional QED, except for an alteration of the

[M*-a’z(1-2)]. (2D

As an illustration of how the smeared modified propagator

(1) —i(q? _
leads to finite results we present the calculations of the () =1(d79,,~4,9,)

second-order radiative corrections in QED, that is, the 20 (1
vacuum polarization, the electron self-energy, and the photon X (Zg= )+ — fo dz71-72)
vertex.

2

o q
A. Vacuum polarization Xln|1— 2 z(1-z2)

] (22

For a photon of momenturg, the vacuum polarization

tensor is with
e 4 Z3—1= @ |2 In2 2 >
M@ == 07 f d®p Trly,(B+m)y,(p—g+m)] sml=-—13h2=3v—3
X_ G — 1
Gr(p)Ge(p—q), (16) +2f dzf de dhf(h ) FONy)
- 0
where the electron propagatop{ m)Gg(p) is obtained
from the scalar propagator in the usual way, by multiplica- 1
tion with (p+m). The integral(16) can be conveniently X2(1-2)In Mg (1—2)+n,7] | (23
evaluated by taking advantage of the integral representation
for the Bessel functionfl5]: If the weighting functiorf (\) is more or less concentrated at
~12 ;
K(&) - expl — z— £247) A=Lg, we can estimate
== ha a7
€ b @ Zy—1=— i ——=-01 (24)
S T mL, T

With a 90° rotation of the contour of integration this yields
. Thus, the charge renormalization is about 10%. As we will
G_F(IO)= —j f d\ f()‘)f dz exiN/4z+i(p2—m2+ie)z]. see below, the other renormalizations in QED are also of this

0 order of magnitude.
(18 The gauge noninvariant part &f,,, is
This integral representation is analogous to the familiar ex- @) i 1
ponential representation I(a)=-— guvfo dzf dMJ dhaf(N 1) F(N2)2K(€)
m:_if dz exi(p2—mP+ie)z] (19 X[m*=q°z(1-2)]. (29)
- 0
This term is:—iagwlLi and indicates a large photon

often exploited in the calculations with the conventionalmass and a large violation of the conservation of the electron
Feynman propagator. The close correspondence betweenrrent induced in the vacuum. The finite value of this term
Egs. (18) and (19) permits us to perform the evaluation of represents an improvement as compared with the infinite re-
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sult found in conventional QED with the conventional Feyn-the same order of magnitude as the electron charge fluctua-
man propagatotbefore regularization However, even a fi- tions calculated from the polarization.

nite gauge-noninvariant term is unacceptable, and we need to (iv) We could try to impose gauge invariance on the po-
find some way of eliminating or canceling this term. Severallarization by adopting some maodification of the photon-
possibilities come to mind. electron vertex. However, it seems futile to pursue this

(i) Our smeared propagator is merely a first approxima-‘brute-force” approach, as long as we do not know how
tion that takes into account the quantum fluctuations of thenuch the quantum fluctuations in the geometry contribute to
geometry only in a rough, average way. The exact propagahe solution of the gauge problem via alternatives-(iii ).
tor is likely to exhibit a more complicated behavior nedr  For now, the best we can do is shelve the gauge problem,
=0, which remains to be discovered by functional integra-and hope that it will resolve itself if and when we learn more
tion over all possible geometries as proposed by Degdesr  about the quantum fluctuations in the geometry.
by some other means. Any such alteration of the behavior
nearx®=0 will affect the value of the gauge noninvariant B. Electron self-energy
term and possibly eliminate {the gauge noninvariant term
is more sensitive to the behavior xt=0 than is the gauge
invariant term).

(ii) In Eq. (16) for the polarization, we assumed that the ai (1
two propagators in the integrand are smeared individually, e f dzf d)\lf dh,f(N ) T(Np)
rather than jointly. Since these propagators describe two par- 4m Jo
ticles that are create@nd later destroyedat the same space- _ _
time point, the fluctuating geometry will affect both in the XL=2p(1=2)+4m]
same way, at least initially and finally. Accordingly, some zmP+2z(1—2z)p?
kind of joint smearing of the two propagators may be re- X:Z In2—2y—In T (1-2z
quired (this is reminiscent of the joint, overall regularization
that Pauli and Villars adopted for their treatment of the po-
larization. —In[A1z+Np(1— Z)]] : (26)

(i) The gauge noninvariant terf@5) and the consequent
violation of electron charge conservation might represent &om this we identify the electron wave function renormal-
real physical effect which is compensated by another gaugg ation factor,
noninvariant term arising from charged entities such as min-
iature charged black holes, generated by the quantum fluc- a (1 1 1
tuations in the geometry. A miniature black hdBH) can Z, -1= - §+In2— vty J dzJ d)\lf di,
absorb or emit an electrone+ (BH of chargeQ)«— 77 0
(BH of chargeQ—e). The distinctive attributes of the elec- 1
tron are lost when it is absorbed by the black hole, that is, in Xf(N)Ff(N2)(1—2)In
this process the electron ceases to exist and its electric charge
is transferred to the black hole. Correspondingly, there is a fl 2(1-22) ]

+ | ———dz

The electron self-energy can be calculated by similar
methods, with the result

m2[A,Z+N,(1—2)]

violation of the electron current conservatian,j*“+#0, and

a corresponding violation of gauge invariance for the polar-
ization (25) calculated from the electron currerq,“l'lﬁfv) L
X(q)# 0. However, the total currerithe sum of the current and the mass renormalization
of electrons and the current associated with charged black

holeg is still conserved and we therefore expect that the om_ @ (—1+3In2—3y+fldzf d)\lf dX,
2 0

(27)

0 V4

polarization calculated from the total current is gauge invari- ™M 27
ant. This means that besides the electron contribution to the
polarization there is an extra contribution from charged black X f(A))f(A)2(1+2)In 1 ] .

holes, which cancels Edq25). A simple estimate indicates M2\ 12+ Ny(1-2)]
that the electron and black-hole contributions are of the same

order of magnitude, as required for cancellation. To see this,

we evaluate the Fourier transform of E@5) and find the . : . . 1
polarizationlT ,,(x) in coordinate space. The resulting func- Ij\ivs |gr/10re|> tf;(/a uiual |3f;arfzdi}llve/rgelncilnLEqY)d fz

tion is ~e?g,,, /L, ®. Sincell,,(x)=(T[j .(x)},(0)]), this =(a/m)ln I/mL, and sm/m=(a/m)in 1/mL, =0.1.
indicates that the rms vacuum fluctuations of the electron

charge density are-e/L, 3. Now consider quantum fluctua- C. Vertex correction

tions in the geometry on a scéllg . These fluctuations have  As in conventional QED, the expression for the vertex

a massM, and since the corresponding Schwarzschild ragorrection is somewhat complicated, and we give only the
dius isGM, =L, , most of these fluctuations are in the form zero-order term irg%:

of black holes. The density of such black holes is expected to

be zl/Li. Emission of electrons and positrofsf energy AM(O):(Zfl—l)m (29
=M, ) by these black holes by the Hawking process leads to

charge fluctuationst e in volumes 1L3, which is indeed of ~ with a vertex renormalization factor

(28)
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@ 1 1-7 The smeared propagator can vyield finite results for
Z;'-1= 77 {Inz— Y+ J dzj dz’j dMJ dX, vacuum expectation values of products of fields and products
0 0 of derivatives of fields, such as occur in calculations of the
mass of the Higgs boson and the energy-momentum tensor
Xj dhaf(A ) f(N2)F(Na) of the vacuum. For example, for a scalar field,
XIn — - (0l p(x)b(x') + B(X') $(x)|0) = =2 IMG(x—X'),
MmNy /z+N,/Z + N3/ (1—2—2")](z+Z') (31
_en (30 3,0" 0| p(X) p(X") + B(x") $(x)|0)
T mL, —
=-29,9", Im Gg(x—x"), (32
In conventional electrodynamics, the exact equalityZef
and Z, is implied by the Ward identity>/dp#=—A,. SO the limitx—x" gives
According to Eqs.(30) and (27), Z; and Z, are approxi-
mately equal but they are probably not exactly equbé (0] p(x) p(x)|0)
difference depends on the details of the weighting function )
f(N\)]. A failure of the Ward identity would not come as a :f ~ f()\)[ 1 N m” N £+In m_)\)
surprise, since this identity relies on the canonical commuta- a7\ 8w | Y7 2 2

tion relation and current conservation, both of which fail for

the smeared propagator. The Ward identity is often used to + } (33)
demonstrate that QED can be renormalized to all orders, but '

it is not indispensable for this demonstration.

(09,6(x)3,b(x)[0)
IV. OTHER APPLICATIONS AND CONCLUSIONS
. 1 m2
If the external momenta are small compared whh , ngJ dr f()\)( — st - (34)

the S-matrix elements calculated with smeared propagators " 87\
agree with conventional QED. However, if the external mo-
menta are of the order ofl, , then the results differ signifi- If the integrals off (\)/\ andf(\)/\? are finite[17], these
cantly. For instance, the electron-electron scattering crosgacuum expectation values are finite and of the order of
section differs from the usual Mott formula by factors arisingm?/ Li andg,,/ Li, respectively. By contrast, in conven-
from the smearing of the photon propagator. Thus, at highional field theory, these vacuum expectation values diverge
energies QED retains an explicit dependence on the weightjuadratically and quartically. Although finite, the vacuum
ing function, and the effects of the smearing cannot any morexpectation value$33) and (34) are large, and to reduce
be hidden in renormalizations. them to a tolerable level we need some kind of fine tuning or
The smeared propagator can also be applied to the calcgome subtraction procedure. For instance, to bring the value
lation of the conventionally divergent Feynman diagramsof the vacuum energy momentum tensor into agreement with
that occur in other field theories, including nonrenormaliz-observational cosmology, we need to cancel the large values
able field theories. Both nonrenormalizable and renormaliz{33) and(34) by adopting ar(almos} equally large value of
able theories are rendered finite, but the difference is that théhe cosmological constafil8]. Thus, smeared propagators
nonrenormalizable theories retain an explicit dependence odio not solve the problem of large vacuum expectation values
the weighting functionf(\), whereas renormalizable theo- or, more generally, the problem of large radiative corrections
ries permit us to hide this dependencef@in) in the renor- in quantum field theories. But by providing us with finite
malizations[except when the external energies are compaexpressions for these quantities, smeared propagators at least
rable withM, , when even the renormalizable theories retainpermit us to state more sharply what it is we need to cancel.
an explicit dependence di{\)]. Although the higher-order In addition to offering a “realistic” and mathematically
terms in nonrenormalizable theories will be finite, they will consistent treatment of the problem of infinities associated
usually be large. The coupling constant of a nonrenormalizwith the singularities on the light cone, the properties of
able theory has dimensions of some negative power of massmeared propagator suggest some of the modifications to be
and the higher-order terms contain a factor of some power ofxpected in quantum field theories at the Planck scale. Field
the coupling constant multiplied by some positive power ofequations, Green’s functions, and canonical commutation re-
M, . Such large terms will have to be compensated by countations will probably disappear, but vacuum expectation val-
terterms or by some other fine tuning. Presumably theues of field operators and probability amplitudes will perhaps
smeared propagator can also be applied to the naive covariemain.
ant quantum gravity theory. The fact that the smeared propa-
gator generates an effective cutoff dt, might serve as a APPENDIX
bridge between “covariant” quantization and the more fun-
damental quantization of the geometry itself. The cutoff We here apply the method of Khriplovich to the case of a
makes the covariant theory fade away at the Planck scaléassless scalar field. For such a field, the gravitationally
when we enter the domain of quantum geometry. modified propagatog(k?) produced by the sum of ladder
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diagrams with 0,1,2 . ., gravitons obeys the recursive equation

N L 4 Y 1
k g(k )k =k - (277)4 d q qu _qu 52(77,%771/,8"' NupMva™ 77,11,117](13)

a b
+ E (nuapvpﬁ_’_ nquvpa+ ﬂvﬁpupa+ nvap,u,p,B) + E (ﬂMVpapB+ naﬁp,upv)

aB
(q“kﬁ— 772 q- k)g(qz)- (A1)

Cc

Here k?=167G, p=k—q is the momentum of the gravitongf{k”— 37*"q-k) is the vertex corresponding to graviton
emission according to the linearized theory, and the middle bracket is the graviton propagator in a gauge characterized by
arbitrary constants,b,c. After multiplying out all the terms, we change the contour of integrationggpso it lies along

—ic to +ic, and we then perform all the integrations over angles in four-dimensional Euclidean spacey,Witp, and
R?=—q?=0?+q3, a lengthy calculation yields

R6

i 0(—k?>—R?) +k*0(R>+k?)

g(—R?).
(A2)

Cak =g fwdR MPILI i 3p-3¢lr
gk =k “2m2atsmg/oet| b g

(2m* Jo

The essential step in the method of Kriplovich is to choose the gauge so that the most highly divergent term@\&) Eq.
disappear from the equation. This demanrd®—2a+b/2—c/8=0. If in addition we choose [¥2+ 3c/8=1/8, weobtain

y3
X O(x—y)+x20(y—X)

g(—x) = —x— de a(-y) (A3)
(1672 Jo ’

wherex=—k? andy=R?. This integral equation is the same as that obtained by Khriplovich in thelsgase[see his Eq.

(19)].
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