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On the basis of qualitative considerations of quantum fluctuations in the space-time geometry, a modification
of the Feynman propagator is proposed involving a smearing of the propagator over a space-time region of an
extent of about a Planck length, or.10233 cm, surrounding the light cone. The smeared propagator is a
weighted average of modified Bessel functions both in coordinate space and in momentum space. In coordinate
space, the smeared propagator has a milder singularity on the light cone than the Feynman propagator, and in
momentum space it provides an effective cutoff at the Planck mass. Radiative corrections in QED can be easily
calculated with this propagator, and the results are finite. The renormalizations of the electron charge and mass
are of the order of a few percent.@S0556-2821~97!03208-6#

PACS number~s!: 12.20.Ds, 04.62.1v, 11.10.Gh, 11.15.Bt

I. INTRODUCTION

The methods for dealing with the ultraviolet divergences
that afflict QED have not improved much since the introduc-
tion of the Dyson and the Pauli-Villars procedures fifty years
ago @1#. It is true that in modern calculations the crude am-
putations performed by Dyson and Pauli and Villars are of-
ten supplanted by the more subtle procedures of proper-time
regularization, analytic regularization, dimensional regular-
ization, or z-function regularization@2,3,4,5#. But all these
procedures are purely formal, that is, they are merely pre-
scriptions for the segregation of infinite terms and finite re-
mainders. The infinite terms are peremptorily discarded~by
means of counterterms! and the finite remainders are saved
for comparisons with experiments. Why the infinite terms
appear in the first place, and why they should be discarded, is
a question not addressed by these formal prescriptions@6#.

Seeking a physical, rather than formal, resolution to the
problem of infinities, Landau@7# and others conjectured
early on that such a resolution might be found in quantum
gravity. Simple estimates of quantum fluctuations of the ge-
ometry suggest that at the scale of the Planck length,L*
51/M*5A\G/c351.6310233 cm, the fluctuations in the
metric gmn are of the order of magnitude of 1; that is, the
geometry becomes highly uncertain and, consequently, the
light cone is smeared out. The ultraviolet divergences in
quantum field theory arise from the singularities of the
propagator functions on the light cone, and a smearing out of
the light cone is expected to lead to modifications of the
propagator functions at short distances and suppression of
the divergences. Deser@8# proposed to calculate the propa-
gator by a functional integral~that is, an average! over all
possible geometries and he gave qualitative arguments for
how this results in a smearing of the light cone. But our
ignorance of the details of the quantum fluctuations in the
geometry poses an obstacle to explicit calculation of the
modifications of the propagator functions.

Khriplovich @9# attempted to calculate the modifications
of the propagator functions by an entirely different approach.

He used the naive covariant quantum gravity theory to evalu-
ate gravitational self-energy effects for spin-1

2 particles. Fol-
lowing an earlier attempt by DeWitt@10# for spin 0, Khriplo-
vich summed ladder contributions involving 0,1,2, . . . , `
gravitons. For a spin-12 particle of zero mass, this led him to
a modified propagator

D~p!5p”g~p! ~1!

with

g~p!52
2

L2p4
2

4

L4p6
1

4i

L~p2!3/2
K3~22iLAp2!, ~2!

whereL5A3/4pL* andKn is a Bessel function of the sec-
ond kind. The modified propagator approximates the Feyn-
man propagator 1/p2 for up2u!M

*
2 but it vanishes as 1/p4 in

the upper half energy plane forup2u@M
*
2 , which is a signifi-

cant improvement over the Feynman propagator. The differ-
ence is even more drastic in coordinate space, where the
Fourier transform of Eq.~2! gives

g~x2!5
i

2p2L2 S 11
x22L2

L2
ln
x22L22 i e

x22 i e D . ~3!

This has only a mild singularity atx250, in contrast with the
highly singular behavior of the zero-mass Feynman propaga-
tor,

DF~x2!5
i

4p2~x22 i e!
52S 1

4p D d~x2!1
i

4p2x2
. ~4!

For a spin-12 particle of nonzero mass, Khriplovich was not
able to find a closed solution for the propagator. However, it
is possible to verify from his equations that the singularities
for the massive case are no worse than those for the massless
case.

Khriplovich was aware of several shortcomings of his cal-
culation. He included only ladder diagrams of gravitons and
excluded all other graviton diagrams. Furthermore, the form
~2! of the propagator hinges in a crucial way on his choice of
the gravitational gauge—only for a special, preferred choice*Current address: P.O. Box 370, Charlotte, VT 05445.
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of gauge does the propagator take the simple form~2!. To
these criticisms we might add that any attempt at calculating
a propagator at the Planck scale via the covariant quantum
gravity theory is doomed to failure, since at this scale the
covariant theory is expected to fail. For all these reasons,
Khriplovich’s results cannot be taken very seriously. How-
ever, his results do offer some tentative support for the view
that quantum gravity suppresses the singularities in the
propagator functions.

The earlier calculation by DeWitt@10# attempted to find
the gravitational modifications in the propagator for a spin-0
particle. His result did not indicate any suppression of singu-
larities ~for up2u@m2, DeWitt’s gravity-modified propagator
behaves like the ordinary Feynman propagator!. The differ-
ence seems to arise from an unfortunate choice of gauge~in
fact, DeWitt’s result is clearly pathological: forL*→0, his
gravity-modified propagator fails to reduce to the ordinary
Feynman propagator; instead, the mass in the propagator mu-
tates into 1/& times the free-particle mass!. If the calcula-
tion for the spin-0 case is performed with a choice of gauge
similar to that of Khriplovich, then results similar to those of
Khriplovich can be obtained~see the Appendix!.

We are now at an impasse: we have good physical reasons
for supposing that the resolution of the problem of diver-
gences is to be found in the smearing out of the light cone
and in the consequent modifications of the propagator func-
tions at distances.L* ~or momenta.M* !, but we do not
have available any reliable calculation telling us the exact
form of these modifications. We can surmount this impasse
by recognizing that, for most calculations in QED,the exact
form of the smeared propagator is unimportant: we can
adopt any of a wide variety of smeared propagator functions
and obtain finite results. The reason for this insensitivity to
the details of the propagator functions is that every accept-
able smeared propagator coincides with the Feynman propa-
gator for distancesux2u@L

*
2 and it has an effective cutoff in

momentum space atup2u.M
*
2 to suppress the singularities

on the light cone. Since the experimentally accessible ener-
gies are much less thanM* , the main consequence of re-
placing the conventional Feynman propagators by such
smeared propagators is to cut off all the infinite integrals at
up2u.M

*
2 . The details of these cutoffs will vary with the

details of the smeared propagator, but such details are sub-
sequently hidden in the renormalization procedure, and they
therefore become irrelevant. The central point of this paper is
the exploitation of this insensitivity to the details of the
smearing.

In Sec. II we will discuss the general properties of
smeared propagators and in Sec. III we will use such
smeared propagators to obtain finite results for the radiative
corrections in QED. This is an attempt at a ‘‘realistic’’ ap-
proach to QED based on relevant physics, rather than a ‘‘for-
malistic’’ approach based on improper~although unambigu-
ous! mathematical manipulations.

A rough estimate indicates that the charge and mass
renormalizations produced by a typical smeared propagator
are of the order of 10%. This agrees with the mass renormal-
ization found by Khriplovich; the agreement is not accidental
since it turns out that the propagator~2! is a special case of a
smeared propagator. Renormalizations of the same order of
magnitude were also obtained by Isham, Salam, and Strath-

dee@11# with their ‘‘superpropagator’’ method. But there is
no direct relationship between the superpropagator and our
smeared propagator~instead of a modification of the propa-
gator per se, the superpropagator also involves a gravita-
tional modification of the photon-electron vertex!.

II. THE SMEARED PROPAGATOR

The conventional Feynman propagator for a scalar field of
massm is

GF~x2!52
m

4p2

K1~ imAx22 i e!

Ax22 i e
. ~5!

We want to smear out this propagator over a region of extent
Dx2.L

*
2 surrounding the light cone. For this, we adopt the

procedure familiar from the mathematics of smeared fields
@12# in quantum field theory: we multiply the propagator
functionGF(x

22l) by a weighting functionf (l) and inte-
grate overl. This yields the smeared propagator

ḠF~x2!5E dl f ~l!GF~x22l!

52
m

4p2 E dl f ~l!
K1~ imAx22l2 i e!

Ax22l2 i e
. ~6!

We assume that the weighting functionf (l) is non-negative
and normalized to 1:

E dl f ~l!51. ~7!

The weighting functionf (l) represents the quantum fluctua-
tions of the geometry in a crude, phenomenological way. The
details of the weighting function are unknown; they depend
on the unknown details of the quantum fluctuations. As we
will see below, causality arguments suggest thatf (l) should
vanish for negative values ofl; consequently,f (l) is ex-
pected to be nonzero over a range froml50 to l.L

*
2

.0. We will assume that all kinds of particles have the same
weighting function; this seems plausible, since the weighting
function represents an underlying, universal geometric ef-
fect.

The smearing in Eq.~6! is designed to preserve the Poin-
caréinvariance of the propagator. Actually, the exact propa-
gator that describes the propagation from a space-time point
x1 to a space-time pointx2 involves the detailed geometry of
the intermediate space-time regions, and since this geometry
is not Poincare´ invariant on the Planck scale, we expect that
the exact propagator is not Poincare´ invariant. The smeared
propagator is presumably related to the~unknown! exact
propagator by some kind of averaging over all possible ge-
ometries, and this averaging restores Poincare´ invariance.

The smeared propagators are not Green’s functions for the
standard free-particle wave equation. But all smeared propa-
gators approach the Feynman propagator asymptotically for
ux2u@L

*
2 . In any case, we will assume that the smeared

propagators can be identified with the time-ordered vacuum
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expectation values of field operators, to be used in the evalu-
ation ofS-matrix elements according to the usual Feynman
rules. The smeared propagators have no spectral Lehmann-
Symanzik-Zimmermann~LSZ! representation, and none is to
be expected since this representation fails in the presence of
gravitational interactions@9#.

The propagator of Khriplovich is an example of a
smeared propagator. It is easy to verify that Eq.~6! with m
50 leads to Eq.~3! if the weighting function is taken as

f ~l!5
2

L2 S 12
l

L2D for 0<l<L2. ~8!

In contrast, the ‘‘regularized’’ propagator of Feynman, Pauli
and Villars @1#, and Bogoliubov@13#,

regGF~x2!52
m

4p2

K1~ imAx22 i e!

Ax22 i e

1
M

4p2

K1~ iMAx22 i e!

Ax22 i e
, ~9!

is not a smeared propagator, since it does not approach the
Feynman propagator forux2u@1/M2.

For spacelikex, the global commutativity theorem@14#
demands@f(x),f(0)#50, which requiresḠF50, and it fol-
lows thatl in Eq. ~6! must be positive. This means that the
light conex250 is smeared toward the interior of the future
and the past space-time regions; the smeared light cone
forms a ‘‘light shell,’’ extending fromx250 to x2.L

*
2 .

For timelikex ~andt.0!, the commutator implied by the
smeared propagator is

@f~x!,f~0!#52i ReḠF~x2!

52
i

2p
f ~x2!1

im

4p E dl f ~l!u~x22l!

3
J1~mAx22l!

Ax22l
. ~10!

In contrast, the commutator for the conventional Feynman
propagator is

@f~x!,f~0!#52
i

2p
d~x2!1

im

4p

J1~mAx2!
Ax2

. ~11!

From Eq.~10! we see that, iff 8(0) is finite, the equal-time
commutator @]f(x,0)/]t,f(0)# implied by the smeared
propagator equals zero, in contrast to the conventional ca-
nonical commutator@]f(x,0)/]t,f(0)#52 id3(x). This
looks like a fatal conflict with a basic postulate of quantum
mechanics. However, if we perform the Fourier decomposi-
tion of f, we find that for modes of energyEp!M* the
commutation relations of the operatorsap and a†p retain
their standard form. The Fourier decomposition off(x,t)
and off~0! implies

@ap ,a†p8#5d3~p2p8!E d3x
ei ~Ept2p•x!

2Ep

3$Ep
2@f~x,t !,f~0!#

12iEp@]f~x,t !/]t,f~0!#

2@]2f~x,t !/]t2,f~0!#%. ~12!

This assumes thatap and a†p are independent of time, an
assumption that is valid forEp!M* , since the wave func-
tions for such modes approximately obey the standard wave
equation. The integrals on the right side involve the function
f (t22x2), or f (t22r 2) in polar coordinates. For the evalu-
ation, it is convenient to select a time such thatL*!t
!1/Ep , say, t.AL* /Ep. The function f (t22r 2) is then
sharply peaked betweenr 25t2 and r 2.t22L

*
2 , and the in-

tegrals can be evaluated by saddle-point integration over the
peak. For instance,

E
0

`

drr n f ~ t22r 2!. 1
2 t

n21. ~13!

With these approximations, Eq.~12! yields @ap ,a†p8#
.d3(p2p8). Likewise, @ap ,ap8#.0. The errors in these
commutation relations are of orderEp

2t2, or EpL* . Thus,
for modes withEp!M* , the unequal-time commutator~10!
is sufficient to recover the usual interpretation ofa†p and
ap as creation and destruction operators. An incidental ad-
vantage of relying on the unequal-time commutator is that
we avoid the highly singular limitt→0 and]t→0 implicit
in the conventional canonical equal-time commutator, which
has long rendered this commutator suspect in the eyes of
mathematical field theorists. In contrast, the unequal-time
commutator~10! and its time derivative are quite nonsingu-
lar.

In momentum space, the smeared propagator is

ḠF~p!5E d4x eip•xḠF~x2!

52 i E dl f ~l!
AlK1@2 iAl~p22m21 i e!#

Ap22m21 i e
.

~14!

The smeared propagators in coordinate space and in momen-
tum space exhibit a remarkable duality: both involve
weighted averages of modified Bessel functions of order 1
and, apart from an overall numerical factor, they are related
by the simple exchangesx↔p, Al↔2m.

The analytic properties of the smeared propagator are
similar to those described by Khriplovich for his propagator.
In the complexp2 plane, the smeared propagator has a
branch cut along the real axis fromm2 to `. In the complex
p0 plane, instead of the usual two isolated poles atp05
6Ap21m2, the smeared propagator has two branch cuts ex-
tending fromp056Ap21m2 to 6`. Asymptotically, the
smeared propagator vanishes exponentially in all directions
in the complex plane except along the edges of the branch
cuts, where it is an oscillating function with a gradually de-
creasing amplitude.
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If up2u!M
*
2 , the dominant term in K1 is

i /Al(p22m21 i e) and the smeared propagator approaches
the Feynman propagator,

ḠF~p!→
1

p22m21 i e
. ~15!

This makes it obvious that probability amplitudes and wave
packets that contain only such ‘‘low’’ momentum compo-
nents propagate according to the conventional Feynman
propagator, in the expected way. However, for momenta
up2u.M

*
2 , ḠF differs drastically fromGF and the propaga-

tor does not obey the standard wave equation. At the Planck
scale, it is impossible to regard the propagator as a Green’s
function of any kind of wave equation, since in the absence
of a well-defined background geometry, differential opera-
tors, such as!2, are meaningless or, at the least, they are
meaningless asc numbers. Thus, at the Planck scale, the
conventional initial-value problem is meaningless.

III. RADIATIVE CORRECTIONS IN QED

As an illustration of how the smeared modified propagator
leads to finite results we present the calculations of the
second-order radiative corrections in QED, that is, the
vacuum polarization, the electron self-energy, and the photon
vertex.

A. Vacuum polarization

For a photon of momentumq, the vacuum polarization
tensor is

Pmn~q!52
e2

~2p!4
E d4p Tr@gm~p”1m!gn~p”2q”1m!#

3ḠF~p!ḠF~p2q!, ~16!

where the electron propagator (p”1m)ḠF(p) is obtained
from the scalar propagator in the usual way, by multiplica-
tion with (p”1m). The integral~16! can be conveniently
evaluated by taking advantage of the integral representation
for the Bessel functions@15#:

Kn~j!

jn
5E

0

` exp~2z2j2/4z!

~2z!n11 dz. ~17!

With a 90° rotation of the contour of integration this yields

ḠF~p!52 i E dl f ~l!E
0

`

dz exp@ il/4z1 i ~p22m21 i e!z#.

~18!

This integral representation is analogous to the familiar ex-
ponential representation

1

p22m21 i e
52 i E

0

`

dz exp@ i ~p22m21 i e!z# ~19!

often exploited in the calculations with the conventional
Feynman propagator. The close correspondence between
Eqs. ~18! and ~19! permits us to perform the evaluation of

Pmn with the smeared propagator by following exactly the
same steps as in conventional QED~see, e.g., Ref.@16#!, but
with a finite result. As in conventional QED, the result for
the polarization tensor separates into a gauge invariant part
and noninvariant part. The gauge invariant part is

Pmn
~1!~q!52

2ia

p
~q2gmn2qmqn!E dl1E dl2f ~l1! f ~l2!

3E
0

1

dz2z~12z!K0~j!, ~20!

where

j5Al1~12z!1l2z

z~12z!
@m22q2z~12z!#. ~21!

For any momentum in the range of experimental interest,
uq2u!1/L

*
2 and the Bessel functionK0 is then approximately

K0(j).2g2 ln j/2, so Eq.~20! reduces to the familiar re-
sult of conventional QED, except for an alteration of the
charge renormalization factor:

Pmn
~1!~q!5 i ~q2gmn2qmqn!

3H ~Z321!1
2a

p E
0

1

dz z~12z!

3 lnF12
q2

m2 z~12z!G J ~22!

with

Z32152
a

p H 23 ln 22
2

3
g2

5

9

12E
0

1

dzE dl1E dl2f ~l1! f ~l2!

3z~12z!ln
1

m2@l1~12z!1l2z#
J . ~23!

If the weighting functionf (l) is more or less concentrated at
l.L

*
2 , we can estimate

Z321.2
a

p
ln

1

mL*
.20.1. ~24!

Thus, the charge renormalization is about 10%. As we will
see below, the other renormalizations in QED are also of this
order of magnitude.

The gauge noninvariant part ofPmn is

Pmn
~2!~q!52

ia

p
gmnE

0

1

dzE dl1E dl2f ~l1! f ~l2!2K2~j!

3@m22q2z~12z!#. ~25!

This term is.2 iagmn /L*
2 and indicates a large photon

mass and a large violation of the conservation of the electron
current induced in the vacuum. The finite value of this term
represents an improvement as compared with the infinite re-
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sult found in conventional QED with the conventional Feyn-
man propagator~before regularization!. However, even a fi-
nite gauge-noninvariant term is unacceptable, and we need to
find some way of eliminating or canceling this term. Several
possibilities come to mind.

~i! Our smeared propagator is merely a first approxima-
tion that takes into account the quantum fluctuations of the
geometry only in a rough, average way. The exact propaga-
tor is likely to exhibit a more complicated behavior nearx2

50, which remains to be discovered by functional integra-
tion over all possible geometries as proposed by Deser@8# or
by some other means. Any such alteration of the behavior
nearx250 will affect the value of the gauge noninvariant
term and possibly eliminate it~the gauge noninvariant term
is more sensitive to the behavior atx250 than is the gauge
invariant term!.

~ii ! In Eq. ~16! for the polarization, we assumed that the
two propagators in the integrand are smeared individually,
rather than jointly. Since these propagators describe two par-
ticles that are created~and later destroyed! at the same space-
time point, the fluctuating geometry will affect both in the
same way, at least initially and finally. Accordingly, some
kind of joint smearing of the two propagators may be re-
quired~this is reminiscent of the joint, overall regularization
that Pauli and Villars adopted for their treatment of the po-
larization!.

~iii ! The gauge noninvariant term~25! and the consequent
violation of electron charge conservation might represent a
real physical effect which is compensated by another gauge
noninvariant term arising from charged entities such as min-
iature charged black holes, generated by the quantum fluc-
tuations in the geometry. A miniature black hole~BH! can
absorb or emit an electron,e1(BH of chargeQ)↔
(BH of chargeQ2e). The distinctive attributes of the elec-
tron are lost when it is absorbed by the black hole, that is, in
this process the electron ceases to exist and its electric charge
is transferred to the black hole. Correspondingly, there is a
violation of the electron current conservation,]m j

mÞ0, and
a corresponding violation of gauge invariance for the polar-
ization ~25! calculated from the electron current,qmPmn

(2)

3(q)Þ0. However, the total current~the sum of the current
of electrons and the current associated with charged black
holes! is still conserved and we therefore expect that the
polarization calculated from the total current is gauge invari-
ant. This means that besides the electron contribution to the
polarization there is an extra contribution from charged black
holes, which cancels Eq.~25!. A simple estimate indicates
that the electron and black-hole contributions are of the same
order of magnitude, as required for cancellation. To see this,
we evaluate the Fourier transform of Eq.~25! and find the
polarizationPmn(x) in coordinate space. The resulting func-
tion is .e2gmn /L*

6. SincePmn(x)}^T@ j m(x) j n(0)#&, this
indicates that the rms vacuum fluctuations of the electron
charge density are.e/L*

3. Now consider quantum fluctua-
tions in the geometry on a scaleL* . These fluctuations have
a massM* and since the corresponding Schwarzschild ra-
dius isGM*5L* , most of these fluctuations are in the form
of black holes. The density of such black holes is expected to
be .1/L

*
3 . Emission of electrons and positrons~of energy

.M* ! by these black holes by the Hawking process leads to
charge fluctuations6e in volumes 1/L

*
3 , which is indeed of

the same order of magnitude as the electron charge fluctua-
tions calculated from the polarization.

~iv! We could try to impose gauge invariance on the po-
larization by adopting some modification of the photon-
electron vertex. However, it seems futile to pursue this
‘‘brute-force’’ approach, as long as we do not know how
much the quantum fluctuations in the geometry contribute to
the solution of the gauge problem via alternatives~i!–~iii !.
For now, the best we can do is shelve the gauge problem,
and hope that it will resolve itself if and when we learn more
about the quantum fluctuations in the geometry.

B. Electron self-energy

The electron self-energy can be calculated by similar
methods, with the result

2 iS52
a i

4p E
0

1

dzE dl1E dl2f ~l1! f ~l2!

3@22p” ~12z!14m#

3H 2 ln222g2 ln
zm21z~12z!p2

~12z!z

2 ln@l1z1l2~12z!#J . ~26!

From this we identify the electron wave function renormal-
ization factor,

Z2
21215

a

2p H 121 ln22g1
1

2 E
0

1

dzE dl1E dl2

3 f ~l1! f ~l2!~12z!ln
1

m2@l1z1l2~12z!#

1E
0

1 2~12z2!

z
dzJ ~27!

and the mass renormalization

dm

m
5

a

2p H 2
1

2
13 ln223g1E

0

1

dzE dl1E dl2

3 f ~l1! f ~l2!2~11z!ln
1

m2@l1z1l2~12z!#J .
~28!

If we ignore the usual infrared divergence in Eq.~27!, Z2
21

21.(a/p)ln 1/mL* anddm/m.(a/p)ln 1/mL*.0.1.

C. Vertex correction

As in conventional QED, the expression for the vertex
correction is somewhat complicated, and we give only the
zero-order term inq2:

Lm~0!5~Z1
2121!gm ~29!

with a vertex renormalization factor
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Z1
21215

a

2p H ln22g1E
0

1

dzE
0

12z

dz8E dl1E dl2

3E dl3f ~l1! f ~l2! f ~l3!

3 ln
1

m2@l1 /z1l2 /z81l3 /~12z2z8!#~z1z8!J
.

a

p
ln

1

mL*
. ~30!

In conventional electrodynamics, the exact equality ofZ1
and Z2 is implied by the Ward identity]S/]pm52Lm .
According to Eqs.~30! and ~27!, Z1 and Z2 are approxi-
mately equal but they are probably not exactly equal@the
difference depends on the details of the weighting function
f (l)#. A failure of the Ward identity would not come as a
surprise, since this identity relies on the canonical commuta-
tion relation and current conservation, both of which fail for
the smeared propagator. The Ward identity is often used to
demonstrate that QED can be renormalized to all orders, but
it is not indispensable for this demonstration.

IV. OTHER APPLICATIONS AND CONCLUSIONS

If the external momenta are small compared withM* ,
the S-matrix elements calculated with smeared propagators
agree with conventional QED. However, if the external mo-
menta are of the order ofM* , then the results differ signifi-
cantly. For instance, the electron-electron scattering cross
section differs from the usual Mott formula by factors arising
from the smearing of the photon propagator. Thus, at high
energies QED retains an explicit dependence on the weight-
ing function, and the effects of the smearing cannot any more
be hidden in renormalizations.

The smeared propagator can also be applied to the calcu-
lation of the conventionally divergent Feynman diagrams
that occur in other field theories, including nonrenormaliz-
able field theories. Both nonrenormalizable and renormaliz-
able theories are rendered finite, but the difference is that the
nonrenormalizable theories retain an explicit dependence on
the weighting functionf (l), whereas renormalizable theo-
ries permit us to hide this dependence onf (l) in the renor-
malizations@except when the external energies are compa-
rable withM* , when even the renormalizable theories retain
an explicit dependence onf (l)#. Although the higher-order
terms in nonrenormalizable theories will be finite, they will
usually be large. The coupling constant of a nonrenormaliz-
able theory has dimensions of some negative power of mass,
and the higher-order terms contain a factor of some power of
the coupling constant multiplied by some positive power of
M* . Such large terms will have to be compensated by coun-
terterms or by some other fine tuning. Presumably the
smeared propagator can also be applied to the naive covari-
ant quantum gravity theory. The fact that the smeared propa-
gator generates an effective cutoff atM* might serve as a
bridge between ‘‘covariant’’ quantization and the more fun-
damental quantization of the geometry itself. The cutoff
makes the covariant theory fade away at the Planck scale,
when we enter the domain of quantum geometry.

The smeared propagator can yield finite results for
vacuum expectation values of products of fields and products
of derivatives of fields, such as occur in calculations of the
mass of the Higgs boson and the energy-momentum tensor
of the vacuum. For example, for a scalar field,

^0uf~x!f~x8!1f~x8!f~x!u0&522 ImḠF~x2x8!,
~31!

]m]8n^0uf~x!f~x8!1f~x8!f~x!u0&

522]m]8n Im ḠF~x2x8!, ~32!

so the limitx→x8 gives

^0uf~x!f~x!u0&

5E dl f ~l!F 1

4p2l
1

m2

8p2 S g1
1

2
1 ln

mAl

2 D
1 . . . G , ~33!

^0u]mf~x!]nf~x!u0&

5gmnE dl f ~l!S 2
1

2p2l2 1
m2

8p2l
1••• D . ~34!

If the integrals off (l)/l and f (l)/l2 are finite@17#, these
vacuum expectation values are finite and of the order of
m2/L

*
2 and gmn /L*

4 , respectively. By contrast, in conven-
tional field theory, these vacuum expectation values diverge
quadratically and quartically. Although finite, the vacuum
expectation values~33! and ~34! are large, and to reduce
them to a tolerable level we need some kind of fine tuning or
some subtraction procedure. For instance, to bring the value
of the vacuum energy momentum tensor into agreement with
observational cosmology, we need to cancel the large values
~33! and~34! by adopting an~almost! equally large value of
the cosmological constant@18#. Thus, smeared propagators
do not solve the problem of large vacuum expectation values
or, more generally, the problem of large radiative corrections
in quantum field theories. But by providing us with finite
expressions for these quantities, smeared propagators at least
permit us to state more sharply what it is we need to cancel.

In addition to offering a ‘‘realistic’’ and mathematically
consistent treatment of the problem of infinities associated
with the singularities on the light cone, the properties of
smeared propagator suggest some of the modifications to be
expected in quantum field theories at the Planck scale. Field
equations, Green’s functions, and canonical commutation re-
lations will probably disappear, but vacuum expectation val-
ues of field operators and probability amplitudes will perhaps
remain.

APPENDIX

We here apply the method of Khriplovich to the case of a
massless scalar field. For such a field, the gravitationally
modified propagatorg(k2) produced by the sum of ladder
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diagrams with 0,1,2, . . . , gravitons obeys the recursive equation

k2g~k2!k25k22
ik2

~2p!4
E d4qS qmkn2

hmn

2
q•kD F 1p2 ~hmahnb1hmbhna2hmnhab!

1
a

p4
~hmapnpb1hmbpnpa1hnbpmpa1hnapmpb!1

b

p4
~hmnpapb1habpmpn!

1
c

p6
~pmpnpapb!G S qakb2

hab

2
q•kDg~q2!. ~A1!

Here k2516pG, p5k2q is the momentum of the graviton, (qmkn2 1
2h

mnq•k) is the vertex corresponding to graviton
emission according to the linearized theory, and the middle bracket is the graviton propagator in a gauge characterized by
arbitrary constantsa,b,c. After multiplying out all the terms, we change the contour of integration forq0 so it lies along
2 i` to 1 i`, and we then perform all the integrations over angles in four-dimensional Euclidean space. Withq05 iq4 and
R252q25q21q4

2, a lengthy calculation yields

k2g~k2!k25k21
p2k2

~2p!4
E
0

`

dRF R6

2k2
u~2k22R2!1k4u~R21k2!GF S 2222a1

b

2
2
c

8D R3

2k2
1S 2

3

2
b2

3

8
cDRGg~2R2!.

~A2!

The essential step in the method of Kriplovich is to choose the gauge so that the most highly divergent terms in Eq.~A2!
disappear from the equation. This demands2222a1b/22c/850. If in addition we choose 3b/213c/851/8, weobtain

x2g~2x!52x2
k2

~16p!2
E
0

`

dyFy3x u~x2y!1x2u~y2x!Gg~2y!, ~A3!

wherex52k2 andy5R2. This integral equation is the same as that obtained by Khriplovich in the spin-1
2 case@see his Eq.

~14!#.
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