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We suggest and motivate a precise equivalence between uncompactified 11-dimevstbealy and the
N=oo limit of the supersymmetric matrix quantum mechanics descrilid@gbranes. The evidence for the
conjecture consists of several correspondences between the two theories. As a consequence of supersymmetry
the simple matrix model is rich enough to describe the properties of the entire Fock space of massless well
separated particles of the supergravity theory. In one particular kinematic situation the leading large distance
interaction of these particles is exactly described by supergravity. The model appears to be a nonperturbative
realization of the holographic principle. The membrane states requirdd Hyeory are contained as excita-
tions of the matrix model. The membrane world volume is a noncommutative geometry embedded in a
noncommutative spacetimgs0556-282197)03308-0

PACS numbdss): 11.25.Sq, 11.30.Pb

[. INTRODUCTION string theory in the infinite momentum frame. We then
present our conjecture for the full set of degrees of freedom
M theory [1] is the strongly coupled limit of type-llA of M theory and the Hamiltonian which governs them. Our
string theory. In the limit of infinite coupling, it becomes an strongest evidence for the conjecture is a demonstration that
11-dimensional theory in a background-infinite flat space. Iour model contains the excitations which are widely believed
this paperM theory will always refer to this decompactified to exist in M theory, supergravitons and large metastable
limit. We know very little about this theory except for the classical membranes. These are discussed in Secs. Ill and V.
following two facts. At low energy and large distances, it is The way in which these excitations arise is somewhat mi-
described by 11-dimensional supergravity. It is also knowrfaculous, and we consider this to be the core evidence for our
to possess membrane degrees of freedom with membraﬁgmecture._ln Sec. IV we presentgcalcu_latlon_of supergravi-
tension ]J/E, wherel p is the 11-dimensional Planck length. It ton scattering in a very special kinematic region and argue

seems extremely unlikely thad theory is any kind of con- that our model reproduces the expected result of low energy

ventional quantum field theory. The degrees of freedom degupergrawty. The calculation depends on a supersymmetric

" . ) . nonrenormalization theorem whose validity we will discuss
scribing the short distance behavior are simply unknown y

Th f thi ) ¢ d ) there. In Sec. VI we argue that our model may satisfy the
e purpose of this paper Is to put forward a conjecturg,,, anhic principle. This raises crucial issues about Lor-

about these degrees of freedom and about the Hamiltoniagy,i, invariance which are discussed there.

governing them. . We emphasize that there are many unanswered questions
The conjecture grew out of a number of disparate fact$hout our proposed version bf theory. Nonetheless, these

aboutM theory, D branes[2], matrix descriptions of their jgeas seem of sufficient interest to warrant presenting them

dynamicg 3], supermembrandg,5,6, the holographic prin-  pere, If our conjecture is correct, this would be the first non-

ciple [7], and short distance phenomena in string theoryerturbative formulation of a quantum theory which includes
[8,9]. Simply stated the conjecture is thid. theory, in the gravity.

light cone frame, is exactly described by the laNyémit of

a particular supersymmetric matrix quantum mechanics. The

system is the same one that has be_en used previously used to Il INEINITE MOMENTUM ERAME

study the small dlsta.nce behawor @0 branes[9]. _ AND THE HOLOGRAPHIC PRINCIPLE

Townsend 10] was the first to point out that the supermatrix

formulation of membrane theory suggested that membranes The infinite momentum framgl1] is the old name for the

could be viewed as composites@ branes. Our work is a misnamed light cone frame. Thus far this is the only frame in

precise realization of his suggestion. which it has proved possible to formulate string theory in

In what follows we will present our conjecture and someHamiltonian form. The description d¥1 theory which we

evidence for it. We begin by reviewing the description of will give in this paper is also in the infinite momentum
frame. We will begin by reviewing some of the features of
the infinite momentum frame formulation of relativistic

*Electronic address: banks@physics.rutgers.edu guantum mechanics. For a comprehensive review we refer
TElectronic address: fischler@physics.utexas.edu the reader t¢11]. We begin by choosing a particular spatial
*Electronic address: shenker@physics.rutgers.edu direction x'* called the longitudinal direction. The nine-
8Electronic address: susskind@dormouse.stanford.edu dimensional space transversextd is labeledx' or x*. Time
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will be indicated byt. Now consider a system of particles [Qa Qpls=845H,

with momenta p? ,p$,) where a labels the particle. The

system is boosted along thé! axis until all longitudinal [da.98]+ = SaBP11,

momenta are much larger than any scale in the problem.

Further longitudinal boosting just rescales all longitudinal [Qu.0al= YaaPi- (2.9

momenta in fixed proportion. Quantum field theory in such a
limiting reference frame has a number of properties whichThe Lorentz generators which do not preserve the infinite
will be relevant to us. momentum frame mix up the two kinds of generators.

It is convenient to begin by assuming that tk'é direc- Let us now recall some of the features of string theory in
tion is compact with a radiuR. The compactification serves the infinite momentum or light cone franid2]. We will
as an infrared cutoff. Accordingly, the longitudinal momen- continue to call the longitudinal directiort* even though in
tum of any system or subsystem of quanta is quantized ithis case the theory has only ten space-time directions. The
units of 1R. In the infinite momentum frame, all systems aretransverse space is of course eight dimensional. To describe
composed of constituent quanta or partons. The partons adl free string of longitudinal momentumy,, a periodic pa-
carry strictly positive values of longitudinal momentum. It is rametero which runs from 0 top44 is introduced. To regu-
particularly important to understand what happens to quantkate the world sheet theory, a cutofir=€ is introduced.
of negative or vanishing;. The answer is that as the infi- This divides the parameter space iftic=p,,/e segments,
nite momentum limit is approached, the frequency of theseach carrying longitudinal momentuea We may think of
guanta, relative to the Lorentz-time-dilated motion of theeach segment as a parton, but unlike the partons of quantum
boosted system, becomes infinite and the zero and negati¥ield theory, these objects always capy,= €. For a multi-
momentum quanta may be integrated out. The process gfarticle system of total longitudinal momentum;(total),
integrating out such fast modes may influence or even detewe introduce a total parameter space of overall length
mine the Hamiltonian of the remaining modes. In fact, thep,,(total), which we allow to be divided into separate
situation is slightly more complicated in certain cases for thepieces, each describing a string. The world sheet regulator is
zero momentum degrees of freedom. In certain situationgmplemented by requiring each string to be composed of an
such as spontaneous symmetry breaking, these longitudinaligteger number of partons of momentuminteractions are
homogeneous modes define backgrounds whose moduli malescribed by splitting and joining processes in which the
appear in the Hamiltonian of the other modes. In any casaumber of partons is strictly conserved. The regulated theory
the zero and negative momentum modes do not appear &sthus seen to be a special case of Galilean quantum me-

independent dynamical degrees of freedom. chanics ofN partons with interactions which bind them into
Thus we may assume all systems have longitudinal molong chains and allow particular kinds of rearrangements.
mentum given by an integer multiple ofR,/ The introduction of a minimum unit of momentuencan
be given an interpretation as an infrared cutoff. In particular,
p11=N/R, (2.1) we may assume that the'! coordinate is periodic with

lengthR= ¢~ 1. Evidently, the physical limit—0, R—® is

with N strictly positive. At the end of a calculation we must @ limit in which the number of partonld tends to infinity.
let R and N/R tend to infinity to get to the uncompactified It is well known[7] that in this largeN limit the partons
infinite momentum limit. become infinitely dense in the transverse space and that this

The main reason for the simplifying features of the infi- leads to extremely strong interactions. This circumstance, to-
nite momentum frame is the existence of a transverse Gapether with the Bekenstein bound on entropy, has led to the
ilean symmetry which leads to a naive nonrelativistic formholographic speculation that the transverse density of par-
for the equations. The role of nonrelativistic mass is playedons is strictly bounded to about one per transverse Planck
by the longitudinal momenturp,;. The Galilean transfor- area. In other words, the partons form a kind of incompress-

mations take the form ible fluid. This leads to the unusual consequence that the
transverse area occupied by a system of longitudinal momen-
Pi— Pi+ P - (2.2)  tumpy cannot be smaller thapy;/e in Planck units.

The general arguments for the holographic behavior of
As an example of the Galilean structure of the equationsSyStemS . foI,Iowed from — considerations |nvoIV|.ng the
the energy of a free massless particle is Bekenstein—"t Hooft bound on the entropy of a spatial region

[13] and were not specific to string theory. If the arguments

2 are correct, they should also apply to 11-dimensional theo-
_ Py _ 2.3 ries which include gravitation. Thus we should expect that in
2p11 M theory the radius of a particle such as the graviton will

grow with p,; according to

For the l1ll-dimensional supersymmetric theory we will o
consider, the Galilean invariance is extended to the super- _[Pu | — R)9
Galilean group which includes 32 real supergenerators. The P p=(P1R) e,
supergenerators divide into two groups of 16, each trans-
forming as spinors under the nine-dimensional transverse rawherelp is the 11-dimensional Planck length. In what fol-
tation group. We denote them Ky, , andq,, and they obey lows we will see quantitative evidence for exactly this be-
anticommutation relations havior.

(2.5
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At first sight the holographic growth of particles appearswhose only degrees of freedom a0 branes. AntBO0
to contradict the boost invariance of particle interactionsbranes carry negative Kaluza-Klein momenta, and strings
Consider the situation of two low energy particles movingcarry vanishingp,;. The decoupling of antd0 branes is
past one another with some large transverse separation, let particularly fortunate because brane-antibrane dynamics is
say of order a meter. Obviously these particles have neglisomething about which we know very litt{[d4]. The BPS
gible interactions. Now boost the system along the longituproperty of zero branes ameliorates the conflict between in-
dinal direction until the size of each particle exceeds theiffinitely growing parton wave functions and low energy local-
separation. They now overlap as they pass each other. Bity, which we noted at the end of the last section. We will see
longitudinal boost invariance requires that the scattering amsome partial evidence for this in a nontrivial scattering com-
plitude be still essentially zero. This would seem to requireputation below. We will also discuss below the important
extremely special and unnatural cancellations. We will segoint that a model containing onlp0 branes actually con-
below that one key to this behavior is the very specialtains large classical supermembrane excitations. Since the
Bogomol'ni-Prasad-SommerfieldPS property of the par- conventional story of théVl-theoretic origin of strings de-
tons describingV theory. However, we are far from having picts them as membranes wrapped around the compactified
a complete understanding of the longitudinal boost invari-11th dimension, we have some reason to believe that strings
ance of our system. Indeed, we view it as the key dynamicahave not really been left out of the system.
puzzle which must be unraveled in understanding the dy- All of these circumstances lead us to propose that

namics ofM theory. theory in the infinite momentum frame is a theory in which
the only dynamical degrees of freedom or partons @fe
. M THEORY AND DO BRANES branes. Furthermore, it is clear in this case that all systems

_ - o ) are built out of the composites of partons, each of which
M theory with a compactified longitudinal coordinate carries the minimap,;. We note, however, that our system
X" is by definition a type-lIA string theory. The correspon- goes have a set of degrees of freedom which go beyond the

dences between the two theories |ncllﬂmkthe fO”OWing. parton coordinates. |ndeed’ as first advocatedia'_h the
(1)_The compactification radiuR is related to the string po brane coordinates df partons have to be promoted to
coupling constant by matrices. At distance scales larger than the 11-dimensional
o Planck scale, these degrees of freedom become very massive
R=g"1p=gls, 3D and largely decouplbut their virtual effects are responsible

for all parton interactions. These degrees of freedom are BPS
states and are related to the parton coordinates by gauge
(3.2 transformations. Furthermore, when the partons are close to-
gether, they become low frequency modes. Thus they cannot

(2) The Ramond-Ramon¢RR) photon of IIA theory is Pe omitted in any discussion of the dynamicsDfd branes.
the Kaluza-Klein(KK) photon which arises upon compacti-
fication of 11-dimensional supergravity. IV. DO BRANE MECHANICS

(3) No perturbative string states carry RR charge. In other

words, all perturbative string states carry vanishing momenbf ||3f (;hsr;?,ﬁenslt%é?;grlﬁgijug]o%mtlﬁgyhgesc:% ISt;fle%:hzcéryr ces
tum along thex*! direction. The only objects in the theory ; P 9 y deg

which do carry RR photon charge are th® branes of pf freedom, what is the precise form (_)f the quantum mechan—
N . . . ics of the system? Fortunately there is a very good candidate
Polchinski. DO branes are point particles which carry a

. : . .7~ which has been extensively studied in another context in
zglgrlr?olggn(t)fng charge. Equivalently, they carry longitudi which DO branes decouple from stringg].

As emphasized at the end of the last section, open strings
DO branes_ which connectD0O branes do not exactly decouple. In fact,
P11 =1/R. (3.3 . .
the very short strings which connect the branes when they

wherel, is the string length scale:

IS:gil/?)Ip.

The DO branes carry the quantum numbers of the first mas&/® practically on top of each other introduce a new kind of

sive KK modes of the basic 11-dimensional supergravitycoordi”ate space in which the ning spatial coo_rdinaties of a
multiplet, including 44 gravitons, 84 components of a three-SyStem ofN DO branes become ninli XN matricesX,
form, and 128 gravitinos. We will refer to these particles ag 3]- The matricesX are accompanied by 16 fermionic super-
supergravitons. As 11-dimensional objects, these are aRartnersé,p, which transform as spinors under the (SD
massless. As a consequence, they are BPS saturated state§fi@up of transverse rotations. The matrices may be thought
the ten-dimensional10D) theory. Their 10D mass is R/ of as the spatial components of ten-dimensional super Yang-
(4) Supergravitons Carrying Kaluza-Klein momentum Ml”s (SYM) fields after dlr_nen_SIOHa| I’edu_CtIOI‘l to zero Space
p1;=N/R also exist, but are not described as elementar;?j"‘?c'f'ons- These Yang-Mills fields describe the open strings
DO branes. As shown if], their proper description is as Which are attached to tHe0 branes. The Yang-Mills quan-
bound composites dfl DO branes. tum mechanics has B) symmetry and is describe@n
These properties make th20 branes candidate partons
for an infinite momentum limit description &fl theory. We
expect that if, as in quantum field theory, the degrees of !indeed, we will propose that this decoupling is precisely what
freedom with vanishing and negatiyg; decouple, therv defines the regime in which the classical notion of distance makes
theory in the infinite momentum frame should be a theorysense.
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units with|,=1) by the Lagrangian SXl=—2€"y9, (4.3

1 o | 80=3{DXyi+y-+3[X X]yjlete, (44
L= ltr XIX' 42070+ 5 X, X112=26T %[ 6,XT}.

4.1) SA=—2¢€"6 (4.5

involve a gauge transformation. As a result, the SUSY alge-

Here we have used conventions in which the fermionic varibra closes on the gauge generators and only takes on the
ables are 16-component nine-dimensional spinors. form (2.4) when applied to gauge-invariant states.

In [9] this Lagrangian was used to study the short distance The Hamiltonian has the form
properties oD 0 branes in weakly coupled string theory. The —
11D Planck length emerged as a natural dynamical length il Ui i
scale in that work, indicating that the systé1) describes H=Rt——=7 [YL Y2+ 6Tn[0Y']), (4.8
someM-theoretic physics. Ifi9], Eq. (4.1) was studied as a
low velocity effective theory appropriate to the hea@y)  wherell is the canonical conjugate t6. Note that in the
branes of weakly coupled string theory. Here we propose Edimit R—, all finite energy states of this Hamiltonian have
(4.1) as the most general infinite momentum frame Lagranginfinite energy. We will be interested only in states whose
ian, with at most two derivatives, which is invariant under energy vanishes like I/ in the largeN limit, so that this
the gauge symmetry and the super-Galilean gfdap]. It  factor becomes the inverse power of longitudinal momentum
would be consistent with our assumption that mafi®  which we expect for the eigenstates of a longitudinal-boost-
branes are the only degrees of freedonMotheory to write  invariant system. Thus, in the correct infinite momentum
a Lagrangian with higher powers of first derivatives. We doframe limit, the only relevant asymptotic states of the Hamil-
not know if any such Lagrangians exist which preserve thd@onian should be those whose energy is of ordé. We
full symmetry of the infinite momentum frame. What is at will exhibit a class of such states below, the supergraviton
issue here is 11-dimensional Lorentz invariance. In typicabcattering states. The difficult thing will be to prove that their
infinite momentum frame field theories, the naive classicalsS-matrix elements depend only on ratios of longitudinal mo-
Lagrangian for the positive longitudinal momentum modes ismenta, so that they are longitudinally boost invariant.
renormalized by the decoupled infinite frequency modes. To understand how this system represents ordinary par-
The criterion which determines the infinite momentum frameticles, we note that when thé's become large the commu-
Lagrangian is invariance under longitudinal boosts and nultator term inH becomes very costly in energy. Therefore for
plane rotating Lorentz transformatioftse infamous angular large distances the finite energy configurations lie on the flat
conditiong. Apart from simplicity, our main reason for sug- directions along which the commutators vanish. In this sys-
gesting the Lagrangiaf4.]) is that we have found some tem with 16 superchargéghese classical zero energy states
partial evidence that the large limit of the quantum theory are in fact exact supersymmetric states of the system. In
it defines is indeed Lorentz invariant. A possible line of ar-contrast to field theory, the continuous parameters which de-
gument systematically leading to E@.1) is discussed in scribe these statelthe Higgs vacuum expectation values
Sec. IX. (VEV’s) in the language of SYM theokyare not vacuum

Following [9], let us rewrite the action in units in which superselection parameters, but rather collective coordinates.
the 11D Planck length is 1. Using Eq8.1) and(3.2), the  We must compute their quantum wave functions rather than

change of units is easily made and one finds freeze them at classical values. They are, however, the slow-
est modes in the system, so that we can integrate out the
1 other degrees of freedom to get an effective SUSY quantum
L=tr[— D,Y'D,Y' - iR[Y', Y]~ 6"D,6 mechanics of these modes alone. We will study some aspects
2R of this effective dynamics below.

_ Along the flat directions th&' are simultaneously diago-
—RBT'yi[B,Y']], (4.2 nalizable. The diagonal matrix elements are the coordinates
of the DO branes. When th¥ are small, the cost in energy
for a noncommuting configuration is not large. Thus for
whereY = X/g'®. We have also changed the units of time to small distances there is no interpretation of the configuration
11D Planck units. We have restored the gauge fieldspace in terms of ordinary positions. Classical geometry and
(6;— D=0, +1iA) to this expressiofipreviously we were in distance are only sensible concepts in this system in regions
the A=0 gauge in order to emphasize that the supersym-far out along one of the flat directions. We will refer to this
metric (SUSY) transformation lawsgheree and € are two  as the long distance regime. In the short distance regime, we
independent 16-component anticommuting SUSY paramhave a noncommutative geometry. Nevertheless, the full
eterg Hamiltonian (4.6) has the usual Galilean symmetry. To see
this we define the center of mass of the system by

The gauge invariance is in fact necessary to supertranslation in-
variance. The supergenerators close on gauge transformations andThe 16 supercharges which anticommute to the longitudinal mo-
only satisfy the supertranslation algebra on the gauge-invariant sulsrentum act only on the center of mass of the system and play no
space. role in particle interactions.
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1 wherel is the unit matrix andv, is a traceless matrix in the
Y(c.m)= g trY. (4.7 adjoint of SUN) representing relative motion. The Hamil-
tonian then has the form

A transverse translation is defined by adding a multiple of H=H¢m+Hrel (5.3
the identity toY. This has no effect on the commutator term o
in L because the identity commutes with Al Similarly  with
rotational invariance is manifest.

The center-of-mass momentum is given by P(c.m)?
cm=™ " 51 (5.4
2pyy
N ; . . . B . .
P(c.m.):trﬂzﬁY(c.m.). (4.8 The Hamiltonian for the relative motion is the dimen-

sional reduction of the supersymmetric 10D Yang-Mills
. . ) Hamiltonian. Although a direct proof based on the Sehro
Using p1,;=N/R gives the usual connection between ginger equation has not yet been given, duality between 1A
transverse velocity and transverse momentum: strings andM theory requires the relative Scliiager equa-
tion to have normalizable threshold bound states with zero
energy[3]. The bound system must have exactly the quan-
tum numbers of the 256 states of the supergraviton. For these
states the complete energy is given by Es14). Further-
A Galilean boost is defined by adding a multiple of the More, these states are BPS saturated. No other normalizable

identity toY. We leave it to the reader to show that this hasbound states can occur. _Thgs we find tha_t the spectrum of
no effect on the equations of motion. This establishes thétable smgle-pamcle excitations of EG.6 IS exaptly the .
Galilean invariance oH. The super-Galilean invariance is supergraviton spectrum with the correct dispersion relation

also completely unbroken. The alert reader may be somd? describe massless 11-dimensional particles in the infinite

what unimpressed by some of these invariances, since thé’g)omentum frame. .

appear to be properties of the center-of-mass coordinate, Next let us turn to the spectrum of V\_ndely sep_arat_ed par-
which decouples from the rest of the dynamics. Their reaECleS' That a simple quantum mechanlcgl I—!amﬂtoman like
significance will appear below when we show that our sys- g. (4.6) should be able to describe arbitrarily many well-

tem possesses multiparticle asymptotic states, on which the gp'arated .partlcl'es Is not at aII.eV|dent apd \{voulq certainly
generators act in the usual way as a sum of single-particl € impossible W|th_out the sp_eua_\l properties implied by_ su-
persymmetry. Begin by considering commuting block diag-

L P(c.m)=Y(c.m). (4.9
P11

rators. .
operators onal matrices of the form
V. A CONJECTURE Y, 0 0
Our conjecture is thus tha#l theory formulated in the 0 Y, O : (5.9
infinite momentum frame is exactly equivalent to the 0 0 VY

N—oo limit of the supersymmetric quantum mechanics de-

scribed by the Hamiltoniar{4.6). The calculation of any WhereY; are N,x N, matrices andN;+N,+---+N,=N.

physical quantity ifM theory can be reduced to a calculation For the moment suppose all other elements of Y are

in matrix quantum mechanics followed by an extrapolationconstrained to vanish identically. In this case the Sdimger

to Iar_g(_aN. In yvhat follows we will offer evidence for this equation obviously separates intouncoupled Schidinger

surprising conjecture. equations for the individual block degrees of freedom. Each
Let us begin by examining the single-particle spectrum ofequation is identical to the original Scliiager equation for

the theory. FoN=1 the states witp, =0 are just those of the system ofN, DO branes. Thus the spectrum of this trun-

a singleDO brane at rest. The states form a representation cfated system includes collections of noninteracting super-

the algebra of the 1@'s with 28 components. These states gravitons.

have exactly the quantum numbers of the 256 states of the Now let us suppose the Supergravitons are very distant

supergraviton. For nonzem, the energy of the objectis  from one another. In other words, for each pair the relative

distance, defined by
R p?

. 5.1 try, trY
2pqg ®.J Rap= —a ~®

N, Np|' (5.6

For states wittN>1, we must study the W()-invariant 5 aqymptotically large. In this case the commutator terms in
Schralinger equation arising from E@4.6). H can easily Eq. (4.6) cause the off-diagonal blocks in thés to have

be separated in terms of center-of-mass and relative motion§ery large potential energy proportional Ri .. This effect

Define can also be thought of as the Higgs effect giving mass to the
broken generator§' W bosons”) of U(N) when the symme-
try is broken to UN;)XU(N,)XU(N3)--- . Thus one
might naively expect the off-diagonal modes to leave the

B Y(c.m.)

TN

| +Yre|l (52)
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spectrum of very widely separated supergravitons unmodieonstructed from an odd or even number of Grassmann vari-
fied. However, this is not correct in a generic situation. Theables. The spin statistics connection is the conventional one.
off-diagonal modes behave like harmonic oscillators with  Thus the largé\ matrix model contains the Fock space of
frequency of ordeRR, ,, and their zero point energy will asymptotic states of 11-dimensional supergravity, and the
generally give rise to a potential energy of similar magni-free propagation of particles is described in a manner consis-
tude. This effect would certainly preclude an interpretationtent with 11-dimensional Lorentz invariance. The field
of the matrix model in terms of well-separated independentheory Fock space is, however, embedded in a system which,
particles. as we shall see, has no ultraviolet divergences. Particle sta-
Supersymmetry is the ingredient which rescues us. In gistics is embedded in a continuous gauge symmetry. We find
well-known way, the fermionic partners of the off-diagonal the emergence of field theory as an approximation to an el-
bosonic modes exactly cancel the potential due to thegant finite structure one of the most attractive features of the
bosons, leaving exactly flat directions. We know this frommatrix model approach tM theory.
the nonrenormalization theorems for supersymmetric quan-
tum mechanics with 16 supergeneratfit§]. The effective VI. LONG RANGE SUPERGRAVITON INTERACTIONS
Lagrangian for the collective coordinates along the flat direc-
tions must be supersymmetric, and the resuftl&] guaran- The first uncanceled interactions in the matrix model oc-
tees that up to terms involving at most two derivatives thecur in the effective action at ordgr* wherey is the velocity
Lagrangian for these coordinates must be the dimension&f the supergraviton§9]. These interactions are calculated
reduction of U(1} SYM theory, wheren is the number of by thinking of the matrix model as SYM theory and comput-
blocks (i.e., the number of supergravitondhis is just the ing Feynman diagrams. At one loop one finds an induced
Lagrangian for free motion of these particles. Furthermoreduartic term in the velocities which corresponds to an in-
since we are doing quantum mechanics and the analogue 8ficed F,, term. The precise term for tw®0 branes is
the Yang-Mills coupling is the dimensional quantit}; the ~ given by
icnotegféc:jerint_of the quadr_anc term is uncorrected from its value ALY(1)—y(2)]*
ginal Lagrangian. (6.1
There are residual virtual effects at ordef from these R’ ’
heavy states which are the source of parton interactions. Note . , )
that the off-diagonal modes are manifestly nonlocal. The apWWherer is the distance between th20 branes and\ is a
parent locality of low energy physics in this model must Coefficient of pr(jer 1, which can be extractgd from the re-
emerge from a complex interplay between SUSY and théults of[9]. This is the longest range term which governs the
fact that the frequencies of the nonlocal degrees of freedorifiteraction between th®0 branes as tends to infinity.
become large when particles are separated. We have only Qus the effective Lagrangian governing the low energy,
limited understanding of this crucial issue, but in the nextong distance behavior of the pair is
feectlon we WI|| provide some ewdenge that chgl physics is V(1?2 y(2)? V(1) —y(2)]*
produced in the low energy, long distance limit. L= + A o
The center of mass of a block of sipé? is defined by 2R 2R R°r
Eqg. (5.2. It is easy to see that the Hamiltonian for an
asymptotic multiparticle state, when written in terms of
center-of-mass transverse momenta, is just

6.2

The calculation is easily generalized to the case of two
well-separated groups ®f; andN, branes forming bound
states. Keeping only the leading terms for lafde(planar

raphg, we find
Rp(a)2 |::.(a)2 graphs
Hami=2 @ =2 - (5.7 LN Ny ) —y2))
2R 2R 12 R3r’

. . . . . (6.3
Note that the dispersion relation for the asymptotic particle
states has the fully 11-dimensional Lorentz-invariant form. To understand the significance of H§.3), it is first use-
This is essentially due to the BPS nature of the asymptotiful to translate it into an effective Hamiltonian. To leading
states. For large relative separations, the supersymmetrigrder in inverse powers of, we find
guantum state, corresponding to the supersymmetric classical

flat direction in which the gauge symmetry is “broken” into p.(1)? p,(2)2 p, (1) p(2)]*

n blocks, will be precisely the product of the threshold effzzpll(l) + 2p11(2) Du(l)_ p11(2)
bound-state wave functions of each block subsystem. Each

individual block is a BPS state. Its dispersion relation fol- P11(1)P1a(2)

lows from the SUSY algebra and is relativistically invariant r'r 6.4

even when(e.g., for finiteN) the full system is not.

We also note that the statistics of multisupergraviton From Eq.(6.4) we can compute a scattering amplitude in
states comes out correctly because of the residual block pethe Born approximation. Strictly speaking, the scattering am-
mutation gauge symmetry of the matrix model. When someplitude is defined as a 10D amplitude in the compactified
subset of the blocks are in identical states, the original gaugtdeory. However, it contains information about the 11D am-
symmetry instructs us to mod out by the permutation groupplitude in the special kinematic situation where no longitu-
picking up minus signs depending on whether the states adinal momentum is exchanged. The relation between the
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10D amplitude and 11D amplitude at vanishidg,; is  case the gravitational coupling constant is renormalized by a
simple. They are essentially the same thing except for a facconstant factor. This is not supposed to occuMrntheory.

tor of R, which is needed to relate the 10- and 11-Indeed, supersymmetry is believed to protect the gravita-
dimensional phase space volumes. The relation between artienal coupling from any corrections. The only other possi-
plitudes isA;;=RA.. Thus from Eq.6.4) we find the 11D  bility is that f —1. The simplest way in which this can hap-

amplitude pen is if there are no corrections at all other than the one-
loop term, which we have discussed.

P (1) pi(2)]* puu(1)p1x(2) We believe that there is a nonrenormalization theorem for

p1(1)  p1y(2) r’ . (69 this term which can be proven in the context of SUSY quan-

tum mechanics with 16 generators. The closest thing we

The expression in E6.5) is noteworthy for several rea- have been able to find in the literature is a nonrenormaliza-
sons. First of all, the factar 7 is the 11D Green functiofin  tion theorem for theF,,* term in the action of ten-
spacg after integration ovex'’. In other words, it is the dimensional string theO#)LWhiCh has been proved by Tseyt-
scalar Feynman propagator for vanishing longitudinal modin [16]. In the quantum-mechanical context, we believe that
mentum transfer. Somehow the simple matrix Hamiltonianit is true and that the scattering of two supergravitons at large
“knows” about massless propaga’[ion in 11D spacetime_ Thdransverse distance and zero Iongitudinal momentum is ex-
remaining momentum-dependent factors are exactly what igctly given in the matrix model by low energy 11D super-
needed to make Eq6.5 identical to the single(supej  gravity perturbation theory. Din€l7] has constructed the
graviton exchange diagrdnin 11D. Even the coefficient is outlines of an argument which demonstrates the validity of
correct. This is closely related to a result reported[®h  the nonrenormalization theorem.
where it was shown that the annulus diagram governing the We have considered amplitudes in which vanishing lon-
scattering of twoDO branes has exactly the same form atgitudinal momentum is exchanged. Amplitudes with nonva-
very small and very large distances, which can be understoodishing exchange ab,; are more complicated. They corre-
by noting that only BPS states contribute to this process ofpond to processes in 10D in which RR charge is exchanged.
the annulus. This plus the usual relations between coupling8uch collisions involve rearrangements of 6 branes in
and scales in type-IIA string theory anl theory guarantees which the collision transfer®0 branes from one group to
that we obtain the correct normalization of 11-dimensionathe other. We are studying such processes, but we have no
graviton scattering in supergravigBUGRA). In the weak definitive results as yet.
coupling limit, very long distance behavior is governed by ~We have thus presented some evidence that the dynamics
single supergraviton exchange, while the ultrashort distance@f the matrix model respects 11-dimensional Lorentz invari-
are governed by the matrix model. [8] the exact equiva- ance. If this is correct, then the model reduces exactly to
lence between the leading interactions computed in thesgupergravity at low energies. It is clear, however, that it is
very different manners was recognized, but its meaning wagwuch better behaved in the ultraviolet than a field theory. At

not clear. Now we see that it is an important consistencyshort distances, as shown extensively{®), restoration of
criterion in order for the matrix model to describe the infinite the full matrix character of the variables cuts off all ultravio-

momentum limit ofM theory. let divergences. The correspondence limit by whigh

Let us next consider possible corrections to the effectivdheory reduces to supergravity indicates that we are on the
action coming from higher loops. In particular, higher loopsright track.
can potentially correct the quartic term in velocities. Since
our interest lies in the larg8l limit, we may consider the
leading (planay corrections. Doing ordinary largd count-
ing, one finds that thg* term may be corrected by a factor ~ As we have pointed out in Sec. Il, the holographic prin-
which is a function of the ratit\/r. Such a renormalization ciple requires the transverse size of a system to grow with
by f(N/r®) could be dangerous. We can consider severathe number of constituent partons. It is therefore of interest
cases which differ in the behavior df as N/r® tends to to estimate the size of the threshold bound state describing a
infinity. In the first two, the function tends to zero or infinity. supergraviton of longitudinal momentulYR. According to
The meaning of this would be that the coupling to gravity isthe holographic principle, the radius should grow IN&° in
driven either to zero or infinity in the infinite momentum 11D Planck units. We will use a mean field approximation in
limit. Either behavior is intolerable. Another possibility is which we study the wave function of one parton in the field
that the functionf tends to a constant not equal to 1. In this of N others. We therefore consider the effective Lagrangian
(6.3 for the caseN;=1, N,=N. The action simplifies for
N>1 since in this case th&-particle system is much
heavier than the single-particle system. Therefore we may set
its velocity to zero. The Lagrangian becomes

VII. SIZE OF A SUPERGRAVITON

“4In [9] the amplitude was computed f@0 branes which have
momenta orthogonal to their polarizatiofthis was not stated ex-
plicitly there, but was implicit in the choice of boundary s)afehe
spin dependence of the amplitude is determined by the supersym- y2 y4
metric completion of the*/r” amplitude, which we have not com- Li=5r~ N zay7: (7.9
puted. In principle, this gives another check of 11-dimensional Lor- y
entz invariance. We suspect that the full answer follows by,
applying the explicit supersymmetries of the light cone gauge to the
amplitude we have computed. >We thank C. Bachas for pointing out this theorem to us.
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wherey refers to the relative coordinate between the twofirst found in [5]. Townsend 10] first pointed out the con-
systems. We can remove &l andR dependence from the nection between the matrix description@0 brane dynam-

actionS= [L,dt by scaling: ics and the matrix description of membranes, and speculated
that a membrane might be regarded as a collective excitation
y— Ny, of DO branes. Our conjecture supplies a precise realization
(7.2  of Townsend's idea.
N2/ The formulation we will use to describe this connection is
t——t. a version of the methods introduced[#18,19.
R Begin with a pair of unitary operatotd,V satisfying the
] relations
The characteristic length, time, and velocity=y) scales .
are uv=e2mNyy,
y~NL° uN=1,
N2 VN=1. (8.1
R 73 These operators can be represented oN-glimensional Hil-

bert space as clock and shift operators. They form a basis for
all operators in the space. Any matixcan be written in the

v~ ¥NN—1/9R_ form
N
That the size of the bound state wave function scales like Z=n;:1 ZynUmV™m, (8.2

N'? is an indication of the incompressibility of the system

when it achieves a density of order one degree of freedony gnqv may be thought of as exponentials of canonical
per Planck area. This is in accordance with the h°|09raphi9ariablesp andq:

principle.
This mean field picture of the bound state, or any other U=¢e,
description of it as a simple cluster, makes the problem of
longitudinal boost invariance mentioned earlier very con- V=g, (8.3

crete. Suppose we consider the scattering of two bound states
with N; andN, constituents, respectivelid;~N,~N. The  wherep,q satisfy the commutation relations
mean field picture strongly suggests that scattering will show )
a characteristic feature at an impact parameter corresponding [q,p]= @ (8.4)
to the bound-state size N, But this is not consistent with : N - '
longitudinal boosts which tak;— aN;, N,— aN,. Boost o )
invariance requires physics to depend only on the ratio From Eq.(8.2) we see that only periodic functions pf
N, /N, or, said another way, only on the ratio of the bound-andg are allowed. Thus the space defined by these variables
state sizes. This strongly suggests that a kind of scale invariS @ torus. In fact, there is an illuminating interpretation of
ance must be present in the dynamics that is clearly absent [R€se coordinates in terms of the quantum mechanics of par-
the simple picture discussed above. In the string case thécles on a torus in a strong background magnetic field. The
scale-invariant world sheet dynamics is crucial for longitudi-coordinates of the particle ane,q. If the field is strong
nal boost invariance. enough, the existence of a large gap makes it useful to trun-
The possibility that partons might form subclusters within cate the space of states to t_he finite dimensional subspace of
the bound state was ignored in mean field discussion. A prdowest Landau levels. On this subspace the commutation re-
liminary discussion of a hierarchical clustering model with lation (8.4) is satisfied. The lowest Landau wave packets
many length scales is presented in Appendix A. Note alsdorm minimum uncertainty packets which occupy an area
that wave functions of threshold bound states are power law” 1/N on the torus. These wave packets are analogous to the
behaved. “Planckian cells” which make up quantum phase space. The
Understanding the dynamics of these bound states weR.d space is sometimes called the noncommuting torus, the
enough to check longitudinal boost invariance reliably is aruantum torus, or the fuzzy torus. In fact, for large enough
important subject for future research. N we can choose other baseshddimensional Hilbert space
which correspond to the lowest Landau levels of a charged
particle propagating on an arbitrary Riemann surface
Vill. MEMBRANES wrapped by a constant magnetic field. For exampl€5jnde
In order to be the strong coupling theory of I1A string Wit et al. construct the finite dimensional Hilbert space of

theory,M theory must have membranes in its spectrum. Al-

though in the decompactified limit there are no truly stable

finite energy membranes, very-long-lived large classical Swe are grateful to M. Green for pointing out this paper to us
membranes must exist. In this section we will show howwhen a preliminary version of this work was presented at the Santa
these membranes are described in the matrix model, a res#tirbara Strings '96 conference.
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lowest Landau levels on a sphere. This connection between If the matrix model membranes described above are to
finite matrix models and two-dimensional surfaces is the baeorrespond toM-theory membranes, their tensions must
sis for the fact that the largd matrix model contains mem- agree. Testing this involves keeping track of the numerical
branes. For finitéN, the model consists of maps of quantum factors of order 1 in the above discussion. We present this
Riemann surfaces into a noncommuting transverse supecalculation in Appendix B where we show that the matrix
space; i.e., it is a model of a noncommuting membrane emmodel membrane tension exactly agrees with Nheheory
bedded in a noncommutative spdce. membrane tension. This has also been verified by Berkooz
In the limit of largeN, the gquantum torus behaves more and Douglag20] using a different technique.
and more like classical phase space. The following corre- We do not expect static finite energy membranes to exist
spondences connect the two. in the uncompactified limit. Nevertheless, let us consider the
(1) The gquantum operatois defined in Eq.(8.2) are re- conditions for such a static solution. The matrix model equa-
placed by their classical counterparts. Equati@®®2 be- tions of motion for static configurations is
comes the classical Fourier decomposition of a function on

phase space. (YY), Y']]=0. (8.9
(2) The operation of taking the trace of an operator goes
over toN times the integral over the torus: It is interesting to consider a particular limiting case of an
infinite membrane stretched out in the 8,9 plane for which a
trZ—>Nf Z(p.q)dp dg 8.5 formal §olut|on of Eq.(8.9) can be found. We first rescale
p andq:
(3) The operation of commuting two operators is replaced P=Np,
by 1N times the classical Poisson brackets:
Q=1Ng,
[ZW]-» [3qZ dpW—3qW dpZ]. (8.6
[Q,P]=2mi. (8.10

We may now use the above correspondence to formally
rewrite the matrix model Lagrangian. We begin by represent- In the N— limit, the P,Q space becomes an infinite
ing the matricesy' and @ as operator function¥'(p,q) and  Plane. Now consider the configuration
0(p,q). Now apply the correspondences to the two terms in
Eg. (4.2). This gives Y8=RgP,

_Pn Y9=RyQ, (8.1

fdp dg Y(p, q)z—— f dp dq
with all otherY'=0. HereR; is the length of the correspond-
ing direction, which should of course be taken to infinity.
Since[Y8,Y®] is ac number, Eq(8.9) is satisfied. Thus we
find the necessary macroscopic membranes requiréiby
1 theory. This stretched membrane has the requisite “wrap-
H= dp dqTI; (p, q)2+ il f dp dq ping number” on the infinite plane. On a general manifold
2p one might expect the matrix model version of the wrapping

X[an'apYJ—&qYJapY']2+fermionic terms. 8.9 number of a membrane on a two-cycle to be

X[3qY'3,Y! = d4Y13,Y']?+ fermionic terms (8.7

and a Hamiltonian

Equation(8.8) is exaptly thg standard Hamiltonian for the W= i Trwij(xi(p,q))[xi,xj], 8.12

11D supermembrane in the light cone frame. The construc-

tion shows us how to build configurations in the matrix

model which represent large classical membranes. To do ssherew is the two-form associated with the cycle. This ex-

we start with a classical embedding of a toroidal membrangression approaches the classical winding number as we take

described by periodic functiong (p,q). The Fourier expan- the limit in which Poisson brackets replace commutators.

sion of these functions provides us with a set of coefficients Another indication that we have found the right represen-

Y! .. Using Eq.(8.2), we then replace the classicéls by tation of the membrane comes from studying the supersym-

operator functions obJ,V. The resulting matrices represent metry transformation properties of our configuratfolihe

the large classical membranes. supermembrane should preserve half of the supersymmetries
of the model. The SUSY transformation of the fermionic
coordinates is

"Note that it is clear in this context that membrane topology isnot____
conserved by the dynamics. Indeed, for fix¢d given matrix can
be thought of as a configuration of many different membranes of ®This result was derived in collaboration with Seiberg, along with
different topology. It is only in the larg®&l limit that stable topo- a number of other observations about supersymmetry in the matrix
logical structure may emerge in some situations. model, which will appear in a future publication.
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59:(pi7i+[xi'xj]yij)é+ €. (8.13 N limit. In particular, it is clear that the asymptotic super-
graviton states would look extremely singular and have no
For our static membrane configuratid®,=0, and the com- real meaning in a continuum membrane formalism. We are
mutator is proportional to the unit matrix; so we can choosd0t claiming here to have a proof that the lafgéimit of the

€' to make this variation vanish. The unbroken supergenergPalrix quantum mechanics exists, but only that the issues
tors are linear combinations of the IMi, and Q involved in the existence of this limit are not connected to
-

It is interesting to contemplate a kind of duality and the renormalizability of the world volume field theory of the

. membrane.
complementarlty between .membranes m brgnes. Ac- There is one last point worth making about membranes. It
cording to the standard light cone quantization of mem-

S . . L involves evidence for 11D Lorentz invariance of the matrix
branes, the longitudinal momentupg, is uniformly distrib- 56| \we have considered in some detail the Galilean in-
uted over the area of the,q parameter space. This iS \ariance of the infinite momentum frame and found that it is
analogous to the uniform distribution pf, along theo axis  gatisfied. But there is more to the Lorentz group. In particu-
in string theory. As we have seen, theq space is a non- |ar, there are generatods which in the light cone formalism
commuting space with a basic indivisible quantum of arearotate the lightlike surface of initial conditions. The condi-
The longitudinal momentum of such a unit cell isN16f the  tions for invariance under these transformations are the no-
total. In other words, the unit phase space cells that resutbrious angular conditions. We must also impose longitudi-
from the noncommutative structure @f,q space are the nal boost invariance. The angular conditions are what makes
DO branes with which we began. Ti¥0 branes and mem- Lorentz invariance so subtle in light cone string theory. It is
branes are dual to one another. Each can be found in th@early important to determine if the matrix model satisfies
theory of the other. the angular conditions in the largé limit. In the full quan-

The two kinds of branes also have a kind of complementum theory the answer is not yet clear, but at the level of the
tarity. As we have seen, the configurations of the matrixclassical equations of motion the answer is yes. The relevant
model which have classical interpretations in termsDgf ~ Ccalculations were done by de Wit, Marquard, and Nicolai
branes are those for which thés commute. On the other [21]- The analysis is too complicated to repeat here, but we
hand, the configurations of a membrane which have a cla@n describe the main points. .
sical interpretation are the extended membranes of large clas- 1€ €quations for classical membranes can be given in
sical area. The area element is the Poisson bracket which var!ant form in terms of a Nambu-Goto-type action. In the
the matrix model is the commutator. Thus the very cIassica?ov"’m""nt form the generators of the full Lorentz group are

membranes are highly nonclassical configurationsDaf Straightforward to v_vrite down. In pa_ss_ing to the light cone
branes frame, the expressions for the nontrivial generators become

In the paper of de Wit, Luscher, and Nico[8i, a pathol- more complicated, but they are quite definite. In fact, they

ogy of membrane theory was reported. It was found that thgan.be Et:xsrrlessed lnFFerrl?s of t_ﬁépiﬂ) and their anomcil
spectrum of the membrane Hamiltonian is continuous. Thé:onjug?e t_(p,q)- ina 3(; u3|tn_g e corresplog tencet €-
reason for this is the existence of the unlifted flat directiondVe€N functions 0p.q and matrices, we are led to matrix

along which the commutators vanish. Previously, it had beeffXPressions for the generators. The expressions, of course,
\}éave factor-ordering ambiguities, but these, at least formally,

discrete level structure and perhaps be the basis for a pertu\ff’mish asN—. In fact, according t421], the violation of

bation theory which would generalize string perturbationthe angular conqnlons goes to zero a1/Needless to say, .
theory. In the present context this apparent pathology is ex@ guantum version of this result would be very strong evi-
actly what we wantM theory has no small coupling analo- dence for our conjepture. -

gous to the string splitting amplitude. The bifurcation of We cannot refrain from pointing out that the quantum

membranes when the geometry degenerates is expected to\b_eerglor} of th_e alrgurrrl]entT @.1] IIS apt to be h'Ehl?f non-
an order-1 process. The matrix model, if it is to describe alff'Vial- In particular, the classical argument works for every

of M theory, must inextricably contain this process. In fact,dImenSIOn in which the classical supermembrane exists,

we have seen how important it is that supersymmetry main\-Nh”e’ by analogy with perturbative string theory, we only

tains the flat directions. A model of a single noncommutativetXPeCt the quantum Lorentz group to be recovered in 11

membrane actually contains an entire Fock space of particle@mens'ons_' _Further, the longitudinal boost operatoff
in flat 11-dimensional space-time. Is rather trivial and operates only on a set of zero mode

Another pathology of conventional membrane theoriescoordmates, which we have not included in our matrix

which we expect to be avoided M theory is the nonrenor- model. Instead, we expect the longitudinal boost generator to

malizability of the membrane world volume field theory. For involve rescalingN in the largeN limit and, thus, fo relate
finite N, it is clear that ultraviolet divergences on the world the Hilbert spaces of different SUSY. quantum-mechanpal
volume are absent because the noncommutative nature of t pdels. W? .have e}lready rgma_\rked In th.e previous section
space defines a smallest volume cell, just like a Planck cell ifat as ant|C|pated ¥, longitudinal b°°~.°'t invariance is the
guantum-mechanical phase spdbat we should emphasize key pro_bler_n in our model. We e_xpec'_[ it to be related t(.) a
here that this is a classical rather than quantum-mechanicgf}.neral'zat'on of the conformal invariance of perturbative

effect in the matrix model The formal continuum limit string theory.

WhICh. gives the membrane.Hamntonlan is clearly valid for IX. TOWARDS DERIVATION AND COMPACTIEICATION
describing the classical motion of a certain set of metastable

semiclassical states of the matrix model. It should not be In this section we would like to present a line of argument
expected to capture the quantum mechanics of the full largevhich may lead to a proof of the conjectured equivalence
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between the matrix model antfl theory. It relies on a that one needs to keep the strings which wrap any number of
stringy extension of the conjectured nonrenormalizatiortimes around each circle. These unexcited wrapped string
theorem combined with the possibility that all velocities in states are BPS states, and so they do contribute tethe

the largeN cluster go to zero all—oe. term and hence must be kept. In fact, these are the states

Imagine thatR stays fixed a?N\—o. Optimistically, one ~ Which, in the annulus diagram, correct the power law in
might imagine that finiteR errors are as small as in pertur- graviton scattering to its lower dimensional value and are
bative 11D supergravity, meaning that they are suppresse@gucial in implementing the variou dualities.
by powers OfkllR or even expekllR) where kll is the To be Specific let us discuss the case of one coordinate
center-of-mass longitudinal momentum transfer. Sokigr ~ X° compactified on a circle on radilRy. Here we should
~ 1/, we could imagineR fixed at a macroscopic scale and keep the extra string winding states aroutiti An efficient
have very tiny errors. The mean field estimates discussed way to keep track of them is 6 dualize thex® circle. This
Sec. VIl give the velocity ~N~Y°R, which, withR fixed,  convertsDO branes toD1 branes and winding modes to
can be made arbitrarily small at larte Although itis likely =~ momentum modes. The collection df D1 branes is de-
that the structure of the largé cluster is more complicated scribed by a (¥ 1)-dimensional SU{) super Yang-Mills
than the mean field description, it is possible that this generaquantum field theory with coupling3yy=R%(Rel3) on a
property of vanishing velocities at lar@é continues to hold. space ofT-dual radiusRsy,\Azl?,;/(RRg). The dimensionless
In particular, in Appendix A we present arguments that theeffective coupling of the super Yang-Mills theory is then
velocities of the coordinates along some of the classical flag3,Rayw=(Ip/Rg)%, which is independent ofR. For
directions of the potential are small. We suspect that this cap-dimensional tori we get systems Bfp branes described
be generalized to all of the flat directions. If that is the casepy (p+ 1)-dimensional SU{) super Yang-Mills theory. Re-
then the only high velocities would be those associated withated issues have also recently been discuss¢a2h
the “core” wave function of Appendix A. The current argu-  For more general compactifications the rule would be to
ment assumes that the amplitude for the core piece of theeep every BPS state which contributes to tffeterm at
wave function vanishes in the largé limit. large N. We are currently investigating such compactifica-

Non-Abelian field strength is the correct generalization oftions, including ones with less supersymmetry.
velocity for membrane-type field configurations like those The line of argument presented in this section raises a
discussed in Sec. VIII. For classical configurations at leashumber of questions. Is it permissible to hdtdfinite or to
these field strengths are ordeNland so are also small. let it grow very slowly withN? Are there nonperturbative

We have previously conjectured that thé terms in the  corrections to they* term? LargeN probably prohibits in-
quantum-mechanical effective action are not renormalize@tanton corrections in the quantum mechanics, but perhaps
beyond one loop. For computing the 11-dimensional supemot in the full string theory. This might be related to the
gravity amplitude, we needed this result in the matrix quaneffect of various wrapped branes in compactified theories.
tum mechanics, but is possible that this result holds in the Does the velocity stay low? A key problem here is that in
full string perturbation theory. For example, the excited operthe mean field theory cloud the 0 branes are moving very
string states can be represented as additional non-BPS fieldpwly. If two 0 branes encounter each other, their relative
in the quantum mechanics. These do not contribute to th@elocity is much less than the typical velocity in a bound pair
one loopy* term because they are not BPS. Perhaps they dg, ~R). It seems that the capture cross section to go into the
not contribute to higher loops for related reasons. pair bound state should be very large. Why is there no

If these two properties hold, then the conjecture follows.clumping into pairs? One factor which might come into play
The scattering of largél clusters ofDO branes can clearly is the following. If the velocity is very low, the de Broglie
be computed at smagj (smallR) using quantum mechanics. wavelength of the particles might be comparable to the
But these processes, by assumption, only involve low velociwhole cluster(this is true in the mean fielJdand so there
ties independent aj and so only depend on the terms in  could be delicate phase correlations across the whole
the effective action which, by the stringy extension of thecluster—some kind of macroscopic quantum coherence.
nonrenormalization theorem, would not receigecorrec-  Whenever a pair is trying to form, another 0 brane might get
tions. So the same quantum-mechanical answers would Hgetween them and disrupt them. This extra coherent com-
valid at largeg (largeR). plexity might help explain the Lorentz invariance puzzle.

This would prove the conjecture.

From this point of view, we have identified a subset of
string theory processdfargeN DO brane scatteringwhich
are unchanged by stringy loop corrections and so are com- The conjecture which we have presented refers to an ex-
putable at strong coupling. act formulation of M theory in uncompactified 11-

If this line of argument is correct, it gives us an unam-dimensional space-time. It is tempting to imagine that we
biguous prescription for compactification. We take the quan€an regain the compactified versions of the theory as particu-
tum mechanics which describes 0-brane motion at weakar collections of states in the large limit of the matrix
string coupling in the compactified space and then follow itmodel. There is ample ground for suspicion that this may not
to strong coupling. This approach to compactification re-be the case and that degrees of freedom that we have thrown
quires us to add extra degrees of freedom in the compactifieaway in the uncompactified theory may be required for com-
theory. We will discuss an alternative approach in the nexpactification. Indeed, in IMF field theory the only general
section. method for discussing theories with moduli spaces of vacua

For toroidal compactifications, it is clear at weak couplingis implementable only when the vacua are visible in the clas-

X. ANOTHER APPROACH TO COMPACTIFICATION
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sical approximation. Then we can shift the fields and do IMF+1)M/R, and the ratidM/P is an effectively continuous pa-
quantization of the shifted theory. Different vacua corre-rameter characterizing the states in the laxgémit. We are
spond to different IMF Hamiltonians for the same degrees ohot sure of the meaning of this parameter.
freedom. The proposal of the previous section is somewhat To get a feeling for the physical meaning of this proposal,
in the spirit of IMF field theory. Different Hamiltonians and, we examine the extreme limits of large and snijl. For
indeed, different sets of degrees of freedom are required tlarge Ry it is convenient to work in the basis whef@ is
describe each compactified vacuum. diagonal. If we take all of the coordinat¥$ independent of
We have begun a preliminary investigation of the alterna-, then our winding membrane approaches a periodic array
tive hypothesis, that different compactifications are alreadyf (2P + 1) collections ofDO branes, each with longitudinal
present in the model we have defined. This means that theraomentumM/R. We can find a solution of the BPS condi-
must be collections of states which, in the laijéimit, have  tion by putting each collection into thd zero-brane thresh-
S matrices which completely decouple from each other. Noteld bound-state wave function. For lar§ configurations
that the largeN limit is crucial to the possible existence of of the X' which depend onr have very high frequency and
such superselection sectors. The filtgluantum mechanics can be integrated out. Thus, in this limit, the BPS state in this
cannot possibly have superselection rules. Thus the only wayinding sector is approximately a periodic array of super-
in which we could describe compactifications for finke  gravitons. We identify this with the compactified supergravi-
would be to add degrees of freedom or change the Hamilton state. This state will have the right long range gravita-
tonian. We caution the reader that the approach we will detional interactions(at scales larger thaRg) in the eight
scribe below is very preliminary and highly conjectural. uncompactified dimensions. To obtain the correct decompac-
This approach to compactification is based on the ideaified limit, it would appear that we must rescd®e the ra-
that there is a sense in which our system defines a singlgius of the longitudinal direction bR— (2P+ 1)R, as we
“noncommuting membrane.” Consider compactification of takeP andM to infinity. With this rescaling, all trace of the

a membrane on a circle. Then there are membrane configgarameteM/P seems to disappear in the decompactification
rations in which the embedding coordinates do not transfornfimit.

as scalars under large diffeomorphisms of the membrane vol- For smallRgy, our analysis is much less complete. How-
ume, but rather are shifted by large diffeomorphisms of theaver, string duality suggests an approximation to the system
target space. These are winding states. A possible approagh which we keep only configurations wittM=1 and

to identifying the subset of states appropriate toa particulap_mo_ In this case ther dependence 0)(9 is pure gauge
compactification is to first find the winding states and thengnd theX' all commute with each other. The matrix model

find all states which have nontrivial Scattering from them in Hamiltonian becomes the Hamiltonian of the Green-Schwarz
the largeN limit. In fact, our limited study below seems to type-IIA string:

indicate that all relevant states, including compactified super-

gravitons, can be thought of as matrix model analogues of . axX

membrane winding states. H—’i da(X)?+ e
Let us consider compactification of the ninth transverse

direction on a circle of radius2Ry. A winding membrane As in previous sections, we will construct multiwound
is a configuration which satisfies membrane states by making large block diagonal matrices,
each block of which is the previous single-particle construc-
X(q,p+2m)=X%(q,p) +27Ry, (10.9 tion. Lest such structures appear overly baroque, we remind
I1;he reader that we are trying to make explicit constructions
of the wave functions of a strongly interacting system with
an infinite number of degrees of freedom. For laRygit is
fairly clear that the correct asymptotic properties of multipar-
e INax9eNI= X9 2 7R, . (10. ticle states will be guaranteed by the BPS conditiassum-
ing that everything works as conjectured in the uncompacti-
It is easy to sedby taking the tracethat this condition fied theory.

2+0T iad 10
?’950- (10.9

and the winding sector is defined by a path integral ove
configurations satisfying this boundary condition. A matrix
analogue of this is

cannot be satisfied for finitd. However, if we take the large If our ansatz is correct for smaRy, it should be possible
N limit in such a way thatj— o/N® 1« , With o an angle  to justify the neglect of fluctuations of the matrix variables
variable, then this equation can be satisfied, with away from the special forms we have taken into account, as
well as to show that the correct string interactidfes mul-
o 2mRg d 9 tistring configurations defined by the sort of block diagonal
X'= i £® Luxm+x(0), (103 construction we have used abgwae obtained from the ma-

trix model interactions. In this connection it is useful to note
wherex® is an M X M-matrix-valued function of the angle that in taking the limit from finite matrices, there is no mean-
variable. The other transverse bosonic coordinates and all afig to the separation of configurations into winding sectors
the ¢'s areM X M-matrix-valued functions of. These equa- which we have defined in the formal largé limit. In par-
tions should be thought of as limits of finite matrices. Thusticular, X° should be allowed to fluctuate. But we have seen
27RyP=(2mRy/i)dldo can be thought of as the limit of that shifts ofX® by functions ofo are pure gauge, so that all
the finite matrices diag{2#PR; ... 27PRy), with o the fluctuations around the configurations which we have kept
obvious tridiagonal matrix in this representation. The totalgive rise to higher derivative world sheet interactions. Since
longitudinal momentum of such a configuration isP(2 the P—o limit is the world sheet continuum limit, we
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should be able to argue that these terms are irrelevant operaf five branes in the matrix model. If the theory really con-
tors in that limit. We have less understanding about how theains low energy SUGRA, then it will contain solitonic five
sum over world sheet topologies comes out of our formalbranes, but it seems to us that the correct prescription is to
ism, but it is tempting to think that it is in some way con- define five branes as tH2 branes of membrane theory. We
nected with the usual topological expansion of laljena-  do not yet understand how to introduce this concept in the
trix models. In the Appendix we show that in 11 dimensions,matrix model.

dimensional analysis guarantees the dominance of planar Finally, we would like to comment on the relation be-
graphs in certain calculations. Perhaps, in ten dimensiongyeen the compactification schemes of this and the previous
the small dimensionless paramet®/lp must be scaled gqcions, For a single circle, if we tak® to infinity and

with @ power ofN in order to obtain the limit of the matrix g, stitute the formuldl10.3 into the matrix model Hamil-
model which gives IlA string theory. L

T id b ded ificati onian (as well as the prescription that all other coordinates
_These ideas can be extended to compactification on Mui,q gypercoordinates are functionsaf then we find the
tidimensional tori. A wrapping configuration of a toroidal

. - Hamiltonian of (1+1)-dimensionally reduced 10D SYM
membrane can be characterized by describing the cycles WPeory inA,=0 gauge, with® playing the role of the spatial

the target torus on which treeandb cycles of the membrane .o 5onent of the vector potential. Thus the prescription of
are mapped. Th|§ pargmetrlzanpn is redundant because of tl?l’?e previous section appears to be a particular rule for how
EL(Z’Z) mlc’dUI\‘% Invariance t\/r;/hlc'[k;]exchEtlnges thfet'a/vo meM-he largeN limit should be taken in the winding configura-
rane tC)t/C esf. as tpropogef_ 6:1 b € an(;;l dqgue ll(i){d besﬁ WIalons we have studied her®. is taken to infinity first, and
ping states, for ai-torus defined by modding o YHMe  thenM is taken to infinity. The relation between the two

shifts X'—X'+27R,, is defined by the conditions approaches is reminiscent of the Eguchi-Ka\28] reduc-
tion of largeN gauge theory. It is clear once again that much
(10.5 gelN gaug y g
' of the physics of the matrix model is buried in the subtleties
(10.6 of the largeN limit. For multidimensional tori, the relation-
' ship between the formalisms of this and the previous section

wheren andm are d-vectors of integers. The solutions to IS More obscure.
these conditions are

e ' Ximm€ 7= X+ 2TREN,

"X mme 2™ "= X{ ) + 2TREM?,

X{mm=[2pRLN*P+RMA 1@ Ly + X{ ) (), XI. CONCLUSIONS

10.9 Although the evidence we have given for the conjectured

where thex' are periodicM X M-matrix-valued functions of ~exact equivalence between the laigéimit of supersymmet-
o. The fermionic and noncompact coordinates are alsd¢ic matrix quantum mechanics and uncompactified 11-
matrix-valued functions ofr. dimensionaM theory is not definitive, it is quite substantial.

In order to discuss more complicated compactificationsThe evidence includes the following.
we would have to introduce coordinates and find a group of (1) The matrix model has exact invariance under the
large diffeomorphisms associated with one and two cyclesuper-Galilean group of the infinite momentum frame de-
around which membranes can wrap. Then we would searccription of 11D Lorentz-invariant theories.
for embeddings of this group into the lartfegauge group. (2) Assuming the conventional duality betwekhtheory
Presumably, different coordinate systems would correspondnd IlA string theory, the matrix model has normalizable
to unitarily equivalent embeddings. We can even begin to gemarginally bound states for any value bf These states
a glimpse of how ordinary Riemannian geometry wouldhave exactly the quantum numbers of the 11D supergraviton
emerge from the matrix system. If we take a large manifoldmultiplet. Thus the spectrum of single-particle states is ex-
which breaks sufficient supersymmetries, the effective actiomctly that ofM theory.
for supergravitons propagating on such a manifold would be (3) As a consequence of supersymmetric nonrenormaliza-
obtained, as before, by integrating over the off-diagonal mation theorems, asymptotic states of any number of noninter-
trices. Now, however, the nonrenormalization theoremacting supergravitons exist. These well-separated particles
would fail and the kinetic term for the gravitons would con- propagate in a Lorentz-invariant manner in 11 dimensions.
tain a metric. The obvious conjecture is that this is the usualhey have the statistics properties of the supergravity
Riemannian metric on the manifold in question. If this is theFock space.
case, our prescription for compactification in the noncommu- (4) The matrix model exactly reproduces the correct long
tative geometry of the matrix model would reduce to ordi-range interactions between supergravitons implied by 11D
nary geometry in the large radius limit. supergravity, for zero longitudinal momentum exchange.

A question which arises is whether the information aboutThis one-loop result could easily be ruined by higher loop
one and two cycles is sufficient to characterize differenteffects proportional to four powers of velocity. We believe
compactifications. We suspect that the answer to this is ndhat a highly nontrivial supersymmetry theorem protects us
The moduli of the spaces that arise in string-theoretic comagainst all higher loop corrections of this kind.
pactifications are all associated with the homology of the (5) By examining the pieces of the bound-state wave
space, but in general higher dimensional cydles., three function in which two clusters of particles are well separated
cycles in Calabi-Yau threefolfisre necessary to a complete from each other, a kind of mean field approximation, we find
description of the moduli space. Perhaps in order to capturthat the longest range part of the wave function grows with
this information we will have to find the correct descriptions N exactly as required by the holographic principle. In par-
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ticular, the transverse density never exceeds one parton pBarbara. We would like to thank the organizers and partici-
Planck area. pants of the strings conference at Santa Barbara for provid-
(6) The matrix model describes large classical membraneghg us with a stimulating venue for the production of exciting
as required byM theory. The membrane world volume is a physics. We would particularly like to thank M. Green for
noncommutative space with a fundamental unit of aregointing out the relation to previous work on supermem-
analogous to the Planck area in phase space. These baki@nes, and B. de Wit and |. Bars for discussing some of
qguanta of area are the originBl0 branes from which the their earlier work on this topic with us. We would also like to
matrix model was derived. The tension of this matrix modelthank C. Bachas and M. Dine for conversations on nonrenor-
membrane is precisely the same as that of Mheheory  malization theorems, M. Dine for discussing his work with

membrane. us, C. Thorn for discussions about light cone string theory,
(7) At the classical level the matrix model realizes the full N. Seiberg for discussions about supersymmetry, and M.
11D Lorentz invariance in the lardgg limit. Berkooz, M. Douglas, and N. Seiberg for discussions about

Of course, many unanswered questions remain. Localitynembrane tension. T.B., W.F., and S.H.S. would like to
is extremely puzzling in this system. Longitudinal boost in-thank the Stanford Physics Department for its hospitality
variance, as we have stressed earlier, is very mysterious. Rethile some of this work was carried out. The work of T.B.
solving this issue, perhaps by understanding the intricate dyand S.H.S. was supported in part by the U.S. Department of
namics it seems to require, will be crucial in deciding Energy under Grant No. DE-FG02-96ER40959 and that of
whether or not this conjecture is correct. W.F. was supported in part by the Robert A. Welch Founda-

One way of understanding Lorentz invariance would be tation and by NSF Grant No. PHY-9511632. L.S. acknowl-
search for a covariant version of the matrix model in whichedges the support of the NSF under Grant No. PHY-
the idea of noncommutative geometry is extended to all 00219345.
the membrane coordinates. An obvious idea is to consider
functions of angular momentum operators and try to exploit
the connection between spin networks and three-dimensional APPENDIX A
diffeomorphisms. Alternatively, one could systematically

StUdY quantum corrections to the angula}r condmonst.) gation of the threshold bound-state wave functioriNofero

s S e 1o S e yanes i e argmi. I genera, v my Gxpecta i

large di.stance behavior of amplitudes with nonvanishing Ion-pmb"’lblllty for theN brane bound state to consist pfclus-
ters ofNy,...,N, branes separated by large distances along

g|tud|na_l momentum transfer and to compare them with SUone of the flat directions of the potential. We will try to take
pergravity perturbation theory.

: ) . . i i [ iti ursion rela-
It will be important to to try to make precise the line of such configurations into account by writing a rec

argument outlined in Sec. IX that may lead to a proof of thetIon relating theN cluster to ak and N—k cluster. This

conjecture. The approaches to compactification discussed {ﬁlation automatically incorporates multiple clusters since
Secs. IX and X should be explored further. e pairs into which the original cluster is broken up will

If the conjecture is correct, it would provide us with the f[hemselves contain configurations in which they are split up

first well-defined nonperturbative formulation of a quantumInto further clusters. There may, however, be multiple cluster

theory which includes gravitation. In principle, with a suffi- configurations which cannot be so easily identified as two

. . .. such superclusters. We will ignore these for now, in order to
ciently large and fast computer any scattering amplitude

could be computed in the finitsl matrix model with arbi- get a first handle on the structure of the wave function.

- . : AR The configuration of a pair of widely separated clusters
trﬁ;ﬁip{gc;fs'r?oni i’r\:urp;cr'lif:ael e)gfs‘?tgleat'?ﬁetzi ;Sgggﬁ Ié Ir?luch has a single collective coordinate whose Lagrangian we have
ﬁke tr?at’in QCD vr\J/here ﬂ’](f only kﬁown definition of the already written in our investigation of supergraviton scatter-

theory is in terms of a conjectured limit of lattice gaugemg' The Lagrangian is

theory. Although the practical utility of the lattice theory

may be questioned, it is almost certain that an extrapolation 1k(N=K) , K(N=k) ,

to the continuum limit exists. The existence of the lattice L=§ N Y + YA (A1)
gauge Hamiltonian formulation ensures that the theory is

unitary and gauge invariant.

One can envision the matrix model formulation Bf  wherer is the distance between the clusters and their
theory playing a similar role. It would, among other things, relative velocity. By scaling, we can write the solution of this
ensure that the rules of quantum mechanics are consistegtiantum-mechanical problem ag{r (k[N—k])Z9¥N3,
with gravitation. Given that the classical long distance equawhere ¢ is the threshold bound-state wave function of the
tions of 11D supergravity have black hole solutions, alagrangian
Hamiltonian formulation ofM theory would, at last, lay to
rest the claim that black holes lead to a violation of quantum v

1
coherence 5 v2+ —. (A2)
r

In this appendix we will report on a preliminary investi-
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1 N1 theory) is R3/I,§E3. Thus the planar Green’s functions are
Y=+ 5P > APy functions of R3N/ISES,
k=1 The perturbative expansion, of course, diverges term by
r(K[N—k])%° Tt term asE— 0. If we imagine that, as suggested by our dis-
T)e Kk, (A3)  cussion above, these Green’s functions should be thought of
as measuring properties of the core wave function of the

H h h . der t K bl system, there is no physical origin for such an infrared di-
€re we nave chosen a gauge in order to make a bloc sergence. If, as in higher dimensions, the infrared cutoff is
diagonal splitting of our matrice®; is thg exact normalized found already in the leading order of theléxpansion, then
e St L must be of order.—RIp N Ko tat his s much
9 9 larger than any frequency encountered in our exploration of

actllons_ between the t.W 0 clustei. is the gaugg-mvanant e parts of the wave function with clusters separated along a
projection operator which rotates our gauge choice among

X . X o at direction.
gauge-equivalent configurations. TAg , are normalization

S . Now let us apply this result to the computation of the
factors, Wh'c..h N principle we WOL(JL? gttempt“to fm:j by solv- infrared-divergent expectation values of single gauge-
ing the Schrdinger equation. ¥~ is the “core” wave

. X i ! ) X ) invariant operators in the core of the bound-state wave func-
function, which descrlb(_as configurations in which all of the ;5 The idea is to evaluate the graphical expansion of such
zero branes are at a distance less than or equel fom 5, eypression with an infrared cutoff and then insert the
each other. We will describe some of its properties below. Iny,oye estimate for the cutoff to obtain the correct lakge

this regime, the entire concept of distance breaks down, SinGg.5jing of the object. The combination of conventional large
the noncommuting parts of the coordinates are as large as tipg scaling and dimensional analysis then implies that planar

commuting ones. raphs dominate even though we are not taking the “gauge
The interesting thing which is made clear by this ansatz ia% P g 9 gaug

. ’ 3, —6 . .
that the threshold bound state contains a host of intern ci)rlqurt)al:]ns?onillZn’alt;sizseré)oﬁfrc\:;lse ;Zpg?](;?&?szli?ﬂomxh be-
distance scales, Wh!Ch become; a continuurh as. This . havior of the higher order corrections in this limit. The re-
suggests a mechanism for obtaining scale-invariant behav'%rults are

for large N, as we must if we are to recover longitudinal

boost invariance. Note that the typical distance of cluster

separation is largest d$ goes to infinity when one of the <
clusters has only a finite humber of partons. These are the

configurations which give thB*® behavior discussed in the 1
text, which saturates the Bekenstein bound. By the uncer- <_ tr[X‘,Xi]2k>~N4k’3, (A5)
tainty principle, these configurations have internal frequen- N

cies of the bound state N~2°. Although these go to zero as
N increases, they are still infinitely higher than the energies
of supergraviton motions and interactions, which are of order
1/N. As in perturbative string theory, we expect that this
association of the large distance part of the wave function o 3

with modes of very high frequency will be crucial to a com- N X~ NT (AT)
plete understanding of the apparent locality of low energy

physics. . In the first of these expressions, refers to any component
As we penetrate further in to the bound state, we encounyf the transverse coordinates. In the second the commutator
ter clusters of larger and larger numbers of branes. If we l00kgfers to any pair of the components. The final expression,
for separated clusters carrying finite fractions of the totalyhose lowest order perturbative formula has an ultraviolet
longitudinal momentum, the typical separation falls\ag- divergence, is best derived by combining E@s5) and(A6)
creases. Finally, we encounter the ctirgf), which we ex-  and the Schiinger equation which says that the threshold
pect to dominate the ultimate short distance and high energyound state has zero binding energy. Note that these expres-
behavior of the theory in noncompact 11-dimensional spacesjons are independent &, the compactification radius of
time. the 11th dimension. This follows from a cancellation be-
It is this core configuration to which the conventional tween theR dependence of the infrared cutoff, that of the
methods of largeN matrix models, which have so far made effective coupling and that of the scaling factor, which re-
no appearance in our discussion, apply. Consider first gaugeates the variableX to conventionally normalized Yang-
invariant Green’s functions of operators likeXff, where  Mills fields.
i is one of the coordinate directions. We can construct a The first of these equations says that the typical eigen-
perturbation expansion of these Green's functions by convalue of any one coordinate matrix is of orddt’®, much
ventional functional integral methods. When the time sepatarger than theN'® extension along the flat directions. The
rations of operators are all short compared to the 1lsecond tells us that this spectral weight lies mostly along the
dimensional Planck time, the terms in this expansion are wekonflat directions. In conjunction, the two equations can be
behaved. We can try to resum them into a laxgseries. The read as a kind of “uncertainty principle of noncommutative
perturbative expansion paramettte analogue of3,, if we  geometry.” The typical size of matrices is controlled by the
think of the theory as dimensionally reduced Yang-Mills size of their commutator. The final equation fits nicely with

1
N trX2k> ~N23, (A4)

<$ (e[ X, 0])2k> ~N*E, (A6)
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our estimate of the cutoff frequency. The typical velocity is Then the corresponding matric¥$ are given by
such that the transit time of a typical distahéethe inverse

of the cutoff frequency. It is clear that the high velocities
encountered in the core of the wave function could invalidate
our attempt to derive the matrix model by extrapolating from
weakly coupled string theory. We must hope that the overaljyhere the matricet,V are elements of SW), have spec-
amplitude for this part of the wave function vanishes in theyym specy)=spect) ={1,0,0?....0N "1}, and obey
large N limit, relative to the parts in which zero branes are yy= VU, where w=exp(2ri/N). In a specific basisy
separated along flat directions. =diag(lw,®?,...,0N ") andV is a cyclic forward shift.

Itis important to realize that these estimates do notapply The scale of Eq.(B5) is fixed since spet{) and
along the flat directions, but in the bulk of tié¢* dimen- specl) go over asN—c to the unit circle exg¢). Note
sional configuration space. In these directions, it does nofat 41 is real and soX' is Hermitian.
make sense to multiply together the “sizes” along different  1pe dynamics of the matrix model is governed by the
coordinate directions to make an area since the different CQ-agrangian
ordinates do not commute. Thus there is no contradiction
between the growth of the wave function in nonflat direc-
tions and our argument that the size of the bound state in
conventional geometric terms saturates the Bekenstein
bound.

Xi=> x‘anZUf‘lvnz, (B5)

nq,No

To

5 Tr > XiXi+CY, [X X2 (B6)

i<j

The normalizations here are fixed by the requirement that
Eq. (B6) describeD0-brane dynamics. The first term, for
diagonal matrices describinD0-brane motion, is just the

In this appendix we compute the matrix model membrandionrelativistic kinetic energy nip/2)=}_,v3 since the
tension and show that it exactly agrees with tetheory  0-brane massn,=T,. The rest energy of the system is just

membrane tension. The useful summary[24] gives the Nmy, which in theM-theory interpretation is jugb,;, and
tension of @Dp braneT, in lIA string theory orM theory as SO

APPENDIX B

1/2
Tp:(Z;T) (277)_p/2(

S

)(1+p)l2 B1) P12=NTp. (B7)

ama The coefficientC is fixed by requiring that the small fluc-
wheregs is the fundamental string coupling and 472’ is  tuations around diagonal matrices describe harmonic oscilla-
the fundamental string tension. tors whose frequencies are precisely the masses of the
The membrane tensioh, is defined so that the mags! stretched strings connecting the 0 branes. This ensures that
of a stretched membrane of argais given by M=T,A.  Ed. (B6) reproduces long range graviton interactions cor-
The mass squared for a light cone membrane with no trangectly. Expanding Eq(B6) to quadratic order we find that

verse momentum described by the ma(oy,0,), i C=(12ma’)%
=1,...,9, can be written The energy of a matrix membrane configuration with zero

transverse momentum is given by the commutator term in
5 4ep (27 doy (27 do o Eqg. (B6). We can evaluate this commutator in a semiclassical
M?=(2m) Tzfo 27 Jo 2w Z<J {20}, manner at largeN as in Sec. VIII by introducing angular
(B2) operators q with spectrum the interval(0,27) and p
=(27/Ni)dldq with the spectrum the discretized interval
where the Poisson brackets of two functions(0,2m) so that[p,q]=2#i/N. The matricesU,V become

A(oq,0,),B(0q,0,) are defined by U=e'P, V=¢'9. By the Baker-Campbell-Hausdorff theorem,
we seeUV=wVU. The formal# in this algebra is given by
dA B B 9A = i i
(ABl=~ ZE R (B3) h=2m/N. Semiclassically, we have

1 — 1 1

The coefficients in Eq(B2) are set by demanding that

M? for the mapX®= (o,/27)L, X°=(0,/27)L is given by 2m (27 dp dq B8
2_ 2\2

ME=(TaLY . | . L ®
To understand the relation to the matrix model, we write,
. ; . o

as in Sec. VIII, the mapt' as a Fourier series: So we get

X(oy,00)= > X gl(nor+nao), (B4) . (2m)? (27 doy (27 doy, . .
e L TX X P === | 5 | 5 (XA
(B9)

%In the space of eigenvalues, which in this noncommutative region ThiS_ comm_utator can al§q be gvaluated for a given fi.nite
is not to be confused with the classical geometrical distance beN matrix configuration explicitly with results that agree with
tweenDO branes. Eq. (B9) asN—«o,
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Now we can perform the check. The value of the matrixFrom Eq.(B2) we can now read off the matrix model mem-
model Hamiltonian on a configuration with no transversebrane tension as
momentum is

1 \2 1
To 1 \2 (277)2 2n doqy (27 doy P o (Tmat)zz.rz( ) (B12)
= — J— —_ 2 0 [ .
H=75 (2m’> N fo 27 Jo 2m ,ZJ X, 2na’| (2m)?

(B10)
_ _ . o So we can write
The conjecture interprets the matrix model Hamiltortihias

the infinite momentum frame energy/p211+/\/l2—p11 T2 T.\2 12
=M?2p;;. So the matrix membrane mass squared is Titz:(zw)Z(zwar)Z(_2> :(277)2(_) =1.
M?3,.=2py;H. Using Eq.(B7), we find (T2 To 2
(B13)
1 \? 2m doqy (27 doy o
M3 :TZ(—,> 2 Zj — — X, A2 . .
mat— "0\ 27 (2m) o 2w Jo 2w 2‘, { ' So theM-theory and matrix model membrane tensions ex-

(B11 actly agree.
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