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We suggest and motivate a precise equivalence between uncompactified 11-dimensionalM theory and the
N5` limit of the supersymmetric matrix quantum mechanics describingD0 branes. The evidence for the
conjecture consists of several correspondences between the two theories. As a consequence of supersymmetry
the simple matrix model is rich enough to describe the properties of the entire Fock space of massless well
separated particles of the supergravity theory. In one particular kinematic situation the leading large distance
interaction of these particles is exactly described by supergravity. The model appears to be a nonperturbative
realization of the holographic principle. The membrane states required byM theory are contained as excita-
tions of the matrix model. The membrane world volume is a noncommutative geometry embedded in a
noncommutative spacetime.@S0556-2821~97!03308-0#
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I. INTRODUCTION

M theory @1# is the strongly coupled limit of type-IIA
string theory. In the limit of infinite coupling, it becomes an
11-dimensional theory in a background-infinite flat space. In
this paperM theory will always refer to this decompactified
limit. We know very little about this theory except for the
following two facts. At low energy and large distances, it is
described by 11-dimensional supergravity. It is also known
to possess membrane degrees of freedom with membrane
tension 1/l P

3 wherel P is the 11-dimensional Planck length. It
seems extremely unlikely thatM theory is any kind of con-
ventional quantum field theory. The degrees of freedom de-
scribing the short distance behavior are simply unknown.
The purpose of this paper is to put forward a conjecture
about these degrees of freedom and about the Hamiltonian
governing them.

The conjecture grew out of a number of disparate facts
aboutM theory,D branes@2#, matrix descriptions of their
dynamics@3#, supermembranes@4,5,6#, the holographic prin-
ciple @7#, and short distance phenomena in string theory
@8,9#. Simply stated the conjecture is this.M theory, in the
light cone frame, is exactly described by the largeN limit of
a particular supersymmetric matrix quantum mechanics. The
system is the same one that has been used previously used to
study the small distance behavior ofD0 branes @9#.
Townsend@10# was the first to point out that the supermatrix
formulation of membrane theory suggested that membranes
could be viewed as composites ofD0 branes. Our work is a
precise realization of his suggestion.

In what follows we will present our conjecture and some
evidence for it. We begin by reviewing the description of

string theory in the infinite momentum frame. We then
present our conjecture for the full set of degrees of freedom
of M theory and the Hamiltonian which governs them. Our
strongest evidence for the conjecture is a demonstration that
our model contains the excitations which are widely believed
to exist in M theory, supergravitons and large metastable
classical membranes. These are discussed in Secs. III and V.
The way in which these excitations arise is somewhat mi-
raculous, and we consider this to be the core evidence for our
conjecture. In Sec. IV we present a calculation of supergravi-
ton scattering in a very special kinematic region and argue
that our model reproduces the expected result of low energy
supergravity. The calculation depends on a supersymmetric
nonrenormalization theorem whose validity we will discuss
there. In Sec. VI we argue that our model may satisfy the
holographic principle. This raises crucial issues about Lor-
entz invariance which are discussed there.

We emphasize that there are many unanswered questions
about our proposed version ofM theory. Nonetheless, these
ideas seem of sufficient interest to warrant presenting them
here. If our conjecture is correct, this would be the first non-
perturbative formulation of a quantum theory which includes
gravity.

II. INFINITE MOMENTUM FRAME
AND THE HOLOGRAPHIC PRINCIPLE

The infinite momentum frame@11# is the old name for the
misnamed light cone frame. Thus far this is the only frame in
which it has proved possible to formulate string theory in
Hamiltonian form. The description ofM theory which we
will give in this paper is also in the infinite momentum
frame. We will begin by reviewing some of the features of
the infinite momentum frame formulation of relativistic
quantum mechanics. For a comprehensive review we refer
the reader to@11#. We begin by choosing a particular spatial
direction x11 called the longitudinal direction. The nine-
dimensional space transverse tox11 is labeledxi or x'. Time
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will be indicated byt. Now consider a system of particles
with momenta (p'

a ,p11
a ) where a labels the particle. The

system is boosted along thex11 axis until all longitudinal
momenta are much larger than any scale in the problem.
Further longitudinal boosting just rescales all longitudinal
momenta in fixed proportion. Quantum field theory in such a
limiting reference frame has a number of properties which
will be relevant to us.

It is convenient to begin by assuming that thex11 direc-
tion is compact with a radiusR. The compactification serves
as an infrared cutoff. Accordingly, the longitudinal momen-
tum of any system or subsystem of quanta is quantized in
units of 1/R. In the infinite momentum frame, all systems are
composed of constituent quanta or partons. The partons all
carry strictly positive values of longitudinal momentum. It is
particularly important to understand what happens to quanta
of negative or vanishingp11. The answer is that as the infi-
nite momentum limit is approached, the frequency of these
quanta, relative to the Lorentz-time-dilated motion of the
boosted system, becomes infinite and the zero and negative
momentum quanta may be integrated out. The process of
integrating out such fast modes may influence or even deter-
mine the Hamiltonian of the remaining modes. In fact, the
situation is slightly more complicated in certain cases for the
zero momentum degrees of freedom. In certain situations
such as spontaneous symmetry breaking, these longitudinally
homogeneous modes define backgrounds whose moduli may
appear in the Hamiltonian of the other modes. In any case
the zero and negative momentum modes do not appear as
independent dynamical degrees of freedom.

Thus we may assume all systems have longitudinal mo-
mentum given by an integer multiple of 1/R,

p115N/R, ~2.1!

with N strictly positive. At the end of a calculation we must
let R andN/R tend to infinity to get to the uncompactified
infinite momentum limit.

The main reason for the simplifying features of the infi-
nite momentum frame is the existence of a transverse Gal-
ilean symmetry which leads to a naive nonrelativistic form
for the equations. The role of nonrelativistic mass is played
by the longitudinal momentump11. The Galilean transfor-
mations take the form

pi→pi1p11v i . ~2.2!

As an example of the Galilean structure of the equations,
the energy of a free massless particle is

E5
p'
2

2p11
. ~2.3!

For the 11-dimensional supersymmetric theory we will
consider, the Galilean invariance is extended to the super-
Galilean group which includes 32 real supergenerators. The
supergenerators divide into two groups of 16, each trans-
forming as spinors under the nine-dimensional transverse ro-
tation group. We denote them byQa , andqA , and they obey
anticommutation relations

@Qa ,Qb#15dabH,

@qA ,qB#15dABP11,

@Qa ,qA#5gAa
i Pi . ~2.4!

The Lorentz generators which do not preserve the infinite
momentum frame mix up the two kinds of generators.

Let us now recall some of the features of string theory in
the infinite momentum or light cone frame@12#. We will
continue to call the longitudinal directionx11 even though in
this case the theory has only ten space-time directions. The
transverse space is of course eight dimensional. To describe
a free string of longitudinal momentump11, a periodic pa-
rameters which runs from 0 top11 is introduced. To regu-
late the world sheet theory, a cutoffds5e is introduced.
This divides the parameter space intoN5p11/e segments,
each carrying longitudinal momentume. We may think of
each segment as a parton, but unlike the partons of quantum
field theory, these objects always carryp115e. For a multi-
particle system of total longitudinal momentump11(total),
we introduce a total parameter space of overall length
p11(total), which we allow to be divided into separate
pieces, each describing a string. The world sheet regulator is
implemented by requiring each string to be composed of an
integer number of partons of momentume. Interactions are
described by splitting and joining processes in which the
number of partons is strictly conserved. The regulated theory
is thus seen to be a special case of Galilean quantum me-
chanics ofN partons with interactions which bind them into
long chains and allow particular kinds of rearrangements.

The introduction of a minimum unit of momentume can
be given an interpretation as an infrared cutoff. In particular,
we may assume that thex11 coordinate is periodic with
lengthR5e21. Evidently, the physical limite→0, R→` is
a limit in which the number of partonsN tends to infinity.

It is well known @7# that in this largeN limit the partons
become infinitely dense in the transverse space and that this
leads to extremely strong interactions. This circumstance, to-
gether with the Bekenstein bound on entropy, has led to the
holographic speculation that the transverse density of par-
tons is strictly bounded to about one per transverse Planck
area. In other words, the partons form a kind of incompress-
ible fluid. This leads to the unusual consequence that the
transverse area occupied by a system of longitudinal momen-
tum p11 cannot be smaller thanp11/e in Planck units.

The general arguments for the holographic behavior of
systems followed from considerations involving the
Bekenstein–’t Hooft bound on the entropy of a spatial region
@13# and were not specific to string theory. If the arguments
are correct, they should also apply to 11-dimensional theo-
ries which include gravitation. Thus we should expect that in
M theory the radius of a particle such as the graviton will
grow with p11 according to

r5S p11e D 1/9l P5~p11R!1/9l P , ~2.5!

where l P is the 11-dimensional Planck length. In what fol-
lows we will see quantitative evidence for exactly this be-
havior.
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At first sight the holographic growth of particles appears
to contradict the boost invariance of particle interactions.
Consider the situation of two low energy particles moving
past one another with some large transverse separation, let us
say of order a meter. Obviously these particles have negli-
gible interactions. Now boost the system along the longitu-
dinal direction until the size of each particle exceeds their
separation. They now overlap as they pass each other. But
longitudinal boost invariance requires that the scattering am-
plitude be still essentially zero. This would seem to require
extremely special and unnatural cancellations. We will see
below that one key to this behavior is the very special
Bogomol’ni-Prasad-Sommerfield~BPS! property of the par-
tons describingM theory. However, we are far from having
a complete understanding of the longitudinal boost invari-
ance of our system. Indeed, we view it as the key dynamical
puzzle which must be unraveled in understanding the dy-
namics ofM theory.

III. M THEORY AND D0 BRANES

M theory with a compactified longitudinal coordinate
x11 is by definition a type-IIA string theory. The correspon-
dences between the two theories include@1# the following.

~1! The compactification radiusR is related to the string
coupling constant by

R5g2/3l P5gls , ~3.1!

wherel s is the string length scale:

l s5g21/3l P . ~3.2!

~2! The Ramond-Ramond~RR! photon of IIA theory is
the Kaluza-Klein~KK ! photon which arises upon compacti-
fication of 11-dimensional supergravity.

~3! No perturbative string states carry RR charge. In other
words, all perturbative string states carry vanishing momen-
tum along thex11 direction. The only objects in the theory
which do carry RR photon charge are theD0 branes of
Polchinski. D0 branes are point particles which carry a
single unit of RR charge. Equivalently, they carry longitudi-
nal momentum

P11
D0 branes51/R. ~3.3!

TheD0 branes carry the quantum numbers of the first mas-
sive KK modes of the basic 11-dimensional supergravity
multiplet, including 44 gravitons, 84 components of a three-
form, and 128 gravitinos. We will refer to these particles as
supergravitons. As 11-dimensional objects, these are all
massless. As a consequence, they are BPS saturated states in
the ten-dimensional~10D! theory. Their 10D mass is 1/R.

~4! Supergravitons carrying Kaluza-Klein momentum
p115N/R also exist, but are not described as elementary
D0 branes. As shown in@3#, their proper description is as
bound composites ofN D0 branes.

These properties make theD0 branes candidate partons
for an infinite momentum limit description ofM theory. We
expect that if, as in quantum field theory, the degrees of
freedom with vanishing and negativep11 decouple, thenM
theory in the infinite momentum frame should be a theory

whose only degrees of freedom areD0 branes. Anti-D0
branes carry negative Kaluza-Klein momenta, and strings
carry vanishingp11. The decoupling of anti-D0 branes is
particularly fortunate because brane-antibrane dynamics is
something about which we know very little@14#. The BPS
property of zero branes ameliorates the conflict between in-
finitely growing parton wave functions and low energy local-
ity, which we noted at the end of the last section. We will see
some partial evidence for this in a nontrivial scattering com-
putation below. We will also discuss below the important
point that a model containing onlyD0 branes actually con-
tains large classical supermembrane excitations. Since the
conventional story of theM -theoretic origin of strings de-
picts them as membranes wrapped around the compactified
11th dimension, we have some reason to believe that strings
have not really been left out of the system.

All of these circumstances lead us to propose thatM
theory in the infinite momentum frame is a theory in which
the only dynamical degrees of freedom or partons areD0
branes. Furthermore, it is clear in this case that all systems
are built out of the composites of partons, each of which
carries the minimalp11. We note, however, that our system
does have a set of degrees of freedom which go beyond the
parton coordinates. Indeed, as first advocated in@3#, the
D0 brane coordinates ofN partons have to be promoted to
matrices. At distance scales larger than the 11-dimensional
Planck scale, these degrees of freedom become very massive
and largely decouple,1 but their virtual effects are responsible
for all parton interactions. These degrees of freedom are BPS
states and are related to the parton coordinates by gauge
transformations. Furthermore, when the partons are close to-
gether, they become low frequency modes. Thus they cannot
be omitted in any discussion of the dynamics ofD0 branes.

IV. D0 BRANE MECHANICS

If the infinite momentum limit ofM theory is the theory
of D0 branes, decoupled from the other string theory degrees
of freedom, what is the precise form of the quantum mechan-
ics of the system? Fortunately there is a very good candidate
which has been extensively studied in another context in
which D0 branes decouple from strings@9#.

As emphasized at the end of the last section, open strings
which connectD0 branes do not exactly decouple. In fact,
the very short strings which connect the branes when they
are practically on top of each other introduce a new kind of
coordinate space in which the nine spatial coordinates of a
system ofN D0 branes become nineN3N matricesXa,b

i

@3#. The matricesX are accompanied by 16 fermionic super-
partnersua,b , which transform as spinors under the SO~9!
group of transverse rotations. The matrices may be thought
of as the spatial components of ten-dimensional super Yang-
Mills ~SYM! fields after dimensional reduction to zero space
directions. These Yang-Mills fields describe the open strings
which are attached to theD0 branes. The Yang-Mills quan-
tum mechanics has U(N) symmetry and is described~in

1Indeed, we will propose that this decoupling is precisely what
defines the regime in which the classical notion of distance makes
sense.
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units with l s51! by the Lagrangian

L5
1

2g
$tr Ẋi Ẋi12uTu̇1 1

2 tr@X
i ,Xj #222uTg i@u,Xi #%.

~4.1!

Here we have used conventions in which the fermionic vari-
ables are 16-component nine-dimensional spinors.

In @9# this Lagrangian was used to study the short distance
properties ofD0 branes in weakly coupled string theory. The
11D Planck length emerged as a natural dynamical length
scale in that work, indicating that the system~4.1! describes
someM -theoretic physics. In@9#, Eq. ~4.1! was studied as a
low velocity effective theory appropriate to the heavyD0
branes of weakly coupled string theory. Here we propose Eq.
~4.1! as the most general infinite momentum frame Lagrang-
ian, with at most two derivatives, which is invariant under
the gauge symmetry and the super-Galilean group2 @15#. It
would be consistent with our assumption that matrixD0
branes are the only degrees of freedom ofM theory to write
a Lagrangian with higher powers of first derivatives. We do
not know if any such Lagrangians exist which preserve the
full symmetry of the infinite momentum frame. What is at
issue here is 11-dimensional Lorentz invariance. In typical
infinite momentum frame field theories, the naive classical
Lagrangian for the positive longitudinal momentum modes is
renormalized by the decoupled infinite frequency modes.
The criterion which determines the infinite momentum frame
Lagrangian is invariance under longitudinal boosts and null
plane rotating Lorentz transformations~the infamous angular
conditions!. Apart from simplicity, our main reason for sug-
gesting the Lagrangian~4.1! is that we have found some
partial evidence that the largeN limit of the quantum theory
it defines is indeed Lorentz invariant. A possible line of ar-
gument systematically leading to Eq.~4.1! is discussed in
Sec. IX.

Following @9#, let us rewrite the action in units in which
the 11D Planck length is 1. Using Eqs.~3.1! and ~3.2!, the
change of units is easily made and one finds

L5trH 1

2R
DtY

iDtY
i2 1

4R@Yi ,Yj #22uTDtu

2RuTg i@u,Yi #J , ~4.2!

whereY5X/g1/3. We have also changed the units of time to
11D Planck units. We have restored the gauge field
(] t→Dt5] t1 iA) to this expression~previously we were in
the A50 gauge! in order to emphasize that the supersym-
metric ~SUSY! transformation laws~heree and e8 are two
independent 16-component anticommuting SUSY param-
eters!

dXi522eTg iu, ~4.3!

du5 1
2 $DtX

ig i1g21 1
2 @Xi ,Xj #g i j %e1e8, ~4.4!

dA522eTu ~4.5!

involve a gauge transformation. As a result, the SUSY alge-
bra closes on the gauge generators and only takes on the
form ~2.4! when applied to gauge-invariant states.

The Hamiltonian has the form

H5R trH P iP i

2
2
1

4
@Yi ,Yj #21uTg i@u,Yi #J , ~4.6!

whereP is the canonical conjugate toY. Note that in the
limit R→`, all finite energy states of this Hamiltonian have
infinite energy. We will be interested only in states whose
energy vanishes like 1/N in the largeN limit, so that this
factor becomes the inverse power of longitudinal momentum
which we expect for the eigenstates of a longitudinal-boost-
invariant system. Thus, in the correct infinite momentum
frame limit, the only relevant asymptotic states of the Hamil-
tonian should be those whose energy is of order 1/N. We
will exhibit a class of such states below, the supergraviton
scattering states. The difficult thing will be to prove that their
S-matrix elements depend only on ratios of longitudinal mo-
menta, so that they are longitudinally boost invariant.

To understand how this system represents ordinary par-
ticles, we note that when theY’s become large the commu-
tator term inH becomes very costly in energy. Therefore for
large distances the finite energy configurations lie on the flat
directions along which the commutators vanish. In this sys-
tem with 16 supercharges,3 these classical zero energy states
are in fact exact supersymmetric states of the system. In
contrast to field theory, the continuous parameters which de-
scribe these states@the Higgs vacuum expectation values
~VEV’s! in the language of SYM theory# are not vacuum
superselection parameters, but rather collective coordinates.
We must compute their quantum wave functions rather than
freeze them at classical values. They are, however, the slow-
est modes in the system, so that we can integrate out the
other degrees of freedom to get an effective SUSY quantum
mechanics of these modes alone. We will study some aspects
of this effective dynamics below.

Along the flat directions theYi are simultaneously diago-
nalizable. The diagonal matrix elements are the coordinates
of theD0 branes. When theY are small, the cost in energy
for a noncommuting configuration is not large. Thus for
small distances there is no interpretation of the configuration
space in terms of ordinary positions. Classical geometry and
distance are only sensible concepts in this system in regions
far out along one of the flat directions. We will refer to this
as the long distance regime. In the short distance regime, we
have a noncommutative geometry. Nevertheless, the full
Hamiltonian~4.6! has the usual Galilean symmetry. To see
this we define the center of mass of the system by

2The gauge invariance is in fact necessary to supertranslation in-
variance. The supergenerators close on gauge transformations and
only satisfy the supertranslation algebra on the gauge-invariant sub-
space.

3The 16 supercharges which anticommute to the longitudinal mo-
mentum act only on the center of mass of the system and play no
role in particle interactions.
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Y~c.m.!5
1

N
trY. ~4.7!

A transverse translation is defined by adding a multiple of
the identity toY. This has no effect on the commutator term
in L because the identity commutes with allY. Similarly
rotational invariance is manifest.

The center-of-mass momentum is given by

P~c.m.!5trP5
N

R
Ẏ~c.m.!. ~4.8!

Using p115N/R gives the usual connection between
transverse velocity and transverse momentum:

1

p11
P~c.m.!5Ẏ~c.m.!. ~4.9!

A Galilean boost is defined by adding a multiple of the
identity to Ẏ. We leave it to the reader to show that this has
no effect on the equations of motion. This establishes the
Galilean invariance ofH. The super-Galilean invariance is
also completely unbroken. The alert reader may be some-
what unimpressed by some of these invariances, since they
appear to be properties of the center-of-mass coordinate,
which decouples from the rest of the dynamics. Their real
significance will appear below when we show that our sys-
tem possesses multiparticle asymptotic states, on which these
generators act in the usual way as a sum of single-particle
operators.

V. A CONJECTURE

Our conjecture is thus thatM theory formulated in the
infinite momentum frame is exactly equivalent to the
N→` limit of the supersymmetric quantum mechanics de-
scribed by the Hamiltonian~4.6!. The calculation of any
physical quantity inM theory can be reduced to a calculation
in matrix quantum mechanics followed by an extrapolation
to largeN. In what follows we will offer evidence for this
surprising conjecture.

Let us begin by examining the single-particle spectrum of
the theory. ForN51 the states withp'50 are just those of
a singleD0 brane at rest. The states form a representation of
the algebra of the 16u’s with 28 components. These states
have exactly the quantum numbers of the 256 states of the
supergraviton. For nonzerop' the energy of the object is

E5
R

2
p'
25

p'
2

2p11
. ~5.1!

For states withN.1, we must study the U(N)-invariant
Schrödinger equation arising from Eq.~4.6!. H can easily
be separated in terms of center-of-mass and relative motions.
Define

Y5
Y~c.m.!

N
I1Yrel , ~5.2!

whereI is the unit matrix andYrel is a traceless matrix in the
adjoint of SU(N) representing relative motion. The Hamil-
tonian then has the form

H5Hc.m.1H rel , ~5.3!

with

Hc.m.5
P~c.m.!2

2p11
. ~5.4!

The Hamiltonian for the relative motion is the dimen-
sional reduction of the supersymmetric 10D Yang-Mills
Hamiltonian. Although a direct proof based on the Schro¨-
dinger equation has not yet been given, duality between IIA
strings andM theory requires the relative Schro¨dinger equa-
tion to have normalizable threshold bound states with zero
energy@3#. The bound system must have exactly the quan-
tum numbers of the 256 states of the supergraviton. For these
states the complete energy is given by Eq.~5.4!. Further-
more, these states are BPS saturated. No other normalizable
bound states can occur. Thus we find that the spectrum of
stable single-particle excitations of Eq.~4.6! is exactly the
supergraviton spectrum with the correct dispersion relation
to describe massless 11-dimensional particles in the infinite
momentum frame.

Next let us turn to the spectrum of widely separated par-
ticles. That a simple quantum mechanical Hamiltonian like
Eq. ~4.6! should be able to describe arbitrarily many well-
separated particles is not at all evident and would certainly
be impossible without the special properties implied by su-
persymmetry. Begin by considering commuting block diag-
onal matrices of the form

S Y1
i 0 0 •••

0 Y2
i 0

0 0 Ye
i

D , ~5.5!

whereYa
i areNa3Na matrices andN11N21•••1Nn5N.

For the moment suppose all other elements of theY’s are
constrained to vanish identically. In this case the Schro¨dinger
equation obviously separates inton uncoupled Schro¨dinger
equations for the individual block degrees of freedom. Each
equation is identical to the original Schro¨dinger equation for
the system ofNa D0 branes. Thus the spectrum of this trun-
cated system includes collections of noninteracting super-
gravitons.

Now let us suppose the supergravitons are very distant
from one another. In other words, for each pair the relative
distance, defined by

Ra,b5UtrYa

Na
2
trYb

Nb
U, ~5.6!

is asymptotically large. In this case the commutator terms in
Eq. ~4.6! cause the off-diagonal blocks in theY’s to have
very large potential energy proportional toRa,b

2 . This effect
can also be thought of as the Higgs effect giving mass to the
broken generators~‘‘W bosons’’! of U(N) when the symme-
try is broken to U(N1)3U(N2)3U(N3)••• . Thus one
might naively expect the off-diagonal modes to leave the
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spectrum of very widely separated supergravitons unmodi-
fied. However, this is not correct in a generic situation. The
off-diagonal modes behave like harmonic oscillators with
frequency of orderRa,b , and their zero point energy will
generally give rise to a potential energy of similar magni-
tude. This effect would certainly preclude an interpretation
of the matrix model in terms of well-separated independent
particles.

Supersymmetry is the ingredient which rescues us. In a
well-known way, the fermionic partners of the off-diagonal
bosonic modes exactly cancel the potential due to the
bosons, leaving exactly flat directions. We know this from
the nonrenormalization theorems for supersymmetric quan-
tum mechanics with 16 supergenerators@15#. The effective
Lagrangian for the collective coordinates along the flat direc-
tions must be supersymmetric, and the result of@15# guaran-
tees that up to terms involving at most two derivatives the
Lagrangian for these coordinates must be the dimensional
reduction of U(1)n SYM theory, wheren is the number of
blocks ~i.e., the number of supergravitons!. This is just the
Lagrangian for free motion of these particles. Furthermore,
since we are doing quantum mechanics and the analogue of
the Yang-Mills coupling is the dimensional quantityl p

3, the
coefficient of the quadratic term is uncorrected from its value
in the original Lagrangian.

There are residual virtual effects at orderp4 from these
heavy states which are the source of parton interactions. Note
that the off-diagonal modes are manifestly nonlocal. The ap-
parent locality of low energy physics in this model must
emerge from a complex interplay between SUSY and the
fact that the frequencies of the nonlocal degrees of freedom
become large when particles are separated. We have only a
limited understanding of this crucial issue, but in the next
section we will provide some evidence that local physics is
reproduced in the low energy, long distance limit.

The center of mass of a block of sizeN(a) is defined by
Eq. ~5.2!. It is easy to see that the Hamiltonian for an
asymptotic multiparticle state, when written in terms of
center-of-mass transverse momenta, is just

Hasymp5(
a

RP~a!2

N~a! 5(
a

P~a!2

p11
~a! . ~5.7!

Note that the dispersion relation for the asymptotic particle
states has the fully 11-dimensional Lorentz-invariant form.
This is essentially due to the BPS nature of the asymptotic
states. For large relative separations, the supersymmetric
quantum state, corresponding to the supersymmetric classical
flat direction in which the gauge symmetry is ‘‘broken’’ into
n blocks, will be precisely the product of the threshold
bound-state wave functions of each block subsystem. Each
individual block is a BPS state. Its dispersion relation fol-
lows from the SUSY algebra and is relativistically invariant
even when~e.g., for finiteN! the full system is not.

We also note that the statistics of multisupergraviton
states comes out correctly because of the residual block per-
mutation gauge symmetry of the matrix model. When some
subset of the blocks are in identical states, the original gauge
symmetry instructs us to mod out by the permutation group,
picking up minus signs depending on whether the states are

constructed from an odd or even number of Grassmann vari-
ables. The spin statistics connection is the conventional one.

Thus the largeN matrix model contains the Fock space of
asymptotic states of 11-dimensional supergravity, and the
free propagation of particles is described in a manner consis-
tent with 11-dimensional Lorentz invariance. The field
theory Fock space is, however, embedded in a system which,
as we shall see, has no ultraviolet divergences. Particle sta-
tistics is embedded in a continuous gauge symmetry. We find
the emergence of field theory as an approximation to an el-
egant finite structure one of the most attractive features of the
matrix model approach toM theory.

VI. LONG RANGE SUPERGRAVITON INTERACTIONS

The first uncanceled interactions in the matrix model oc-
cur in the effective action at orderẏ4 whereẏ is the velocity
of the supergravitons@9#. These interactions are calculated
by thinking of the matrix model as SYM theory and comput-
ing Feynman diagrams. At one loop one finds an induced
quartic term in the velocities which corresponds to an in-
ducedFmn

4 term. The precise term for twoD0 branes is
given by

A@ ẏ~1!2 ẏ~2!#4

R3r 7
, ~6.1!

where r is the distance between theD0 branes andA is a
coefficient of order 1, which can be extracted from the re-
sults of@9#. This is the longest range term which governs the
interaction between theD0 branes asr tends to infinity.
Thus the effective Lagrangian governing the low energy,
long distance behavior of the pair is

L5
ẏ~1!2

2R
1
ẏ~2!2

2R
2A

@ ẏ~1!2 ẏ~2!#4

R3r 7
. ~6.2!

The calculation is easily generalized to the case of two
well-separated groups ofN1 andN2 branes forming bound
states. Keeping only the leading terms for largeN ~planar
graphs!, we find

L5
N1ẏ~1!2

2R
5
N2ẏ~2!2

2R
2AN1N2

@ ẏ~1!2 ẏ~2!#4

R3r 7
.

~6.3!

To understand the significance of Eq.~6.3!, it is first use-
ful to translate it into an effective Hamiltonian. To leading
order in inverse powers ofr , we find

Heff5
p'~1!2

2p11~1!
1

p'~2!2

2p11~2!
1AF p'~1!

p11~1!
2
p'~2!

p11~2!G
4

3
p11~1!p11~2!

r 7R
. ~6.4!

From Eq.~6.4! we can compute a scattering amplitude in
the Born approximation. Strictly speaking, the scattering am-
plitude is defined as a 10D amplitude in the compactified
theory. However, it contains information about the 11D am-
plitude in the special kinematic situation where no longitu-
dinal momentum is exchanged. The relation between the
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10D amplitude and 11D amplitude at vanishingDp11 is
simple. They are essentially the same thing except for a fac-
tor of R, which is needed to relate the 10- and 11-
dimensional phase space volumes. The relation between am-
plitudes isA115RA10. Thus from Eq.~6.4! we find the 11D
amplitude

AF p'~1!

p11~1!
2
p'~2!

p11~2!G
4 p11~1!p11~2!

r 7
. ~6.5!

The expression in Eq.~6.5! is noteworthy for several rea-
sons. First of all, the factorr27 is the 11D Green function~in
space! after integration overx11. In other words, it is the
scalar Feynman propagator for vanishing longitudinal mo-
mentum transfer. Somehow the simple matrix Hamiltonian
‘‘knows’’ about massless propagation in 11D spacetime. The
remaining momentum-dependent factors are exactly what is
needed to make Eq.~6.5! identical to the single~super!
graviton exchange diagram4 in 11D. Even the coefficient is
correct. This is closely related to a result reported in@9#
where it was shown that the annulus diagram governing the
scattering of twoD0 branes has exactly the same form at
very small and very large distances, which can be understood
by noting that only BPS states contribute to this process on
the annulus. This plus the usual relations between couplings
and scales in type-IIA string theory andM theory guarantees
that we obtain the correct normalization of 11-dimensional
graviton scattering in supergravity~SUGRA!. In the weak
coupling limit, very long distance behavior is governed by
single supergraviton exchange, while the ultrashort distances
are governed by the matrix model. In@9# the exact equiva-
lence between the leading interactions computed in these
very different manners was recognized, but its meaning was
not clear. Now we see that it is an important consistency
criterion in order for the matrix model to describe the infinite
momentum limit ofM theory.

Let us next consider possible corrections to the effective
action coming from higher loops. In particular, higher loops
can potentially correct the quartic term in velocities. Since
our interest lies in the largeN limit, we may consider the
leading~planar! corrections. Doing ordinary largeN count-
ing, one finds that theẏ4 term may be corrected by a factor
which is a function of the ratioN/r 3. Such a renormalization
by f (N/r 3) could be dangerous. We can consider several
cases which differ in the behavior off as N/r 3 tends to
infinity. In the first two, the function tends to zero or infinity.
The meaning of this would be that the coupling to gravity is
driven either to zero or infinity in the infinite momentum
limit. Either behavior is intolerable. Another possibility is
that the functionf tends to a constant not equal to 1. In this

case the gravitational coupling constant is renormalized by a
constant factor. This is not supposed to occur inM theory.
Indeed, supersymmetry is believed to protect the gravita-
tional coupling from any corrections. The only other possi-
bility is that f→1. The simplest way in which this can hap-
pen is if there are no corrections at all other than the one-
loop term, which we have discussed.

We believe that there is a nonrenormalization theorem for
this term which can be proven in the context of SUSY quan-
tum mechanics with 16 generators. The closest thing we
have been able to find in the literature is a nonrenormaliza-
tion theorem for theFmn

4 term in the action of ten-
dimensional string theory5 which has been proved by Tseyt-
lin @16#. In the quantum-mechanical context, we believe that
it is true and that the scattering of two supergravitons at large
transverse distance and zero longitudinal momentum is ex-
actly given in the matrix model by low energy 11D super-
gravity perturbation theory. Dine@17# has constructed the
outlines of an argument which demonstrates the validity of
the nonrenormalization theorem.

We have considered amplitudes in which vanishing lon-
gitudinal momentum is exchanged. Amplitudes with nonva-
nishing exchange ofp11 are more complicated. They corre-
spond to processes in 10D in which RR charge is exchanged.
Such collisions involve rearrangements of theD0 branes in
which the collision transfersD0 branes from one group to
the other. We are studying such processes, but we have no
definitive results as yet.

We have thus presented some evidence that the dynamics
of the matrix model respects 11-dimensional Lorentz invari-
ance. If this is correct, then the model reduces exactly to
supergravity at low energies. It is clear, however, that it is
much better behaved in the ultraviolet than a field theory. At
short distances, as shown extensively in@9#, restoration of
the full matrix character of the variables cuts off all ultravio-
let divergences. The correspondence limit by whichM
theory reduces to supergravity indicates that we are on the
right track.

VII. SIZE OF A SUPERGRAVITON

As we have pointed out in Sec. II, the holographic prin-
ciple requires the transverse size of a system to grow with
the number of constituent partons. It is therefore of interest
to estimate the size of the threshold bound state describing a
supergraviton of longitudinal momentumN/R. According to
the holographic principle, the radius should grow likeN1/9 in
11D Planck units. We will use a mean field approximation in
which we study the wave function of one parton in the field
of N others. We therefore consider the effective Lagrangian
~6.3! for the caseN151, N25N. The action simplifies for
N@1 since in this case theN-particle system is much
heavier than the single-particle system. Therefore we may set
its velocity to zero. The Lagrangian becomes

L15
ẏ2

2R
2N

ẏ4

R3y7
, ~7.1!

4In @9# the amplitude was computed forD0 branes which have
momenta orthogonal to their polarizations~this was not stated ex-
plicitly there, but was implicit in the choice of boundary state!. The
spin dependence of the amplitude is determined by the supersym-
metric completion of thev4/r 7 amplitude, which we have not com-
puted. In principle, this gives another check of 11-dimensional Lor-
entz invariance. We suspect that the full answer follows by
applying the explicit supersymmetries of the light cone gauge to the
amplitude we have computed. 5We thank C. Bachas for pointing out this theorem to us.
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where y refers to the relative coordinate between the two
systems. We can remove allN andR dependence from the
actionS5*L1dt by scaling:

y→N1/9y,
~7.2!

t→
N2/9

R
t.

The characteristic length, time, and velocity (v5 ẏ) scales
are

y;N1/9,

t;
N2/9

R
, ~7.3!

v;
y

t
;N21/9R.

That the size of the bound state wave function scales like
N1/9 is an indication of the incompressibility of the system
when it achieves a density of order one degree of freedom
per Planck area. This is in accordance with the holographic
principle.

This mean field picture of the bound state, or any other
description of it as a simple cluster, makes the problem of
longitudinal boost invariance mentioned earlier very con-
crete. Suppose we consider the scattering of two bound states
with N1 andN2 constituents, respectively,N1;N2;N. The
mean field picture strongly suggests that scattering will show
a characteristic feature at an impact parameter corresponding
to the bound-state size;N1/9. But this is not consistent with
longitudinal boosts which takeN1→aN1 , N2→aN2 . Boost
invariance requires physics to depend only on the ratio
N1 /N2 or, said another way, only on the ratio of the bound-
state sizes. This strongly suggests that a kind of scale invari-
ance must be present in the dynamics that is clearly absent in
the simple picture discussed above. In the string case the
scale-invariant world sheet dynamics is crucial for longitudi-
nal boost invariance.

The possibility that partons might form subclusters within
the bound state was ignored in mean field discussion. A pre-
liminary discussion of a hierarchical clustering model with
many length scales is presented in Appendix A. Note also
that wave functions of threshold bound states are power law
behaved.

Understanding the dynamics of these bound states well
enough to check longitudinal boost invariance reliably is an
important subject for future research.

VIII. MEMBRANES

In order to be the strong coupling theory of IIA string
theory,M theory must have membranes in its spectrum. Al-
though in the decompactified limit there are no truly stable
finite energy membranes, very-long-lived large classical
membranes must exist. In this section we will show how
these membranes are described in the matrix model, a result

first found6 in @5#. Townsend@10# first pointed out the con-
nection between the matrix description ofD0 brane dynam-
ics and the matrix description of membranes, and speculated
that a membrane might be regarded as a collective excitation
of D0 branes. Our conjecture supplies a precise realization
of Townsend’s idea.

The formulation we will use to describe this connection is
a version of the methods introduced in@5,18,19#.

Begin with a pair of unitary operatorsU,V satisfying the
relations

UV5e2p i /NVU,

UN51,

VN51. ~8.1!

These operators can be represented on anN-dimensional Hil-
bert space as clock and shift operators. They form a basis for
all operators in the space. Any matrixZ can be written in the
form

Z5 (
n,m51

N

ZnmU
mVm. ~8.2!

U and V may be thought of as exponentials of canonical
variablesp andq:

U5eip,

V5eiq, ~8.3!

wherep,q satisfy the commutation relations

@q,p#5
2p i

N
. ~8.4!

From Eq.~8.2! we see that only periodic functions ofp
andq are allowed. Thus the space defined by these variables
is a torus. In fact, there is an illuminating interpretation of
these coordinates in terms of the quantum mechanics of par-
ticles on a torus in a strong background magnetic field. The
coordinates of the particle arep,q. If the field is strong
enough, the existence of a large gap makes it useful to trun-
cate the space of states to the finite dimensional subspace of
lowest Landau levels. On this subspace the commutation re-
lation ~8.4! is satisfied. The lowest Landau wave packets
form minimum uncertainty packets which occupy an area
;1/N on the torus. These wave packets are analogous to the
‘‘Planckian cells’’ which make up quantum phase space. The
p,q space is sometimes called the noncommuting torus, the
quantum torus, or the fuzzy torus. In fact, for large enough
N we can choose other bases ofN-dimensional Hilbert space
which correspond to the lowest Landau levels of a charged
particle propagating on an arbitrary Riemann surface
wrapped by a constant magnetic field. For example, in@5#, de
Wit et al. construct the finite dimensional Hilbert space of

6We are grateful to M. Green for pointing out this paper to us
when a preliminary version of this work was presented at the Santa
Barbara Strings ’96 conference.
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lowest Landau levels on a sphere. This connection between
finite matrix models and two-dimensional surfaces is the ba-
sis for the fact that the largeN matrix model contains mem-
branes. For finiteN, the model consists of maps of quantum
Riemann surfaces into a noncommuting transverse super-
space; i.e., it is a model of a noncommuting membrane em-
bedded in a noncommutative space.7

In the limit of largeN, the quantum torus behaves more
and more like classical phase space. The following corre-
spondences connect the two.

~1! The quantum operatorsZ defined in Eq.~8.2! are re-
placed by their classical counterparts. Equation~8.2! be-
comes the classical Fourier decomposition of a function on
phase space.

~2! The operation of taking the trace of an operator goes
over toN times the integral over the torus:

trZ→NE Z~p,q!dp dq. ~8.5!

~3! The operation of commuting two operators is replaced
by 1/N times the classical Poisson brackets:

@Z,W#→
1

N
@]qZ ]pW2]qW ]pZ#. ~8.6!

We may now use the above correspondence to formally
rewrite the matrix model Lagrangian. We begin by represent-
ing the matricesYi andu as operator functionsYi(p,q) and
u(p,q). Now apply the correspondences to the two terms in
Eq. ~4.2!. This gives

L5
p11
2 E dp dq Yi~p,q!22

1

p11
E dp dq

3@]qY
i]pY

j2]qY
j]pY

i #21fermionic terms ~8.7!

and a Hamiltonian

H5
1

2p11
E dp dqP i i ~p,q!21

1

p11
E dp dq

3@]qY
i]pY

j2]qY
j]pY

i #21fermionic terms. ~8.8!

Equation~8.8! is exactly the standard Hamiltonian for the
11D supermembrane in the light cone frame. The construc-
tion shows us how to build configurations in the matrix
model which represent large classical membranes. To do so
we start with a classical embedding of a toroidal membrane
described by periodic functionsYi(p,q). The Fourier expan-
sion of these functions provides us with a set of coefficients
Ymn
i . Using Eq.~8.2!, we then replace the classicalY’s by

operator functions ofU,V. The resulting matrices represent
the large classical membranes.

If the matrix model membranes described above are to
correspond toM -theory membranes, their tensions must
agree. Testing this involves keeping track of the numerical
factors of order 1 in the above discussion. We present this
calculation in Appendix B where we show that the matrix
model membrane tension exactly agrees with theM -theory
membrane tension. This has also been verified by Berkooz
and Douglas@20# using a different technique.

We do not expect static finite energy membranes to exist
in the uncompactified limit. Nevertheless, let us consider the
conditions for such a static solution. The matrix model equa-
tions of motion for static configurations is

@Yi ,@Yj ,Yi ##50. ~8.9!

It is interesting to consider a particular limiting case of an
infinite membrane stretched out in the 8,9 plane for which a
formal solution of Eq.~8.9! can be found. We first rescale
p andq:

P5ANp,

Q5ANq,

@Q,P#52p i . ~8.10!

In the N→` limit, the P,Q space becomes an infinite
plane. Now consider the configuration

Y85R8P,

Y95R9Q, ~8.11!

with all otherYi50. HereRi is the length of the correspond-
ing direction, which should of course be taken to infinity.
Since@Y8,Y9# is ac number, Eq.~8.9! is satisfied. Thus we
find the necessary macroscopic membranes require byM
theory. This stretched membrane has the requisite ‘‘wrap-
ping number’’ on the infinite plane. On a general manifold
one might expect the matrix model version of the wrapping
number of a membrane on a two-cycle to be

W5
1

N
Trv i j „X

i~p,q!…@Xi ,Xj #, ~8.12!

wherev is the two-form associated with the cycle. This ex-
pression approaches the classical winding number as we take
the limit in which Poisson brackets replace commutators.

Another indication that we have found the right represen-
tation of the membrane comes from studying the supersym-
metry transformation properties of our configuration.8 The
supermembrane should preserve half of the supersymmetries
of the model. The SUSY transformation of the fermionic
coordinates is

7Note that it is clear in this context that membrane topology is not
conserved by the dynamics. Indeed, for fixedN a given matrix can
be thought of as a configuration of many different membranes of
different topology. It is only in the largeN limit that stable topo-
logical structure may emerge in some situations.

8This result was derived in collaboration with Seiberg, along with
a number of other observations about supersymmetry in the matrix
model, which will appear in a future publication.
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du5~Pig i1@Xi ,Xj #g i j !e1e8. ~8.13!

For our static membrane configuration,Pi50, and the com-
mutator is proportional to the unit matrix; so we can choose
e8 to make this variation vanish. The unbroken supergenera-
tors are linear combinations of the IMFqA andQa .

It is interesting to contemplate a kind of duality and
complementarity between membranes andD0 branes. Ac-
cording to the standard light cone quantization of mem-
branes, the longitudinal momentump11 is uniformly distrib-
uted over the area of thep,q parameter space. This is
analogous to the uniform distribution ofp11 along thes axis
in string theory. As we have seen, thep,q space is a non-
commuting space with a basic indivisible quantum of area.
The longitudinal momentum of such a unit cell is 1/N of the
total. In other words, the unit phase space cells that result
from the noncommutative structure ofp,q space are the
D0 branes with which we began. TheD0 branes and mem-
branes are dual to one another. Each can be found in the
theory of the other.

The two kinds of branes also have a kind of complemen-
tarity. As we have seen, the configurations of the matrix
model which have classical interpretations in terms ofD0
branes are those for which theY’s commute. On the other
hand, the configurations of a membrane which have a clas-
sical interpretation are the extended membranes of large clas-
sical area. The area element is the Poisson bracket which in
the matrix model is the commutator. Thus the very classical
membranes are highly nonclassical configurations ofD0
branes.

In the paper of de Wit, Luscher, and Nicolai@6#, a pathol-
ogy of membrane theory was reported. It was found that the
spectrum of the membrane Hamiltonian is continuous. The
reason for this is the existence of the unlifted flat directions
along which the commutators vanish. Previously, it had been
hoped that membranes would behave like strings and have
discrete level structure and perhaps be the basis for a pertur-
bation theory which would generalize string perturbation
theory. In the present context this apparent pathology is ex-
actly what we want.M theory has no small coupling analo-
gous to the string splitting amplitude. The bifurcation of
membranes when the geometry degenerates is expected to be
an order-1 process. The matrix model, if it is to describe all
of M theory, must inextricably contain this process. In fact,
we have seen how important it is that supersymmetry main-
tains the flat directions. A model of a single noncommutative
membrane actually contains an entire Fock space of particles
in flat 11-dimensional space-time.

Another pathology of conventional membrane theories
which we expect to be avoided inM theory is the nonrenor-
malizability of the membrane world volume field theory. For
finite N, it is clear that ultraviolet divergences on the world
volume are absent because the noncommutative nature of the
space defines a smallest volume cell, just like a Planck cell in
quantum-mechanical phase space~but we should emphasize
here that this is a classical rather than quantum-mechanical
effect in the matrix model!. The formal continuum limit
which gives the membrane Hamiltonian is clearly valid for
describing the classical motion of a certain set of metastable
semiclassical states of the matrix model. It should not be
expected to capture the quantum mechanics of the full large

N limit. In particular, it is clear that the asymptotic super-
graviton states would look extremely singular and have no
real meaning in a continuum membrane formalism. We are
not claiming here to have a proof that the largeN limit of the
matrix quantum mechanics exists, but only that the issues
involved in the existence of this limit are not connected to
the renormalizability of the world volume field theory of the
membrane.

There is one last point worth making about membranes. It
involves evidence for 11D Lorentz invariance of the matrix
model. We have considered in some detail the Galilean in-
variance of the infinite momentum frame and found that it is
satisfied. But there is more to the Lorentz group. In particu-
lar, there are generatorsJi which in the light cone formalism
rotate the lightlike surface of initial conditions. The condi-
tions for invariance under these transformations are the no-
torious angular conditions. We must also impose longitudi-
nal boost invariance. The angular conditions are what makes
Lorentz invariance so subtle in light cone string theory. It is
clearly important to determine if the matrix model satisfies
the angular conditions in the largeN limit. In the full quan-
tum theory the answer is not yet clear, but at the level of the
classical equations of motion the answer is yes. The relevant
calculations were done by de Wit, Marquard, and Nicolai
@21#. The analysis is too complicated to repeat here, but we
can describe the main points.

The equations for classical membranes can be given in
covariant form in terms of a Nambu-Goto-type action. In the
covariant form the generators of the full Lorentz group are
straightforward to write down. In passing to the light cone
frame, the expressions for the nontrivial generators become
more complicated, but they are quite definite. In fact, they
can be expressed in terms of theY(p,q) and their canonical
conjugatesP(p,q). Finally, using the correspondence be-
tween functions ofp,q and matrices, we are led to matrix
expressions for the generators. The expressions, of course,
have factor-ordering ambiguities, but these, at least formally,
vanish asN→`. In fact, according to@21#, the violation of
the angular conditions goes to zero as 1/N2. Needless to say,
a quantum version of this result would be very strong evi-
dence for our conjecture.

We cannot refrain from pointing out that the quantum
version of the arguments of@21# is apt to be highly non-
trivial. In particular, the classical argument works for every
dimension in which the classical supermembrane exists,
while, by analogy with perturbative string theory, we only
expect the quantum Lorentz group to be recovered in 11
dimensions. Further, the longitudinal boost operator of@21#
is rather trivial and operates only on a set of zero mode
coordinates, which we have not included in our matrix
model. Instead, we expect the longitudinal boost generator to
involve rescalingN in the largeN limit and, thus, to relate
the Hilbert spaces of different SUSY quantum-mechanical
models. We have already remarked in the previous section
that, as anticipated in@7#, longitudinal boost invariance is the
key problem in our model. We expect it to be related to a
generalization of the conformal invariance of perturbative
string theory.

IX. TOWARDS DERIVATION AND COMPACTIFICATION

In this section we would like to present a line of argument
which may lead to a proof of the conjectured equivalence
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between the matrix model andM theory. It relies on a
stringy extension of the conjectured nonrenormalization
theorem combined with the possibility that all velocities in
the largeN cluster go to zero asN→`.

Imagine thatR stays fixed asN→`. Optimistically, one
might imagine that finiteR errors are as small as in pertur-
bative 11D supergravity, meaning that they are suppressed
by powers ofk11R or even exp(2k11R) where k11 is the
center-of-mass longitudinal momentum transfer. So fork11
;1/l P we could imagineR fixed at a macroscopic scale and
have very tiny errors. The mean field estimates discussed in
Sec. VII give the velocityv;N21/9R, which, withR fixed,
can be made arbitrarily small at largeN. Although it is likely
that the structure of the largeN cluster is more complicated
than the mean field description, it is possible that this general
property of vanishing velocities at largeN continues to hold.
In particular, in Appendix A we present arguments that the
velocities of the coordinates along some of the classical flat
directions of the potential are small. We suspect that this can
be generalized to all of the flat directions. If that is the case,
then the only high velocities would be those associated with
the ‘‘core’’ wave function of Appendix A. The current argu-
ment assumes that the amplitude for the core piece of the
wave function vanishes in the largeN limit.

Non-Abelian field strength is the correct generalization of
velocity for membrane-type field configurations like those
discussed in Sec. VIII. For classical configurations at least
these field strengths are order 1/N and so are also small.

We have previously conjectured that thev4 terms in the
quantum-mechanical effective action are not renormalized
beyond one loop. For computing the 11-dimensional super-
gravity amplitude, we needed this result in the matrix quan-
tum mechanics, but is possible that this result holds in the
full string perturbation theory. For example, the excited open
string states can be represented as additional non-BPS fields
in the quantum mechanics. These do not contribute to the
one loopv4 term because they are not BPS. Perhaps they do
not contribute to higher loops for related reasons.

If these two properties hold, then the conjecture follows.
The scattering of largeN clusters ofD0 branes can clearly
be computed at smallg ~smallR! using quantum mechanics.
But these processes, by assumption, only involve low veloci-
ties independent ofg and so only depend on thev4 terms in
the effective action which, by the stringy extension of the
nonrenormalization theorem, would not receiveg correc-
tions. So the same quantum-mechanical answers would be
valid at largeg ~largeR!.

This would prove the conjecture.
From this point of view, we have identified a subset of

string theory processes~large-N D0 brane scattering! which
are unchanged by stringy loop corrections and so are com-
putable at strong coupling.

If this line of argument is correct, it gives us an unam-
biguous prescription for compactification. We take the quan-
tum mechanics which describes 0-brane motion at weak
string coupling in the compactified space and then follow it
to strong coupling. This approach to compactification re-
quires us to add extra degrees of freedom in the compactified
theory. We will discuss an alternative approach in the next
section.

For toroidal compactifications, it is clear at weak coupling

that one needs to keep the strings which wrap any number of
times around each circle. These unexcited wrapped string
states are BPS states, and so they do contribute to thev4

term and hence must be kept. In fact, these are the states
which, in the annulus diagram, correct the power law in
graviton scattering to its lower dimensional value and are
crucial in implementing the variousT dualities.

To be specific let us discuss the case of one coordinate
X9 compactified on a circle on radiusR9 . Here we should
keep the extra string winding states aroundX9. An efficient
way to keep track of them is toT dualize theX9 circle. This
convertsD0 branes toD1 branes and winding modes to
momentum modes. The collection ofN D1 branes is de-
scribed by a (111)-dimensional SU(N) super Yang-Mills
quantum field theory with couplinggSYM

2 5R2/(R9l P
3 ) on a

space ofT-dual radiusRSYM5 l P
3 /(RR9). The dimensionless

effective coupling of the super Yang-Mills theory is then
gSYM
2 RSYM

2 5( l P /R9)
3, which is independent ofR. For

p-dimensional tori we get systems ofDp branes described
by (p11)-dimensional SU(N) super Yang-Mills theory. Re-
lated issues have also recently been discussed in@22#.

For more general compactifications the rule would be to
keep every BPS state which contributes to thev4 term at
largeN. We are currently investigating such compactifica-
tions, including ones with less supersymmetry.

The line of argument presented in this section raises a
number of questions. Is it permissible to holdR finite or to
let it grow very slowly withN? Are there nonperturbative
corrections to thev4 term? LargeN probably prohibits in-
stanton corrections in the quantum mechanics, but perhaps
not in the full string theory. This might be related to the
effect of various wrapped branes in compactified theories.

Does the velocity stay low? A key problem here is that in
the mean field theory cloud the 0 branes are moving very
slowly. If two 0 branes encounter each other, their relative
velocity is much less than the typical velocity in a bound pair
(v;R). It seems that the capture cross section to go into the
pair bound state should be very large. Why is there no
clumping into pairs? One factor which might come into play
is the following. If the velocity is very low, the de Broglie
wavelength of the particles might be comparable to the
whole cluster~this is true in the mean field!, and so there
could be delicate phase correlations across the whole
cluster—some kind of macroscopic quantum coherence.
Whenever a pair is trying to form, another 0 brane might get
between them and disrupt them. This extra coherent com-
plexity might help explain the Lorentz invariance puzzle.

X. ANOTHER APPROACH TO COMPACTIFICATION

The conjecture which we have presented refers to an ex-
act formulation of M theory in uncompactified 11-
dimensional space-time. It is tempting to imagine that we
can regain the compactified versions of the theory as particu-
lar collections of states in the largeN limit of the matrix
model. There is ample ground for suspicion that this may not
be the case and that degrees of freedom that we have thrown
away in the uncompactified theory may be required for com-
pactification. Indeed, in IMF field theory the only general
method for discussing theories with moduli spaces of vacua
is implementable only when the vacua are visible in the clas-
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sical approximation. Then we can shift the fields and do IMF
quantization of the shifted theory. Different vacua corre-
spond to different IMF Hamiltonians for the same degrees of
freedom. The proposal of the previous section is somewhat
in the spirit of IMF field theory. Different Hamiltonians and,
indeed, different sets of degrees of freedom are required to
describe each compactified vacuum.

We have begun a preliminary investigation of the alterna-
tive hypothesis, that different compactifications are already
present in the model we have defined. This means that there
must be collections of states which, in the largeN limit, have
Smatrices which completely decouple from each other. Note
that the largeN limit is crucial to the possible existence of
such superselection sectors. The finiteN quantum mechanics
cannot possibly have superselection rules. Thus the only way
in which we could describe compactifications for finiteN
would be to add degrees of freedom or change the Hamil-
tonian. We caution the reader that the approach we will de-
scribe below is very preliminary and highly conjectural.

This approach to compactification is based on the idea
that there is a sense in which our system defines a single
‘‘noncommuting membrane.’’ Consider compactification of
a membrane on a circle. Then there are membrane configu-
rations in which the embedding coordinates do not transform
as scalars under large diffeomorphisms of the membrane vol-
ume, but rather are shifted by large diffeomorphisms of the
target space. These are winding states. A possible approach
to identifying the subset of states appropriate to a particular
compactification is to first find the winding states and then
find all states which have nontrivial scattering from them in
the largeN limit. In fact, our limited study below seems to
indicate that all relevant states, including compactified super-
gravitons, can be thought of as matrix model analogues of
membrane winding states.

Let us consider compactification of the ninth transverse
direction on a circle of radius 2pR9 . A winding membrane
is a configuration which satisfies

X9~q,p12p!5X9~q,p!12pR9 , ~10.1!

and the winding sector is defined by a path integral over
configurations satisfying this boundary condition. A matrix
analogue of this is

e2 iNqX9eiNq5X912pR9 . ~10.2!

It is easy to see~by taking the trace! that this condition
cannot be satisfied for finiteN. However, if we take the large
N limit in such a way thatq→s/N^1M3M , with s an angle
variable, then this equation can be satisfied, with

X95
2pR9

i

]

]s
^1M3M1x9~s!, ~10.3!

wherex9 is anM3M -matrix-valued function of the angle
variable. The other transverse bosonic coordinates and all of
theu’s areM3M -matrix-valued functions ofs. These equa-
tions should be thought of as limits of finite matrices. Thus
2pR9P[(2pR9 / i )]/]s can be thought of as the limit of
the finite matrices diag(22pPR9 . . . 2pPR9), with s the
obvious tridiagonal matrix in this representation. The total
longitudinal momentum of such a configuration is (2P

11)M/R, and the ratioM /P is an effectively continuous pa-
rameter characterizing the states in the largeN limit. We are
not sure of the meaning of this parameter.

To get a feeling for the physical meaning of this proposal,
we examine the extreme limits of large and smallR9 . For
largeR9 it is convenient to work in the basis whereP is
diagonal. If we take all of the coordinatesXi independent of
s, then our winding membrane approaches a periodic array
of (2P11) collections ofD0 branes, each with longitudinal
momentumM /R. We can find a solution of the BPS condi-
tion by putting each collection into theM zero-brane thresh-
old bound-state wave function. For largeR9 configurations
of theXi which depend ons have very high frequency and
can be integrated out. Thus, in this limit, the BPS state in this
winding sector is approximately a periodic array of super-
gravitons. We identify this with the compactified supergravi-
ton state. This state will have the right long range gravita-
tional interactions~at scales larger thanR9! in the eight
uncompactified dimensions. To obtain the correct decompac-
tified limit, it would appear that we must rescaleR, the ra-
dius of the longitudinal direction byR→(2P11)R, as we
takeP andM to infinity. With this rescaling, all trace of the
parameterM /P seems to disappear in the decompactification
limit.

For smallR9 , our analysis is much less complete. How-
ever, string duality suggests an approximation to the system
in which we keep only configurations withM51 and
P→`. In this case thes dependence ofX9 is pure gauge
and theXi all commute with each other. The matrix model
Hamiltonian becomes the Hamiltonian of the Green-Schwarz
type-IIA string:

H→E ds~Ẋ!21S ]X

]s D 21uTg9

]u

]s
. ~10.4!

As in previous sections, we will construct multiwound
membrane states by making large block diagonal matrices,
each block of which is the previous single-particle construc-
tion. Lest such structures appear overly baroque, we remind
the reader that we are trying to make explicit constructions
of the wave functions of a strongly interacting system with
an infinite number of degrees of freedom. For largeR9 it is
fairly clear that the correct asymptotic properties of multipar-
ticle states will be guaranteed by the BPS condition~assum-
ing that everything works as conjectured in the uncompacti-
fied theory!.

If our ansatz is correct for smallR9 , it should be possible
to justify the neglect of fluctuations of the matrix variables
away from the special forms we have taken into account, as
well as to show that the correct string interactions~for mul-
tistring configurations defined by the sort of block diagonal
construction we have used above! are obtained from the ma-
trix model interactions. In this connection it is useful to note
that in taking the limit from finite matrices, there is no mean-
ing to the separation of configurations into winding sectors
which we have defined in the formal largeN limit. In par-
ticular,X9 should be allowed to fluctuate. But we have seen
that shifts ofX9 by functions ofs are pure gauge, so that all
fluctuations around the configurations which we have kept
give rise to higher derivative world sheet interactions. Since
the P→` limit is the world sheet continuum limit, we
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should be able to argue that these terms are irrelevant opera-
tors in that limit. We have less understanding about how the
sum over world sheet topologies comes out of our formal-
ism, but it is tempting to think that it is in some way con-
nected with the usual topological expansion of largeN ma-
trix models. In the Appendix we show that in 11 dimensions,
dimensional analysis guarantees the dominance of planar
graphs in certain calculations. Perhaps, in ten dimensions,
the small dimensionless parameter,R9 / l P must be scaled
with a power ofN in order to obtain the limit of the matrix
model which gives IIA string theory.

These ideas can be extended to compactification on mul-
tidimensional tori. A wrapping configuration of a toroidal
membrane can be characterized by describing the cycles on
the target torus on which thea andb cycles of the membrane
are mapped. This parametrization is redundant because of the
SL(2,Z) modular invariance which exchanges the two mem-
brane cycles. We propose that the analogue of these wrap-
ping states, for ad-torus defined by modding outRd by the
shiftsXi→Xi12pRa

i , is defined by the conditions

e2 isX~m,n!
i eis5X~m,n!

i 12pRa
i na, ~10.5!

e2p iPX~m,n!
i e22p iP5X~m,n!

i 12pRa
i ma, ~10.6!

wheren andm are d-vectors of integers. The solutions to
these conditions are

X~m,n!
ı 5@2rRa

i naP1Ra
i mas# ^1M3M1x~m,n!

i ~s!,
~10.7!

where thexi are periodicM3M -matrix-valued functions of
s. The fermionic and noncompact coordinates are also
matrix-valued functions ofs.

In order to discuss more complicated compactifications,
we would have to introduce coordinates and find a group of
large diffeomorphisms associated with one and two cycles
around which membranes can wrap. Then we would search
for embeddings of this group into the largeN gauge group.
Presumably, different coordinate systems would correspond
to unitarily equivalent embeddings. We can even begin to get
a glimpse of how ordinary Riemannian geometry would
emerge from the matrix system. If we take a large manifold
which breaks sufficient supersymmetries, the effective action
for supergravitons propagating on such a manifold would be
obtained, as before, by integrating over the off-diagonal ma-
trices. Now, however, the nonrenormalization theorem
would fail and the kinetic term for the gravitons would con-
tain a metric. The obvious conjecture is that this is the usual
Riemannian metric on the manifold in question. If this is the
case, our prescription for compactification in the noncommu-
tative geometry of the matrix model would reduce to ordi-
nary geometry in the large radius limit.

A question which arises is whether the information about
one and two cycles is sufficient to characterize different
compactifications. We suspect that the answer to this is no.
The moduli of the spaces that arise in string-theoretic com-
pactifications are all associated with the homology of the
space, but in general higher dimensional cycles~e.g., three
cycles in Calabi-Yau threefolds! are necessary to a complete
description of the moduli space. Perhaps in order to capture
this information we will have to find the correct descriptions

of five branes in the matrix model. If the theory really con-
tains low energy SUGRA, then it will contain solitonic five
branes, but it seems to us that the correct prescription is to
define five branes as theD branes of membrane theory. We
do not yet understand how to introduce this concept in the
matrix model.

Finally, we would like to comment on the relation be-
tween the compactification schemes of this and the previous
sections. For a single circle, if we takeP to infinity and
substitute the formula~10.3! into the matrix model Hamil-
tonian ~as well as the prescription that all other coordinates
and supercoordinates are functions ofs!, then we find the
Hamiltonian of (111)-dimensionally reduced 10 D SYM
theory inA050 gauge, withx9 playing the role of the spatial
component of the vector potential. Thus the prescription of
the previous section appears to be a particular rule for how
the largeN limit should be taken in the winding configura-
tions we have studied here.P is taken to infinity first, and
thenM is taken to infinity. The relation between the two
approaches is reminiscent of the Eguchi-Kawai@23# reduc-
tion of largeN gauge theory. It is clear once again that much
of the physics of the matrix model is buried in the subtleties
of the largeN limit. For multidimensional tori, the relation-
ship between the formalisms of this and the previous section
is more obscure.

XI. CONCLUSIONS

Although the evidence we have given for the conjectured
exact equivalence between the largeN limit of supersymmet-
ric matrix quantum mechanics and uncompactified 11-
dimensionalM theory is not definitive, it is quite substantial.
The evidence includes the following.

~1! The matrix model has exact invariance under the
super-Galilean group of the infinite momentum frame de-
scription of 11D Lorentz-invariant theories.

~2! Assuming the conventional duality betweenM theory
and IIA string theory, the matrix model has normalizable
marginally bound states for any value ofN. These states
have exactly the quantum numbers of the 11D supergraviton
multiplet. Thus the spectrum of single-particle states is ex-
actly that ofM theory.

~3! As a consequence of supersymmetric nonrenormaliza-
tion theorems, asymptotic states of any number of noninter-
acting supergravitons exist. These well-separated particles
propagate in a Lorentz-invariant manner in 11 dimensions.
They have the statistics properties of the supergravity
Fock space.

~4! The matrix model exactly reproduces the correct long
range interactions between supergravitons implied by 11D
supergravity, for zero longitudinal momentum exchange.
This one-loop result could easily be ruined by higher loop
effects proportional to four powers of velocity. We believe
that a highly nontrivial supersymmetry theorem protects us
against all higher loop corrections of this kind.

~5! By examining the pieces of the bound-state wave
function in which two clusters of particles are well separated
from each other, a kind of mean field approximation, we find
that the longest range part of the wave function grows with
N exactly as required by the holographic principle. In par-
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ticular, the transverse density never exceeds one parton per
Planck area.

~6! The matrix model describes large classical membranes
as required byM theory. The membrane world volume is a
noncommutative space with a fundamental unit of area
analogous to the Planck area in phase space. These basic
quanta of area are the originalD0 branes from which the
matrix model was derived. The tension of this matrix model
membrane is precisely the same as that of theM -theory
membrane.

~7! At the classical level the matrix model realizes the full
11D Lorentz invariance in the largeN limit.

Of course, many unanswered questions remain. Locality
is extremely puzzling in this system. Longitudinal boost in-
variance, as we have stressed earlier, is very mysterious. Re-
solving this issue, perhaps by understanding the intricate dy-
namics it seems to require, will be crucial in deciding
whether or not this conjecture is correct.

One way of understanding Lorentz invariance would be to
search for a covariant version of the matrix model in which
the idea of noncommutative geometry is extended to all of
the membrane coordinates. An obvious idea is to consider
functions of angular momentum operators and try to exploit
the connection between spin networks and three-dimensional
diffeomorphisms. Alternatively, one could systematically
study quantum corrections to the angular conditions.

It is likely that more tests of the conjecture can be per-
formed. In particular, it should be possible to examine the
large distance behavior of amplitudes with nonvanishing lon-
gitudinal momentum transfer and to compare them with su-
pergravity perturbation theory.

It will be important to to try to make precise the line of
argument outlined in Sec. IX that may lead to a proof of the
conjecture. The approaches to compactification discussed in
Secs. IX and X should be explored further.

If the conjecture is correct, it would provide us with the
first well-defined nonperturbative formulation of a quantum
theory which includes gravitation. In principle, with a suffi-
ciently large and fast computer any scattering amplitude
could be computed in the finiteN matrix model with arbi-
trary precision. Numerical extrapolation to infiniteN is in
principle, if not in practice, possible. The situation is much
like that in QCD where the only known definition of the
theory is in terms of a conjectured limit of lattice gauge
theory. Although the practical utility of the lattice theory
may be questioned, it is almost certain that an extrapolation
to the continuum limit exists. The existence of the lattice
gauge Hamiltonian formulation ensures that the theory is
unitary and gauge invariant.

One can envision the matrix model formulation ofM
theory playing a similar role. It would, among other things,
ensure that the rules of quantum mechanics are consistent
with gravitation. Given that the classical long distance equa-
tions of 11D supergravity have black hole solutions, a
Hamiltonian formulation ofM theory would, at last, lay to
rest the claim that black holes lead to a violation of quantum
coherence
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APPENDIX A

In this appendix we will report on a preliminary investi-
gation of the threshold bound-state wave function ofN zero
branes in the largeN limit. In general, we may expect a finite
probability for theN brane bound state to consist ofp clus-
ters ofN1 ,...,Np branes separated by large distances along
one of the flat directions of the potential. We will try to take
such configurations into account by writing a recursion rela-
tion relating theN cluster to ak and N2k cluster. This
relation automatically incorporates multiple clusters since
the pairs into which the original cluster is broken up will
themselves contain configurations in which they are split up
into further clusters. There may, however, be multiple cluster
configurations which cannot be so easily identified as two
such superclusters. We will ignore these for now, in order to
get a first handle on the structure of the wave function.

The configuration of a pair of widely separated clusters
has a single collective coordinate whose Lagrangian we have
already written in our investigation of supergraviton scatter-
ing. The Lagrangian is

L5
1

2

k~N2k!

N
v21

k~N2k!

r 7
v4, ~A1!

where r is the distance between the clusters andv is their
relative velocity. By scaling, we can write the solution of this
quantum-mechanical problem asf$r (k@N2k#)2/9/N1/3%,
wheref is the threshold bound-state wave function of the
Lagrangian

1

2
v21

v4

r 7
. ~A2!

This solution is valid whenr@ l P .
We are now motivated to write the recursion relation
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CN5CN
~c!1

1

2
P(
k51

N21

AN,kCkCN2k

3fS r ~k@N2k# !2/9

N1/3 De2r TrWk
†Wk. ~A3!

Here we have chosen a gauge in order to make a block-
diagonal splitting of our matrices.C j is the exact normalized
threshold bound-state wave function forj zero branes.Wk
are the off-diagonalk3N2k matrices which generate inter-
actions between the two clusters.P is the gauge-invariant
projection operator which rotates our gauge choice among all
gauge-equivalent configurations. TheAN,k are normalization
factors, which in principle we would attempt to find by solv-
ing the Schro¨dinger equation. CN

(c) is the ‘‘core’’ wave
function, which describes configurations in which all of the
zero branes are at a distance less than or equal tol P from
each other. We will describe some of its properties below. In
this regime, the entire concept of distance breaks down, since
the noncommuting parts of the coordinates are as large as the
commuting ones.

The interesting thing which is made clear by this ansatz is
that the threshold bound state contains a host of internal
distance scales, which becomes a continuum asN→`. This
suggests a mechanism for obtaining scale-invariant behavior
for largeN, as we must if we are to recover longitudinal
boost invariance. Note that the typical distance of cluster
separation is largest asN goes to infinity when one of the
clusters has only a finite number of partons. These are the
configurations which give theN1/9 behavior discussed in the
text, which saturates the Bekenstein bound. By the uncer-
tainty principle, these configurations have internal frequen-
cies of the bound state;N22/9. Although these go to zero as
N increases, they are still infinitely higher than the energies
of supergraviton motions and interactions, which are of order
1/N. As in perturbative string theory, we expect that this
association of the large distance part of the wave function
with modes of very high frequency will be crucial to a com-
plete understanding of the apparent locality of low energy
physics.

As we penetrate further in to the bound state, we encoun-
ter clusters of larger and larger numbers of branes. If we look
for separated clusters carrying finite fractions of the total
longitudinal momentum, the typical separation falls asN in-
creases. Finally, we encounter the coreCN

(c) , which we ex-
pect to dominate the ultimate short distance and high energy
behavior of the theory in noncompact 11-dimensional space-
time.

It is this core configuration to which the conventional
methods of largeN matrix models, which have so far made
no appearance in our discussion, apply. Consider first gauge-
invariant Green’s functions of operators like TrXi

2k , where
i is one of the coordinate directions. We can construct a
perturbation expansion of these Green’s functions by con-
ventional functional integral methods. When the time sepa-
rations of operators are all short compared to the 11-
dimensional Planck time, the terms in this expansion are well
behaved. We can try to resum them into a largeN series. The
perturbative expansion parameter~the analogue ofgYM

2 if we
think of the theory as dimensionally reduced Yang-Mills

theory! is R3/ l P
6E3. Thus the planar Green’s functions are

functions ofR3N/ l P
6E3.

The perturbative expansion, of course, diverges term by
term asE→0. If we imagine that, as suggested by our dis-
cussion above, these Green’s functions should be thought of
as measuring properties of the core wave function of the
system, there is no physical origin for such an infrared di-
vergence. If, as in higher dimensions, the infrared cutoff is
found already in the leading order of the 1/N expansion, then
it must be of ordervc;RlP

22N1/3. Note that this is much
larger than any frequency encountered in our exploration of
the parts of the wave function with clusters separated along a
flat direction.

Now let us apply this result to the computation of the
infrared-divergent expectation values of single gauge-
invariant operators in the core of the bound-state wave func-
tion. The idea is to evaluate the graphical expansion of such
an expression with an infrared cutoff and then insert the
above estimate for the cutoff to obtain the correct largeN
scaling of the object. The combination of conventional large
N scaling and dimensional analysis then implies that planar
graphs dominate even though we are not taking the ‘‘gauge
coupling’’ R3l P

26, to zero as we approach the largeN limit.
Dimensional analysis controls the otherwise unknown be-
havior of the higher order corrections in this limit. The re-
sults are

K 1N trX2kL ;N2k/3, ~A4!

K 1N tr@Xi ,Xj #2kL ;N4k/3, ~A5!

K 1N tr~ ū@g iX
i ,u#!2kL ;N4k/3, ~A6!

K 1N trẊ2kL ;N4k/3. ~A7!

In the first of these expressions,X refers to any component
of the transverse coordinates. In the second the commutator
refers to any pair of the components. The final expression,
whose lowest order perturbative formula has an ultraviolet
divergence, is best derived by combining Eqs.~A5! and~A6!
and the Schro¨dinger equation which says that the threshold
bound state has zero binding energy. Note that these expres-
sions are independent ofR, the compactification radius of
the 11th dimension. This follows from a cancellation be-
tween theR dependence of the infrared cutoff, that of the
effective coupling and that of the scaling factor, which re-
lates the variablesX to conventionally normalized Yang-
Mills fields.

The first of these equations says that the typical eigen-
value of any one coordinate matrix is of orderN1/3, much
larger than theN1/9 extension along the flat directions. The
second tells us that this spectral weight lies mostly along the
nonflat directions. In conjunction, the two equations can be
read as a kind of ‘‘uncertainty principle of noncommutative
geometry.’’ The typical size of matrices is controlled by the
size of their commutator. The final equation fits nicely with
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our estimate of the cutoff frequency. The typical velocity is
such that the transit time of a typical distance9 is the inverse
of the cutoff frequency. It is clear that the high velocities
encountered in the core of the wave function could invalidate
our attempt to derive the matrix model by extrapolating from
weakly coupled string theory. We must hope that the overall
amplitude for this part of the wave function vanishes in the
largeN limit, relative to the parts in which zero branes are
separated along flat directions.

It is important to realize that these estimates do not apply
along the flat directions, but in the bulk of theN2 dimen-
sional configuration space. In these directions, it does not
make sense to multiply together the ‘‘sizes’’ along different
coordinate directions to make an area since the different co-
ordinates do not commute. Thus there is no contradiction
between the growth of the wave function in nonflat direc-
tions and our argument that the size of the bound state in
conventional geometric terms saturates the Bekenstein
bound.

APPENDIX B

In this appendix we compute the matrix model membrane
tension and show that it exactly agrees with theM -theory
membrane tension. The useful summary in@24# gives the
tension of aDp braneTp in IIA string theory orM theory as

Tp5
~2p!1/2

gs
~2p!2p/2S 1

2pa8D
~11p!/2

, ~B1!

wheregs is the fundamental string coupling and 1/2pa8 is
the fundamental string tension.

The membrane tensionT2 is defined so that the massM
of a stretched membrane of areaA is given byM5T2A.
The mass squared for a light cone membrane with no trans-
verse momentum described by the mapX i(s1 ,s2), i
51,...,9, can be written

M25~2p!4T2
2E

0

2p ds1

2p E
0

2p ds2

2p (
i, j

$X i ,Xj%2,

~B2!

where the Poisson brackets of two functions
A(s1 ,s2),B(s1 ,s2) are defined by

$A,B%[
]A

]s1

]B

]s2
2

]B

]s1

]A

]s2
. ~B3!

The coefficients in Eq.~B2! are set by demanding that
M2 for the mapX 85(s1/2p)L, X 95(s2/2p)L is given by
M25(T2L

2)2.
To understand the relation to the matrix model, we write,

as in Sec. VIII, the mapX i as a Fourier series:

X i~s1 ,s2!5 (
n1 ,n2

xn1n2
i ei ~n1s11n2s2!. ~B4!

Then the corresponding matricesXi are given by

Xi5 (
n1 ,n2

xn1n2
i Un1Vn2, ~B5!

where the matricesU,V are elements of SU(N), have spec-
trum spec(U)5spec(V)5$1,v,v2,...,vN21%, and obey
UV5vVU, wherev5exp(2pi/N). In a specific basis,U
5diag(1,v,v2,...,vN21) andV is a cyclic forward shift.

The scale of Eq.~B5! is fixed since spec(U) and
spec(V) go over asN→` to the unit circle exp(is). Note
thatX i is real and soXi is Hermitian.

The dynamics of the matrix model is governed by the
Lagrangian

T0
2
TrS (

i
Ẋi Ẋi1C(

i, j
@Xi ,Xj #2D . ~B6!

The normalizations here are fixed by the requirement that
Eq. ~B6! describeD0-brane dynamics. The first term, for
diagonal matrices describingD0-brane motion, is just the
nonrelativistic kinetic energy (m0/2)(a51

N va
2 since the

0-brane massm05T0 . The rest energy of the system is just
Nm0 , which in theM -theory interpretation is justp11, and
so

p115NT0 . ~B7!

The coefficientC is fixed by requiring that the small fluc-
tuations around diagonal matrices describe harmonic oscilla-
tors whose frequencies are precisely the masses of the
stretched strings connecting the 0 branes. This ensures that
Eq. ~B6! reproduces long range graviton interactions cor-
rectly. Expanding Eq.~B6! to quadratic order we find that
C5(1/2pa8)2.

The energy of a matrix membrane configuration with zero
transverse momentum is given by the commutator term in
Eq. ~B6!. We can evaluate this commutator in a semiclassical
manner at largeN as in Sec. VIII by introducing angular
operators q with spectrum the interval~0,2p! and p
5(2p/Ni)]/]q with the spectrum the discretized interval
~0,2p! so that @p,q#52p i /N. The matricesU,V become
U5eip, V5eiq. By the Baker-Campbell-Hausdorff theorem,
we seeUV5vVU. The formal\ in this algebra is given by
\52p/N. Semiclassically, we have

@X,Y#→ i\$X,Y%,

Tr→E
0

2pE
0

2p dp dq

2p\
. ~B8!

So we get

Tr@Xi ,Xj #2→2
~2p!2

N E
0

2p ds1

2p E
0

2p ds2

2p
$X i ,Xj%2.

~B9!

This commutator can also be evaluated for a given finite
N matrix configuration explicitly with results that agree with
Eq. ~B9! asN→`.

9In the space of eigenvalues, which in this noncommutative region
is not to be confused with the classical geometrical distance be-
tweenD0 branes.
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Now we can perform the check. The value of the matrix
model Hamiltonian on a configuration with no transverse
momentum is

H5
T0
2 S 1

2pa8D
2 ~2p!2

N E
0

2p ds1

2p E
0

2p ds2

2p (
I, j

$Xi ,Xj%2.

~B10!

The conjecture interprets the matrix model HamiltonianH as
the infinite momentum frame energyAp112 1M22p11
.M2/2p11. So the matrix membrane mass squared is
Mmat

2 52p11H. Using Eq.~B7!, we find

Mmat
2 5T0

2S 1

2pa8D
2

~2p!2E
0

2p ds1

2p E
0

2p ds2

2p (
i, j

$Xi ,Xj%2.

~B11!

From Eq.~B2! we can now read off the matrix model mem-
brane tension as

~T2
mat!25T0

2S 1

2pa8D
2 1

~2p!2
. ~B12!

So we can write

T2
2

~T2
mat!2

5~2p!2~2pa8!2S T2T0D
2

5~2p!2S 1

2p D 251.

~B13!

So theM -theory and matrix model membrane tensions ex-
actly agree.
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